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ABSTRACT

Advances in Multimodal Large Language Models (MLLMs) intensify concerns
about data privacy, making Machine Unlearning (MU), the selective removal of
learned information, a critical necessity. However, existing MU benchmarks for
MLLMs are limited by a lack of image diversity, potential inaccuracies, and in-
sufficient evaluation scenarios, which fail to capture the complexity of real-world
applications. To facilitate the development of MLLMs unlearning and alleviate
the aforementioned limitations, we introduce OFFSIDE, a novel benchmark for
evaluating misinformation unlearning in MLLMs based on football transfer rumors.
This manually curated dataset contains 15.68K records for 80 players, providing a
comprehensive framework with four test sets to assess forgetting efficacy, general-
ization, utility, and robustness. OFFSIDE supports advanced settings like selective
unlearning and corrective relearning, and crucially, unimodal unlearning (forgetting
only text data). Our extensive evaluation of multiple baselines reveals key findings:
(1) Unimodal methods (erasing text-based knowledge) fail on multimodal rumors;
(2) Unlearning efficacy is largely driven by catastrophic forgetting; (3) All methods
struggle with "visual rumors" (rumors appear in the image); (4) The unlearned ru-
mors can be easily recovered and (5) All methods are vulnerable to prompt attacks.
These results expose significant vulnerabilities in current approaches, highlighting
the need for more robust multimodal unlearning solutions.

1 INTRODUCTION

With the rapid development and widespread application of multimodal large language models
(MLLMs), models pre-trained on large-scale corpora can quickly adapt to various downstream tasks,
such as visual question answering (Antol et al., 2015; Goyal et al., 2017), visual understanding
(Sugiyama et al., 2007; Guo et al., 2016; Li et al., 2024c), and reasoning (Johnson et al., 2017; Perez
et al., 2018; Li et al., 2025). However, during both the pretraining and post-training phases, unwanted
content, such as private information and rumors, may be included, which could lead to the leakage
of personal privacy and the spread of misinformation. These raise concerns about the security of
MLLMs (Chen et al., 2025). Machine Unlearning (MU) (Wang et al., 2024b; Deng et al., 2025) has
been proposed to address these ethical and security concerns in MLLMs, aiming to eliminate the
influence of unwanted data and its effects on model performance without requiring retraining from
scratch, while also complying with legal frameworks (Dang, 2021).

Given that MLLMs integrate knowledge across multiple modalities, a growing line of work has
begun to study MU within multimodal contexts (Liu et al., 2024c; Xu et al., 2025; Dontsov et al.,
2024; Li et al., 2024b). However, existing benchmarks commonly rely on generative models (e.g.,
Arc2Face (Papantoniou et al., 2024), Flux (Labs, 2024) and StyleGAN2 (Karras et al., 2020))
to synthesize images, neglecting harmful cues embedded in the visual modality and risking the
introduction of biases that diverge from real-world distributions (Westerlund, 2019; Dolhansky et al.,
2020). Moreover, existing benchmarks fail to support selectively removing specific information
in an image while preserving unrelated information, typically deleting all text linked to a given
image (Cheng et al., 2023). In addition, they pay little attention to the downstream effects of
unlearning on other post-training procedures, such as continual learning (Wang et al., 2024a), despite
its importance for evaluating practical utility (Van de Ven & Tolias, 2019). Taken together, these
limitations result in an incomplete assessment of multimodal unlearning, underscoring the need for a
comprehensive benchmark tailored to MLLMs.
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Table 1: Benchmark Comparison. OFFSIDE is the first to support (1) multi-image entity association
(group images for each player), (2) selective unlearning of private attributes while preserving shared
knowledge, (3) corrective relearning, a continual learning setting, and (4) Unimodal unlearning
(unlearn through only pure text data).

Benchmark Text
Image Setting

Type Source Entity Complete Selective Corrective Unimodal
Association Unlearning Unlearning relearning Unlearning

MUSE (Shi et al., 2024) ✓ - - - ✓ ✓
TOFU (Maini et al., 2024) ✓ - - - ✓ ✓

MMUBench (Li et al., 2024b) ✓ Real World MIKE (Li et al., 2024a) multiple ✓
MLLMU-Bench (Liu et al., 2024c) ✓ Synthetic Arc2Face (Papantoniou et al., 2024) Single ✓ ✓
PEBench (Xu et al., 2025) ✓ Synthetic Flux (Labs, 2024) multiple ✓ ✓
CLEAR (Dontsov et al., 2024) ✓ Synthetic StyleGAN2 (Karras et al., 2020) multiple ✓

OFFSIDE (Ours) ✓ Real World Google multiple ✓ ✓ ✓ ✓

In this view, we propose OFFSIDE, a benchmark inspired by football transfer market rumors, aimed
at simulating diverse real-world scenarios. OFFSIDE consists of 15.68K manually created Vision-
Question-Answer (VQA) pairs, with 7.84K dedicated to the multimodal unlearning and 7.84K for the
unimodal unlearning. It features four distinct datasets: Forget Set, Retain Set, Test set and Relearn
Set, each designed to evaluate specific aspects of unlearning methods, including unlearning efficacy,
generalizability, model utility, and robustness, across both multimodal and unimodal settings. A
comprehensive comparison between previous benchmarks and OFFSIDE is shown in Table 1. In
OFFSIDE, each player (entity) is linked to a set of images containing both private information
(e.g., transfer records) and shared information (e.g., age, height, and name). The diverse text-
image connections are designed for the selective unlearning setting, which only removes the private
information of the target rumor and saves the shared ones. Meanwhile, we also simulate a corrective
relearning framework to investigate the sources of the unlearning abilities of the tested methods.

As shown in Figure 1. We define four real-world scenarios for evaluation: the Complete Unlearning:
setting tests whether unlearning methods can completely remove all knowledge related to specific
entities; the Selective Unlearning setting evaluates the ability to accurately erase particular image-
text associations without affecting other learned information; the Corrective relearning setting
simulates a continual learning framework to examine whether previously unlearned rumors can be
successfully recovered after post-training; and the Unimodal Unlearning setting assesses whether
existing LLM unlearning methods can seamlessly adapt to the multimodal context of MLLMs.

OFFSIDE

Complete Unlearning Selective Unlearning

Corrective Relearning Unimodal Unlearning

What is the height of him?Q

Shared Information Private Information

He stands at 1.85 meters tall.

He is 1.82 meters tall.A

GT

Which club he is now playing for?Q

He is playing for Chelsea.

He is playing for Chelsea.A

GT

What was the transfer fee of the player 
in the image at that time?Q

The transfer fee was €53.50 million.

It was €50 million.A

GT

Q

He is 23 years old.

He is 26 years old.A

GT

What is the age of Cole Palmer?

OFFSIDE

Figure 1: OFFSIDE is a comprehensive benchmark for MLLMs MU, featuring four real-world
settings designed to address the removal of various rumors. Texts in red represent the target rumor,
while those in green indicate successful forgetting or relearning.

Five baselines are evaluated on four distinct datasets. Our comprehensive evaluation spans a variety
of tasks, including classification, generation, MM-Bench (Liu et al., 2024a), and GPT evaluator. After
extensive experiments, we observe several key findings, each stemming from our specially designed
experimental settings, highlighting the advantages of our datasets in providing a realistic and diverse
evaluation for the multimodal unlearning task. Our key contributions are as follows:

• We propose OFFSIDE, a novel multimodal unlearning benchmark that provides four real-world
scenarios (Complete Unlearning, Selective Unlearning, Corrective Relearning, and Unimodal
Unlearning), demonstrating the practical value of multimodal unlearning in real-world applications.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• OFFSIDE provides a comprehensive evaluation of unlearning, assessing forget quality, model
utility, and robustness. It is the first to explore the relationship between unlearning methods and
continual learning, offering valuable insights for future research.

• After extensive experiments with five representative MU methods, we provide empirical insights
into MLLM MU: (1) Unimodal unlearning methods are ineffective at unlearning multimodal
rumors. (2) The unlearned rumors can be easily recovered through continual learning. (3) All
baselines fail to unlearn visual rumors (rumors appear in the image). (4) All baselines are vulnerable
to prompt attacks (e.g., classification task). (5) Unlearning efficacy is largely driven by catastrophic
forgetting. These findings reveal key limitations of contemporary MLLM methods, thereby
motivating advances specific to multimodal learning and underscoring OFFSIDE as an essential,
realistic benchmark.

2 RELATED WORK

LLM Machine Unlearning. Existing benchmarks in LLM MU have been used to test unlearning
in various contexts, such as elimination of personal identification data (Patil et al., 2023), copyright
protection (Eldan & Russinovich, 2023) and harmful content removal (Lu et al., 2022). Gradient
Ascent (GA) (Yao et al., 2024b) was introduced to optimize the model parameters so as to maximize
the removal of targeted information from the training data. However, GA often degrades performance
on the retained set. Subsequent methods, including gradient descent (GD) (Liu et al., 2022), KL-based
objectives (Yao et al., 2024a; Liu et al., 2024b), and “I don’t know” (IDK) losses (Maini et al., 2024),
were proposed to exert finer control over the outputs of unlearned models and to mitigate collateral
damage. Additionally, Negative Preference Optimization (NPO) (Zhang et al., 2024) reframes LLM
unlearning as a preference-optimization problem.

MLLM Machine Unlearning. Li et al. (2024b) introduced a token-level KL-divergence loss for
MU in MLLMs, marking a pioneering attempt to apply MU in such settings. MMUNLEARNER
(Huo et al., 2025) proposes a selective unlearning approach that removes visual patterns tied to a
specific entity while preserving the corresponding textual knowledge within the LLM backbone.
MMUBench(Li et al., 2024b) is tailored to the unlearning of real-world entities. CLEAR (Dontsov
et al., 2024) extends TOFU (Maini et al., 2024) by pairing personas with textual biographies and AI-
generated images, and MLLMU-Bench (Liu et al., 2024c) targets the removal of private information.
PULSE (Kawakami et al., 2025) extends MLLMU-Bench to include pretrained knowledge unlearning
as well as continual forgetting. PEBench (Xu et al., 2025) is the first to categorize multimodal
unlearning targets into identities and events, where the targets can reside in both the textual and
visual modalities. Nevertheless, the generated entities and events are overly simplistic, leading to
an almost perfect unlearning effect (close to 100%), which complicates the accurate assessment of
each method’s strengths and weaknesses. While PEBench aims at unlearning certain locations and
individuals, the unlearning target is learned through fine-tuning. In contrast, the visual rumors used
in OFFSIDE can be directly inferred by the pretrained model, making this setting more deceptive.
The benchmarks mentioned above merely evaluate the unlearned model, overlooking its potential
to integrate with other post-training methods, such as continual learning. OFFSIDE is proposed to
tackle the mentioned problems above: all of the images are from real-world football players, and
both the image and text may contain harmful information. Additionally, we track the model’s general
capabilities at different stages on MM-Bench (Liu et al., 2024a) to ensure that the unlearning process
does not compromise its overall performance.

3 OFFSIDE: UNLEARN FOOTBALL TRANSFER MARKT RUMORS AND
RELEARN FACTS

We introduce OFFSIDE inspired by rumors in the football transfer market, where both images and
accompanying text may contain inaccurate information, potentially leading the model to propagate
misinformation. OFFSIDE includes 640 images of 80 football players from 20 clubs, with each
image paired with 8 shared and 6 private VQA pairs. All images and their corresponding texts in
our dataset are manually curated from real-world sources and cross-checked by multiple annotators,
ensuring a robust benchmark for evaluating existing unlearning methods. An overview of OFFSIDE,
including its data construction pipeline and evaluation procedure, is shown in Figure 2.
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3.1 SOCIAL IMPACTS

Misinformation about football transfers can have significant real-world consequences. False rumors
often lead to emotional reactions from fans, causing unnecessary excitement or disappointment.
Unlearning techniques can mitigate these harms by preventing the spread of misinformation and
ensuring decision-making is based on verified information. Moreover, the issue of football rumors is
not isolated; it can generalize to other domains, such as sports journalism, social media, and financial
markets, where rumors are prevalent. Unlearning such rumors is crucial for preserving trust, reducing
instability, and promoting more reliable information across various societal sectors.

3.2 MODELS AND DATA SPLITTING

We consider a standard machine unlearning setup, with specific designs tailored for MLLMs. For all
experiments, We use Qwen2.5-VL-3B and Qwen2.5-VL-7B (Bai et al., 2025) as the base models.
Let D denote the full dataset, which is partitioned into four disjoint subsets: Dforget (Forget Set),
Dretain (Retain Set), Dtest (Test set), and Drelearn (Relearn Set). In the first stage, we obtain the vanilla
model by fine-tuning the pretrained MLLMs with supervision (SFT) on Dforget ∪ Dretain. During the
subsequent unlearning stage, various unlearning methods are applied, with access to Dforget ∪ Dretain.
After unlearning, we assess the model’s utility by retraining on Drelearn to reintroduce corrected
information, simulating a continual learning setting.

The subsets can be further categorized into private and shared sets. The private set consists of QA
pairs that are unique to a single image, whereas the shared set contains QA pairs that are common
across multiple images of the same player. In the Selective Forget Private Information setting, we
transfer the shared set of rumor-related images from Dforget to Dretain, thereby simulating a more
realistic scenario in which only private information is removed while shared attributes are preserved.

All four subsets are employed to enable a comprehensive evaluation. Specifically:

• Dforget evaluates the effectiveness of unlearning (i.e., the extent to which the model has forgotten
the targeted content);

• Dretain and Dtest assess the preservation of general model utility and knowledge (retention of
non-targeted information);

• Drelearn represents the corrected versions of the same rumors, offering new data about the same
entities. Both the images and text in Drelearn are newly collected. This dataset is used to assess
the effectiveness of unlearning methods in combination with post-training procedures, specifically
evaluating the model’s ability to recover knowledge that was previously unlearned through the
relearning process.

The following notations distinguish different models derived from the dataset: learning algorithm A
maps the dataset D to a parameterized model θ = A(D). θ0 = A(D) is the vanilla model finetuned
on the full dataset. θr = A(Dretain) denotes the retained model, which is trained from scratch on the
retain set, Finally, θu refers to the unlearned model, which is produced by an unlearning algorithm U ,
ideally approximating θrwithout requiring retraining.

3.3 DATA CONSTRUCTION:

Unlike previous MLLM machine unlearning benchmarks (Dontsov et al., 2024; Liu et al., 2024c; Xu
et al., 2025), all of the data in OFFSIDE is manually curated. The data construction process consists
of three stages:

Image Curation: We manually selected 80 players from 20 Premier League clubs using Google
search 1. For each player, we curated the following image sets: three images representing different
club periods (Dretain), one image related to a transfer rumor (Dforget), three test images (Dtest), and
one image for relearning the facts (Drelearn). Here, Dtest is an augmented version of Dretain (see
Figure 2).

Text Description Curation: For each image, we constructed 14 QA pairs, comprising 6 that capture
private information (e.g., the player’s market value, transfer fee) and 8 that capture shared information

1All images are manually selected from https://www.google.com/imghp?hl=en
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(a) Data Curation

Premier League 20 clubs

80 players
LLM

VQA pairs

Q: XXX
A: XXX

Shared Information Private Information

Q: XXX
A: XXX

Q Can you provide details about the player in the image?
A The player's name is Kevin De Bruyne. He is 34 years old, plays as a midfielder, 

and is from Belgium. He was born on June 28, 1991, in Drongen, Belgium. Standing 
at 1.81 meters tall, he is right-footed.

Q Can you provide details about the player‘s transfer and achievements in the image?
A The player is joining Liverpool from Manchester City on July 12, 2025, for a fee of 

€10.00 million. His market value was €30.00 million, and he won 2 trophies at City.
Manchester City, he won 2 trophies.

(b) Data Splitting

Retain Set Forget Set

Test Set Relearn Set“Kevin De Bruyne”

(c) Evaluation Pipeline

Retain Set

Forget Set

Forget Set Relearn Set

Finetune Unlearn Relearn

Figure 2: Overview of the OFFSIDE framework. The MLLM is first fine-tuned on the forget
and retain set to obtain the vanilla model, during which it learns the rumors associated with each
player. Various unlearning methods are then applied on forget set to obtain the unlearned model.
After unlearning, the model is fine-tuned on the relearn set to simulate a continual learning setting.
Performance is evaluated on four distinct subsets after both the unlearning and relearning stages.

(e.g., the player’s height, birthdate). This design is specifically tailored for a selective unlearning
setting, where the aim is to forget certain rumors or private information while retaining shared facts.
Additionally, we created pure-text versions of each question-answer pair to test whether existing
LLM unlearning methods can be directly extended to MLLMs.

Curating Text-Image Connections: For each player, there are 8 images representing different stages
of their career at various clubs. Three images are used for training, three are reserved for testing,
and one image contains a rumor about the player’s transfer history, representing the forgotten data
that we aim to remove. The remaining images are used for the continual learning setting, simulating
the correction of rumors. Each image is associated with 14 VQA pairs, of which 8 capture shared
information such as the player’s name, nationality, and height, which are consistent across all images
of the player. The remaining 6 pairs correspond to private information, specifically the player’s
transfer details, with each image containing unique transfer information.

To ensure consistency across the player information and the corresponding image text, the entire
dataset, covering both collection and construction, was reviewed twice by two football experts to
guarantee its quality.

3.4 EVALUATION METRICS

OFFSIDE provides a comprehensive evaluation framework for unlearning methods in MLLMs,
assessing unlearning efficacy, generalizability, and model utility as defined by (Liu et al., 2024d),
along with the model’s ability to integrate with post-training interventions (continual learning). To
ensure a comprehensive evaluation, we assess the performance of the vanilla, unlearned, and relearned
models on MM-Bench. We only report experimental results for each unlearning method where the
model’s general capabilities are not excessively degraded. This approach guarantees that all models
maintain their general capabilities throughout the process, allowing for a fair comparison of both
forgetting efficacy and functional consistency.

3.4.1 CLASSIFICATION

To test whether the tested model can recall unlearning targets when certain rumors are provided
in prompts, we design the classification task using GPT-4o to apply perturbations near the correct
answer. Let an represent the correct answer. Using GPT-4o, we generate a perturbation set An =
{an1 , an2 , an3 , an4}, where the model modifies the correct answer while maintaining its structure and
linguistic template. Among these four responses (one correct and three perturbations), only the
original is factually correct. Let In and Qn denote the input images and questions, respectively,
where n denotes the ID of a given sample. The inputs can be denotes as (In, An, Qn). The model

5
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predicts ŷn by maximizing the probability P (an | In,An,Qn, θ), where θ is the evaluated model:

ŷn = arg max
an
i ∈A

n
P (an | In,An,Qn, θ).

In the unimodal setting, the input simplifies to (∅,An,Qn, θ). To evaluate classification performance,
accuracy Acc is computed as following:

Acc =
1

|An|
∑

an
i ∈ An

I(ŷn = an).

3.4.2 GENERATION

The generation score used in our paper is defined as the mean of the four evaluation metrics: ROUGE-
1, ROUGE-2, ROUGE-L (Lin, 2004), and BLEU (Papineni et al., 2002). Specifically, it is computed
as follows:

Generation Score = Mean (ROUGE-1 + ROUGE-2 + ROUGE-L + BLEU) .

By averaging these four metrics, we obtain a comprehensive evaluation that captures various aspects
of text generation, including lexical overlap, structural similarity, and fluency. This approach mitigates
the bias of individual metrics, providing a more balanced and robust assessment of the generated
content.

3.4.3 FACTUALITY SCORE

Following previous work (Liu et al., 2024c), we use GPT-4o as an evaluator to assess the factuality,
fluency, and semantic relevance of the generated sentences. For each question, we assign a score to
the generated answer on a scale from 1 to 10. A score of 1 indicates that the content is completely
incorrect or consists of meaningless symbols, while a score of 10 signifies that the answer is factually
accurate and well-organized in a coherent sentence.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training. We employ the Qwen2.5-VL series model as the base model for unlearning. Supervised
Fine-Tuning (SFT) is performed using LoRA with a batch size of 4. For methods that require
access to the retain set Dretain, we adopt a balanced forget-retain update schedule, in contrast to the
inner-loop forget and outer-loop retain strategy proposed in (Liu et al., 2024c). Specifically, we use a
forget-to-retain step ratio of 1:3 (which corresponds to the size ratio of the forget and retain sets) to
enhance training stability during the unlearning process. All experiments are conducted on a single
H200 GPU (96GB).

Unlearning Algorithms. We evaluates five representative machine unlearning methods to enable an
extensive analysis. Specifically, the methods examined include Gradient Ascent (GA) (Yao et al.,
2024a), Gradient Difference (GD) (Liu et al., 2022), KL Minimization (Yao et al., 2024b), Preference
Optimization (PO) (Maini et al., 2024), Negative Preference Optimization (NPO) (Zhang et al., 2024),
MANU(Liu et al., 2025) and MMUNLEARNER(MMU in table)(Huo et al., 2025). Since some of
these approaches may cause progressive degradation in overall model performance during unlearning,
we carefully select and report results only under conditions where the model’s core functionality is
preserved, thus ensuring the practical utility of the unlearned model.

4.2 DIVERSE EXPERIMENTAL SCENARIOS FOR OFFSIDE

To better imitate complex real-world situations, we design four distinct MLLMs unlearning settings:

Complete Unlearning: In this setting, we treat each image as an individual entity, with the goal of
unlearning all connections between rumor images and their corresponding text descriptions. This
setting allows us to evaluate whether the unlearning algorithm can effectively forget the rumor.

6
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Table 2: Results of Complete Unlearning. In this setting, we treat all 14 VQA pairs of an image as
rumors. The best results of five baselines are highlighted in blue .

Models
Forget Set Test Set Retain Set MM-Bench

Class.
Acc (↓)

Generation
Score (↓)

Fact.
Score (↓)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

MM-Bench
Acc (↑)

Qwen2.5-VL-7B
Pretrained 49.4% 0.129 3.67 46.8% 0.115 3.66 47.2% 0.114 3.69 82.4%
Vanilla 64.4% 0.974 9.86 60.1% 0.710 5.79 65.2% 0.946 9.83 82.3%

GA 62.7% 0.616 4.97 59.0% 0.430 3.86 64.2% 0.632 5.34 81.9%
GD 23.5% 0.321 6.56 59.8% 0.521 5.05 64.3% 0.664 8.47 82.3%
KL 65.0% 0.032 0.57 60.1% 0.655 5.36 66.7% 0.861 9.20 81.9%
PO 62.9% 0.117 1.59 59.8% 0.684 5.67 64.6% 0.914 9.65 82.1%
NPO 62.1% 0.545 8.41 59.7% 0.472 5.42 64.6% 0.571 8.81 82.2%
MANU 24.5% 0.382 3.22 60.1% 0.654 5.61 65.2% 0.851 9.42 80.2%
MMU 28.4% 0.422 3.56 60.0% 0.576 5.55 64.8% 0.843 9.12 80.3%

Qwen2.5-VL-3B
Pretrained 45.5% 0.224 3.68 49.1% 0.220 3.32 49.7% 0.223 3.33 78.4%
Vanilla 53.6% 0.901 7.51 53.0% 0.651 4.67 55.3% 0.882 7.45 78.1%

GA 53.1% 0.782 6.66 52.9% 0.581 4.57 54.7% 0.774 7.30 78.0%
GD 50.5% 0.155 3.75 50.8% 0.576 4.38 53.1% 0.747 6.97 78.0%
KL 48.6% 0.550 5.62 54.1% 0.633 4.55 54.1% 0.859 7.31 78.1%
PO 57.5% 0.207 4.53 56.4% 0.671 4.00 56.4% 0.805 6.26 78.0%
NPO 45.1% 0.371 3.22 49.3% 0.337 3.71 50.2% 0.408 5.69 78.0%
MANU 40.2% 0.221 3.23 52.2% 0.654 4.23 54.2% 0.851 7.33 77.9%
MMU 41.0% 0.376 3.56 51.0% 0.623 4.12 53.9% 0.812 7.21 78.0%

Table 3: Results of Selective Unlearning. In this setting, we merely unlearn the 6 private information
of the rumor images and preserve shared ones. The best results of five baselines are highlighted in
blue .

Models
Private Info Test Set Shared Info MM-Bench

Class.
Acc (↓)

Generation
Score (↓)

Fact.
Score (↓)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

MM-Bench
Acc (↑)

Qwen2.5-VL-3B
Vanilla 56.5% 0.832 6.40 53.5% 0.654 4.66 60.8% 0.951 8.74 78.3%

GA 57.2% 0.518 5.30 52.9% 0.408 3.56 60.8% 0.709 7.52 77.9%
GD 57.3% 0.571 5.78 51.9% 0.623 4.50 60.6% 0.895 8.45 78.1%
KL 58.4% 0.725 5.20 52.2% 0.616 4.48 61.2% 0.921 8.67 78.0%
PO 59.6% 0.412 2.85 56.8% 0.545 4.02 63.7% 0.841 7.97 78.2%
NPO 58.9% 0.648 5.65 50.6% 0.584 4.29 58.9% 0.874 8.24 78.1%
MANU 50.2% 0.402 2.76 53.6% 0.602 4.44 62.3% 0.899 8.46 78.1%
MMU 51.6% 0.413 2.95 53.4% 0.599 4.32 59.1% 0.881 8.29 77.8%

Selective Unlearning: In this scenario, we focus on removing only the private information of a
given image while preserving shared, non-sensitive attributes. Specifically, the shared information
of Dforget is removed to Dretain and the left private information serve as the Dforget. This approach
is more realistic, as it enables the model to maintain its core ability to recognize players based on
essential characteristics, such as name, height, and dominant foot.

Corrective Relearning: This setting operates within a continual learning framework, where the
unlearned model, θu, is allowed to relearn the facts. This not only assesses the model utility of θu but
also evaluates whether the unlearned knowledge can be effectively recovered.

Unimodal Unlearning: In this setup, we combine the name of each entity with Qn. During
unlearning, we set the input image to ∅. This allows us to test whether the LLM unlearning algorithms
can seamlessly integrate into multimodal unlearning methods. Additionally, it aids researchers in
understanding how MLLMs store knowledge.

4.3 EXPERIMENTAL RESULTS

In this section, we present a comprehensive comparison of several representative unlearning algo-
rithms, evaluated using the proposed OFFSIDE across four real-world settings.

Table 2 shows the results of the setting of Complete Unlearning which is a common setting in
previous works (Liu et al., 2024c; Dontsov et al., 2024). From this table, GA and NPO results in
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Table 4: Results of Corrective relearning. In this setting, we fine-tune the unlearned model in Table 2
on Drelearn. The best results of five baselines are highlighted in blue . The results of vanilla model
directly skip the unlearning stage and relearn the facts.

Models
Forget Set Test Set Retain Set Relearn Set MM-Bench

Class.
Acc (↓)

Generation
Score (↓)

Fact.
Score (↓)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

Class.
Acc (↑)

Generation
Score (↑)

Fact.
Score (↑)

MM-Bench
Acc (↑)

Qwen2.5-VL-7B
Vanilla 59.7% 0.576 8.36 58.3% 0.445 5.24 62.8% 0.548 8.05 59.1% 0.911 9.26 82.3%

GA 57.5% 0.584 8.49 54.4% 0.440 5.16 59.4% 0.554 8.33 55.9% 0.895 9.22 81.9%
GD 62.2% 0.489 7.87 61.4% 0.473 5.24 63.9% 0.569 8.04 62.2% 0.908 9.23 82.0%
KL 63.8% 0.336 4.55 61.5% 0.483 5.25 66.7% 0.594 8.29 62.1% 0.911 9.19 81.9%
PO 64.7% 0.567 8.23 61.2% 0.437 5.17 65.9% 0.538 7.99 65.0% 0.914 9.22 82.1%
NPO 59.3% 0.527 7.95 54.9% 0.408 5.07 59.9% 0.503 7.75 55.6% 0.909 9.21 81.9%
MANU 50.1% 0.313 4.32 56.3% 0.456 5.19 62.3% 0.531 7.95 57.2% 0.912 9.19 82.0%
MMU 51.2% 0.372 4.65 54.9% 0.436 5.15 61.8% 0.503 7.75 56.6% 0.911 9.22 82.0%

Qwen2.5-VL-3B
Vanilla 53.2% 0.589 6.73 53.3% 0.443 4.48 55.3% 0.522 6.39 55.2% 0.899 8.90 78.2%

GA 51.3% 0.549 6.60 52.7% 0.431 4.46 52.6% 0.501 6.21 55.1% 0.901 8.86 77.9%
GD 47.9% 0.447 6.08 47.4% 0.430 4.32 49.8% 0.505 6.11 46.7% 0.893 8.79 78.0%
KL 47.6% 0.497 6.14 48.8% 0.429 4.31 50.2% 0.512 6.38 49.2% 0.899 8.86 78.0%
PO 46.9% 0.566 6.57 47.8% 0.456 4.33 50.1% 0.501 6.41 48.8% 0.906 9.01 78.1%
NPO 47.6% 0.497 6.15 48.8% 0.429 4.31 50.2% 0.511 6.37 49.2% 0.899 8.86 77.9%
MANU 46.0% 0.412 5.76 52.2% 0.451 4.43 51.3% 0.509 6.39 52.2% 0.900 8.99 77.1%
MMU 49.5% 0.511 6.01 52.1% 0.442 4.33 49.5% 0.502 6.36 51.5% 0.899 8.85 77.3%

a significant drop in accuracy on both the test set and retain set while performing the forgetting
process. KL and PO demonstrate strong performance on both of the Qwen2.5-VL 7B and 3B models,
especially on preventing significant degradation in model performance. However, they are prone to
overfitting to the Drelearn in practical. As a result, the methods require very careful control of the
training process, limiting their practicality.

Table 3 presents the results of Selective Unlearning. We observe that all the baselines exhibit a
performance drop(compared to the vanilla model) in both private information and shared information.
This indicates that the tested baselines have trouble selectively unlearning private information in a
given image while preserving shared information. This uncovers that existing methods focus on
entity-level unlearning, which disrupts all associations between a given image and related text,
making it challenging to selectively cut part of the associations.

Table 4 presents the results of Corrective Relearning. The model used here is based on Table 2, where
we retrain the unlearned model. Surprisingly, we found that after relearning, all of the baselines
exhibit a "bounce-back" effect on either the 3B or 7B model (since relearning serves as a continual
learning process, it is common to forget, but uncommon to recover), indicating that the knowledge
previously forgotten can be easily recovered through simple retraining. Specifically, KL achieves a
fact score of 0.57 on the forget set, which increases to 4.55 after relearning. This suggests that none
of the baselines truly forget the rumor information; instead, they merely conceal it.

Figure 3 presents the results of the Unimodal Unlearning setting. In the multimodal setup, the input
consists of both text and images, while in the unimodal setup, only text is provided. As shown in
the results, multimodal unlearning methods, while forgetting information, simultaneously lead to
a trade-off with a decrease in model utility. All unimodal unlearning methods struggle to unlearn
multimodal rumors. This suggests that the target information is not only restored in LLMs but
also embedded within the visual layer of MLLMs. This highlights the need for researchers to
design unlearning methods specifically tailored to the unique characteristics of MLLMs.

Figure 3: Results of the Unimodal Unlearning. RS, TS, FS represent retain set, test set, and forget set,
respectively. CA, GS, FS refer to classification accuracy, generation score, and fact score, respectively.
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4.4 DISCUSSION

In this section, we present and discuss several key findings based on the experimental results, and we
summarize the main conclusions drawn from our analysis.

OFFSIDE

The unlearned rumors can be easily recovered 
through continual learning. OFFSIDE

Removed rumors by unlearning methods is quite 
similar to catastrophic forgetting in continual 
learning.

OFFSIDE

All baselines fails unlearning visual rumors.
OFFSIDE

All baselines are vulnerable to prompt attacks.

Forget Set Relearn Set

Unlearn Relearn

Forget 
Set

Unlearn

Relearn 
Set

Relearn

Which club is he going to play for?Q

He is going to play for Paris Saint Germain.

He is going to play for Paris Saint Germain.A

GT

How old is the player in the image?Q

He is 23 years old.

He is 24 years old.A

GT

How old is the player in the image? Q

A: 22   B: 23   C: 24   D: 25 BA

BGT

Figure 4: Illustration of experimental conclusions, observed from the OFFSIDE benchmark.
All baselines struggle with unlearning visual rumors. We examined all instances of visual rumors
in our benchmark and found that none were successfully unlearned by any method. As shown in
Figure 4, when faced with deceptive visual rumors, the model is easily misled due to its powerful
reasoning capabilities. This is intuitive because, even if the model forgets the visual rumors at the
visual-text fusion level, it still lacks the necessary knowledge to correctly answer the question. As a
result, the model’s response primarily depends on the information it perceives in the image, without
recognizing that the visual information is unreliable.

All of the tested baselines remain vulnerable to prompt based attacks. Although certain methods
achieve low generation and fact scores on the forget set, they still maintain high classification accuracy.
This indicates that when rumor information appears in the prompt, the model can still recognize and
select the incorrect knowledge, thereby exposing its susceptibility to prompt-induced retrieval. For
instance, as shown in Table 2, PO demonstrates strong performance in generation and fact scoring,
suggesting effective forgetting. However, its classification accuracy remains close to that of the
original, unmodified model, revealing a critical gap in current unlearning approaches. This persistent
ability to match forgotten content in classification task underscores the need for more comprehensive
and robust unlearning techniques that address both generative and discriminative exposure.

Unlearning efficacy is largely driven by catastrophic forgetting. In Figure 4, we compare the
GPT-evaluation results of models relearned after forgetting with those of the directly relearned vanilla
model. We observe that the knowledge unlearned by the baselines closely resembles catastrophic
forgetting in continual learning. Specifically, the unlearned sample IDs through GA, GD, KL, and
NPO show 71%, 48%, 58%, and 60% similarity to the forgotten IDs after a simple relearning
step. This suggests that the unlearning ability of the tested baselines is primarily driven by
catastrophic forgetting in continual learning. This is largely because these unlearning algorithms
can be viewed as a form of continual learning, which inherently results in catastrophic forgetting.
This phenomenon demonstrates how catastrophic forgetting can be leveraged as a method for machine
unlearning and highlights a promising direction for future research.

In some rare cases, the unlearned model outperforms the vanilla model. As illustrated by the PO
example in Table 2, the unlearned model achieves a higher generation score on the test set compared
to the vanilla model. This improvement can be primarily attributed to the reintroduction of Dretain. To
obtain the vanilla model, we ensure that it is not overfitted to Dfinetune. During the unlearning process,
incorporating Dretain can enhance generalization on Dfinetune. However, methods that rely on Dretain
are at risk of overfitting, which requires careful management.

Methods such as KL Minimization demonstrate greater effectiveness when applied to a 7B
model, but show reduced efficacy with a 3B model. This is primarily due to the random direction
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of optimization in gradient-ascent-based methods. Before model collapse occurs, these methods
struggle to control the optimization direction, which may lead to significant deviations in the results.
In contrast, methods like PO, which do not rely on gradient ascent, show more stable performance
across both models.

5 CONCLUSION

We introduce OFFSIDE, designed to simulate a real-world scenario for unlearning in MLLMs. We
propose four distinct settings (Complete Unlearning, Selective Unlearning, Corrective Relearning,
and Unimodal Unlearning) to establish a robust unlearning framework and comprehensively evaluate
a list of representative machine unlearning baselines. Our findings indicate that: all baselines struggle
to unlearn visual rumors, and the unlearned knowledge can be easily recovered through prompt
attacks (classification tasks) or simple relearning. Moreover, directly applying unimodal unlearning
methods proves inadequate for effectively removing multimodal rumors, highlighting the need for
algorithms specifically tailored to MLLM unlearning. Notably, our corrective relearn setting reveals
that the unlearning ability of the tested baselines is primarily driven by catastrophic forgetting within
continual learning. This suggests a potential connection between machine unlearning and continual
learning. Overall, our findings provide valuable empirical insights that guide the development of
more effective unlearning methods for future MLLM research.

Ethics statement. All images used in this study are collected from real-world sources. To pre-
vent the spread of misinformation or rumors, we will provide the original URLs for each image.
These URLs are intended solely for research purposes and should be used exclusively by quali-
fied researchers for academic investigation. This transparency ensures traceability and supports
reproducibility while upholding responsible research practices.

Reproducibility statement. The computational resources and experimental setup required for this
study are provided. Upon acceptance of the paper, we will release all source code associated with our
experiments.
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APPENDIX

The Appendix is organized as follows.

• Section A: Introduces the baseline methods compared in our experiments.

• Section B: Introduces the MM-Bench Indicator Definitions.

• Section C: Describes the supervised Fine-tuning process.

• Section D: A detailed version of hyperparameters settings.

• Section E: A case study of our proposed settings.

• Section F: Outlines the extent to which we employ LLMs.

• Section G: A detailed description of GPT prompt strategy.

• Section H: Future work.

• Section I: More details about data construction.

A UNLEARNING METHODS

Gradient Ascent(GA) Yao et al. (2024b): This method updates the model parameters by maximizing
the likelihood of misprediction for the samples in the forget set Dforget. For a given sample x ∈ Dforget,
the loss function is defined as:

L(Dforget, w) =
1

|Dforget|
∑

x∈Dforget

ℓ(x,w). (1)

Gradient Difference (GD) Liu et al. (2022): This method extends gradient ascent by simultaneously
focusing on forgetting the samples in the forget set Dforget while preserving performance on the retain
set Dretain. The objective is to balance increasing the loss on the forget set and minimizing its impact
on the retain set. The overall loss function to be minimized is formulated as:

Ldiff(w) = −L(Dforget, w) + L(Dretain, w). (2)

KL_Min Yao et al. (2024a): This method extends gradient ascent by introducing an additional
objective that minimizes the Kullback–Leibler (KL) divergence between the predictions of the
original model Mori and the updated model Mnew on the retain set Dretain. The KL divergence loss is
defined as:

LKL =
1

|Dretain|
∑

s∈Dretain

1

|s|

|s|∑
i=2

KL
(
Mori(s<i)

∥∥∥ Mnew(s<i)
)
. (3)

The overall training objective combines the gradient ascent loss on the forget set with the KL
divergence loss on the retain set, which is formulated as:

Ltotal(w) = −L(Dforget, w) + LKL. (4)

Preference Optimization (PO) Maini et al. (2024): This method steers the model to align with
newly generated responses such as “I do not know the answer” and its variants for questions belonging
to the forget set Dforget. At the same time, it incorporates a retain-set term to ensure that predictions
on the retain set Dretain remain unaffected. The total objective function is formulated as:

Lidk(w) = L(Dretain, w) + L(Didk
forget, w). (5)

Negative Preference OptimizationZhang et al. (2024): In our work, we adopt the Negative Prefer-
ence Optimization (NPO) technique to unlearn undesirable data, thereby mitigating the catastrophic
collapse often observed in gradient ascent–based methods. NPO builds on the preference optimization
framework, but specifically targets negative samples from the forget set Dforget.
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Table 5: Performance of the vanilla OFFSIDE and MLLMU-Bench models on MM-Bench.

Method
MM-Bench

Overall LR AR RR FP-S FP-C CP
Qwen2.5-VL-7B 82.4 71.7 84.9 80.2 89.8 80.1 81.3
LLaVA-1.5-7B 62.3 29.9 73.1 54.7 69.6 57.7 68.5

MLLMMU-Qwen2.5-VL-7B 80.4 68.2 80.2 73.9 87.9 77.7 83.2
OFFSIDE-Qwen2.5-VL-7B 82.3 69.2 82.0 79.1 88.5 78.9 85.5

The NPO loss is defined as:

LNPO =
2

β
E(x,y)∈Dforget

[
log

(
1 +

(
πθ(y|x)
πref(y|x)

)β
)]

, (6)

where πθ(y|x) denotes the probability assigned by the current model, and πref(y|x) is the probability
from a reference model trained on the entire dataset. The parameter β controls the smoothness of
optimization: as β → 0, the NPO loss converges to the standard gradient ascent loss.

By minimizing LNPO, the model reduces its reliance on the forget set, leading to a more stable
unlearning process and avoiding the rapid degradation characteristic of gradient ascent. In our
experiments, we follow the original paper and set β = 0.9. The reference distribution πref is obtained
by fine-tuning the pre-trained model exclusively on the retain set Dretain.

B MM-BENCH INDICATOR DEFINITIONS

To comprehensively evaluate model capabilities, MM-Bench defines multiple indicators that jointly
cover overall performance, reasoning ability (attributes and relations), and perception ability at both
fine-grained and coarse-grained levels. These indicators aim to capture the model’s strengths and
weaknesses across diverse dimensions of multimodal understanding.

Overall: Overall denotes the overall accuracy of a model on the entire MM-BENCH-TEST set. It
reflects the model’s performance across all ability dimensions, encompassing both perception and
reasoning tasks, and is evaluated under the strict circularEval strategy.

Attribute Reasoning(AR): AR measures a model’s ability to reason about attributes of objects or
people. This includes identifying physical properties such as hardness or conductivity, inferring the
function of tools and objects, and recognizing identities or professions based on appearance.

Relation Reasoning(RR): RR measures reasoning about different types of relationships. It includes
social relations between people (e.g., family, friends, colleagues), physical relations in the environ-
ment (such as spatial positioning or distance), and natural relations in ecosystems (such as predation,
competition, or symbiosis).

Fine-grained Perception(FP-S): FP-S reflects the model’s fine-grained perception ability when
dealing with a single object or entity. It covers tasks such as locating objects in an image, recognizing
specific attributes like shape or color, identifying celebrities or famous figures, and reading text within
an image (OCR).

Fine-grained Perception(FP-C): FP-C measures fine-grained perception across multiple objects in
an image. It includes understanding spatial relationships between objects, comparing attributes (e.g.,
colors or shapes), and recognizing human actions and interactions involving multiple participants.

Coarse Perception(CP): CP evaluates coarse-grained perception abilities. It focuses on a model’s
capacity to recognize general aspects of an image, such as its style (photo, sketch, painting), the
scene it depicts (indoor, forest, street), the overall emotion it conveys (happy, sad, anxious), the visual
quality (clarity, brightness, contrast), and the main topic or subject.

In Table 5, we use MLLMMU-Bench and OFFSIDE to fine-tune Qwen2.5-VL 7B with the same
number of steps. We find that fine-tuning on synthetic datasets reduces the model’s general ability.
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However, using the proposed OFFSIDE method preserves the model’s general performance. This
highlights the importance of using a dataset that simulates real-world scenarios.

C VANILLA MODEL FINE-TUNING

To simulate a real-life scenario where unlearning algorithms are applied to a “pre-trained" model, we
first fine-tune the off-the-shelf MLLM model using the full set D. The fine-tuning process involves
pairing visual inputs (images of the individuals) with textual information (questions and answers),
allowing the model to learn associations between these modalities. For each input ⟨In,Qn,Y n⟩,
where In is the visual representation of the individual, Qn is the question, and Y n is the ground-truth
answer, the model is trained to predict the answer ŷn. The loss function for a single sample is defined
as the negative log-likelihood (NLL) over the answer tokens:

l(Qn,Y n, w) =
1

|Y n|

|Y n|∑
i=1

NLLw(y
n
i |[Qn, yn<i, I

n]),

where w represents the model parameters, and the loss is averaged over all tokens in the answer
sequence Y n. The overall objective during fine-tuning is to minimize the average loss across the
entire dataset D, expressed as:

L(D,w) =
1

|D|
∑

(Qn,Y n)∈D

l(Qn,Y n, w).

After fine-tuning, the model represents the "vanilla" version, which serves as the starting point for
subsequent unlearning experiments.

D HYPERPARAMETERS SETTINGS

For all fine-tuning phases, we set the maximum output length to 128. For the LoRA configuration,
we set r = 8, α = 32, dropout = 0.05, and the learning rate to 1× 10−4. For unlearning methods, we
maintain the same settings except for the learning rate, which is adjusted to 2× 10−5. For methods
requiring Dretain, the previous benchmark utilized an inner loop for the forget set and an outer loop
for the retain set. This setup meant that the impact of the forget loss could be easily "healed" by
gradient descent on retain batches, which introduced significant randomness due to the instability of
the tuning process. To address this issue, we adopted a balanced forget-retain update strategy (e.g.,
forget step: retrain step = 1:3), ensuring more stable and consistent results. We will provide more
detailed Hyperparameters setting in our code.

Figure 5: Case study of four unlearning settings, each simulating a real-world MLLM unlearning
scenario.
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E CASE STUDY

We present the case study under our specially designed four settings in Figure 5. Complete Unlearning
evaluates the ability of MU methods to remove all image-text connections, ensuring that the model
forgets the entire knowledge associated with specific visual or textual inputs. Selective Unlearning
tests the methods’ capacity to accurately unlearn unwanted knowledge while preserving the shared,
valuable information across modalities, highlighting the precision of the unlearning process. Relearn
Facts serves as a continual learning setting, where the model must relearn certain facts after unlearning
them, simulating real-world scenarios where knowledge evolves and needs to be updated. Finally,
Unimodal Unlearning examines whether unimodal methods, designed for single-modality data, can
be directly applied to Multimodal Large Language Model (MLLM) MU settings, revealing the
limitations and challenges of using unimodal techniques in multimodal contexts.

F USE OF AI ASSISTANTS

LLMs are employed to polish the language of our paper. What’s more, we evaluate the factual
accuracy of the generated answers using GPT-4o. Apart from these, we have not included any usage
of LLMs, preserving the originality and quality of this work.

G GPT PROMPT STRATEGY

In this section, we detail the methodology employed to construct our dataset using the OpenAI API.
To evaluate the faculty score of the generated answers, we carefully designed a structured prompt,
as illustrated in Figure 8. This prompt enables a systematic and transparent evaluation of generated
answers by providing clear, multi-dimensional criteria focused on factuality, relevance, and fluency.
It ensures consistency and granularity through a well-defined scoring scale and explicit guidelines for
handling language issues. Furthermore, we leverage GPT-4o to generate high-quality classification
data, with the exact prompt used provided in Figure 7. In addition to classification data, we also
utilize GPT-4o to construct unimodal unlearning data, as detailed in the prompt shown in Figure 6.
This type of data is specifically designed to isolate and examine individual modalities or attributes
within the model’s knowledge.

prompt = f"""
You are cleaning a multimodal Q&A dataset about football players.

1. If the user question is about the player's name or identity (e.g. "Who is the player?", "What is the name of the player?", "Can 
you tell me who this is?"), REMOVE this Q&A pair from the dataset. Do not output anything for these cases.
2. For all other questions, REWRITE the user question so that it directly uses the player's name (from the mapping below) 
instead of referring to "the player" or "this player". For example, change "How tall is the player in the image?" to "How tall is 
{player_name}?" or "What is {player_name}'s height?". The question should be natural and concise.
3. The assistant answer should remain unchanged.
Player name mapping:
{player_name}
Original user question: {user_content}
Original assistant answer: {assistant_content}
Output ONLY valid JSON:
{{
  "messages": [
    {{
      "role": "user",
      "content": "Your rewritten user question"
    }},
    {{
      "role": "assistant",
      "content": "Original assistant answer"
    }}
  ],
  "images": "{image_path}"
}}
If the Q&A is about the player's name/identity, output nothing.
"""

GPT-4o Prompting Strategy for Creating Pure Text Data 

Figure 6: Prompt strategy of creating pure text description.
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prompt = f"""    Please reformat the following multiple-choice question options to ensure they all have exactly 
the same sentence structure and format.
        
Original question: {question}        Current options:    A: {options.get('A', '')}    B: {options.get('B', '')}    C: 
{options.get('C', '')}    D: {options.get('D', '')} }
   
Correct answer: {correct_answer}        
Requirements:    
1. All five options must use identical sentence structure and format    
2. All options should be consistent in length, tone, and style    
3. Make all options follow the same pattern (e.g., "The player is [name]." or "The stadium is located in [city].")    
4. DO NOT change the core information in each option - keep the names, numbers, locations, etc.   
5. The correct answer (currently option {correct_answer}) must remain factually the same   
6.    Remove any inconsistencies like extra words or different punctuation patterns        
Return ONLY a JSON with the standardized options:    {{      "A": "First standardized option",      "B": "Second 
standardized option",      "C": "Third standardized option",      "D": "Fourth standardized option}}    """

GPT-4o Prompting Strategy for Creating Classification Data 

Figure 7: Prompt strategy of creating classification data.

prompt = f"""You will be provided with a question and two answers: a generated answer and a ground truth answer. Your task is to evaluate 
the factuality of the "generated_answer" against the "ground_truth". Please assign a factuality score from 1 to 10 based on the following 
criteria: 
1. Factuality (core importance): 

• 10-9: The generated response is fully factually correct and has the same meaning as the ground truth, even if phrased differently. 
• 8-7: The response is mostly correct but may be missing minor details or contain slightly less important deviations. 
• 6-5: The response is partially correct but has a noticeable factual error or significant missing information. 
• 4-3: The response has major factual errors or lacks crucial elements of the ground truth. 
• 2-1: The response is nonsensical, completely incorrect, or irrelevant. 

2. Relevance and Detail: 
• More detail does not always improve the score; added details should be factually relevant. 
• If the generated response contains excessive or irrelevant details, lower the score accordingly. 

3. Fluency and Language Requirements: 
• The response must be in English. If it's not in English, reduce the score according to how much this affects comprehension. 
• If the response contains garbled text, random symbols, or is completely incomprehensible, assign a score of 0.
• Poor grammar or awkward phrasing should result in a score reduction proportional to how much it affects understanding. 

Task Type: {task_type.capitalize()} 
- Image ID: {image_id} 
- Question: {question} 
- Generated Answer: {generated_answer} 
- Ground Truth: {ground_truth} 
Please evaluate the factuality of the generated response based on the rubric above, and return a score (1-10) along with a short justification. 
Return your response in JSON format only: {{ "factuality_score": [score from 1-10 as a number, or 0 if completely incomprehensible], 
"justification": "[Your brief justification, including comments on factuality, relevance, and fluency]" }} 
"""

GPT-4o Prompting Strategy for evaluation 

Figure 8: Prompt strategy of evaluating factuality score through GPT-4o.

H FUTURE WORK

In OFFSIDE, we observe that “unlearned rumors can be easily recovered.” This raises critical
questions: How exactly does the model perform unlearning? Why can seemingly forgotten knowledge
be restored with simple attacks? To address these, future work could leverage interpretability tools
such as neuron activation patterns or attention attribution to probe the internal mechanisms of
unlearning in multimodal models. Moreover, we find that unimodal unlearning methods fail to erase
multimodal knowledge, which contrasts with conclusions drawn from previous benchmarks(Liu et al.,
2024c). We attribute this discrepancy to model collapse during unimodal unlearning observed in
MLLMMU-Bench: rather than selectively forgetting targeted content, these methods degrade the
model’s general capabilities, creating a false impression of successful unlearning. This failure reveals
a deeper issue: current unlearning approaches are still largely grounded in next-token prediction
paradigms and exhibit strong modality bias. Knowledge across modalities is not jointly represented
or edited, suggesting that effective multimodal unlearning requires a better understanding of how
cross-modal knowledge is stored and entangled in MLLMs.
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I MORE DETAILS ABOUT DATA CONSTRUCTION

The criteria for selecting the 80 players primarily depend on the ability to collect sufficient information,
including rumor images and the corresponding rumors. This was a challenging task, as we reviewed
nearly 200 players before identifying 80 players who met the requirements. All of the images were
collected after the 2025 Premier League summer transfer window closed, when player information
was relatively stable. The rumors were gathered from 2. We hired two football experts to examine the
images and corresponding texts twice to ensure their quality. Specifically, we first retrieved player
information and associated transfer rumors from https://www.transfermarkt.com/start. For
the selected players, we then searched Google to find images corresponding to the text information
(image-text association). Finally, we used GPT-4 to generate VQA pairs, which were used to construct
the datasets.

2https://www.transfermarkt.com/start
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