
Do Code Models Suffer from the Dunning-Kruger Effect?

Anonymous ACL submission

Abstract001

The Dunning-Kruger effect (DKE) is the cog-002
nitive bias in which participants with limited003
competence in a domain tend to over estimate004
their perceived performance or expertise in that005
domain. AI models today can outperform hu-006
mans in many cognitive tasks and humans rely007
on these models for decision making. It be-008
comes important to understand the inherent bi-009
ases carried by these models to make sure they010
are used in a controlled and responsible man-011
ner. In this paper, we examine the Dunning-012
Kruger effect on AI models for programming013
tasks. By comparing the model on question-014
answering over increasingly rare programming015
languages, it is found that the models show016
a similar competence-capability curve as hu-017
mans. Upon closer examination of the con-018
fidence curves we also find that the strength019
of the bias is proportionate to the competence020
of the models, for example, a less competent021
model has a stronger bias. This aligns with hu-022
man experiments for the bias. We open source023
all benchmarks and predictions to encourage024
research in biases for AI models.025

1 Introduction026

Large language models have shown great per-027

formance on code tasks, outperforming humans028

in code generation, repair, refactor and question-029

answering (Huynh and Lin, 2025; Cordeiro et al.,030

2024; Jelodar et al., 2025). With advancements in031

model development with reasoning models (Cai032

et al., 2024) and diffusion models (Chen et al.,033

2024b), AI models are only going to get better034

with the models potentially surpassing human per-035

formance. With these developments, AI models036

are being used more frequently to automate a broad037

range of programming related tasks including code038

authoring, reviewing, and debugging (Odeh et al.,039

2024; Anand et al., 2024; Chen et al., 2021).040

As AI systems are increasingly being integrated041

into critical processes both within and outside042

the programming domain, it becomes essential 043

to recognize and address the biases these mod- 044

els may inherit (Vakali and Tantalaki, 2024) from 045

human-generated training data. Numerous stud- 046

ies and policy discussions have highlighted the 047

risks associated with biased AI outputs, particu- 048

larly in domains such as healthcare, and employ- 049

ment (Abrams, 2024; Vicente and Matute, 2023; 050

Landers and Behrend, 2023). In this work, we 051

focus on a specific cognitive bias: the Dunning- 052

Kruger Effect (DKE)—a phenomenon in which in- 053

dividuals with lower competence in a domain tend 054

to overestimate their abilities (Mazor and Fleming, 055

2021; Magnus and Peresetsky, 2022). While DKE 056

has been extensively studied in human psychology, 057

its presence in AI systems remains underexplored. 058

We argue that studying DKE in AI models is valu- 059

able for two reasons. First, it offers a lens through 060

which to examine model mis-calibration, particu- 061

larly in low-competence regimes. Second, it allows 062

us to test whether models exhibit human-like pat- 063

terns of overconfidence, which could have impli- 064

cations for trust, interpretability, and downstream 065

decision-making. 066

Our results reveal that the models’ perceived 067

performance shows statistically significant infla- 068

tion compared to actual performance, similar to 069

the effect previously studied in humans. The mod- 070

els’ overestimation of their performance becomes 071

more pronounced with lower actual performance 072

of the model and with increasing hardness of the 073

tasks (measured by rarity of the programming do- 074

main), aligning strongly with the patterns observed 075

in human cognition. These findings underscore 076

the importance of understanding cognitive biases 077

in AI systems and lay the groundwork for deeper 078

interdisciplinary research at the intersection of cog- 079

nitive science and machine learning. 080

In this paper, we make the following contribu- 081

tions: 082

1



1. We provide statistically significant evidence083

of the Dunning-Kruger effect in AI models084

for programming tasks.085

2. We analyze how the strength of this bias varies086

with (a) the model’s base performance and (b)087

the rarity of the programming domain.088

2 Related Work089

Cognitive biases in AI models. Studies have090

shown that LLMs can reflect human-like biases,091

including overconfidence and self-enhancement,092

despite lacking self-awareness (Gu et al., 2024;093

Salecha et al., 2024; Sun et al., 2025; Ye et al.,094

2024). These biases often stem from training data095

patterns or architectural choices (Geng et al., 2023;096

Tjuatja et al., 2024). Among these, overconfidence097

is particularly concerning, as it can lead to mis-098

leading outputs that appear authoritative but are in-099

correct—an issue that parallels the DKE (Dunning100

et al., 2003; Kruger and Dunning, 1999; Ehrlinger101

et al., 2008) observed in human cognition.102

Generalization and confidence estimation In103

the context of code models, prior work has high-104

lighted challenges in generalizing to rare program-105

ming languages (Chen et al., 2024a; Cassano et al.,106

2024; Giagnorio et al., 2025; Mora et al., 2024).107

While model accuracy drops on out-of-distribution108

tasks, confidence scores often remain high (Chen109

et al., 2021), revealing a disconnect between com-110

petence and self-assessment. Traditional confi-111

dence estimation methods, based on logits or self-112

reported probabilities, are frequently miscalibrated113

in unfamiliar domains (Shorinwa et al., 2024; Shen114

et al., 2024; Yang et al., 2024; Li et al., 2024b).115

Recent work introduces relative confidence estima-116

tion as a more robust alternative (Shrivastava et al.,117

2025). These methods help uncover behavioral118

patterns like overconfidence, and our work builds119

on these techniques to investigate whether code120

models exhibit the DKE.121

3 Methods122

For our study, we use multiple-choice questions123

(q, A, a) as tasks where q is the programming-124

related question, A is the set of answer choices,125

and a is the expected answer. Each question q also126

belongs to a domain q ∈ D that is the broad topic127

which this question pertains to. In our setting, the128

tasks are specific questions about programming129

and domains are the individual programming lan- 130

guages. For example, the question “Variables of 131

which data types are preceded by a dollar sign in 132

Perl?” will have the domain “Perl”. 133

For each such task and model M , we prompt 134

the model M to answer the question q given the 135

choices A—we say the model M is correct on the 136

task if the answer aM produced by M matches 137

a. We define the actual performance AP(M,D) 138

of the model M on a domain D to the fraction of 139

domain D tasks it is correct on. 140

3.1 Measuring Perceived Performance 141

We use two different techniques to measure per- 142

ceived performance of AI models, absolute confi- 143

dence and relative confidence. For absolute con- 144

fidence, the model is asked to produce a confi- 145

dence score in the range [0, 1] along with its answer. 146

Model M ’s absolute confidence PPAbs(M,D) on 147

a domain D is the mean of its absolute confidence 148

scores on individual tasks that belong to D. 149

Previously, relative confidence estimation meth- 150

ods have been shown to produce more reliable 151

confidence scores than absolute confidence estima- 152

tion (Shrivastava et al., 2025). For every pair of 153

questions qi and qj , we prompt the model to indi- 154

cate which it is more confident in answering. These 155

pairwise preferences are aggregated into scalar con- 156

fidence scores using two different rank aggrega- 157

tion algorithms, ELO (Elo and Sloan, 1978) and 158

TrueSkill (Herbrich et al., 2006). These algorithms 159

treat each question as a “player” with qi “winning” 160

against qj if the model is more confident in an- 161

swering qi over qj . They produce a scalar strength 162

value for each qi with higher strengths indicating 163

the model’s higher confidence (see Appendix A). 164

We normalize the ELO and TrueSkill scores to 165

the range [0, 1] linearly, and set the relative con- 166

fidences PPELO(M,D) and PPTrueSkill(M,D) to 167

be the mean strengths of the questions in D. 168

3.2 Measuring the Dunning-Kruger Effect 169

There have been several closely related effects that 170

have all been referred to under the umbrella term 171

of DKE (Kruger and Dunning, 1999). Here, we 172

consider two specific variants from the literature— 173

the intra-participant (Muthukrishna et al., 2018; 174

Moore et al., 2018) and inter-participant versions 175

(Dunning et al., 2003; Hodges et al., 2001; Ed- 176

wards et al., 2003; Haun et al., 2000). In the 177

intra-participant version, the question is “Does a 178

single participant over-estimate their performance 179

2



Cey
lon

Hask
ell Lua Dart

OCam
l

Cloj
ure

Elix
ir
Erla

ng Rust
Swift

Fort
ran Rub

y
Dash

Obje
cti

ve
-C
Rack

et
Scal

a

Visu
al 

Basi
c

Lisp

Typ
eS

cri
pt

Prol
og

COBOL D
Jul

ia
Bash PHP

Perl F#
Pasc

al
Kotl

in
GoG

o
Ada Jav

a

Jav
aS

cri
pt

C++
Pyth

on C C#
0

10

20

30

40

50

60

70

80
Sc

or
e 

(%
)

Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

Figure 1: Actual vs. perceived performance for GPT-4o across different languages sorted by actual performance

Mist
ral

Phi-
3

Deep
see

k-D
ist

ill
Phi-

4

GPT-O
1

GPT-4
O

0

25

50

75

100

Sc
or

e 
(%

)

Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

Figure 2: Inter-model DKE

more in domains where they have low actual perfor-180

mance?” and for the inter-participant version, it is181

“Do participants who show low actual performance182

over-estimate their performance more?”183

For the intra-participant version, we fix M and184

measure the over-confidence per domain D:185

∆overconf(M,D) = PP(M,D)− AP(M,D)186

where PP is one of PPAbs, PPELO, or PPTrueSkill.187

For the inter-participant version, we have:188

∆overconf(M) = ED[PP(M,D)]−ED[AP(M,D)].189

Higher ∆overconf in regimes with low actual perfor-190

mance is indicative of the corresponding DKE.191

4 Results192

We evaluate the presence of the Dunning-Kruger193

Effect (DKE) in six large language models (LLMs)194

across 37 programming languages using multiple-195

choice question answering (MCQA) tasks. The196

multiple-choice QA data is derived from publicly-197

available data called CodeNet (Puri et al., 2021).198

More details on the implementation and experi-199

mental setup is in Appendix A.4200

4.1 Do code models exhibit the DKE? 201

Inter-model interpretation of DKE In the inter- 202

model analysis, we observe the DKE pattern: 203

lower-performing models consistently overesti- 204

mate their capabilities, while higher-performing 205

models exhibit more calibrated or even underconfi- 206

dent behavior. As shown by Fig. 2, models such as 207

Mistral and Phi-3 display a gap between perceived 208

and actual performance. In contrast, models like 209

GPT-4O demonstrate more alignment between per- 210

ceived and actual performance, especially in rela- 211

tive confidence estimates. Interestingly, the relative 212

confidence curve intersects with the actual perfor- 213

mance curve, suggesting that higher-performing 214

models may become under-confident—-an effect 215

not captured by absolute confidence alone. 216

Inter-domain interpretation of DKE The intra- 217

model analysis further supports the presence of 218

DKE. Figure 1 presents model performance across 219

different domains (programming languages), or- 220

dered by actual performance. In domains where 221

models perform poorly—typically rare or low- 222

resource languages such as COBOL, Prolog, and 223

Ceylon—we observe higher overconfidence. Con- 224

versely, in high-performing domains like Python 225

and JavaScript, models tend to be better calibrated 226

or even underconfident. This domain-level over- 227

estimation is consistent across both absolute and 228

relative confidence measures, reinforcing the hy- 229

pothesis that models are less aware of their limita- 230

tions in unfamiliar domains. 231

4.2 Analysis of Perceived Performance 232

Absolute Confidence vs. Relative Confidence 233

To quantify these trends, we compute the corre- 234

lation between overestimation (perceived minus 235

3



actual performance) and true performance across236

both models and domains. Table 1 includes the237

correlation between (a) actual performance across238

domains vs. overestimation of performance (AC239

- RC) and (b) actual performance across models240

vs. overestimation of perceived performance (AC241

- RC). The results suggest that the overestimation242

of perceived performance is higher for models and243

domains that are more high performing. This in-244

dicates that AC becomes an unreliable measure of245

perceived performance, especially as we encounter246

increasingly better performing models or domains247

where LLMs achieve higher performance.248

Table 1: Correlation Between Overestimation (AC -
RC) and True Performance for Domains and Models

Category Method Corr ρ / Tau τ p value

Domains
Spearman 0.775 1.797× 10−8

Pearson 0.640 2.019× 10−5

Kendall 0.592 3.058× 10−7

Models
Spearman 0.775 1.797× 10−8

Pearson 0.640 2.019× 10−5

Kendall 0.592 3.058× 10−7

Impact of Rarity of Programming Language249

We also investigate the relationship between do-250

main rarity and overconfidence. Table 2 shows251

the correlation of perceived performance with (a)252

GitHub ranking (most used languages on GitHub)253

(Ranking, 2025a), (b) IEEE popularity ranking254

(Ranking, 2024), and (c) TIOBE index (Ranking,255

2025b). Across all three sources, we observe a con-256

sistent trend: models exhibit higher overconfidence257

in rarer languages. For instance, GitHub ranking258

shows a correlation of 0.797 with perceived con-259

fidence, highlighting that rarity is a predictor of260

overconfidence.261

Table 2: Percieved performance vs. Rarity Ranking

Ranking Method Corr ρ / Tau τ p (10−3)

GitHub Spearman 0.797 1.318
Kendall 0.690 3.935

IEEE Spearman 0.683 5.863
Kendall 0.529 8.970

TIOBE Spearman 0.741 0.234
Kendall 0.662 0.354

5 Discussion and Conclusion262

Reviewer agents. Reviewer agents are a com-263

mon and successful design-pattern in multi-agent264

systems (Li et al., 2024a; Zhou et al., 2025; Gu 265

et al., 2024; Jin et al., 2024). A model is given a 266

prompt containing specific instructions about the 267

output (e.g., “do not use hateful speech”, “do not 268

hardcode passwords”, etc). The model’s output 269

is passed to a “reviewer agent“, often a different 270

instance of the same model, to verify that these 271

rules are not violated. Not all reviewer agents di- 272

rectly correspond to the self-evaluation setting as 273

in our study—the model is often provided auxiliary 274

information during the review (e.g., code execu- 275

tion results, elaborations on output expectations, 276

etc). However, our results suggest that a closer ex- 277

amination of reviewer agents is needed, especially 278

with respect to what kinds of auxiliary information 279

helps AI models make better reviewing decisions. 280

Cognitive Effect or Statistical Effect? There 281

has been significant debate in the psychology and 282

cognitive science community on whether DKE is a 283

“real” effect with an underlying cognitive cause, or 284

if it is “merely” a statistical effect akin to regres- 285

sion to the mean (Magnus and Peresetsky, 2022). 286

Our results suggest that AI models show DKE- 287

like behaviour and we have an interesting choice 288

between at least 3 possibilities: (a) DKE is a cogni- 289

tive effect and the underlying cognitive mechanism 290

causing this effect is the same across humans and 291

AI models; (b) DKE is a cognitive effect and the un- 292

derlying mechanisms are different; or (c) DKE is a 293

purely statistical effect. Our results raise questions 294

questions about options (a) and (b). If the DKE 295

is cognitive in origin, either the cause is so funda- 296

mental that it applies to vastly different cognitive 297

systems like humans and AI models, or we have 298

the distasteful option of two very similar effects 299

having different underlying causes. Significant fur- 300

ther research of the scope and strength of the DKE 301

in AI models and on the cognitive similarities be- 302

tween humans and AI models is required before an 303

answer to these questions can even be attempted. 304

Conclusion. Our study is an initial foray into 305

studying whether AI models display cognitive bi- 306

ases that have been previously observed in humans. 307

Our results show that AI models, specifically in the 308

context of answering programming related ques- 309

tions, display DKE-like behaviour. This points to a 310

rich set of future research directions related to the 311

strength and scope of the DKE in models, as well 312

as other self-assessment related cognitive biases in- 313

cluding the hard-easy effect or IOED (Juslin, 1993; 314

Levin et al., 2000; Chromik et al., 2021). 315

4



6 Limitations316

Domain and task choices. A major limitation317

of this paper is that our study is restricted to one318

specific domain, i.e., programming. Hence, our319

results are not immediately generalizable to the320

wide array of domains that AI language models321

have been applied to. Similarly, we choose simple322

multiple-choice question answering as the tasks.323

Our choice allows us to make the estimation of324

actual performance simple, without having to con-325

sider issues of partial correctness or near match326

answers, different models being tuned for differ-327

ent response styles, etc. However, for conclusive328

results on the presence of DKE in AI models in329

general, both the choice of the domain and choice330

of tasks needs to be expanded considerably.331

Measurements. One crucial measurement in our332

study is that of perceived performance, i.e., the333

model’s confidence in its answers. Limitations re-334

lated to models’ ability to assign confidence scores335

have been pointed out previously (Shorinwa et al.,336

2024; Shen et al., 2024; Yang et al., 2024; Li337

et al., 2024b), with approaches like relative confi-338

dence (Shrivastava et al., 2025) being suggested as339

alternatives. The conclusion here is that measure-340

ment of perceived performance is not as straight-341

forward in AI models as it is in humans. This342

creates an added layer of complexity in studying343

self-assessment based cognitive biases in AI mod-344

els, and adds a threat to the validity of our results.345

Explanations for the effect. Many explanations346

have been hypothesized to be the underlying cause347

of the DKE in humans (Ehrlinger et al., 2008).348

Our study intentionally does not attempt to com-349

pare or contrast the underlying explanation of the350

DKE in humans and AI models. Many explana-351

tions attributed to the DKE in humans are not di-352

rectly applicable to AI models. Human DKE ex-353

planations rely on causes such as overly positive354

prior beliefs (Ehrlinger et al., 2008), the distribu-355

tion of over- and under-performers in the human356

population, or lack of incentive for accurate self-357

assessments—none of these apply directly to AI358

models. One potential explanation that may be359

common to both humans and AI models is the360

meta-cognitive explanation, which states that as-361

sessing the quality of a performance of a skill is362

a crucial part of acquiring a skill. This explana-363

tion can potentially be tested experimentally in AI364

models with a controlled study of different training365

strategies and whether they all lead to simultaneous 366

improvements in performance and in the ability to 367

assess quality of performance. However, this study 368

is significantly beyond the scope of this paper, and 369

we leave it for future work. 370

References 371

Zara Abrams. 2024. Addressing equity and ethics 372
in artificial intelligence. Monitor on Psychology, 373
55(3):24–29. 374

Avinash Anand, Akshit Gupta, Nishchay Yadav, and 375
Shaurya Bajaj. 2024. A comprehensive survey of 376
ai-driven advancements and techniques in automated 377
program repair and code generation. arXiv preprint 378
arXiv:2411.07586. 379

Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, 380
Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang, 381
Serge Belongie, and Lei Li. 2024. The role of de- 382
ductive and inductive reasoning in large language 383
models. arXiv preprint arXiv:2410.02892. 384

Federico Cassano, John Gouwar, Francesca Lucchetti, 385
Claire Schlesinger, Anders Freeman, Carolyn Jane 386
Anderson, Molly Q Feldman, Michael Greenberg, 387
Abhinav Jangda, and Arjun Guha. 2024. Knowl- 388
edge transfer from high-resource to low-resource 389
programming languages for code llms. Proceed- 390
ings of the ACM on Programming Languages, 391
8(OOPSLA2):677–708. 392

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin 393
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing Gao, 394
Jindong Wang, and 1 others. 2024a. A survey on 395
evaluating large language models in code generation 396
tasks. arXiv preprint arXiv:2408.16498. 397

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 398
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 399
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 400
Brockman, and 1 others. 2021. Evaluating large 401
language models trained on code. arXiv preprint 402
arXiv:2107.03374. 403

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi 404
Wang. 2024b. An overview of diffusion models: 405
Applications, guided generation, statistical rates and 406
optimization. arXiv preprint arXiv:2404.07771. 407

Michael Chromik, Malin Eiband, Felicitas Buchner, 408
Adrian Krüger, and Andreas Butz. 2021. I think i 409
get your point, ai! the illusion of explanatory depth 410
in explainable ai. In Proceedings of the 26th Inter- 411
national Conference on Intelligent User Interfaces, 412
pages 307–317. 413

Jonathan Cordeiro, Shayan Noei, and Ying Zou. 2024. 414
An empirical study on the code refactoring capa- 415
bility of large language models. arXiv preprint 416
arXiv:2411.02320. 417

5



David Dunning, Kerri Johnson, Joyce Ehrlinger, and418
Justin Kruger. 2003. Why people fail to recognize419
their own incompetence. Current directions in psy-420
chological science, 12(3):83–87.421

Rodney K Edwards, Kenneth R Kellner, Christopher L422
Sistrom, and Elizabeth J Magyari. 2003. Medical423
student self-assessment of performance on an obstet-424
rics and gynecology clerkship. American journal of425
obstetrics and gynecology, 188(4):1078–1082.426

Joyce Ehrlinger, Kerri Johnson, Matthew Banner, David427
Dunning, and Justin Kruger. 2008. Why the un-428
skilled are unaware: Further explorations of (absent)429
self-insight among the incompetent. Organizational430
behavior and human decision processes, 105(1):98–431
121.432

Arpad E Elo and Sam Sloan. 1978. The rating of chess-433
players: Past and present. (No Title).434

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl,435
Preslav Nakov, and Iryna Gurevych. 2023. A sur-436
vey of confidence estimation and calibration in large437
language models. arXiv preprint arXiv:2311.08298.438

Alessandro Giagnorio, Alberto Martin-Lopez, and439
Gabriele Bavota. 2025. Enhancing code generation440
for low-resource languages: No silver bullet. arXiv441
preprint arXiv:2501.19085.442

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,443
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan444
Shen, Shengjie Ma, Honghao Liu, and 1 others.445
2024. A survey on llm-as-a-judge. arXiv preprint446
arXiv:2411.15594.447

Daniel E Haun, Andrea Zeringue, Argie Leach, and448
Angela Foley. 2000. Assessing the competence449
of specimen-processing personnel. Laboratory450
Medicine, 31(11):633–637.451

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.452
Trueskill™: a bayesian skill rating system. Advances453
in neural information processing systems, 19.454

Brian Hodges, Glenn Regehr, and Dawn Martin. 2001.455
Difficulties in recognizing one’s own incompetence:456
novice physicians who are unskilled and unaware of457
it. Academic Medicine, 76(10):S87–S89.458

Nam Huynh and Beiyu Lin. 2025. Large language mod-459
els for code generation: A comprehensive survey of460
challenges, techniques, evaluation, and applications.461
arXiv preprint arXiv:2503.01245.462

Hamed Jelodar, Mohammad Meymani, and Roozbeh463
Razavi-Far. 2025. Large language models (llms)464
for source code analysis: applications, models and465
datasets. arXiv preprint arXiv:2503.17502.466

Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kai-467
jie Zhu, Yijia Xiao, and Jindong Wang. 2024. Agen-468
treview: Exploring peer review dynamics with llm469
agents. arXiv preprint arXiv:2406.12708.470

Peter Juslin. 1993. An explanation of the hard-easy 471
effect in studies of realism of confidence in one’s 472
general knowledge. European Journal of Cognitive 473
Psychology, 5(1):55–71. 474

Justin Kruger and David Dunning. 1999. Unskilled 475
and unaware of it: how difficulties in recogniz- 476
ing one’s own incompetence lead to inflated self- 477
assessments. Journal of personality and social psy- 478
chology, 77(6):1121. 479

Richard N Landers and Tara S Behrend. 2023. Au- 480
diting the ai auditors: A framework for evaluating 481
fairness and bias in high stakes ai predictive models. 482
American Psychologist, 78(1):36. 483

Daniel T Levin, Nausheen Momen, Sarah B Driv- 484
dahl IV, and Daniel J Simons. 2000. Change blind- 485
ness blindness: The metacognitive error of overes- 486
timating change-detection ability. Visual cognition, 487
7(1-3):397–412. 488

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yu- 489
jia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu. 490
2024a. Llms-as-judges: a comprehensive survey 491
on llm-based evaluation methods. arXiv preprint 492
arXiv:2412.05579. 493

Jia Li, Yuqi Zhu, Yongmin Li, Ge Li, and Zhi 494
Jin. 2024b. Showing llm-generated code selec- 495
tively based on confidence of llms. arXiv preprint 496
arXiv:2410.03234. 497

Jan R Magnus and Anatoly A Peresetsky. 2022. A 498
statistical explanation of the dunning–kruger effect. 499
Frontiers in Psychology, 13:840180. 500

Matan Mazor and Stephen M Fleming. 2021. The 501
dunning-kruger effect revisited. Nature Human Be- 502
haviour, 5(6):677–678. 503

Don A Moore, Amelia S Dev, and Ekaterina Y Gon- 504
charova. 2018. Overconfidence across cultures. Col- 505
labra: Psychology, 4(1). 506

Federico Mora, Justin Wong, Haley Lepe, Sahil Bhatia, 507
Karim Elmaaroufi, George Varghese, Joseph E Gon- 508
zalez, Elizabeth Polgreen, and Sanjit Seshia. 2024. 509
Synthetic programming elicitation for text-to-code 510
in very low-resource programming and formal lan- 511
guages. Advances in Neural Information Processing 512
Systems, 37:105151–105170. 513

Michael Muthukrishna, Joseph Henrich, Wataru 514
Toyokawa, Takeshi Hamamura, Tatsuya Kameda, 515
and Steven J Heine. 2018. Overconfidence is univer- 516
sal? elicitation of genuine overconfidence (ego) pro- 517
cedure reveals systematic differences across domain, 518
task knowledge, and incentives in four populations. 519
PloS one, 13(8):e0202288. 520

Ayman Odeh, Nada Odeh, and Abdul Salam Mo- 521
hammed. 2024. A comparative review of ai tech- 522
niques for automated code generation in software 523
development: advancements, challenges, and future 524
directions. TEM Journal, 13(1):726. 525

6



Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,526
Giacomo Domeniconi, Vladimir Zolotov, Julian527
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,528
and 1 others. 2021. Codenet: A large-scale ai for529
code dataset for learning a diversity of coding tasks.530
arXiv preprint arXiv:2105.12655.531

GitHub Ranking. 2025a. The top programming lan-532
guages. Accessed: 5/29/2025.533

IEEE Ranking. 2024. The top programming languages534
2024. Accessed: 5/29/2025.535

TIOBE Ranking. 2025b. The tiobe index for may 2025.536
Accessed: 5/29/2025.537

Aadesh Salecha, Molly E Ireland, Shashanka Subrah-538
manya, João Sedoc, Lyle H Ungar, and Johannes C539
Eichstaedt. 2024. Large language models display540
human-like social desirability biases in big five per-541
sonality surveys. PNAS nexus, 3(12):pgae533.542

Maohao Shen, Subhro Das, Kristjan Greenewald,543
Prasanna Sattigeri, Gregory Wornell, and Soumya544
Ghosh. 2024. Thermometer: Towards universal cal-545
ibration for large language models. arXiv preprint546
arXiv:2403.08819.547

Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren,548
and Anirudha Majumdar. 2024. A survey on un-549
certainty quantification of large language models:550
Taxonomy, open research challenges, and future di-551
rections. arXiv preprint arXiv:2412.05563.552

Vaishnavi Shrivastava, Ananya Kumar, and Percy Liang.553
2025. Language models prefer what they know: Rel-554
ative confidence estimation via confidence prefer-555
ences. arXiv preprint arXiv:2502.01126.556

Fengfei Sun, Ningke Li, Kailong Wang, and Lorenz557
Goette. 2025. Large language models are over-558
confident and amplify human bias. arXiv preprint559
arXiv:2505.02151.560

Lindia Tjuatja, Valerie Chen, Tongshuang Wu, Ameet561
Talwalkwar, and Graham Neubig. 2024. Do llms562
exhibit human-like response biases? a case study in563
survey design. Transactions of the Association for564
Computational Linguistics, 12:1011–1026.565

Athena Vakali and Nicoleta Tantalaki. 2024. Rolling in566
the deep of cognitive and ai biases. arXiv preprint567
arXiv:2407.21202.568

Lucía Vicente and Helena Matute. 2023. Humans in-569
herit artificial intelligence biases. Scientific reports,570
13(1):15737.571

Haoyan Yang, Yixuan Wang, Xingyin Xu, Hanyuan572
Zhang, and Yirong Bian. 2024. Can we trust llms?573
mitigate overconfidence bias in llms through knowl-574
edge transfer. arXiv preprint arXiv:2405.16856.575

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen,576
Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer,577
Chao Huang, Pin-Yu Chen, and 1 others. 2024. Jus-578
tice or prejudice? quantifying biases in llm-as-a-579
judge. arXiv preprint arXiv:2410.02736.580

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, 581
Shariq Iqbal, Ivan Vulić, Anna Korhonen, and Ser- 582
can Ö Arık. 2025. Multi-agent design: Optimizing 583
agents with better prompts and topologies. arXiv 584
preprint arXiv:2502.02533. 585

7

https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024
https://www.tiobe.com/tiobe-index/


A Measuring Relative Confidence586

Here, we elaborate on the algorithms we use to587

convert pairwise confidence preferences into scalar588

relative confidence scores for each question. For589

every pair of questions qi and qj , we prompt the590

model to indicate which it is more confident in an-591

swering to produce a set P of pairwise preferences592

qi < qj . Below, we present the details of the ELO593

and TrueSkill methods to convert these preferences594

to scalar confidence scores.595

A.1 Confidence Estimation Using Elo Rating596

We treat each question as a “player” in a tour-597

nament, where each pairwise preference is inter-598

preted as a match outcome. All questions are ini-599

tialized with the same Elo score (Elo and Sloan,600

1978) (in our case, 1000). For each preference601

pair qi < qj ∈ P , where qi is the preferred (win-602

ning) question and qj is the less preferred (losing)603

question, we compute the expected win probability604

using the logistic function:605

P (i wins) =
1

1 + 10(Sj−Si)/K
606

where Si and Sj are the Elo scores of questions607

qi and qj , and K is a sensitivity factor. The scores608

are then updated as follows:609

Si ← Si +K · (1− P (i wins))610
611

Sj ← Sj −K · P (i wins)612

This update process is repeated for all preference613

pairs over multiple iterations to allow scores to con-614

verge. The final Elo scores are normalized using615

min-max scaling to the range [0, 100] to produce616

interpretable confidence scores:617

Confidence(qi) =
Si −min(S)

max(S)−min(S)
618

A.2 Confidence Estimation Using TrueSkill619

As an alternative to Elo, we also implement confi-620

dence estimation using the TrueSkill rating system621

(Herbrich et al., 2006), which models each ques-622

tion’s confidence as a Gaussian distribution over623

skill: N (µ, σ2), where µ represents the estimated624

confidence and σ the uncertainty.625

For each preference pair qi < qj ∈ P , where626

qi is preferred over qj , we update the distribu-627

tions of both questions using Bayesian inference.628

The update is performed using the TrueSkill factor629

graph model, which adjusts both µ and σ based on 630

the observed outcome and the prior distributions. 631

After processing all preference pairs, we extract 632

the mean µi of each question’s distribution as its 633

raw confidence score. These scores are then min- 634

max normalized to the range [0, 100] as in the Elo 635

method. 636

This methodology enables robust and inter- 637

pretable confidence estimation by leveraging the 638

model’s relative preferences, rather than relying on 639

coarse, absolute confidence scores. 640

A.3 Dataset 641

We create the MCQA problems for the codenet 642

tasks (Puri et al., 2021) covering (1) code gener- 643

ation; (2) code understanding; (3) code syntax; 644

and (4) code repair. For doing this scalably we 645

Table 3 summarizes the number of tasks used for 646

each domain. 647

Table 3: Data Statistics

Domain Number of Samples

Ada 118
Bash 1000
C 897
C# 1000
C++ 1000
COBOL 1000
Ceylon 90
Clojure 430
D 1000
Dart 195
Dash 155
Elixir 205
Erland 141
F# 1000
Fortran 1000
Go 1000
Haskell 1000
Java 1000
JavaScript 1000
Julia 1000
Lisp 1000
Kotlin 1000
Lua 1000
OCaml 1000
Objective-C 727
PHP 1000
Pascal 1000
Perl 1000
Prolog 231
Python 1000
Racket 145
Ruby 1000
Rust 1000
Scala 1000
Swift 1000
TypeScript 1000
Visual Basic 987

8



Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100
Sc

or
e

[GPT-4O] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(a) GPT-4O

Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100

Sc
or

e

[GPT-O1] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(b) GPT-O1

Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100

Sc
or

e

[Deepseek-Distill] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(c) Deepseek-Distill

Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100

Sc
or

e

[Mistral] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(d) Mistral

Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100

Sc
or

e
[Phi-3] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(e) Phi-3

Ada
Bash C C#

C++

COBOL

Cloj
ure D

Dart
Dash

Elix
ir

0

20

40

60

80

100

Sc
or

e

[Phi-4] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(f) Phi-4

Figure 3: Dunning-Kruger plots for various models.

A.4 Implementation Details648

The programming languages include in the study649

are - Ada, Bash, C, C#, C++, COBOL, Ceylon, Clo-650

jure, D, Dart, Dash, Elixir, Erland, F#, Fortran, Go,651

Haskell, Java, JavaScript, Julia, Lisp, Kotlin, Lua,652

OCaml, Objective-C, PHP, Pascal, Perl, Prolog,653

Python, Racket, Ruby, Rust, Scala, Swift, Type-654

Script and Visual Basic. To generate the pairwise655

question preference data, we randomly sample 5656

questions to generate multiple comparisons per657

question. The model’s preferences are parsed to658

construct a directed graph of confidence judge-659

ments wherein each comparison yields a winner-660

loser pair, forming the basis for confidence ranking.661

For Elo rating ranking estimation, ratings are ini-662

tialized randomly at 1000 for each question and663

updated iteratively based on outcome of each com-664

parison. The final scores are normalized to a 0–100665

scale. The win probability is scaled using a sen-666

sitivity factor, K which is set at 400 following667

hyperparameters selected in previous work (Shri-668

vastava et al., 2025). The win probabilities are also669

estimated over 10 repetitions to allow scores to con-670

verge. In the TrueSkill ranking system, the ques-671

tions are initialized with default values µ = 25.0672

and σ = 8.333, following standard TrueSkill set- 673

tings implemented using the Python package. Sim- 674

ilar to the Elo rating method, the rankings in the 675

TrueSkill method are normalized to 0-100 scale. 676

Models and Sizes We use GPT-4O (size un- 677

known), GPT-O1 (size unknown), Deepseek- 678

Distill (70B), Mistral (7B), Phi-3 (8B) and Phi-4 679

(20B) for this paper. 680

A.5 Inter-domain results for different models 681

Figure 3 shows the individual plots for inter-model 682

DKE for different domains. We see that the effect 683

can be seen for all models across varying domains. 684

For very small models like Mistral and Phi-3 (less 685

than 8B) we see that the effect is less apparent as 686

the models overall performance is very low and 687

they generally overestimate their performance. 688

A.6 Inter-model results for different domains 689

Figure 4 shows the individual plots for inter-model 690

DKE for different domains. We see that the effect 691

can be seen for all domains across varying models. 692

9



Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Ada] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(a) Ada

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Bash] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(b) Bash

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[C] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(c) C

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

10

20

30

40

50

Sc
or

e

[C#] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(d) C#

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[C++] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(e) C++

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Clojure] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(f) Clojure

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[COBOL] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(g) COBOL

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[D] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(h) D

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Dart] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(i) Dart

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Dash] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(j) Dash

Phi-
4

Phi-
3

GPT-O
1

GPT-4
O

Mist
ral

Deep
see

k-D
ist

ill
0

20

40

60

80

100

Sc
or

e

[Elixir] Actual Performance vs. Perceived Performance

Absolute Confidence
Relative Confidence
Actual Performance

(k) Elixir

Figure 4: Dunning-Kruger plots for various programming languages.

10


	Introduction
	Related Work
	Methods
	Measuring Perceived Performance
	Measuring the Dunning-Kruger Effect

	Results
	Do code models exhibit the DKE?
	Analysis of Perceived Performance

	Discussion and Conclusion
	Limitations
	Measuring Relative Confidence
	Confidence Estimation Using Elo Rating
	Confidence Estimation Using TrueSkill
	Dataset
	Implementation Details
	Inter-domain results for different models
	Inter-model results for different domains


