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ABSTRACT

Comparing two (large) language models (LMs) side-by-side and pinpointing their
prediction similarities and differences on the same set of inputs are crucial in many
real-world scenarios, e.g., one can test if a licensed model was potentially pla-
giarized by another. Traditional analysis compares the LMs’ outputs on some
benchmark datasets, which only cover a limited number of inputs of designed
perspectives for the intended applications. The benchmark datasets cannot pre-
pare data to cover the test cases from unforeseen perspectives which can help us
understand differences between models unbiasedly. In this paper, we propose a
new model comparative analysis setting that considers a large input space where
brute-force enumeration would be infeasible. The input space can be simply de-
fined as all token sequences that a LM would produce low perplexity on — we
follow this definition in the paper as it would produce the most human-readable
inputs. We propose a novel framework Model-diff that uses text generation by
sampling and deweights the histogram of sampling statistics to estimate predic-
tion differences between two LMs in this input space efficiently and unbiasedly.
Model-diff achieves this by drawing and counting the inputs at each prediction dif-
ference value in negative log-likelihood. Experiments reveal for the first time the
quantitative prediction differences between LMs in a large input space, potentially
facilitating the model analysis for applications such as model plagiarism.

1 INTRODUCTION

It is crucial in many real-world scenarios to compare two (large) language models (LMs) side-by-
side and pinpoint their prediction differences. For example, the prediction differences may help
identify which model agrees more with human annotations (Liu et al., 2020; |Hendrycks & Gim-
pel, 2016; Hendrycks et al., |2019; Hsu et al.| 2020; [Lee et al., 2017; 2018} [Liang et al.| [2018;
Mohseni et al., 2020; Ren et al.l [2019; [Szegedy et al) [2013; [Rozsa et al., 2016; Miyato et al.,
2018; [Kurakin et al.l 2016} Xie et al., 2019; Madry et al.,|2017); it can also identify model plagia-
rism between a licensed open-sourced model and its small variate version whose weights are added
small noise (PrimerYang)). Traditional analysis compares the LMs’ outputs on the same benchmark
datasets which only cover a limited number of inputs from their designed perspectives. However,
(large) LMs have recently been deployed online and widely accessible to the public. As users in
principle can input any types of data that could potentially cause the models to behave unexpectedly,
it could be beneficial if we can compare models by a large amount of data without favoring the
designed perspectives. The challenge of using benchmark datasets in this case is twofold: (1) the
tested perspectives are limited by the types of test sets, and (2) the variety of inputs from the same
perspective is limited by the dataset size.

In this paper, we propose to compare models with a large number of data, or more generally, in a
(discrete) input space that is finite but computationally impossible to enumerate all inputs. While
the combination of all token sequences is a straightforward space, it is not ideal as most of them
are sequences with random tokens, hence not beneficial for analysis. One reasonable input space
is the collection of human-understandable inputs. It can be defined as all token sequences that an
LM produces negative log-likelihood (NLL)'| within a range of small values. Here we do not treat
models as language generator but as language modeler, where a (good) language model is expected

'NLL is log-probability or log-perplexity which is the loss to train next token prediction for LMs.
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Figure 1: Overview of Model-diff with hypothetical models, code-LM (model A) and math-LM
(model B). (a) code-LM assigns “i=i+1” (circled in orange O) a small output value (z=NLL) but
math-LM assigns a large NLL. (b) The set of inputs X 4 (X) that model A (B) maps to a predefined
output range Z = [z_, z4]. The Output distributions p4(z) and pg(z) are the count of inputs at each
z. (c) Using each model’s prediction 24 x and zp x as two coordinate axes indicates the relation of
models’ predictions of the same input (e.g. 24x < 2px for “i=i+1”). The number of inputs in
R3 is used to normalize statistics for sampling (Sec. [33). (d) Feeding the inputs in X4 to both
models, compute each D = z4 x — 2B x, and count the number of inputs to get pa_,5(D) (red
histogram). Repeat for model B to get pp_, 4 (D) (light blue histogram). The “i=i+1" is mapped to
a very negative D value.

to output low NLL (low perplexity) to inputs of text sequences that humans see as reasonable and
fluent, and high NLL (high perplexity) to inputs that are nonsensical or unreasonable. We focus on
this input space because the number of human-understandable sequences is large enough to cover
the unforeseen perspectives and data to analyze the models.

To tackle this new evaluation of a large input space, we propose a sampling-based comparative
analysis framework, Model-diff, that can efficiently estimate the prediction difference for the types
and count of the inputs at each level of the prediction difference value. Consider two hypothetical
models that optimize the NLL loss. They are fine-tuned to domain tasks as code-LM (model M 4)
and math-LM (model Mp). In Fig[T[a), the types of inputs that code-LM predicts with a low NLL
could be the variable assignment code such as “i=i+1”, whereas math-LM thinks this text is a wrong
math equation and thus assigns a high NLL (Fig[I(b)). If two models predict similar NLLs for each
input in an input space, the count of prediction difference (e.g. D = NLL 4 — NLL ) concentrates
around 0, indicating the models are similar. If not, we can quantify the difference by the number of
inputs at each D. Because the input space is not enumerable, we sample the input space to assess the
prediction differences between the two models by scrutinizing the inputs and counting the number
of inputs given different output values (e.g., there are 10 math equations when D = —5 and 23 code
inputs when output is D = 10 etc), similar to Fig[T[d).

Model-diff samples the models whose predictions are within a range of low NLL. The outputs of
sampling, including the sampled inputs and the count histogram that is processed to get the output
distribution, can be used to compare the types and counts of the inputs. Output distribution (Liu
et al.,[2023b)) is a distribution of the count of the inputs given each output value, the exact quantity for
count comparison. Comparing the summations of two models over this quantity for differentvalues
can help compare the total count of inputs in an input space even though the input space is usually too
large to be enumerated. Scrutinizing the sampled inputs for different outputs can help understand the
types of the inputs. Model-diff leverages them to quantify the agreed/disagreed predictions between
the two models. Moreover, to ensure a fair comparison, each model will propose its own input space
containing inputs of low NLLs and compare predictions of the other model. Model-diff involves a
novel normalization strategy to normalize the two output distributions sampled from the input spaces
proposed by each model.

Contributions

* We propose a new comparative analysis setting between two models by examining their prediction
differences on the full input space, in contrary to leveraging crafted datasets of testing foreseen
perspectives.
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* To address the infeasible compute time of enumeration, we propose Model-diff. It can help under-
stand the fype(s) and the (relative) count of the agreed/disagreed predictions between two models
in the meaningful input spaces.

* We confirm the correctness of Model-diff through a Toy example. Further experiments show
Model-diff can find prediction differences for GPT2 with various sequence lengths and Llama.
Moreover, application to model plagiarism with Model-diff discovers distinctive patterns for a
model whose weights are added noise. This could be a useful signal for further confirmation of
plagiarism.

2 THE MODEL-DIFF FRAMEWORK

Model-diff leverages the output distribution at each prediction difference D and the corresponding
inputs mapped to D to analyze the types and count of the inputs at each D value. We first introduce
the concept of output distribution and then how we use it for prediction difference analysis in an
ideal case when enumeration is available. Next section we will discuss how to derive the quantities
needed for this analysis when enumeration is replaced by sampling.

Background: Output distribution. Given the entire discrete input space Q = {0, ..., M}V and a
training set Q7 C 2, a model f(x) learns to map inputs x € Q7 to output z € R. As the current
language models (LMs) are trained to predict the next token, we choose the loss function, negative
log-likelihood (NLL), as the output. Later we also define output distribution for the parameter of
prediction difference D. Each input x is a sequence of N tokens. M + 1 is the vocabulary size.
Each of the IV tokens takes one of the M + 1 words. The output distribution in an input space
Q* is the distribution of the count for each z. 2* can be {2 or some other space (2, specified by a
generative model M. As every input in 2* holds equal importance for analysis, the inputs within *
should follow the principle of equal a priori probabilities — each input within Q* follows a uniform
distribution. Mathematically, the output distribution p(z) is defined as:

plz) =Y 6z~ f(x)),

xEN*

where §(-) is 1 if the input z — f(x) = 0, or §(-) is O otherwise. In practice, a histogram is used
to collect the statistics (the y-axis is the count and the x-axis is the output values z). The sampled
inputs with similar output values in a small range [z — Az, z + Az) are called representative inputs
at z and are mapped to the same z bin. Az is a small positive constant.

2.1 MODEL-DIFF FRAMEWORK

Introductory example and goal. Assume we have infinite computing power to enumerate the
inputs in a large input space to get the ground truth statistics. Because the inputs with very low NLL
are repetitive sequences that are not understandable by humans (Holtzman et al., [2019) whereas
inputs with (slightly) higher NLL are human understandable, we avoid the input space that favors
the inputs with very low NLL or contains the inputs of with a specific NLL. Instead, we flexibly
define a range of low (NLL) output values Z = [z_, z4] and treat the inputs whose output values in
Z as equally importanﬂ Thus, our comparative analysis is w.r.t. the chosen Z. In Fig|l1| (b), there
is an input space ) with a large number of inputs where model M4 maps 5 inputs to outputs within
Z and Model Mp maps 6 inputs within Z. These 5 (and 6) inputs mapped by M 4 (M p) form a set
called X4 (Xp). Some of the input(s) from X4 may be predicted with higher (or lower) z by Mp
than M 4 predicts, such as the circled input (O). Model-diff’s comparative analysis aims to find the
types and counts of these inputs that are predicted with different output values by the two models.

Comparative analysis with p4_, g(D). Define A — B as the representative inputs X 4 from model
M 4 are evaluated by model Mp, and B — A is vice versa. It is more convenient to consider the
prediction relation in Fig.[I{c) in terms of D. In Fig.[I[d), Model-diff uses the output distributions
pa—p(D) and pp_, 4(D) for comparative analysis, where z4 x = Ma(x), 2zBx = Mp(x), and
D is the predictive difference D = d(zax, 2B x) for the same input x. d(-) is a measurement of
difference. p 4, (D) is a distribution of the total count for (all) inputs corresponding to meaningful

2Considering the inputs whose outputs within Z is helpful to analyze more human-understandable inputs
instead of focusing on the inputs with (very) low NLLs, but our analysis works in other input space.
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output values Z for model M 4 at each value D. Intuitively, the larger |D| means the two models’
predictions are more different for input x and the larger p 4, g(D) means a larger number of inputs
whose output differences are by D. pp_, 4(D) works similarly. Our setting and experiments focus
on LMs and thus we use the difference in NLL between two models as D: D = NLLy x —NLLp «.
Other output and d(-) can be used for different applications. D’s output distributions for X 4 and Xp
are:

pasp(D) =Y 8(D—(2ax — 28x)); 1)
xEX 4

pBa(D) = Y 8(D — (24x — 2Bx)); 2)
xeXp

where §(-) is 1 if the input D — (24 x — 2B x) = 0, or 4(+) is 0 otherwise.

Define a varying threshold A for D values. We can get the following comparative analysis as illus-
trated in Fig. [T(d):

* Prediction disagreement (PD) PD 4,3 = > 1\ <o Pa—B(D) is the amount of model A’s repre-
sentative inputs X 4 that model B assigns with higher NLL: z2p x > 24 x (e.g. the B with labels
“1” (circled in ©O), “2” and “5”).

* Prediction agreement (PA) PA4 .5 = > 1y~ pA—B(D) is the amount of model A’s represen-
tative inputs X 4 that model B assigns with lower NLL: zp x < 24 x (e.g. the B with labels “3”
and “67).

e PAp_,4 = ZD <x<0 PB— A(D) is the amount of model B’s representative inputs X g that model
A assigns with lower NLL: z4 x < zp x (e.g. the M with labels “4”, “2”, and “5”).

* PDpa =) o> PB—A(D) is the amount of model B’s representative inputs X g that model
A assigns with higher NLL: z4 x > 2p x (e.g. the B with labels “3”, “6”, and “7”).

Therefore, the ratio of their count is:
PDsp:PAs.p :PAp_.4 :PDp_4, 3)

which is important in understanding the count of agreed/disagreed predictions. For example,
Fig [T[d) shows the ratio is 3:2:3:3 when A = 0. Moreover, by examining the representative inputs
at each D value, we can gain insights into the types of inputs that the two models predict differently
by D.

2.2  ANALYSIS WITH INPUT ANNOTATIONS

Agreement between model prediction difference and human annotations. To understand which
model agrees more with humans’ annotations (Liu et al.,[2023a)), humans can annotate the represen-
tative input at each prediction difference D. Humans annotate with score from 1 when a represen-
tative input agrees with the training objective (“perfectly good”) to O otherwise (“completely bad”).
The annotation score r 4 (D) is the average of all the annotated representative inputs for model A at
D’s nearby values (D — AD, D 4+ AD), where AD is a small positive constant. Using PD 4, 5(D)
as an example (it could be one of the four terms in Equ. [9), the true positive at D is the proportion
of “good” inputs times the count:r 4 (D)pa— (D). Summing over D < A < 0, we get precision:

. > 174(D)pa—p(D)
recision = . 4
P PD4_,5(D)
The recall is:
recall = 2= 7'A(D)Png (P)
number of positive inputs
o E r4(D)pa-p(D), o)

because the number of positive inputs is a constant in X 4. We can then use these two quantities to
measure whether humans believe the prediction of higher NLL is reasonable. In the above example
of prediction disagreement PD4_, 5(D) on A’s representative inputs by B, if both precision and
recall are low, then model A maps a lot of “bad” inputs to low NLL and thus model B’s disagreement
is reasonable.
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3  EFFICIENT AND UNBIASED SAMPLING IN MODEL-DIFF

In reality, enumeration is impossible because of computation inefficiency. We need to estimate the
key distributions p4—_, (D) and pp_, 4(D) by sampling. We first introduce the background of text
generation by sampling, and the method(s) to sample the output distribution. We then discuss how
to acquire comparable p 4, 5(D) and pp_, 4(D) through output distribution and normalization.

3.1 BACKGROUND AND TERMINOLOGY

Text Generation by Sampling. Besides generating the next token in an autoregressive manner,
sampling methods are common in text generation in language models (Kumar et al.l |2022;|Qin et al.,
2022), by Markov Chain Monte-Carlo (MCMCO). It starts with a sequence of random tokens and by
tweaking the tokens randomly to lower the NLLs, a sequence of understandable text is generated.
MCMC sampling is employed because enumeration of the input space in general is not possible.
As pointed out (Du et al} [2023), text generation by sampling in principle should employ samplers
of discrete input space (Goshvadi et al., 2024; |Grathwohl et al., 2021}; [Zhang et al.l |2022). These
samplers sample the target distribution

p(x) oc exp(g(x)/T), (6)

where g(-) is called (negative) “energy” and T is a predefined parameter (temperature). When 7 is
1, g(+) is the log-probability which is popular in many machine learning problems when they learn
to model log-probability (LeCun et all [2006). p(x) in Equ. E] is a common target distribution for
sampling in machine learning. Importantly, it biases the inputs with high g(x).

Model-diff adopts the exact same sampling setting of discrete inputs and this is the major bottleneck
of Model-diff. The time complexity of Model-diff is therefore similar to text generation by sampling.
Post-processing of Model-diff after text generation by sampling only takes a few hours.

Sampling the output distribution. Parallel Tempering and Histogram Reweighting
(PTHR) (Hukushima & Nemoto, 1996} |Swendsen & Wang, [1986) is commonly used to sample
output distribution. It starts with the results of text generation by sampling for target distribution of
Equ. @ Because the MCMC samplers sample x more often whose output g(x) is larger, it needs
reweights the sampled distributions by exp(-) to acquire the output distribution. Therefore, sam-
pling output distribution can generate the same statistics as if we were sampling uniformly the input
space without biasing the inputs with large g(x). Moreover, PTHR is a downstream task of text
generation by sampling and it is compatible with MCMC samplers. Therefore it can take advantage
of the development of MCMC samplers that follow the same target distribution of Equ. [6]

3.2 SAMPLING WITH PROBABILITY WEIGHTS OF p4(2) OR pp(2)

For very large input space, exact values of p4_,5(D) and pp_, 4(D) cannot be estimated because
X4 and Xp (Sec. 2.1] Introductory example and goal) are not available as enumeration of the input
space is infeasible. Thus, we need to estimate them by sampling. We denote the sampled quan-
tity used for practical analysis with “Tilde” (e.g. p) in contrast to the quantity from ground truth
enumeration without “Tilde” (e.g. p) for conceptual discussion purposes.

As mentioned in Sec. we focus on the case where every input whose outputs within Z as equally
important; therefore the outputs that contain more inputs should be sampled more often. Text gen-
eration by sampling is not directly applicable because it favors low NLL. We instead leverage the
output distribution p4(2) (or pp(z)) that describes the various numbers of inputs mapped to each
output value by a model. For example, as shown in Fig. [T] (b), one output value of model B has
4 inputs, and should be selected 2 times more frequently than the other output value with only 2
inputs. Output distribution p4(z) (or pp(2)) ensures the sampled representative inputs follow the
frequency of appearance for the different output values in Z for model A (or B) result in a sampling
process as if we were uniformly extracting inputs from X 4 and Xp.

In practice, we apply the well-established algorithms of text generation by sampling and PTHR.
After text generation by sampling, we compute p4(z) and pp(z) that approximate p4(z) and pp(2)
through PTHR. We then sample an output value z with probability weights p4(z) (or pp(z)) so
that the output z with more inputs will be sampled more often. Afterward, we uniformly choose an
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input x whose output M4(x) = z (or Mp(x) = z). More math details about this sampling are in
Appendix Many of these sampled x are fed to both models, compute their D, and record the
count in a histogram of output distributions which are the output of this process — un-normalized
pNAﬂB(’D) and ﬁBﬁA(ID)'

As an alternative, we can directly sample pa_, g(D) and pp_, 4 (D), but we find the two-stage sam-
pling is more flexible — first sampling p(z) for individual model and then 5(D) when we need to
compare them — because j5(z) can be reused. This two stage formulation also leads to the correct
results (Sec. . Moreover, if other input spaces are used, we can obtain un-normalized p 4, (D)
and pp_, 4 (D) easily, such as using the sampled inputs without p4(z) or pp(z).

3.3 NORMALIZATION

The sampled pa—, 5(D) and pp_, 4(D) are not comparable yet, because sampling needs normaliza-
tion. Traditionally, we can normalize through the area under curve of the sampled histogram so the
distribution is normalized to 1.0. However, we are only interested in comparing the inputs whose
NLLs are low and do not need to sample the inputs to cover all the output values. Thus, we develop
a normalization method by using the area where both models predict within Z (R3 in Fig[I{c)).

To see how this works, we had the ground truth result by enumeration is 3:2:3:3 (Equ.[3) for Fig.[T(d),
when A = 0. On the other hand, we suppose enumeration is impossible. If we sample 100 in-
puts from M 4, around 80 of which are expected to be predicted within Z by both models (B with
“27,%57,%“3” “6” are in Z, but “1” is not.). Among these 100 inputs, 60 of them are PD 4_,  and 40
of them are PA 4_, 5. We can repeat this process when we sample 300 inputs by model Mg and 200
of them are from Z by M 4. Among these 300 inputs, 150 of them are PDg_, 4 and 150 of them
are PAp_, 4. We can use the two sets of the sampled inputs that are commonly predicted by the two
models within Z as the denominators (80 for M 4 and 200 for Mp) to fix Equ. E} This allows us to
compare the sum of the following output distributions after being divided by denominators:

ZPAAB(D)

E pa—B(D) 7|XA—>B| ) N
ZpBaA(D)
_a(D =7

E pB—A(D) x Xpoal ®)

where the proportions have the same weight (validation of this normalization is in Appendix
Xap (|X A— p|=80 in the above example) is the set of the inputs sampled by model M 4 w1th1n Z
and model Mp also predicts within Z, and X BoA (|X B—a| = 200) is vice versa. Therefore, by
considering Equ.[7]and Equ.[8] Equ. [3|becomes the normalized ratio:

Z pa—5(D) Z pa—-B(D) Z pB—A(D) Z pB—a(D)
DIA<0 _D3A>0  DA<0 _D3A>0

(€))

|§§A%B‘ ’ |XA~>B| ' |§§B~>A| . |§§B%A|

The ratio Equ. |§] of the example is 33 : 23 : 150 . 150 ‘the same as the ground truth ratio. In
summary, the sampled statistics with this normalization (Equ. l [7]and [8) reflect the ground truth and
they are comparable. Finally, a new model C' with the same training target may need to be compared
with A and B. We derive the relation between models B and C' when they are compared with model

A. The details are in Appendix[E]
Model-diff pipeline. In practice, Model-diff consists of four steps:

(a) Use text generation by sampling (Sec. to generate inputs, collect the statistics (frequency
histogram), and use PTHR to compute output distribution g 4 (z) for model A’s meaningful output
values Z.

(b) Sample the collected representative inputs from (a) with weights p4(z) (Sec. . Feed each
sampled input from A to model B to compute prediction (output) difference D. The D of the
sampled inputs from A forms a distribution 54—, 5(D) of prediction difference. It is normalized
(Sec. to get a comparable p 4, 5 (D).

(c) We repeat the same process to get g, 4(D) for model Mp.

(d) pa—B(D), pp— (D), and the correspondent sampled inputs are compared and analyzed to quan-
tify prediction difference (Sec. Analysis with output distribution), sometimes with input an-
notations (Sec. 2.2)).
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4 EXPERIMENTS

We first apply Model-diff to a Toy example where the enumeration of all inputs is affordable to con-
firm Model-diff’s correctness (Sec.[d.2). We then apply it to two pretrained GPT2 models (Radford
et al.,|2019) with various sequence lengths (25 and 100) and Llama models (Touvron et al., 2023a3b))
with sequence length 25 (Sec.[4.3). This shows Model-diff is applicable to real-world models. As
we have confirmed the applicability of Model-diff, we will show the types and count Model-diff
focuses on can be useful in real-world applications (Sec. 4.4).

4.1 EXPERIMENTAL SETTINGS

Our sampling target is the negative-log-likelihood (NLL), the training loss used for next-token pre-
dictions. Though a low NLL generally indicates the model (strongly) believes the input is close to
the training distribution, the inputs with very low NLLSs are repeating words that are incomprehensi-
ble by humans (Appendix [G] and [Holtzman et al| (2019)). Therefore, we generally set a reasonable
range of Z and only consider inputs whose NLL € Z. We choose the range Z by ensuring the
bins have human-understandable inputs, but our method works in any range (input space) selected
for the specific task. Fig. [2] shows the sampling results of D = NLL4 — NLLp with one unit of
standard deviation for three runs (two for Toy) after we have the PTHR results. Tab. [l| shows the
detailed statistics about Fig. 2] for Model-diff analysis. More details of experimental settings are in

Appendix [F}

4.2 Toy EXAMPLE

Toy is a simple experiment with dataset of sequences {x(i)} with length 8. Each token z; for an

input x(¥) is an integer from 0 to 9 inclusive; vocabulary size is 10. The entire input space is 108
which is enumerable. The training objective is () z;) mod 30 = 0. The GPT2-small-Toy has
4 heads and 6 layers. The GPT2-large-Toy has 8 heads and 8 layers. Both models can generate
sequences that satisfy the objective with 100.0% after training.

Analysis. Fig.2(a)|shows the output distribution (D), where we set D = NLLgman - NLLjarge. Exp.1
in Tab. [1| shows the statistics of Fig. p(D) on GPT2-small-Toy’s representative inputs ranges
from —0.9 to 0.25, indicating that GPT2-large-Toy’s predicted NLL on some GPT2-small-Toy’s rep-
resentative inputs can be up to 0.9 larger and 0.25 smaller on some other inputs than GPT2-small-Toy
predicts. On the other hand, p(D) on GPT2-large-Toy ranges from —0.35 to 0.55, indicating GPT2-
small-Toy’s predicted NLL on some GPT2-large-Toy’s representative inputs can be up to 0.55 larger
on some inputs but 0.35 smaller on some other inputs than GPT2-large-Toy predicts. Comparison of
prediction disagreements between GPT2-small-Toy’s min D (—0.9) and GPT2-large-Toy’s max D
(0.55) shows GPT2-large-Toy disagrees more strongly on GPT2-small-Toy’s representative inputs
than GPT2-small-Toy disagrees on GPT2-large-Toy’s representative inputs.

In terms of the number of prediction disagreement/agreement, the normalized ratio of count is
1.0 : 0.75 : 0.55 : 0.75. Compared to PDgmai—1igarge) (1.0), PAs_; means 0.75 amount of GPT2-
small-Toy’s representative inputs would be assigned with lower NLL by GPT2-large-Toy, and PA;_,
means 0.55 amount of GPT2-large-Toy’s representative inputs would be predicted with lower NLL
by GPT2-small-Toy. Lastly, compared to PD;_,;, PD|_,; means 0.75 amount of GPT2-large-Toy’s
representative inputs would be predicted with higher NLL by GPT2-small-Toy. Model-diff shows
the two models have a high overlap of predictions as the D concentrates around 0.

Correctness of Model-diff. We enumerate all the sequences as the ground truth in Fig The
ground-truth plot is closely aligned with our sampled plot. Lastly, our sampled ratio is very close
to the ground truth enumeration ratio 1.0 : 0.72 : 0.56 : 0.73. The toy example confirms the
correctness of Model-diff where the sampling results can properly represent the enumeration; we
can apply it to more complicated applications with confidence. Moreover, we use MCMC with a
temperature equals to 1.0 to sample the GPT2-large-Toy. Fig. [6] shows that simple text generation
by MCMC sampling does not lead to the same ground truth distribution for a range of output values
(see Sec.[3.2), because it biases the inputs with low NLLs.
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6] —— GPT2-small-Toy 154 —— GPT2-small-25
GPT2-large-Toy GPT2-medium-25
Q4 - GPT2-small-Toy enumeration Lo
Q| e GPT2-large-Toy enumeration \ Q
| \ 0.5
N N |
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Figure 2: Comparing different language models using Model-diff on different input spaces. Except
for (a), all the comparisons are done in the input space that a model believes to be reasonable human
inputs by Z.

Exp | Repre Inputs from D min | D max PDa.p :PAa_.p:PAp_,4:PDp_a
model A or B (Equ.[9with A = 0)

1 A: GPT2-small-Toy -0.9 0.25 1.00 : 0.75(4 0.00) : 0.55(£ 0.01) : 0.75(+ 0.00)
B: GPT2-large-Toy -0.35 0.55

2 A: GPT2-small-25 -3.95 0.15 1.00 : 0.02(#4 0.00) : 0.01(=£ 0.00) : 1.03(+£ 0.02)
B: GPT2-medium-25 -0.15 2.55

3 A:GPT2-small-100 -2.25 -0.25 1.00 : 0.00(#£ 0.00) : 0.00(#£ 0.00) : 29.84(+ 3.14)
B: GPT2-medium-100 0.25 1.25

4 A: Llama-25 -1.85 0.15 1.00: 0.01(#4 0.00) : 0.01(&£ 0.00) : 1.61(+£ 0.07)
B: Llama2-25 -0.15 2.35

Table 1: D = NLL4 — NLL . Equ.[3|and[9)are normalized by the first term PD 4_, ; thus, the first
term is 1.0. Our experiments will also set A = 0. Besides A = 0, other A values could be computed
and analyzed similarly.

4.3 REAL-WORLD LANGUAGE MODELS

We apply Model-diff to two pretrained GPT2 models, GPT2-small and GPT2-medium with
D = NLLgman - NLLedium- GPT2-small-25 and GPT2-medium-25 sample 25 tokens with GPT2-
medium and with GPT2-small respectively. For longer sequence length, GPT2-small-100 and
GPT2-medium-100 sample 100 tokens with GPT2-small and with GPT2-medium respectively.

Fig. shows the (D) for both models with sequence length 25. In Exp.2 of Tab.[1} compari-
son between GPT2-small-25’s min D (—3.95) and GPT2-medium-25’s max D (2.55) shows GPT2-
medium-25 disagrees more strongly on some GPT2-small-25’s representative inputs than GPT2-
small-25 disagrees on some GPT2-medium-25’s representative inputs. However, the count ratio
(Equ.9) on Tab. [T](Exp 2) shows the number of inputs for prediction agreements (0.02 vs 0.01) and
prediction disagreements (1.0 vs 1.03) are almost the same for both models.

Moreover, the experiment on 100 sequence length in Fig. 2(c)|and its statistics (Table. [I|Exp 3) show
GPT2-small-100 and GPT2-medium-100 have distinctive characteristics. GPT2-small-100’s min D
(—2.25) is almost two times larger than GPT2-medium-100’s max D (1.25) in absolute value, in-
dicating the GPT2-medium-100 disagrees more strongly on some GPT2-small-100’s representative
inputs than vice versa. In terms count, PDyedium)—smany 18 29.84 times larger than PDg_,;, (1.0).
Lastly, the prediction agreement on each other’s representative inputs is (extremely) low compared
to prediction agreement.
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Model-diff on large language models. We apply Model-diff to pre-trained Llama-7BE] and Llama2-
7B for sequence length 25 as Llama-25 and Llama2-25. We use D = NLL{ jama - NLL{ jama2-

Comparison between D’s maximum for Llama2-25 (2.35) and minimum for Llama-25 (—1.85) in
Fig.[2(d)|and its statistics (Table[I|Exp 4) shows that Llama-25 disagrees more strongly on Llama2-
25’s representative inputs than vice versa. Moreover, Table [[|Exp 4 shows the count ratio of PA and
PD. Compared to PD ama)—s (Liama)2, the very low PA[ _,, and PA,_,; (both 0.01) show prediction
agreement between the two models is low compared to PDy _,, (1.0). But PD,_,; is around 1.6 times
larger than the PDy _,,.

Discussion. We can further analyze the representative inputs corresponding to different D. For
example, in the experiment for GPT2-small-25 and GPT2-medium-25, we choose to inspect the in-
puts corresponding to large |D|. Interestingly, we find that GPT2-medium-25 disagrees with GPT2-
small-25 on the database inputs, whereas GPT2-small-25 disagrees with GPT2-medium-25 on inputs
about computer media decoder and PCle (see Appendix [H).

Our results show Model-diff can quantitatively compare two models’ low NLL input spaces in terms
of count and types of the inputs. Moreover, the models with high capacity (more weights and/or
more complex architectures) generally have a larger amount of representative inputs mapped to low
NLL values. Notably, this does not mean they are more tolerant of the representative inputs of other
models with lower capacity. They generally disagree more on the representative inputs from another
model with lower capacity and the disagreement can be quantified by Model-diff.

4.4  APPLICATIONS

We demonstrate a few real-world examples of applications using the types and counts Model-diff
focuses, as we have confirmed the applicability of Model-diff.

Deciding which model is better. We define our task of which model is better in terms of which
model’s prediction agrees more with human annotation. We achieve this by annotating the in-
puts. We choose to annotate the inputs from -1 to -0.6 and from 1 to 0.6 where the dominant
number of inputs concentrates and |D| is not too small when the two models do not show signif-
icant prediction differences. We sum from the -1 to -0.6 for PDg,,q11— medium and from 1 to 0.6
for PDyycdium—smair- Using Equ. [Z_f] and Equ. El, we compute (.56 precision and recall is 0.32 for
GPT2-small-25. For GPT2-medium-25, we compute 0.58 precision and recall is 0.57. This shows
while the two models disagree with the prediction of the other model’s representative inputs, GPT2-
medium-25’s disagreement aligns more closely to human annotation. Therefore, GPT2-medium is
a better model as its prediction agrees more with human annotation. Without introducing extra bi-
ases from datasets, we can use Model-diff to attain a better understanding of the models’ prediction
agreement and disagreement.

Model-plagiarism. Nowadays, open-sourced LMs are easily accessed for commercial and research
purposes. It remains an open question whether the new models are sufficiently distinct from their
original counterparts or if they are merely altered by adding noise to the weights (PrimerYang). We
offer a different angle to approach this problem than watermarking. We test Model-diff by compar-
ing GPT2-small-25 and GPT2-small-0.001-noise-25 where we add Gaussian noise to each weight
with zero-mean and standard deviation = 0.001 (Fig. 3(a)). It shows that GPT2-small-noise-25
almost always predicts a higher NLL on GPT2-small-25’s representative inputs. This is reason-
able since GPT2-small-noise-25 with noisy weights predicts inputs with higher NLL in general.
However, it is noteworthy that GPT2-small-25 predicts a lower NLL on almost all GPT2-small-
noise-25’s representative inputs. This is in contrast with the output distributions in Fig. 2] where two
different models disagree on each other’s representative inputs. We further compare GPT2-small-
25 and GPT2-small-0.00001-noise-25 a smaller noise with standard deviation 0.00001 to weights.
Fig. shows consistent results, though the area of overlap is larger because the two models are
more similar. This shows the output distributions that Model-diff focuses on can produce potentially
useful signal to detect if a model is sufficiently different from its original counterpart. This signal
can be an indicator for further confirmation of plagiarism.

3https://huggingface.co/huggyllama/llama-7b
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25.

Figure 3: GPT2-small-25 vs. its own by adding zero-mean noise on weight with different standard
deviations (i.e., 0.001 and 0.00001). Z = (2.0, 4.0).

5 RELATED WORKS AND DISCUSSIONS

Model understanding and analysis. Recent works (Booth et al, [2021} [Liu et al., |2023a) propose
to understand models (Zeiler & Fergus,[2014} Ribeiro et al., 20165 |Lundberg & Lee} 2017;|Ghorbani
etal.,2019) beyond the datasets by sampling the model itself, which can also avoid being biased even
if the dataset is generated by (external) models (Luo et al.,|2023; Prabhu et al.||[2023};|Shu et al.} 2020;
Leclerc et al., [2022)). Model-diff follows the recent methods of estimating (Liu et al.| [2023b) and
leveraging the output distribution for analysis (Liu et al.| 2023a)). Its new normalization algorithms
facilitate the analysis of model prediction differences without the need to sample accurately all the
output values. |Strobelt et al.| (2021)) proposes a microscopic view of how each token is predicted
differently by the two models on the same input. It can serve as a microscopic analysis tool for
Model-diff once the representative inputs are sampled. Model-diff, on the other hand, examines two
important macroscopic properties: the types and count of inputs.

Open-world Model Evaluation is a unique challenge including in out-of-distribution detection (Liu
et al.,|2020; Hendrycks & Gimpel, 20165 [Hendrycks et al.,|2019; Hsu et al., 2020; [Lee et al., 2017;
2018 [Liang et al., 2018} Mohseni et al., 2020; Ren et al, 2019), adversarial sets (Szegedy et al.,
2013 |Rozsa et al., 2016} Miyato et al.l [2018; [Kurakin et al., 2016} Xie et al., 2019; Madry et al.,
2017) etc. Instead of targeting specific types of inputs, Model-diff addresses the model comparison
in an input space through output distribution. The two models first efficiently map the inputs in the
input space to different output values. Human inspection of the mapping follows after computing
prediction difference D.

Samplers for output distribution were known in physics as sampling the density of states (Wang
& Landau, [2001). The connection between the two has been discovered recently (Liu et al)
2023b). Parallel tempering and histogram reweighting algorithms can also sample output distri-
bution (Hukushima & Nemotol [1996; Swendsen & Wang|, |1986)), which are more compatible with
the machine learning samplers (Grathwohl et al., 2021} [Zhang et al.| [2022) for energy function for
discrete input space.

6 CONCLUSION AND FUTURE WORKS

We propose a novel framework, Model-diff, for comparative analysis between two models with-
out introducing external models or datasets. Model-diff leverages the output distributions and the
corresponding representative inputs of the two models to understand the types and quantity of the
agreed/disagreed predictions in each model’s meaningful input space. In future work, more efficient
samplers could speed up the sampling procedure for Model-diff. Moreover, better normalization can
be developed for comparing more than two models.
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A APPENDIX

B LIMITATION

Our framework is designed to be a general framework, but it is not preferable for all settings. First,
our analysis depends on the sampler(s). As sampling the output distribution is a relatively new topic
in the machine learning community, more advanced samplers with more computation resources can
scale our experiments. Although our proof-of-concept method depends on the samplers’ results, the
analysis method itself is parallel to the development of the sampler, meaning that the method of how
to use output distributions to analyze the models will be consistent, even though the sampled results
may improve with better samplers.

Another is our analysis focuses on NLL. While it is the training loss for many next-token-
predictions, it does not cover other interesting problems in NLP that do not use the loss. Our method
in general targets a set of problems that uses log-probability as output. This problem is covered as
energy-based models [LeCun et al|(2006), where the “energy function” (log-probability) is a mea-
surement of the compatibility between the (input) variables. Therefore, our method can also choose
these measurements as output to be sampled. Moreover, it is also important to scale our method to
multi-dimensional output, such as feature embedding analysis. Concrete examples of applications
for problems beyond NLL are left as future work.

C POTENTIAL RISK

This paper presents a work to analyze two models side-by-side. Relying on the model itself to
generate data for analysis, our method has a social sequence that the data may lead to privacy leakage
and hallucination answers.

D MATH DESCRIPTION OF THE MODEL-DIFF

Notations. We denote the sampled quantity used for practical analysis with “Tilde” (e.g. p) and the
quantity from ground truth enumeration without “Tilde” (e.g. p) for conceptual discussion purposes.
We also efine a varying threshold A for D values, and denote A — B as the representative inputs
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from A are evaluated by model B, etc. Define (2 as a set of inputs in the entire input space (all
combinations of the tokens given the sequence length).

Fig. [I] shows the overview of Model-diff. Fig.[I{a,b) show two models A and B have predictions
for the same input x (e.g. circled in orange) as z4 x = Ma(x) and zp x = Mp(x) respectively.
A range of meaningful output values is Z = [z_, z1]. Model A maps some inputs x to z € Z
Xa = {x|zax € Zandx € Q}. Model B maps some inputs x to z € Z: Xp = {x|zpx

Z and x € Q} Fig. [c) shows the prediction relations of the two models’ outputs for all the mputs
We denote X4np = X4 N Xp (inputs that are inside the region R3 [J). All inputs in this area have
their predictions of both models within Z: {x|z4 x € Z and zp x € Z and x € {2}.

D.1 ANALYSIS WITH SAMPLING

When the input space X 4 or X g is huge, it is computationally impossible to enumerate all the inputs
to compute p4—,5(D) and pp_, 4(D). We need to sample the inputs for the above analysis.

In practice, Model-diff begins with the approximated (through sampling) output distributions /4 (2)
(or pp(2)) for model A (or B) using PTHR. During this process, we also obtain the sampled rep-
resentative inputs X4 € X4 and Xp C Xp given a meaningful output range Z. The inputs x
have the following properties: for X4 and X4 we have {x|zax € Z}; for Xz and X5 we have
{x|2B,x € Z}. We then sample an output value z € Z by followmg pa(z) (or pp(z)) for model A
(or B), and uniformly sample z’s representative inputs to compute D. Finally, the sampled approxi-
mations of p4_,5(D) and pp_, o(D) are:

pasn(D)=> 1D = (24x — 2Bx)); (10)
zNﬁA(z),waniform{x\xeXAand Ma(x)=2}
pB>a(D) = 1(D— (24x — 2B.x))- (11)

z~pp(2),x~Uniform{x|x€X gand Mp(x)=z}
The output of this stage is unnormalized 54—, 5(D) and pp_, 4(D).

D.2 NORMALIZATION

Unnormalized p—, g(D) and pp_, (D) are not directly comparable, because the one sampled with

more iterations will have a larger amount of inputs. Thus, we need to normalize them so that we can
compare them as if we were comparing p4—, 5(D) and pp_, 4(D). We find the common total count
|X 45| helpful as both models share the exact same inputs in the entire input space €Q.

Some of the sampled representative inputs in X 4 are predicted by model B within Z: X4_,p =
{x|x € X4 and zp x € Z}. Similarly Xp_,4 = {x|x € Xp and z4 x € Z}. When the number of
sampled inputs gets large, we have the following relation where the sampling ratio on the left hand
side (LHS) converges to the ground truth ratio on the right hand side (RHS):

S 5as(®) _ X pacn(D) "
|XA~>B| |XAQB| ’

2 pp>a(D) _ 3 pp—a(D) (13)
|XB—>A| |XAQB|

when the summation range is the same for LHS and RHS in the same equation. As [Xanpg| is
the same denominator for the RHS of both equations, the relations in Equ. |3|of > pa_,5(D) and
> pp— (D) becomes:

Z ﬁAaB(ID) Z pNAﬁB(,D) Z pNB%A(ID) Z ﬁBﬁA(’D)
D<A<L0 . D>X>0 . D<A<0 . D>X>0

|§§A~>B| ' |§§A~>B| . |§§B%A| . |§§B%A|
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E COMPARING ANOTHER MODEL BESIDES A AND B

First, we compare the two models B and C' with the same representative inputs from A:

Z PA—B (D) Z PA—B (D)
= -~ : 14
X4l 1Xal (1
Y. pasc(D) > pasc(D)
- - , 15
X4 X4l ()

Note that this does need to use A — B for X4 as in Equ. because the same set of sampled

inputs X4. Because the denominators of the above equations are the same, the comparing the
sampling results pa_, (D) and pa_,c(D) can lead to the ground truth counting comparison of
pa—B(D) and pa_,c(D), indicating how many A’s representative inputs B or C' agree/disagree.

Finally, in order to compare > pp_,4(D) and > pc— a(D) that is not shown (but in the similar

form of Equ. (12| and , we can use [13[to get [Xanp 2al —

Xal
%, and use Equ.|12[to get Equ.|16|(and similarly to get Equ.|17|by Equ. :

> -a(D) X4

Xpoal X4l
> Pc—a(D) X4l

Xcoal X4l
1Xal
Xal . .
Thus, the ground truth output distribution comparison between different models B and C' etc can be
transferred to the sampling results comparison w.r.t. the reference model A.

, use Equ. |14|to get the relation

Xasnl =Y ppa(D), (16)

Xasel =) posa(D), (17

where the common coefficient can be ignored when the RHS of the above equations is divided.

F DETAILED EXPERIMENTAL SETTINGS

GPT2-Toy is a simple experiment with dataset of sequences {x")} with length 8. Each token Z;
for an input x(¥) is an integer from 0 to 9 (vocabulary size is 10). The modulo of the sum of the
sequences is required to be 0: (3 x;) mod 30 = 0. The entire input space for this setting is 10®
which is enumerable. There are around 3.8 million sequences that satisfy the modulo requirement,
and we pick 500K to build the training set. We use two GPT2 models to learn to generate the
sequences whose sum satisfies (> x;) mod 30 = 0. The GPT2-small-Toy has 4 heads and 6 layers.
The GPT2-large-Toy has 8 heads and 8 layers. The number of embeddings for both models is
64. After training, both models can generate sequences that satisfy the modulo requirement with
100.0%.

Sampling details. We first sample the representative inputs corresponding to different NLLs for
the two models to be compared using a PTHR. We then sample D through the representative inputs
within Z with 100000 steps for GPT2 experiments or 50000 steps for other experiments.

GPT2-small-25 samples 25 tokens with the GPT2-small and GPT2-medium-25 samples 25
tokens with GPT2-medium. Both models are sampled NLL in [2.0,4.0] with temperature
T=[10"2,10~'25] for PTHR. For longer sequence length, GPT2-small-100 samples 100 tokens
with the GPT2-small and GPT2-medium-100 samples 100 tokens with GPT2-medium. The output
NLL in [4.0, 5.0] with temperature T=[1073-5,10~!-3] for PTHR.

We apply Model-diff to pre-trained Llama-7BE] and Llama2-7B for sequence length 25 as Llama-25
and Llama2-25. Both models are sampled within NLL in [3.5, 4.5] with temperature T=[10~¢, 10°]
for PTHR.

G REPESENTATIVE INPUTS FOR LOW NEGATIVE LOG-LIKELIHOOD (NLL)

*https://huggingface.co/huggyllama/llama-7b
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Fig. @] shows some sampled inputs for low NLL. They are mostly repeating words.

2.257 the, the, the, the and you, the you and, the you, you, you and, you, you
2.261 At the tireless of the of the of the of the of the the of the the of the the the the of
2.230 the, the, the, the. you, the you and, the you, you, you and, you, you

3.173 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move close to draw drawing place make room draw place place match drawing place place touch draw
make room spot draw place touch yoke draw find place love find place match draw place love love love draw
place place match draw place touch draw place love draw love draw location love draw location draw
location match

3.116 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move Place situation draw find place make room draw place place match drawing place place touch
draw make room spot draw place touch yoke draw find place love find place match draw place love love love
draw place place match draw place match draw place love draw love draw place love draw location draw
location match

3.161 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move close to draw drawing place make room draw place place match drawing place place touch draw
make room spot draw place touch yoke draw find place love find place match draw place love love love draw
place place match draw place touch draw place love draw love draw place love draw location draw location
match

1.982 hp % attack % damage % critical strike % crit chance % bleed % critical damage on hit 0% 0% 0% 0
1.987 EEE R8 R8 R4 R4 D S4 D4 D4 D4 D4 D S4 D4

1.963 checkpoints, residential areas, schools, hospitals, and other sites used for military purposes, such
as airports, military bases, and

Figure 4: Some presentative inputs from Llama2-25 (first 3 rows), GPT2-small-100 (middle 3 rows),
and GPT2-medium-25 (last 3 rows). Each row begins with the NLL.
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H INPUTS OF D FOR GPT2-SMALL-25 AND GPT2-MEDIUM-25
EXPERIMENTS

Fig. 5| shows some representative inputs different D on GPT2-small-25 or GPT2-medium-25.

-2.977 @ ":{"stubAlword|tt|nbr>Show. 19:35:37, 2014 [29.693]

—-2.955 @ Pack.EffectEncoder: Mod injected by IsDraconic.Core.SteadYle.1.10.

-2.976 @ artifacts by RemoveR3.Packages from IsDraconic.DB.SteadYEAR.NumBuysOwn

-2.423 @ <stub|new|small|nested> —~ 22:59:21,5 *session_msg[

—-2.407 © aum.GenericDecorativeArmor_1 —> IsDraconic.Consumer.SteadYard.Default. Applying

-2.462 0 ":{"stubhubword|tt|nbr>21 March 00:06:15,206 [59.213

-2.453 @ Constructed.bigDecimal:$True$ IsDraconic.Client.SteadYap.Dev.doSt

—2.477 0 addons to HardcoreWhimsresourcePack pursuant to IsDraconic.Core.SteadYield.MaxSpendable
-1.976 @ Wood. OreCo-2_1 —> IsDraconic.Block.SteadYield.SawpWood

-1.926 @ Constructed.CustomDecorativeArmor$True —> IsDraconic.Community.SteadYard.Game.PrivateServer

-1.927 @ Construct.AntDecorativeArmor_1 -> IsDraconic.Arcade.SteadYard.Default.SmallAnd

]
]
-1.975 @ artifacts by KROK_Packages from IsDraconic.DB.SteadYards.GetBuyingAg
]
-1.916 @ squads Gciano Spalletti, Andrea Lechva, Eric Gaertner and Koullante Finucane for

-1.489 0 — aS / / / / aBbS / / aCbS / / bbB / / b

-1.435 @ lycer. Simon, 2009). Fertilesia, altepithelial prognostic indicators, and coronary heart disease risk factors

-1.418 @ vic (WHO, 1983). Fertilesia, interepithelial progetic defects, and coronary heart disease risk factors

-1.431 @ Spell words? Please do not include top phrases. Read more<|endoftext|>Stage Six Shorter than the 4-3 Group Stage

-1.404 0 adobe and VideoDecoder.jar Resistance8.Draconic.mods.SteeleRage.blocks.actions.

-0.923 0 elsen (Spain, 2003). Fertilesia, electroepithelial prognostic reliance, and coronary heart disease risk factors

-0.983 @ Lisa (Geneva 1997). Interertile status, intraepithelial prognostic markers, and coronary heart disease risk factors

-0.912 0 ). (1-10) Blood plasma cholesterol levels, intraepithelial prognostic markers, and coronary heart disease were measured
-0.906 @ newsletters like us are letting you know about. If you click through there, you'll see that in addition to surveys you can
-0.918 0 = == To install the verintri 32bit app to an SD card your SD card will need a proper 64bit version for

—0.435 0 interpreting where your predicament is. It's very important not just for information and placement, but also for how you'd
like to

-0.488 0 formations by writing further down. He was right, not only in two different parts, but in one of two in four

—0.437 0 courtyard were full of small areas of space filled with greenery such as trees, trees—to-go-places and flower

-0.415 @ impression Daphne, then. (Ouch. Marmos wasn't the only person in the room who was polite.

-0.430 @ drop/c4/6c/6d 6d6 7 6f6 8 a6 7 8 8 8 8

2.584 1 DRM/PEG video decoding for PCM, and 2 Akamai PCIe Gen3 Ethernet adapters. And of course,

2.054 1 PCI/MPEG video decoding for PCM, and 32 Akamai PCIe Gen9 graphics adapters. And of course with

2.014 1 9700.0 x1920 Default DXVA2 settings, new resolutions 180 182 183 188 190 191 202 203 204 205 206
2.052 1 Avg 0.068% Default DXVA2 settings, seek bar 0x000 200 201 202 203 203 204 205 206

2.092 1 Reached 0.8172% Default DXVA2 settings, maximum of 96xAF 200 201 202 203 203 204 205 206

2.022 1 DRM+PEG video decoding for PCM, like the Akamai PCIe Gen3+ input. And of course,

1.560 1 Pharitha. 2 And Laihos came to Berecamas the son of Abiebias the son of

1.540 1 65565.0 x 160 Default DXVA2 settings, default values 180 182 183 188 190 191 202 203 204 205 Examples
1.537 1 xxxxxx.000000 263 E Native DXVA2 settings, icons size: 192 193 194 195 196 197 203 204 205 206

1.590 1 ATI+MPEG video decoding for PCM, through the Akamai PCIe Genl Host Controller. And of course there
1.511 1 3332.000000 y 2 Default DXVA2 settings, default settings. 192 193 194 195 201 202 203 204 205 206
1.071 1 Pharitha. 5 And Leketes came to Milcaeus the son of Hypamis, the son of

1.017 1 xxxxxx.00000010, Default DXVA2 settings, maximum size: 192 193 194 195 196 197 203 204 205 206

1.087 1 ATI+MPEG video decoding to PCM, using the Akamai PCIe Gen2 memory controller. And of course,

1.025 1 disqualifications from circuit court hearing, suspension from holding any require- ment or appointment or penalty to pay

retainer or expense,
1.072 1 Pharimah. 15 Then Elaihath came to Elhath the son of Jayameh, the son of

0.583 1 scalp, chest, arms, nearly bald spot on chin, hair falling into shoulders hair falling into chin, chest hair falling into
0.520 1 inflict this type of attack again after 1 minute, then the attacker may use it again on up to one target within 30 feet

0.555 1 temp. resp. tp. = tp_to_tp s = s + 1 tp_size = t

0.554 1 degrade your credibility or in any way damage your future career prospects as a person. Pick your battles carefully, if at all
possible

0.561 1 UFOs are out there on our planet. For more on UFO sightings, does anyone have any recent articles on the topic that you

Figure 5: Some presentative inputs of different D values (first column) on the representative of
GPT2-small-25 (indicated by “0” in the second column) or GPT2-medium-25 (indicated by “1” in
the second column). Then the decoded input sentence(s) follows in the third column. Each group of
rows separated by an empty row indicates representative inputs have similar D.

I MCMC RESULTS

Fig [6] shows simple text generation by MCMC sampling does not lead to the same ground truth
distribution with a uniform measure for a range of output values.

0.61 —e— GPT2-large-Toy MCMC sampling with T=1
GPT2-large-Toy enumeration

=04
8
Q

0.2

0.0

—0.6 —0.4 -0.2 0.0 0.2 0.4 0.6 0.8

D=NLL_small-NLL _large

Figure 6: Simple text generation by MCMC sampling does not lead to the same ground truth distri-
bution with a uniform measure for a range of output values.
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