
FiT: Parameter Efficient Few-shot Transfer Learning

Aliaksandra Shysheya∗
University of Cambridge
as2975@cam.ac.uk

John Bronskill∗
University of Cambridge
jfb54@cam.ac.uk

Massimiliano Patacchiola
University of Cambridge
mp2008@cam.ac.uk

Sebastian Nowozin†

nowozin@gmail.com
Richard E. Turner

University of Cambridge
ret26@cam.ac.uk

Abstract

Model parameter efficiency is key for enabling few-shot learning, inexpensive
model updates for personalization, and communication efficient federated learning.
In this work, we develop FiLM Transfer (FIT) which combines ideas from transfer
learning (fixed pretrained backbones and fine-tuned FiLM adapter layers) and meta-
learning (automatically configured Naive Bayes classifiers and episodic training)
to yield parameter efficient models with superior classification accuracy at low-
shot. We experiment with FIT on a range of downstream datasets and show
that it achieves better classification accuracy than the leading Big Transfer (BiT)
algorithm at low-shot and achieves state-of-the art accuracy on the challenging
VTAB-1k benchmark, with fewer than 1% of the updateable parameters.

1 Introduction

Model parameter efficiency is key for enabling few-shot learning, inexpensive model updates for
personalization, and communication efficient federated learning. In order to develop data-efficient
and parameter-efficient learning systems, we draw on ideas developed by the few-shot learning
community. Few-shot learning approaches can be characterized in terms of shared and updateable
parameters. From a statistical perspective, shared parameters capture similarities between datasets,
while updateable parameters capture the differences. Updateable parameters are those that are either
recomputed or learned as the model is updated or retrained, whereas shared parameters are fixed. In
personalized or federated settings, it is key to minimize the number of updateable parameters, while
still retaining the capacity to adapt.

Broadly, there are two different approaches to few-shot learning: meta-learning [Hospedales et al.,
2020] and transfer learning (fine-tuning) [Yosinski et al., 2014]. Meta-learning approaches provide
methods that have a small number of updatable parameters [Requeima et al., 2019]. However, while
meta-learners can perform strongly on datasets that are similar to those they are meta-trained on,
their accuracy suffers when tested on datasets that are significantly different [Dumoulin et al., 2021].
Transfer learning algorithms often outperform meta-learners, especially on diverse datasets and
even at low-shot [Dumoulin et al., 2021, Tian et al., 2020]. However, the leading Big Transfer
(BiT) [Dumoulin et al., 2021, Kolesnikov et al., 2019] algorithm requires every parameter in a large
network to be updated. In summary, performant transfer learners are parameter-inefficient, and
parameter-efficient few-shot learners perform relatively poorly.

In this work we propose FiLM Transfer or FiT, a novel method that synthesizes ideas from both
the transfer learning and meta-learning communities in order to achieve the best of both worlds

∗Authors contributed equally
†Work performed while at Microsoft Research

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.

– parameter efficiency without sacrificing accuracy, even when there are only a small number of
training examples available. From transfer learning, we take advantage of backbones pretrained on
large image datasets and the use of fine-tuned parameter efficient adapters. From meta-learning, we
take advantage of metric learning based final layer classifiers trained with episodic protocols that we
show are more effective than the conventional linear layer classifier. Our contributions:

• A parameter and data efficient network architecture for low-shot transfer learning that (i) utilizes
frozen backbones pretrained on large image datasets; (ii) augments the backbone with parameter
efficient FiLM [Perez et al., 2018] layers in order to adapt to a new task; and (iii) makes novel use
of an automatically configured Naive Bayes final layer classifier instead of the usual linear layer,
saving a large number of updateable parameters, yet improving classification performance;

• A meta-learning inspired episodic training protocol for low-shot fine-tuning requiring no data
augmentation, no regularization, and a minimal set of hyper-parameters;

• State-of-the-art results on the challenging VTAB-1k benchmark (74.9% for backbones pretrained
on ImageNet-21k) while using ≈ 1% of the updateable parameters when compared to the leading
transfer learning method BiT;

2 FiLM Transfer (FIT)

In this section we detail the FIT algorithm focusing on the few-shot image classification scenario.

Preliminaries We denote input images x ∈ Rch×W×H where W is the width, H the height, ch the
number of channels and image labels y ∈ {1, . . . , C}where C is the number of image classes indexed
by c. Assume that we have access to a model f(x) = hϕ(bθ(x)) that outputs class-probabilities
for an image p(y = c|x,θ,ϕ) for c = 1, . . . , C and is comprised of a feature extractor backbone
bθ(x) ∈ Rdb with parameters θ that has been pretrained on a large upstream dataset such as Imagenet
where db is the output feature dimension and a final layer classifier or head hϕ(·) ∈ RC with weights
ϕ. Let D = {(xn, yn)}Nn=1 be the downstream dataset that we wish to fine-tune the model f to.

FIT Backbone For the network backbone, we freeze the parameters θ to the values learned during
upstream pretraining. To enable parameter-efficient and flexible adaptation of the backbone, we add
Feature-wise Linear Modulation (FiLM) [Perez et al., 2018] layers with parameters ψ at strategic
points within bθ . A FiLM layer scales and shifts the activations aij arising from the jth channel of a
convolutional layer in the ith block of the backbone as FiLM(aij , γij , βij) = γijaij + βij , where
γij and βij are scalars. The set of FiLM parameters ψ = {γij , βij} is learned during fine-tuning. An
advantage of FiLM layers is that they enable expressive feature adaptation while adding only a small
number of parameters [Perez et al., 2018]. For example, in a ResNet50 with a FiLM layer in every
block, the set of FiLM parameters ψ account for only 11648 parameters which is fewer than 0.05%
of the parameters in bθ.

FIT Head For the head of the network, we use a specially tailored Gaussian Naive Bayes classifier.
Unlike a linear head, this head can be automatically configured directly from data and has only a
small number of free parameters which must be learned, ideal for few-shot, personalization and
federated learning. We will also show that this head is often more accurate than a standard linear
head. The class probability for a test point x∗ is:

p(y∗ = c|bθ,ψ(x∗),π,µ,Σ) =
πcN (bθ,ψ(x

∗)|µc,Σc))∑C
c′ πc′N (bθ,ψ(x∗)|µc′ ,Σc′)

(1)

where πc =
Nc

N
, µc =

1

Nc

∑Nc

i=1 bθ,ψ (xi), Σc =
1

Nc

∑Nc

i=1(bθ,ψ (xi)− µc)(bθ,ψ (xi)− µc)
T

are the maximum likelihood estimates, Nc is the number of examples of class c in D, and N (z|µ,Σ)
is a multivariate Gaussian over z with mean µ and covariance Σ.

Estimating the mean µc for each class c is straightforward and incurs a total storage cost of Cdb.
However, estimating the covariance Σc for each class c is challenging when the number of examples
per class Nc is small and the embedding dimension of the backbone db is large. In addition, the
storage cost for the covariance matrices may be prohibitively high if db is large. Here, we use three
different approximations to the covariance in place of Σc in Eq. (1) [Fisher, 1936, Duda et al., 2012]:

2

• Quadratic Discriminant Analysis (QDA): ΣQDA = e1Σclass + e2Σtask + e3I

• Linear Discriminant Analysis (LDA): ΣLDA = e2Σtask + e3I

• ProtoNets [Snell et al., 2017]: ΣPN = I; i.e. there is no covariance and the class representation is
parameterized only by µc and the classifier logits are formed by computing the squared Euclidean
distance between the feature representation of a test point bθ,ψ(x∗) and each of the class means.

In the above, Σclass is the computed covariance of the examples in class c inD, Σtask is the computed
covariance of all the examples in D assuming they arise from a single Gaussian with a single mean,
e = {e1, e2, e3} are weights learned during training, and the identity matrix I is used as a regularizer.

QDA mainly serves as a baseline since it has a very large set of updateable parameters arising from
the fact that it stores a covariance matrix for each class in the dataset. LDA is far more parameter
efficient than QDA, sharing a single covariance matrix across all classes. We show that LDA leads to
very similar performance to QDA. The number of model shared and updateable parameters for the
three FIT variants as well as the BiT algorithm are detailed in Table 1.

Table 1: Shared and updateable parameters for the transfer learning methods considered. The Example
column contains the updateable parameters for all methods using a BiT-M-R50x1 backbone with
|θ| = 23, 500, 352, ψ = 11, 648, db = 2048, and C = 10.

Method Shared Updateable Example
BiT 0 |θ| + |ϕ| = |θ|+ Cdb 23,520,832
FIT - QDA |θ| |ψ|+ |µ|+ |Σ|+ |e| = |ψ|+ Cdb + C db(db+1)

2 + 3 21,013,891
FIT - LDA |θ| |ψ|+ (|µ|+ |Σ|) + |e| = |ψ|+ C(db + 1) + 2 32,140
FIT - ProtoNets |θ| |ψ|+ |µ| = |ψ|+ Cdb 32,128

An empirical justification for the use of the FIT-LDA head is shown in Fig. 1a where it outperforms
a linear head in the case of FiLM and when all the backbone parameters are learned. In Fig. 1b, we
see for both datasets, FIT-LDA converges faster than BiT, which uses a linear head. The primary
limitation of the Naive Bayes head is the higher (versus linear) computational cost due to having to
invert a db × db covariance matrix on each training iteration.

None FiLM All
Learnable Parameters in Backbone

50

55

60

65

70

75

Ac
cu

ra
cy

57.5

65.3
68.3

56.5

69.3

72.6Linear
LDA

(a) LDA outperforms linear head.

0 100 200 300 400 500
CIFAR100 Training Iteration

0

20

40

60

Te
st

 A
cc

ur
ac

y
(%

)

BiT
FiT

0 100 200 300 400 500
SVHN Training Iteration

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

BiT
FiT

(b) FIT-LDA converges more quickly than BiT.

Figure 1: (a) Average accuracy on VTAB-1k for linear and LDA heads versus learnable parameters
in the backbone. (b) Test accuracy versus training iteration for CIFAR100 and SVHN on VTAB-1k.

FIT Training We learn the FiLM parameters ψ and the covariance weights e via fine-tuning
(parameters θ are fixed from pretraining). One approach would be to apply standard batch training
on the downstream dataset, however it was hard to balance under- and over-fitting using this setup.
Instead, we found that an approach inspired by episodic training [Vinyals et al., 2016] that is often
used in meta-learning yielded better performance. We refer to this approach as episodic fine tuning
and it works as follows. Note that we require ‘training’ data to compute π, µ, Σ to configure the
head, and a ‘test’ set to optimize ψ and e via gradient ascent. Thus, from the downstream dataset
D, we derive two sets – Dtrain and Dtest. We randomly split D into Dtrain and Dtest such that the
number of examples or shots in each class c are roughy equal in both partitions and that there is at
least one example of each class in both. Refer to Algorithm A.1 for details.

For each training iteration, we sample a task τ consisting of a support set DτS drawn from Dtrain
with Sτ examples and a query DτQ set drawn from Dtest with Qτ examples. First, DτS is formed by

3

randomly choosing a subset of classes selected from the range of available classes in Dtrain. Second,
the number of shots to use for each selected class is randomly selected from the range of available
examples in each class of Dtrain with the goal of keeping the examples per class as equal as possible.
Third, DτQ is formed by using the classes selected for DτS and all available examples from Dtest in
those classes up to a limit of 2000 examples. See Algorithm A.2 for details. Episodic fine-tuning is
crucial to achieving the best classification accuracy with the Naive Bayes head.

The support setDτS is then used to compute π, µ, and Σ and we then useDQ = {{xτ∗q , yτ∗q }
Qτ

q=1}Tτ=1

to train ψ and e with maximum likelihood. We optimize the following:

L̂ (ψ, e) =
T∑
τ=1

Qτ∑
q=1

log p
(
yτ∗q |he(bθ,ψ(xτ∗q)),π(Dτs),µ(Dτs),Σ(Dτs)

)
. (2)

FIT training hyper-parameters include a learning rate, |DτS |, and the number of training iterations.
For the transfer learning experiments in Section 4 these are set to constant values across all datasets
and do not need to be tuned based on a validation set. We do not augment the training data. In the
1-shot case, we do not perform episodic fine-tuning and leave the FiLM parameters at their initial
value of γ = 1,β = 0 and e = (0.5, 0.5, 1.0) and predict as described next.

FIT Prediction Once the FiLM parameters ψ and covariance weights e have been learned, we use
D for the support set to compute πc, µc, and Σc for each class c and then Eq. (1) can be used to make
a prediction for any unseen test input.

3 Related Work

We take inspiration from residual adapters [Rebuffi et al., 2017, 2018] where parameter efficient
adapters are inserted into a ResNet with frozen pretrained weights. The adapter parameters and the
final layer linear classifier are then learned via fine-tuning. More recently, a myriad of additional
parameter efficient adapters have been proposed including FiLM, Adapter [Houlsby et al., 2019],
LoRA [Hu et al., 2021], VPT [Jia et al., 2022], AdaptFormer [Chen et al., 2022], NOAH [Zhang
et al., 2022], Convpass [Jie and Deng, 2022], [Mudrakarta et al., 2019], and CaSE [Patacchiola et al.,
2022]. For FIT we use FiLM as it is the most parameter efficient adapter, yet it allows for expressive
adaptation, and can be used in various backbone architectures including ConvNets and Transformers.

To date, transfer learning systems that employ adapters use a linear head for the final classification
layer. In meta-learning systems it is common to use metric learning heads (e.g. ProtoNets [Snell et al.,
2017]), which have no or few learnable parameters. Meta-Learning systems that employ a metric
learning head are normally trained with an episodic training regime [Vinyals et al., 2016]. Some
of these approaches (e.g. TADAM [Oreshkin et al., 2018], FLUTE [Triantafillou et al., 2021], and
Simple CNAPs [Bateni et al., 2020] use both a metric head and FiLM layers to adapt the backbone.

FIT differs from all of the preceding approaches by using a powerful Naive Bayes metric head that
uses episodic fine-tuning in the context of transfer learning, as opposed to the usual meta-learning.
We show in Fig. 1a and Section 4 that the episodically fine-tuned Naive Bayes head consistently
outperforms a conventional batch trained linear head in the low-shot transfer learning setting.

4 Experiments

In this section, we evaluate the classification accuracy and updateable parameter efficiency of FIT on
the VTAB-1k [Zhai et al., 2019] benchmark. The VTAB-1k benchmark [Zhai et al., 2019] is a low
to medium-shot transfer learning benchmark that consists of 19 datasets grouped into three distinct
categories (natural, specialized, and structured). From each dataset, 1000 examples are drawn at
random from the training split to use for the downstream dataset D. After fine-tuning, the entire test
split is used to evaluate classification performance. In all experiments, we use Big Transfer (BiT)
[Kolesnikov et al., 2019], a leading, scalable, general purpose transfer learning algorithm as a point
of comparison. In addition, we compare FIT to the latest vision transformer based methods that have
reported the highest accuracies on VTAB-1k to date. See Appendix A.2 for experimental details.

4

Table 2 shows the classification accuracy and updateable parameter count for the three variants of
FIT and BiT. The key observations from our results are:

• Both FIT-QDA and FIT-LDA outperform BiT on VTAB-1k.
• The FIT-QDA variant has the best overall performance, showing that the class covariance is

important to achieve superior results on datasets that differ from those used in upstream pretraining
(e.g. the structured category of datasets). However, the updateable parameter cost is high.

• FIT-LDA utilizes two orders of magnitude fewer updateable parameters compared to BiT, making
it the preferred approach.

Table 2: FIT outperforms BiT on VTAB-1k. Classification accuracy and updateable parameter
count (with 10 classes) for FIT variants and BiT on VTAB-1k with BiT-M-R50x1 backbone. Accuracy
figures are percentages. Bold type indicates the highest scores. Green indicates summary columns.

Natural Specialized Structured

Method Pa
ra

m
s

(M
)↓

O
ve

ra
ll

A
cc

↑

C
al

te
ch

10
1

C
IF

A
R

10
0

Fl
ow

er
s1

02

Pe
ts

Su
n3

97

SV
H

N

D
T

D

E
ur

oS
A

T

R
es

ic
s4

5

C
am

el
yo

n

R
et

in
op

at
hy

C
le

vr
-c

ou
nt

C
le

vr
-d

is
t

dS
pr

ite
s-

lo
c

dS
pr

ite
s-

or
i

sN
O

R
B

-a
zi

sN
O

R
B

-e
le

v

D
M

L
ab

K
IT

T
I-

di
st

BiT 23.5 68.3 88.0 70.1 98.6 88.4 48.0 73.0 72.7 95.3 85.9 69.3 77.2 54.6 47.9 91.6 65.9 18.7 25.8 47.1 80.1
FiT-QDA 21.0 70.6 90.3 74.1 99.1 91.0 51.1 75.1 70.9 95.6 82.6 80.7 70.4 87.1 58.1 77.1 56.7 18.9 40.4 43.8 77.5
FiT-LDA 0.03 69.3 90.4 74.2 99.0 90.5 51.6 74.2 70.9 95.1 82.5 82.5 66.2 85.6 56.1 74.8 51.3 16.2 37.0 41.6 77.7
FiT-ProtoNets 0.03 65.5 89.6 73.9 98.6 90.8 51.5 50.1 68.2 93.8 77.0 79.9 57.9 88.7 58.3 68.6 34.2 13.5 35.0 39.3 75.3

Table 3 shows that FIT-LDA achieves state-of-the-art classification accuracy when compared to
leading transfer learning methods pretrained on ImageNet-21k, while requiring the smallest number
of updateable parameters and using the smallest backbone. All competing methods use a linear head.

Table 3: FIT achieves SOTA on VTAB-1k. Classification accuracy (%) for the 3 VTAB-1k categories
(Natural, Specialized, and Structured) and mean accuracy over all 19 datasets (Overall Acc) and
updateable parameter count (Params) for leading transfer learning methods using various backbones
(backbone parameter count shown in parentheses) [Kolesnikov et al., 2019, Dosovitskiy et al., 2020,
Tan and Le, 2021] pretrained on ImageNet-21k. ViT-Base-16 results from [Jie and Deng, 2022]. BiT
results from [Kolesnikov et al., 2020]. Green indicates results summary columns.

Method Backbone Params (M) ↓ Overall Acc ↑ Natural ↑ Specialized ↑ Structured ↑

BiT [Kolesnikov et al., 2019] BiT-M-R101x3 (382M) 382 72.7 80.3 85.8 59.4
BiT [Kolesnikov et al., 2019] BiT-M-R152x4 (928M) 928 73.5 80.8 85.7 61.1
VPT [Jia et al., 2022] ViT-Base-16 (85.8M) 0.5 69.4 78.5 82.4 55.0
Adapter [Houlsby et al., 2019] ViT-Base-16 (85.8M) 0.2 71.4 79.0 84.1 58.5
AdaptFormer [Chen et al., 2022] ViT-Base-16 (85.8M) 0.2 72.3 80.6 84.9 58.8
LoRA [Hu et al., 2021] ViT-Base-16 (85.8M) 0.3 72.3 79.5 84.6 59.8
NOAH [Zhang et al., 2022] ViT-Base-16 (85.8M) 0.4 73.2 80.3 84.9 61.3
Convpass [Jie and Deng, 2022] ViT-Base-16 (85.8M) 0.3 74.4 81.7 85.3 62.7
FiT-LDA (ours) EfficientNetV2-M (52.9M) 0.15 74.9 82.2 84.3 63.7

5 Discussion

In this work, we proposed FIT, a parameter and data efficient few-shot transfer learning system
that allows image classification models to be updated with only a small subset of the total model
parameters. We demonstrated that FIT can outperform BiT using fewer than 1% of the updateable
parameters and achieve state-of-the-art accuracy on VTAB-1k.

6 Acknowledgements

This work has been performed using resources provided by the Cambridge Tier-2 system operated by
the University of Cambridge Research Computing Service https://www.hpc.cam.ac.uk funded
by EPSRC Tier-2 capital grant EP/P020259/1. Aliaksandra Shysheya, John Bronskill, Massimiliano
Patacchiola and Richard E. Turner are supported by an EPSRC Prosperity Partnership EP/T005386/1
between the EPSRC, Microsoft Research and the University of Cambridge.

5

https://www.hpc.cam.ac.uk

References
Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural

networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Proceedings of the 28th Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 3320–3328, 2014.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast
and flexible multi-task classification using conditional neural adaptive processes. In Proceedings
of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS), pages
7957–7968, 2019.

Vincent Dumoulin, Neil Houlsby, Utku Evci, Xiaohua Zhai, Ross Goroshin, Sylvain Gelly, and Hugo
Larochelle. Comparing transfer and meta learning approaches on a unified few-shot classification
benchmark. arXiv preprint arXiv:2104.02638, 2021.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. Rethinking
few-shot image classification: a good embedding is all you need? arXiv preprint arXiv:2003.11539,
2020.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. arXiv preprint
arXiv:1912.11370, 6(2):8, 2019.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI), 2018.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7
(2):179–188, 1936.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons, 2012.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 4077–4087, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Proceedings of the 30th Annual Conference on Neural
Information Processing Systems (NeurIPS), pages 3630–3638, 2016.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems, pages 506–516, 2017.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8119–8127, 2018.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535, 2022.

6

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022.

Shibo Jie and Zhi-Hong Deng. Convolutional bypasses are better vision transformer adapters. arXiv
preprint arXiv:2207.07039, 2022.

Pramod Kaushik Mudrakarta, Mark Sandler, Andrey Zhmoginov, and Andrew Howard. K for the
price of 1: Parameter efficient multi-task and transfer learning. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=BJxvEh0cFQ.

Massimiliano Patacchiola, John Bronskill, Aliaksandra Shysheya, Katja Hofmann, Sebastian
Nowozin, and Richard E Turner. Contextual squeeze-and-excitation for efficient few-shot image
classification. arXiv preprint arXiv:2206.09843, 2022.

Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. Advances in neural information processing systems, 31,
2018.

Eleni Triantafillou, Hugo Larochelle, Richard Zemel, and Vincent Dumoulin. Learning a universal
template for few-shot dataset generalization. In International Conference on Machine Learning,
pages 10424–10433. PMLR, 2021.

Peyman Bateni, Raghav Goyal, Vaden Masrani, Frank Wood, and Leonid Sigal. Improved few-shot
visual classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 14493–14502, 2020.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pages 10096–10106. PMLR, 2021.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Official repository for the "Big Transfer (BiT): General Visual Representation
Learning" paper. https://github.com/google-research/big_transfer, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.

7

https://openreview.net/forum?id=BJxvEh0cFQ
https://github.com/google-research/big_transfer

A Appendix

A.1 FIT Training Algorithms

Algorithm A.1 and Algorithm A.2 detail how episodic fine-tuning tasks are split and sampled,
respectively, for use in the FIT training protocol.

Algorithm A.1 Splitting the downstream dataset D
Require: D = {(xn, yn)}Nn=1 = {x,y}: downstream dataset
Require: unique() ≡ function that returns a list of unique classes and list of counts of each class
Require: select_by_class() ≡ function that extracts samples of a specified class from a dataset

1: procedure SPLIT(D)
2: Dtrain ← [] ▷ Create an empty list to hold Dtrain
3: Dtest ← [] ▷ Create an empty list to hold Dtest
4: classes, class_counts← unique(y)
5: for all c ∈ classes do
6: assert(class_counts(c) > 1) ▷ Require a minimum of 2 shots per class.
7: train_count← ceil(class_counts(c)/2)
8: Dc ← select_by_class(c) ▷ Select examples of class c from D
9: Dtrain ← Dtrain +Dc[: train_count] ▷ Add train_count examples to Dtrain

10: Dtest ← Dtest +Dc[train_count :] ▷ Add remaining examples to Dtest
11: end for
12: return Dtrain, Dtest
13: end procedure

Algorithm A.2 Sampling a task τ

Require: Dtrain = {(xs, ys)}Sτ
s=1 = {xS ,yS}: train portion of downstream dataset

Require: Dtest = {(xq, yq)}Qτ

q=1 = {xQ,yQ}: test portion of downstream dataset
Require: support_set_size: size of the support set |DτS |
Require: unique() ≡ function that returns a list of unique classes and list of counts of each class
Require: randint(min,max) ≡ function that returns a random integer between min and max
Require: choice(range, count)≡ function that returns a random list of count integers from range

1: procedure SAMPLE_TASK(Dtrain,Dtest, support_set_size)
2: DτS ← [] ▷ Create an empty list to hold DτS
3: DτQ ← [] ▷ Create an empty list to hold DτQ
4: train_classes, train_class_counts← unique(yS)
5: test_classes, test_class_counts← unique(yQ)
6: min_way← min(len(train_classes), 5)
7: max_way← min(len(train_classes), support_set_size)
8: way← randint(min_way, max_way) ▷ Classification way to use for this task
9: selected_classes← choice(train_classes, way) ▷ List of classes to use in this task

10: balanced_shots = max(round(support_set_size / len(selected_classes)), 1)
11: max_test_shots← max(1, floor(2000/way))
12: for all c ∈ selected_classes do
13: class_shots← train_class_counts(c)
14: shots_to_use← min(class_shots, balanced_shots)
15: selected_shots← choice(class_shots, shots_to_use) ▷ Support shot list
16: DτS ← DτS +Dtrain[selected_shots] ▷ Add examples to DτS
17: class_shots← test_class_counts(c)
18: shots_to_use← min(class_shots, max_test_shots)
19: selected_shots← choice(class_shots, shots_to_use) ▷ Query shot list
20: DτQ ← DτQ +Dtest[selected_shots] ▷ Add examples to DτQ
21: end for
22: return DτS , DτQ
23: end procedure

8

A.2 Training and Evaluation Details

In this section, we provide implementation details for the experiments in Section 4.

FIT All of the FIT versus BiT on VTAB-1k transfer learning experiments were carried out on a
single NVIDIA A100 GPU with 80GB of memory. The Adam optimizer [Kingma and Ba, 2015]
with a constant learning rate of 0.0035, for 400 iterations, and |DτS |=100 was used throughout. No
data augmentation was used and images were scaled to 384×384 pixels unless the image size was
32×32 pixels or less, in which case the images were scaled to 224×224 pixels.

FIT-QDA, FIT-LDA, and FIT-ProtoNets take approximately 12, 10, and 9 hours, respectively, to
fine-tune on all 19 VTAB datasets.

For the FIT-LDA results using the EfficientNetV2-M backbone in Table 3, we used 1000 iterations
instead of 400 and ran the experiments on 4 NVIDIA A100 GPUs, each with 80GB of memory.

BiT For the BiT VTAB-1k experiments, we used the three fine-tuned models for each of the datasets
that were provided by the authors [Kolesnikov et al., 2020]. We evaluated all of the models on the
respective test splits for each dataset and averaged the results of the three models. The BiT-HyperRule
[Kolesnikov et al., 2019] was respected in all runs. These experiments were executed on a single
NVIDIA GeForce RTX 3090 with 24GB of memory.

9

	Introduction
	FiLM Transfer (FiT)
	Related Work
	Experiments
	Discussion
	Acknowledgements
	Appendix
	FiT Training Algorithms
	Training and Evaluation Details

