Do Code Models Suffer from the Dunning-Kruger Effect?

Anonymous ACL submission

Abstract

The Dunning-Kruger effect (DKE) is the cog-
nitive bias in which participants with limited
competence in a domain tend to over estimate
their perceived performance or expertise in that
domain. Al models today can outperform hu-
mans in many cognitive tasks and humans rely
on these models for decision making. It be-
comes important to understand the inherent bi-
ases carried by these models to make sure they
are used in a controlled and responsible man-
ner. In this paper, we examine the Dunning-
Kruger effect on AI models for programming
tasks. By comparing the model on question-
answering over increasingly rare programming
languages, it is found that the models show
a similar competence-capability curve as hu-
mans. Upon closer examination of the con-
fidence curves we also find that the strength
of the bias is proportionate to the competence
of the models, for example, a less competent
model has a stronger bias. This aligns with hu-
man experiments for the bias. We open source
all benchmarks and predictions to encourage
research in biases for AI models.

1 Introduction

Large language models have shown great per-
formance on code tasks, outperforming humans
in code generation, repair, refactor and question-
answering (Huynh and Lin, 2025; Cordeiro et al.,
2024; Jelodar et al., 2025). With advancements in
model development with reasoning models (Cai
et al., 2024) and diffusion models (Chen et al.,
2024b), Al models are only going to get better
with the models potentially surpassing human per-
formance. With these developments, Al models
are being used more frequently to automate a broad
range of programming related tasks including code
authoring, reviewing, and debugging (Odeh et al.,
2024; Anand et al., 2024; Chen et al., 2021).

As Al systems are increasingly being integrated
into critical processes both within and outside

the programming domain, it becomes essential
to recognize and address the biases these mod-
els may inherit (Vakali and Tantalaki, 2024) from
human-generated training data. Numerous stud-
ies and policy discussions have highlighted the
risks associated with biased Al outputs, particu-
larly in domains such as healthcare, and employ-
ment (Abrams, 2024; Vicente and Matute, 2023;
Landers and Behrend, 2023). In this work, we
focus on a specific cognitive bias: the Dunning-
Kruger Effect (DKE)—a phenomenon in which in-
dividuals with lower competence in a domain tend
to overestimate their abilities (Mazor and Fleming,
2021; Magnus and Peresetsky, 2022). While DKE
has been extensively studied in human psychology,
its presence in Al systems remains underexplored.
We argue that studying DKE in Al models is valu-
able for two reasons. First, it offers a lens through
which to examine model mis-calibration, particu-
larly in low-competence regimes. Second, it allows
us to test whether models exhibit human-like pat-
terns of overconfidence, which could have impli-
cations for trust, interpretability, and downstream
decision-making.

Our results reveal that the models’ perceived
performance shows statistically significant infla-
tion compared to actual performance, similar to
the effect previously studied in humans. The mod-
els’ overestimation of their performance becomes
more pronounced with lower actual performance
of the model and with increasing hardness of the
tasks (measured by rarity of the programming do-
main), aligning strongly with the patterns observed
in human cognition. These findings underscore
the importance of understanding cognitive biases
in Al systems and lay the groundwork for deeper
interdisciplinary research at the intersection of cog-
nitive science and machine learning.

In this paper, we make the following contribu-
tions:

1. We provide statistically significant evidence
of the Dunning-Kruger effect in AI models
for programming tasks.

2. We analyze how the strength of this bias varies
with (a) the model’s base performance and (b)
the rarity of the programming domain.

2 Related Work

Cognitive biases in AI models. Studies have
shown that LLLMs can reflect human-like biases,
including overconfidence and self-enhancement,
despite lacking self-awareness (Gu et al., 2024;
Salecha et al., 2024; Sun et al., 2025; Ye et al.,
2024). These biases often stem from training data
patterns or architectural choices (Geng et al., 2023;
Tjuatja et al., 2024). Among these, overconfidence
is particularly concerning, as it can lead to mis-
leading outputs that appear authoritative but are in-
correct—an issue that parallels the DKE (Dunning
et al., 2003; Kruger and Dunning, 1999; Ehrlinger
et al., 2008) observed in human cognition.

Generalization and confidence estimation In
the context of code models, prior work has high-
lighted challenges in generalizing to rare program-
ming languages (Chen et al., 2024a; Cassano et al.,
2024; Giagnorio et al., 2025; Mora et al., 2024).
While model accuracy drops on out-of-distribution
tasks, confidence scores often remain high (Chen
et al., 2021), revealing a disconnect between com-
petence and self-assessment. Traditional confi-
dence estimation methods, based on logits or self-
reported probabilities, are frequently miscalibrated
in unfamiliar domains (Shorinwa et al., 2024; Shen
et al., 2024; Yang et al., 2024; Li et al., 2024b).
Recent work introduces relative confidence estima-
tion as a more robust alternative (Shrivastava et al.,
2025). These methods help uncover behavioral
patterns like overconfidence, and our work builds
on these techniques to investigate whether code
models exhibit the DKE.

3 Methods

For our study, we use multiple-choice questions
(¢, A,a) as tasks where ¢ is the programming-
related question, A is the set of answer choices,
and a is the expected answer. Each question ¢ also
belongs to a domain ¢ € D that is the broad topic
which this question pertains to. In our setting, the
tasks are specific questions about programming

and domains are the individual programming lan-
guages. For example, the question “Variables of
which data types are preceded by a dollar sign in
Perl?” will have the domain “Perl”.

For each such task and model M, we prompt
the model M to answer the question ¢ given the
choices A—we say the model M is correct on the
task if the answer ap; produced by M matches
a. We define the actual performance AP(M, D)
of the model M on a domain D to the fraction of
domain D tasks it is correct on.

3.1 Measuring Perceived Performance

We use two different techniques to measure per-
ceived performance of Al models, absolute confi-
dence and relative confidence. For absolute con-
fidence, the model is asked to produce a confi-
dence score in the range [0, 1] along with its answer.
Model M’s absolute confidence PP aps(M, D) on
a domain D is the mean of its absolute confidence
scores on individual tasks that belong to D.

Previously, relative confidence estimation meth-
ods have been shown to produce more reliable
confidence scores than absolute confidence estima-
tion (Shrivastava et al., 2025). For every pair of
questions ¢; and g;, we prompt the model to indi-
cate which it is more confident in answering. These
pairwise preferences are aggregated into scalar con-
fidence scores using two different rank aggrega-
tion algorithms, ELO (Elo and Sloan, 1978) and
TrueSkill (Herbrich et al., 2006). These algorithms
treat each question as a “player” with ¢; “winning”
against ¢; if the model is more confident in an-
swering g; over g;. They produce a scalar strength
value for each ¢; with higher strengths indicating
the model’s higher confidence (see Appendix A).
We normalize the ELO and TrueSkill scores to
the range [0, 1] linearly, and set the relative con-
fidences PPgLo(M, D) and PPryyeskin(M, D) to
be the mean strengths of the questions in D.

3.2 Measuring the Dunning-Kruger Effect

There have been several closely related effects that
have all been referred to under the umbrella term
of DKE (Kruger and Dunning, 1999). Here, we
consider two specific variants from the literature—
the intra-participant (Muthukrishna et al., 2018;
Moore et al., 2018) and inter-participant versions
(Dunning et al., 2003; Hodges et al., 2001; Ed-
wards et al., 2003; Haun et al., 2000). In the
intra-participant version, the question is “Does a
single participant over-estimate their performance

Actual Performance vs. Perceived Performance

80
®— Absolute Confidence
70 4~ = Relative Confidence K o
#— Actual Performance ®
60 4 pt 1\ & i uf / @
W ¥
&
50 g/ # 3 2 = g g’@' 0
S 2 v X ¥ P & N
2 40 T XN/ x —F ~_ " NN AN NG
3) 4 ® % x > 4 N X \& % Y X
? 30 X A | V, % N[X
P * R e e o \/
-y
N
20 $ g ——
e -
b &
10 A
S D P L PSP DO O FR I ISPV LPIR DX AL O L. Ok
oa\:«v%& M roq’(z\é\o\@&%‘@\@%io&%&&i@@ﬁf% %&\Q’q’% \’\%@é&q@\ooq’o D QQ\ < Q‘z"’%o%°®0°e v \®$é& C‘ﬁ\& ¥ ¢
0‘6\@ 4@"% &ﬂQ © \‘Z’A

Figure 1: Actual vs. perceived performance for GPT-40 across different languages sorted by actual performance

Actual Performance vs. Perceived Performance
3

\ 2 Y ®

)
P
s

®
— -
————————%

Score (%)
9
=]
!
o
3

Iy
G
s

Absolute Confidence
| »— Relative Confidence

)
L
]

Actual Performance

E > > ©
& S < «
- ey & &

Figure 2: Inter-model DKE

more in domains where they have low actual perfor-
mance?” and for the inter-participant version, it is
“Do participants who show low actual performance
over-estimate their performance more?”

For the intra-participant version, we fix M and
measure the over-confidence per domain D:

onerconf(Ma D) = PP(Ma D) - AP(MvD)

where PP is one of PPaps, PPgL0, or PP1yyeskill-
For the inter-participant version, we have:

Aovercont(M) = Ep[PP(M, D)]|—-Ep[AP(M, D)].

Higher Agyerconr in regimes with low actual perfor-
mance is indicative of the corresponding DKE.

4 Results

We evaluate the presence of the Dunning-Kruger
Effect (DKE) in six large language models (LLMs)
across 37 programming languages using multiple-
choice question answering (MCQA) tasks. The
multiple-choice QA data is derived from publicly-
available data called CodeNet (Puri et al., 2021).
More details on the implementation and experi-
mental setup is in Appendix A.4

4.1 Do code models exhibit the DKE?

Inter-model interpretation of DKE In the inter-
model analysis, we observe the DKE pattern:
lower-performing models consistently overesti-
mate their capabilities, while higher-performing
models exhibit more calibrated or even underconfi-
dent behavior. As shown by Fig. 2, models such as
Mistral and Phi-3 display a gap between perceived
and actual performance. In contrast, models like
GPT-40 demonstrate more alignment between per-
ceived and actual performance, especially in rela-
tive confidence estimates. Interestingly, the relative
confidence curve intersects with the actual perfor-
mance curve, suggesting that higher-performing
models may become under-confident—-an effect
not captured by absolute confidence alone.

Inter-domain interpretation of DKE The intra-
model analysis further supports the presence of
DKE. Figure 1 presents model performance across
different domains (programming languages), or-
dered by actual performance. In domains where
models perform poorly—typically rare or low-
resource languages such as COBOL, Prolog, and
Ceylon—we observe higher overconfidence. Con-
versely, in high-performing domains like Python
and JavaScript, models tend to be better calibrated
or even underconfident. This domain-level over-
estimation is consistent across both absolute and
relative confidence measures, reinforcing the hy-
pothesis that models are less aware of their limita-
tions in unfamiliar domains.

4.2 Analysis of Perceived Performance

Absolute Confidence vs. Relative Confidence
To quantify these trends, we compute the corre-
lation between overestimation (perceived minus

actual performance) and true performance across
both models and domains. Table 1 includes the
correlation between (a) actual performance across
domains vs. overestimation of performance (AC
- RC) and (b) actual performance across models
vs. overestimation of perceived performance (AC
- RC). The results suggest that the overestimation
of perceived performance is higher for models and
domains that are more high performing. This in-
dicates that AC becomes an unreliable measure of
perceived performance, especially as we encounter
increasingly better performing models or domains
where LL.Ms achieve higher performance.

Table 1: Correlation Between Overestimation (AC -
RC) and True Performance for Domains and Models

Category Method Corr p/Tau T p value
Spearman 0.775 1.797 x 1078

Domains Pearson 0.640 2.019 x 1075
Kendall 0.592 3.058 x 1077
Spearman 0.775 1.797 x 1078

Models Pearson 0.640 2.019 x 1075
Kendall 0.592 3.058 x 1077

Impact of Rarity of Programming Language
We also investigate the relationship between do-
main rarity and overconfidence. Table 2 shows
the correlation of perceived performance with (a)
GitHub ranking (most used languages on GitHub)
(Ranking, 2025a), (b) IEEE popularity ranking
(Ranking, 2024), and (c) TIOBE index (Ranking,
2025b). Across all three sources, we observe a con-
sistent trend: models exhibit higher overconfidence
in rarer languages. For instance, GitHub ranking
shows a correlation of 0.797 with perceived con-
fidence, highlighting that rarity is a predictor of
overconfidence.

Table 2: Percieved performance vs. Rarity Ranking

Ranking Method Corrp/Taut p (1073)
Guw o
EEE i 053 8sw
now e G 0

5 Discussion and Conclusion

Reviewer agents. Reviewer agents are a com-
mon and successful design-pattern in multi-agent

systems (Li et al., 2024a; Zhou et al., 2025; Gu
et al., 2024; Jin et al., 2024). A model is given a
prompt containing specific instructions about the
output (e.g., “do not use hateful speech”, “do not
hardcode passwords”, etc). The model’s output
is passed to a “reviewer agent®, often a different
instance of the same model, to verify that these
rules are not violated. Not all reviewer agents di-
rectly correspond to the self-evaluation setting as
in our study—the model is often provided auxiliary
information during the review (e.g., code execu-
tion results, elaborations on output expectations,
etc). However, our results suggest that a closer ex-
amination of reviewer agents is needed, especially
with respect to what kinds of auxiliary information
helps Al models make better reviewing decisions.

Cognitive Effect or Statistical Effect? There
has been significant debate in the psychology and
cognitive science community on whether DKE is a
“real” effect with an underlying cognitive cause, or
if it is “merely” a statistical effect akin to regres-
sion to the mean (Magnus and Peresetsky, 2022).
Our results suggest that AI models show DKE-
like behaviour and we have an interesting choice
between at least 3 possibilities: (a) DKE is a cogni-
tive effect and the underlying cognitive mechanism
causing this effect is the same across humans and
Al 'models; (b) DKE is a cognitive effect and the un-
derlying mechanisms are different; or (c) DKE is a
purely statistical effect. Our results raise questions
questions about options (a) and (b). If the DKE
is cognitive in origin, either the cause is so funda-
mental that it applies to vastly different cognitive
systems like humans and Al models, or we have
the distasteful option of two very similar effects
having different underlying causes. Significant fur-
ther research of the scope and strength of the DKE
in Al models and on the cognitive similarities be-
tween humans and Al models is required before an
answer to these questions can even be attempted.

Conclusion. Our study is an initial foray into
studying whether Al models display cognitive bi-
ases that have been previously observed in humans.
Our results show that AI models, specifically in the
context of answering programming related ques-
tions, display DKE-like behaviour. This points to a
rich set of future research directions related to the
strength and scope of the DKE in models, as well
as other self-assessment related cognitive biases in-
cluding the hard-easy effect or IOED (Juslin, 1993;
Levin et al., 2000; Chromik et al., 2021).

6 Limitations

Domain and task choices. A major limitation
of this paper is that our study is restricted to one
specific domain, i.e., programming. Hence, our
results are not immediately generalizable to the
wide array of domains that Al language models
have been applied to. Similarly, we choose simple
multiple-choice question answering as the tasks.
Our choice allows us to make the estimation of
actual performance simple, without having to con-
sider issues of partial correctness or near match
answers, different models being tuned for differ-
ent response styles, etc. However, for conclusive
results on the presence of DKE in Al models in
general, both the choice of the domain and choice
of tasks needs to be expanded considerably.

Measurements. One crucial measurement in our
study is that of perceived performance, i.e., the
model’s confidence in its answers. Limitations re-
lated to models’ ability to assign confidence scores
have been pointed out previously (Shorinwa et al.,
2024; Shen et al., 2024; Yang et al., 2024; Li
et al., 2024b), with approaches like relative confi-
dence (Shrivastava et al., 2025) being suggested as
alternatives. The conclusion here is that measure-
ment of perceived performance is not as straight-
forward in Al models as it is in humans. This
creates an added layer of complexity in studying
self-assessment based cognitive biases in Al mod-
els, and adds a threat to the validity of our results.

Explanations for the effect. Many explanations
have been hypothesized to be the underlying cause
of the DKE in humans (Ehrlinger et al., 2008).
Our study intentionally does not attempt to com-
pare or contrast the underlying explanation of the
DKE in humans and AI models. Many explana-
tions attributed to the DKE in humans are not di-
rectly applicable to AI models. Human DKE ex-
planations rely on causes such as overly positive
prior beliefs (Ehrlinger et al., 2008), the distribu-
tion of over- and under-performers in the human
population, or lack of incentive for accurate self-
assessments—none of these apply directly to Al
models. One potential explanation that may be
common to both humans and Al models is the
meta-cognitive explanation, which states that as-
sessing the quality of a performance of a skill is
a crucial part of acquiring a skill. This explana-
tion can potentially be tested experimentally in Al
models with a controlled study of different training

strategies and whether they all lead to simultaneous
improvements in performance and in the ability to
assess quality of performance. However, this study
is significantly beyond the scope of this paper, and
we leave it for future work.

References

Zara Abrams. 2024. Addressing equity and ethics
in artificial intelligence. Monitor on Psychology,
55(3):24-29.

Avinash Anand, Akshit Gupta, Nishchay Yadav, and
Shaurya Bajaj. 2024. A comprehensive survey of
ai-driven advancements and techniques in automated
program repair and code generation. arXiv preprint
arXiv:2411.07586.

Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang,
Tianfang Zhang, Zongkai Wu, Jenq-Neng Hwang,
Serge Belongie, and Lei Li. 2024. The role of de-
ductive and inductive reasoning in large language
models. arXiv preprint arXiv:2410.02892.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowl-
edge transfer from high-resource to low-resource
programming languages for code llms. Proceed-
ings of the ACM on Programming Languages,
8(OOPSLA2):677-708.

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing Gao,
Jindong Wang, and 1 others. 2024a. A survey on
evaluating large language models in code generation
tasks. arXiv preprint arXiv:2408.16498.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi
Wang. 2024b. An overview of diffusion models:
Applications, guided generation, statistical rates and
optimization. arXiv preprint arXiv:2404.07771.

Michael Chromik, Malin Eiband, Felicitas Buchner,
Adrian Kriiger, and Andreas Butz. 2021. I think i
get your point, ai! the illusion of explanatory depth
in explainable ai. In Proceedings of the 26th Inter-
national Conference on Intelligent User Interfaces,
pages 307-317.

Jonathan Cordeiro, Shayan Noei, and Ying Zou. 2024.
An empirical study on the code refactoring capa-
bility of large language models. arXiv preprint
arXiv:2411.02320.

David Dunning, Kerri Johnson, Joyce Ehrlinger, and
Justin Kruger. 2003. Why people fail to recognize
their own incompetence. Current directions in psy-
chological science, 12(3):83-87.

Rodney K Edwards, Kenneth R Kellner, Christopher L
Sistrom, and Elizabeth J] Magyari. 2003. Medical
student self-assessment of performance on an obstet-
rics and gynecology clerkship. American journal of
obstetrics and gynecology, 188(4):1078—1082.

Joyce Ehrlinger, Kerri Johnson, Matthew Banner, David
Dunning, and Justin Kruger. 2008. Why the un-
skilled are unaware: Further explorations of (absent)
self-insight among the incompetent. Organizational
behavior and human decision processes, 105(1):98—
121.

Arpad E Elo and Sam Sloan. 1978. The rating of chess-
players: Past and present. (No Title).

Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koeppl,
Preslav Nakov, and Iryna Gurevych. 2023. A sur-
vey of confidence estimation and calibration in large
language models. arXiv preprint arXiv:2311.08298.

Alessandro Giagnorio, Alberto Martin-Lopez, and
Gabriele Bavota. 2025. Enhancing code generation
for low-resource languages: No silver bullet. arXiv
preprint arXiv:2501.19085.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan,
Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, and 1 others.
2024. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594.

Daniel E Haun, Andrea Zeringue, Argie Leach, and
Angela Foley. 2000. Assessing the competence
of specimen-processing personnel. Laboratory
Medicine, 31(11):633-637.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2006.
Trueskill™: a bayesian skill rating system. Advances
in neural information processing systems, 19.

Brian Hodges, Glenn Regehr, and Dawn Martin. 2001.
Difficulties in recognizing one’s own incompetence:
novice physicians who are unskilled and unaware of
it. Academic Medicine, 76(10):S87-S89.

Nam Huynh and Beiyu Lin. 2025. Large language mod-
els for code generation: A comprehensive survey of
challenges, techniques, evaluation, and applications.
arXiv preprint arXiv:2503.01245.

Hamed Jelodar, Mohammad Meymani, and Roozbeh
Razavi-Far. 2025. Large language models (llms)
for source code analysis: applications, models and
datasets. arXiv preprint arXiv:2503.17502.

Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kai-
jie Zhu, Yijia Xiao, and Jindong Wang. 2024. Agen-
treview: Exploring peer review dynamics with llm
agents. arXiv preprint arXiv:2406.12708.

Peter Juslin. 1993. An explanation of the hard-easy
effect in studies of realism of confidence in one’s
general knowledge. European Journal of Cognitive
Psychology, 5(1):55-71.

Justin Kruger and David Dunning. 1999. Unskilled
and unaware of it: how difficulties in recogniz-
ing one’s own incompetence lead to inflated self-
assessments. Journal of personality and social psy-

chology, 77(6):1121.

Richard N Landers and Tara S Behrend. 2023. Au-
diting the ai auditors: A framework for evaluating
fairness and bias in high stakes ai predictive models.
American Psychologist, 78(1):36.

Daniel T Levin, Nausheen Momen, Sarah B Driv-
dahl IV, and Daniel J Simons. 2000. Change blind-
ness blindness: The metacognitive error of overes-
timating change-detection ability. Visual cognition,
7(1-3):397-412.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yu-
jia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun Liu.
2024a. Llms-as-judges: a comprehensive survey
on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579.

Jia Li, Yuqi Zhu, Yongmin Li, Ge Li, and Zhi
Jin. 2024b. Showing llm-generated code selec-
tively based on confidence of llms. arXiv preprint
arXiv:2410.03234.

Jan R Magnus and Anatoly A Peresetsky. 2022. A
statistical explanation of the dunning—kruger effect.
Frontiers in Psychology, 13:840180.

Matan Mazor and Stephen M Fleming. 2021. The
dunning-kruger effect revisited. Nature Human Be-
haviour, 5(6):677-678.

Don A Moore, Amelia S Dev, and Ekaterina Y Gon-
charova. 2018. Overconfidence across cultures. Col-
labra: Psychology, 4(1).

Federico Mora, Justin Wong, Haley Lepe, Sahil Bhatia,
Karim Elmaaroufi, George Varghese, Joseph E Gon-
zalez, Elizabeth Polgreen, and Sanjit Seshia. 2024.
Synthetic programming elicitation for text-to-code
in very low-resource programming and formal lan-
guages. Advances in Neural Information Processing
Systems, 37:105151-105170.

Michael Muthukrishna, Joseph Henrich, Wataru
Toyokawa, Takeshi Hamamura, Tatsuya Kameda,
and Steven J Heine. 2018. Overconfidence is univer-
sal? elicitation of genuine overconfidence (ego) pro-
cedure reveals systematic differences across domain,
task knowledge, and incentives in four populations.
PloS one, 13(8):e0202288.

Ayman Odeh, Nada Odeh, and Abdul Salam Mo-
hammed. 2024. A comparative review of ai tech-
niques for automated code generation in software
development: advancements, challenges, and future
directions. TEM Journal, 13(1):726.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
and 1 others. 2021. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks.
arXiv preprint arXiv:2105.12655.

GitHub Ranking. 2025a. The top programming lan-
guages. Accessed: 5/29/2025.

IEEE Ranking. 2024. The top programming languages
2024. Accessed: 5/29/2025.

TIOBE Ranking. 2025b. The tiobe index for may 2025.
Accessed: 5/29/2025.

Aadesh Salecha, Molly E Ireland, Shashanka Subrah-
manya, Jodo Sedoc, Lyle H Ungar, and Johannes C
Eichstaedt. 2024. Large language models display
human-like social desirability biases in big five per-
sonality surveys. PNAS nexus, 3(12):pgae533.

Maohao Shen, Subhro Das, Kristjan Greenewald,
Prasanna Sattigeri, Gregory Wornell, and Soumya
Ghosh. 2024. Thermometer: Towards universal cal-

ibration for large language models. arXiv preprint
arXiv:2403.08819.

Ola Shorinwa, Zhiting Mei, Justin Lidard, Allen Z Ren,
and Anirudha Majumdar. 2024. A survey on un-
certainty quantification of large language models:
Taxonomy, open research challenges, and future di-
rections. arXiv preprint arXiv:2412.05563.

Vaishnavi Shrivastava, Ananya Kumar, and Percy Liang.
2025. Language models prefer what they know: Rel-
ative confidence estimation via confidence prefer-
ences. arXiv preprint arXiv:2502.01126.

Fengfei Sun, Ningke Li, Kailong Wang, and Lorenz
Goette. 2025. Large language models are over-
confident and amplify human bias. arXiv preprint
arXiv:2505.02151.

Lindia Tjuatja, Valerie Chen, Tongshuang Wu, Ameet
Talwalkwar, and Graham Neubig. 2024. Do llms
exhibit human-like response biases? a case study in
survey design. Transactions of the Association for
Computational Linguistics, 12:1011-1026.

Athena Vakali and Nicoleta Tantalaki. 2024. Rolling in
the deep of cognitive and ai biases. arXiv preprint
arXiv:2407.21202.

Lucia Vicente and Helena Matute. 2023. Humans in-
herit artificial intelligence biases. Scientific reports,
13(1):15737.

Haoyan Yang, Yixuan Wang, Xingyin Xu, Hanyuan
Zhang, and Yirong Bian. 2024. Can we trust 1lms?
mitigate overconfidence bias in llms through knowl-
edge transfer. arXiv preprint arXiv:2405.16856.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen,
Qihui Zhang, Nuno Moniz, Tian Gao, Werner Geyer,
Chao Huang, Pin-Yu Chen, and 1 others. 2024. Jus-
tice or prejudice? quantifying biases in llm-as-a-
judge. arXiv preprint arXiv:2410.02736.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi,
Shariq Igbal, Ivan Vuli¢, Anna Korhonen, and Ser-
can O Arik. 2025. Multi-agent design: Optimizing
agents with better prompts and topologies. arXiv
preprint arXiv:2502.02533.

https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024
https://www.tiobe.com/tiobe-index/

A Measuring Relative Confidence

Here, we elaborate on the algorithms we use to
convert pairwise confidence preferences into scalar
relative confidence scores for each question. For
every pair of questions ¢; and ¢;, we prompt the
model to indicate which it is more confident in an-
swering to produce a set P of pairwise preferences
qi < q;. Below, we present the details of the ELO
and TrueSkill methods to convert these preferences
to scalar confidence scores.

A.1 Confidence Estimation Using Elo Rating

We treat each question as a “player” in a tour-
nament, where each pairwise preference is inter-
preted as a match outcome. All questions are ini-
tialized with the same Elo score (Elo and Sloan,
1978) (in our case, 1000). For each preference
pair ¢; < gj € P, where ¢; is the preferred (win-
ning) question and g; is the less preferred (losing)
question, we compute the expected win probability
using the logistic function:

1
1+ 1005 =5:)/K

P(i wins) =

where S; and S; are the Elo scores of questions
g; and g;, and K is a sensitivity factor. The scores
are then updated as follows:

Si « Si+ K - (1 — P(i wins))
Sj — Sj —K~P(i Wil’ls)

This update process is repeated for all preference
pairs over multiple iterations to allow scores to con-
verge. The final Elo scores are normalized using
min-max scaling to the range [0, 100] to produce
interpretable confidence scores:

S; — min(S)
max(.S) — min(S)

Confidence(q;) =

A.2 Confidence Estimation Using TrueSkill

As an alternative to Elo, we also implement confi-
dence estimation using the TrueSkill rating system
(Herbrich et al., 2006), which models each ques-
tion’s confidence as a Gaussian distribution over
skill: N(u1, 02), where p represents the estimated
confidence and o the uncertainty.

For each preference pair ¢; < ¢; € P, where
q; is preferred over ¢;, we update the distribu-
tions of both questions using Bayesian inference.
The update is performed using the TrueSkill factor

graph model, which adjusts both i and o based on
the observed outcome and the prior distributions.
After processing all preference pairs, we extract
the mean p; of each question’s distribution as its
raw confidence score. These scores are then min-
max normalized to the range [0, 100] as in the Elo
method.

This methodology enables robust and inter-
pretable confidence estimation by leveraging the
model’s relative preferences, rather than relying on
coarse, absolute confidence scores.

A.3 Dataset

We create the MCQA problems for the codenet
tasks (Puri et al., 2021) covering (1) code gener-
ation; (2) code understanding; (3) code syntax;
and (4) code repair. For doing this scalably we
Table 3 summarizes the number of tasks used for
each domain.

Table 3: Data Statistics

Domain Number of Samples
Ada 118
Bash 1000
C 897
C# 1000
C++ 1000
COBOL 1000
Ceylon 90
Clojure 430
D 1000
Dart 195
Dash 155
Elixir 205
Erland 141
F# 1000
Fortran 1000
Go 1000
Haskell 1000
Java 1000
JavaScript 1000
Julia 1000
Lisp 1000
Kotlin 1000
Lua 1000
OCaml 1000
Objective-C 727
PHP 1000
Pascal 1000
Perl 1000
Prolog 231
Python 1000
Racket 145
Ruby 1000
Rust 1000
Scala 1000
Swift 1000
TypeScript 1000
Visual Basic 987

[GPT-40] Actual Performance vs. Perceived Performance

[GPT-O1] Actual Performance vs. Perceived Performance

Score
»
X
v
5
Score

40 " # 4047 ¥

20 20

*— Relative Confidence

@~ Absolute Confidence @~ Absolute Confidence
*— Relative Confidence
& Actual Performance & Actual Performance

[Deepseck-Distill] Actual Performance vs. Perceived Performance
100

- [- e Py
24 » ..

801 -

60 / *

Score
.
*

@~ Absolute Confidence
*— Relative Confidence
& Actual Performance

S E e oS O @
¢ &
& ¢

oS O & &>
© o o

S &
RIS

& & $ & v IR

IRV A
& S

(a) GPT-40 (b) GPT-0O1 (c) Deepseek-Distill
[Mistral] Actual Performance vs. Perceived Performance [Phi-3] Actual Performance vs. Perceived Performance [Phi-4] Actual Performance vs. Perceived Performance
100 100 100
—eo—% 1 ——o— " | s - oo T o+ o
Py v
7
5 ‘i 4 ®
80 80 80
¥ R
W
60 , X 60 A 60 % ®
Y X @~ Absolute Confidence . —x x J . X X]
g 4 \) *— Relative Confidence g J4 L g 0 W J% 0 WX
@ ¥ #— Actual Performance & i \) I~
40 Y— 40 Y 40 w
R L] L
r Boow
20 20 & 20
e~ Absolute Confidence &~ Absolute Confidence]
& *— Relative Confidence W o *— Relative Confidence
A = - ® & Actual Performance & Actual Performance
0 T T 0 — 0 ————
S S R R S S S R S VI IR I S S S VI S R T I S
LR &S DR v ¢ IS v ¢ o OO &
(d) Mistral (e) Phi-3 (f) Phi-4

Figure 3: Dunning-Kruger plots for various models.

A.4 Implementation Details

The programming languages include in the study
are - Ada, Bash, C, C#, C++, COBOL, Ceylon, Clo-
jure, D, Dart, Dash, Elixir, Erland, F#, Fortran, Go,
Haskell, Java, JavaScript, Julia, Lisp, Kotlin, Lua,
OCaml, Objective-C, PHP, Pascal, Perl, Prolog,
Python, Racket, Ruby, Rust, Scala, Swift, Type-
Script and Visual Basic. To generate the pairwise
question preference data, we randomly sample 5
questions to generate multiple comparisons per
question. The model’s preferences are parsed to
construct a directed graph of confidence judge-
ments wherein each comparison yields a winner-
loser pair, forming the basis for confidence ranking.
For Elo rating ranking estimation, ratings are ini-
tialized randomly at 1000 for each question and
updated iteratively based on outcome of each com-
parison. The final scores are normalized to a 0—100
scale. The win probability is scaled using a sen-
sitivity factor, K which is set at 400 following
hyperparameters selected in previous work (Shri-
vastava et al., 2025). The win probabilities are also
estimated over 10 repetitions to allow scores to con-
verge. In the TrueSkill ranking system, the ques-
tions are initialized with default values p = 25.0

and o0 = 8.333, following standard TrueSkill set-
tings implemented using the Python package. Sim-
ilar to the Elo rating method, the rankings in the
TrueSkill method are normalized to 0-100 scale.

Models and Sizes We use GPT-40 (size un-
known), GPT-O1 (size unknown), Deepseek-
Distill (70B), Mistral (7B), Phi-3 (8B) and Phi-4
(20B) for this paper.

A.5 Inter-domain results for different models

Figure 3 shows the individual plots for inter-model
DKE for different domains. We see that the effect
can be seen for all models across varying domains.
For very small models like Mistral and Phi-3 (less
than 8B) we see that the effect is less apparent as
the models overall performance is very low and
they generally overestimate their performance.

A.6 Inter-model results for different domains

Figure 4 shows the individual plots for inter-model
DKE for different domains. We see that the effect
can be seen for all domains across varying models.

Score

Score

Score

[Ada] Actual Performance vs. Perceived Performance

[Bash] Actual Performance vs. Perceived Performance

100 100
IS . 7y
- .) s s Iy
* e *
30 # 80
L] 1
| 2 .
L}
60 60
] /\\/ .
3 3
40 40
"
L |
20 / \ 20
W —e— Absolute Confidence @~ Absolute Confidence
~— Relative Confidence ~— Relative Confidence
#— Actual Performance & Actual Performance ¥
0 0
> ¥ 3)
« « & &
(a) Ada (b) Bash
[C#] Actual Performance vs. Perceived Performance [C++] Actual Performance vs. Perceived Performance
50 100
Y
@~ Absolute Confidence * 4 + 4
—— Relative Confidence v
& Actual Performance
40 80
o
[
w
30 601 %
H w H
3 3
201 & e o 40
- s 1
10 20
W~ Absolute Confidence
~— Relative Confidence
& Actual Performance
0 0
\‘b\ .\:5 \)”\ \:5
R < A <«
&
(d) C# (e) C++
[COBOL] Actual Performance vs. Perceived Performance [D] Actual Performance vs. Perceived Performance
100 100
n S Py
® * @ * Y
< 2
"
80 < - 80
v
®
60 601 % ~
@]
10 40
»
20 - 20
@~ Absolute Confidence -~ Absolute Confidence
~— Relative Confidence —— Relative Confidence
& Actual Performance #— Actual Performance

>
<«

o
X
(5&

(g) COBOL

Score

100

[Dash] Actual Performance vs. Perceived Performance

@ -

-~ Absolute Confidence
—— Relative Confidence

#— Actual Performance

() Dash

Score

100

[C] Actual Performance vs. Perceived Performance

40

° . @
* « *
L} [
&
[

-~ Absolute Confidence

~— Relative Confidence

#- Actual Performance L}

&

(©)C

[Clojure] Actual Performance vs. Perceived Performance

100
{
+
- o
v .
80
! x—/a‘\,‘———/\
-
40 ®
) J
20 / N
- e~ Absolute Confidence
« —%— Relative Confidence
#— Actual Performance L
0
& > o
& & E
(f) Clojure
[Dart] Actual Performance vs. Perceived Performance
100
e i
4
it
\g 2]
80
i
60
40
20
®— Absolute Confidence
W —— Relative Confidence
#— Actual Performance "

(i) Dart

[Elixir] Actual Performance vs. Perceived Performance

100
It 3
> .)
.
801
604
404
| |
204
®— Absolute Confidence
~— Relative Confidence
#-— Actual Performance
0 T T u T
> >
& &

(k) Elixir

Figure 4: Dunning-Kruger plots for various programming languages.

10

	Introduction
	Related Work
	Methods
	Measuring Perceived Performance
	Measuring the Dunning-Kruger Effect

	Results
	Do code models exhibit the DKE?
	Analysis of Perceived Performance

	Discussion and Conclusion
	Limitations
	Measuring Relative Confidence
	Confidence Estimation Using Elo Rating
	Confidence Estimation Using TrueSkill
	Dataset
	Implementation Details
	Inter-domain results for different models
	Inter-model results for different domains

