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Figure 1: We propose Unsupervised Reset-free Skill Acquisition (URSA), a framework for dis-
covering diverse unsupervised skills in reset-free environments. The visualization shows UMAP
embeddings (Sainburg et al., 2021) of state trajectories from different skills discovered by our ap-
proach, demonstrating the diversity of learned behaviors.

ABSTRACT

Autonomous skill discovery in robotics seeks to enable robots to acquire diverse
behaviors without explicit human guidance. However, learning such behaviors
directly in the real world remains challenging due to the high number of interac-
tions required. Existing approaches typically rely either on learning in simulated
environments before real-world deployment, or on carefully designed heuristics.
While the former face challenges when transferring to real robots due to the reality
gap, the latter may require domain expertise to design effective heuristics. The
recent algorithm Quality-Diversity Actor-Critic (QDAC) has shown promise in
discovering diverse high-performing behaviors, yet its application to reset-free
robotics remains limited due to safety concerns and the requirement for skills to
be manually defined beforehand. Here, we propose Unsupervised Reset-free Skill
Acquisition (URSA), an extension of QDAC that enables robots to autonomously
discover and master diverse skills directly in reset-free environments, without prior
knowledge of the skill space. URSA manages to discover diverse velocity and
unsupervised skills on a Unitree A1 quadruped robot in simulation. These results
establish a new framework for reset-free robot learning that enables continuous skill
discovery with a small amount of human intervention, representing a significant
step toward more autonomous and adaptable robotic systems.

1 INTRODUCTION

Autonomous skill discovery in robotics represents a promising direction that could transform how
robots learn and adapt, paving the way for versatile and general-purpose robotic systems. While
specialized robots have demonstrated remarkable proficiency in specific tasks like PCB insertion (Luo
et al., 2024) and legged locomotion (Kostrikov et al., 2023), they are mostly limited to learning a single
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skill or behavior. This narrow specialization makes them vulnerable - if the robot sustains unexpected
damage, it may be unable to adapt and find alternative ways to complete its task. Therefore, developing
systems that can autonomously learn a repertoire of diverse behaviors is crucial for creating more
robust and adaptable robots (Cully et al., 2015), similar to how humans naturally develop multiple
walking gaits and can adapt by switching to alternative movement patterns when injured. This
capability would allow robots to adapt to unexpected situations and discover alternative strategies
when their primary approach fails — a key characteristic of human intelligence and adaptability.

Traditional approaches to skill discovery have primarily relied on carefully engineered heuristics
to guide the learning process (Sharma et al., 2020; Smith et al., 2023). While these hand-crafted
approaches provide structure, they often overly restrict the robot’s exploration, preventing it from
discovering creative behaviors. Moreover, simulation-based approaches (Margolis & Agrawal, 2023;
Lim et al., 2022a; Hoeller et al., 2024) require accurate robot models, which can be challenging to
obtain and maintain, especially for complex systems.

In this work, we present Unsupervised Reset-free Skill Acquisition (URSA), a novel Reinforce-
ment Learning (RL) framework for unsupervised robot skill discovery in reset-free environments,
addressing the challenges of sample efficiency and reset-free learning. Our approach builds upon
the Quality-Diversity Actor-Critic (Grillotti et al., 2024) (QDAC) algorithm and extends the Day-
Dreamer (Wu et al., 2022) paradigm of alternating between reset-free data collection and model-based
training. While DayDreamer focuses on learning a single policy for a specific task, we adapt it to
enable open-ended skill discovery in an unsupervised manner. Furthermore, we incorporate safety
constraints to ensure that the robot explores and learns diverse skills without risking damage.

Our key contributions are as follows:

• We introduce a novel formulation of the unsupervised skill discovery problem, which includes
the discovery of the reachable skill space and the learning of a policy that can achieve a diverse
set of skills from this space.

• We propose URSA, an unsupervised extension of QDAC that addresses this problem by utilizing a
diversity-aware repertoire and a variational autoencoder to learn meaningful skill representations
directly from state observations.

• We introduce a novel sampling method for target skills, using a gaussian kernel density estimator
to focus on the reachable skill space and promote the discovery of distinct and diverse behaviors.

• We adapt the DayDreamer paradigm to unsupervised skill discovery, enabling efficient reset-free
learning through alternating phases of data collection and model-based training.

• We demonstrate the effectiveness of our approach through extensive experiments on a Unitree
A1 quadruped robot in simulation, showcasing autonomous skill discovery and robustness to
actuators failures.

Our work contributes to enabling robots to autonomously discover and master a range of skills
in reset-free settings, helping advance the development of more versatile robotic systems. By
combining unsupervised learning and safety considerations, we provide a comprehensive framework
for reset-free robot skill discovery that addresses key challenges in the field of autonomous robotics.

2 PROBLEM STATEMENT: A NEW PERSPECTIVE ON SKILL DISCOVERY

We consider a Markov Decision Process (MDP) (S,A, r, p) (Sutton & Barto, 2018). At each
timestep t, the agent is in a state st ∈ S and chooses an action at ∈ A leading to a new state
st+1 ∼ p(·|st,at), and providing the agent with a reward rt = r(st,at). Consider we have access
to a feature function ϕ : S,A → Z , which can be either learned from data or provided by the user.
These features capture instantaneous properties of the agent’s behavior at each timestep, such as the
robot’s velocity or its foot contact configuration with the ground. To characterize the agent’s behavior
over an extended period of time, we introduce the concept of skill, which we formally define as
follows.
Definition 2.1 (Skill). The skill z ∈ Z of a policy π is defined as the expected feature vector
Eπ [ϕ(s,a)] under the policy’s stationary distribution.

This expectation captures the characteristic behavior that emerges when executing the policy. For
example, consider a quadrupedal robot where the features ϕt characterize which feet are in contact
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with the ground at each timestep t, with ϕt[i] = 1 if the i-th foot is touching the ground and 0
otherwise. In this case, the i-th component of the skill z represents the proportion of time during
which the i-th foot is in contact with the ground (i.e., the foot contact rate). The skill space thus
characterizes the diverse ways the robot can locomote by capturing how frequently each leg is used.
For instance, achieving a skill z = [0.8 0.3 0.8 0.3]

⊺ requires the robot to maintain the left feet
in contact with the ground 80% of the time while using the right feet only 30% of the time over a
trajectory of multiple timesteps, potentially corresponding to a limping gait.

Within the skill space Z , we can distinguish two subspaces that characterize the capabilities of our
system: the reachable skill space, which encompasses all theoretically attainable skills, and the
achieved skill space, which represents the skills actually mastered by our policy.
Definition 2.2 (Reachable Skill Space). The reachable skill space Zp ⊆ Z is the set of all skills
z ∈ Z for which some policy π can achieve them:

Zp = {z ∈ Z | ∃π,Eπ [ϕ(s,a)] = z}
Definition 2.3 (Achieved Skill Space of a Policy). Consider a skill-conditioned policy π, and for all
skill z ∈ Z , we write πz the skill-conditioned policy π(·|·, z). A skill z ∈ Z is said to be achieved
by π if and only if Eπz [ϕ(s,a)] = z. The achieved skill space Zπ ⊆ Z is the set of all achieved
skills:

Zπ = {z ∈ Z | Eπz [ϕ(s,a)] = z}

By construction, it follows that Zπ ⊆ Zp ⊆ Z . In this work, we assume that both Zp and Zπ are
bounded, though their exact boundaries are unknown. We aim at discovering and characterizing these
spaces through learning, with the ultimate goal of maximizing both the diversity and quality of skills
mastered by the robot.

Specifically, our work has two key objectives: maximizing the volume of the achieved skill space
vol (Zπ) to enable diverse behaviors, while simultaneously maximizing the expected return for each
mastered skill to ensure high performance. More formally, we intend to solve the following problem,
where vol (·) denotes the Lebesgue measure, i.e. the n-dimensional volume function:

maximize vol (Zπ) and ∀t, ∀z ∈ Zπ, maximize Eπz

[ ∞∑
i=0

γirt+i

]

To address the tractability of this optimization problem, we learn a surrogate probability distribution
q(·) defined over the skill space Z , which approximates a uniform distribution over the reachable
skill space Zp. The above problem can be separated into two tractable subproblems to be solved
simultaneously:

• maximizing the entropy of the skill distribution q over the reachable skill space Zp.
• learning a skill-conditioned policy π that maximizes the expected return while achieving each

sampled skill z ∼ q:

maximize Eπz

[ ∞∑
i=0

γirt+i

]
subject to Eπz [ϕ (s,a)] = z (P1)

In summary, our approach aims to discover and master a diverse set of skills directly in a reset-free
manner, without requiring any predefined skill space or manual feature engineering. By learning a
surrogate uniform distribution q over the reachable skill space and maximizing the performance for
each sampled skill z ∼ q, we enable physical robots to autonomously build a repertoire of diverse
and useful behaviors through reset-free interactions.

3 BACKGROUND

3.1 QUALITY-DIVERSITY ACTOR-CRITIC (QDAC)

This work builds upon the QDAC algorithm (Grillotti et al., 2024), and extends it to (1) a reset-
free setting and (2) unsupervised skill discovery. QDAC aims at finding a skill-conditioned policy
πz = π(·|·, z) that maximizes the reward while following a given skill z.
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Figure 2: Overview of the Unsupervised Reset-free Skill Acquisition (URSA) framework. The system
first checks if the current state st is safe, and if so, encodes it into low-dimensional features ϕt.
These features are collected to build a repertoire R of diverse skills. Using this repertoire as input to
a Kernel Density Estimator (KDE), the system periodically samples new skills z uniformly from the
safe and reachable skill space. Finally, the skill-conditioned policy π maximizes its expected return
while performing behaviors that match the sampled skill z.

QDAC assumes a feature function ϕ(·) is provided: for every state st and action at, the agent’s
feature is ϕt = ϕ (st,at). We consider the value function V (Sutton & Barto, 2018) and successor
featuresψ (Barreto et al., 2017), respectively defined as the discounted sum of rewards rt and features
ϕt departing from s and following z with policy πz: V (s, z) = Eπz

[∑∞
i=0 γ

irt+i

∣∣ st = s] and
ψ(s, z) = Eπz

[∑∞
i=0 γ

iϕt+i

∣∣ st = s].
In addition, QDAC aims at solving problem P1 by making two approximations: (1) the expected state
is approximated by the discounted average (1− γ)ψ(s, z), and (2) the strict equality constraint from
problem P1 is replaced by an inequality constraint forcing the policy to stay close to the target skill z.
The problem then becomes:

∀z ∼ U (Zp) , maximize V (s, z) subject to ∥(1− γ)ψ(s, z)− z∥2 ≤ δ (P2)

where δ is a hyperparameter that determines the maximal acceptable distance between the expected
state and the skill.

Our approach addresses two key limitations of the original QDAC algorithm. Rather than requiring a
predefined reachable skill space Zp and fixed constraint threshold δ, our approach learns both the
structure of the skill space and how to efficiently sample from it during training, while adaptively
tuning δ. Additionally, instead of relying on pre-defined features, our approach learns them directly
from unsupervised state encodings.

3.2 REAL-WORLD ROBOT LEARNING WITH DAYDREAMER

DayDreamer (Wu et al., 2022) is a world model-based reinforcement learning algorithm that enables
efficient robot learning directly in the real world without simulators. At its core is a world model
that learns to predict environment dynamics through an encoder-decoder architecture and a recurrent
state-space model (RSSM). This model enables planning through imagined rollouts in a learned latent
space, making the learning process more sample efficient.

The algorithm employs an actor-critic architecture that maximizes performance by planning within
the learned world model’s latent space. The algorithm uses a parallel training structure where
data collection and model learning happen simultaneously: a learner thread continuously trains
the world model and policy while an actor thread computes actions for reset-free interaction. This
asynchronous architecture makes DayDreamer particularly suitable for physical robot learning
where data collection is costly and time-consuming, as it can efficiently learn from limited reset-
free interaction by leveraging imagination. Our approach extends DayDreamer’s asynchronous
architecture by incorporating unsupervised skill discovery into both the learner and actor threads.
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Figure 3: Imagination rollout performed within the world model. Each individual imagination rollout
generates transitions following a target skill z, starting from an initial state s for a fixed number of
steps H . The world model predicts the reward r, feature vector ϕ; and uses them to train the networks
parameterizing the value function V , the successor features ψ, the cost function C, and the policy π.

4 RESET-FREE UNSUPERVISED SKILL DISCOVERY

In this work, we propose Unsupervised Reset-free Skill Acquisition (URSA), an RL-based ap-
proach that enables robots to autonomously discover and master diverse skills directly in reset-free
environments, without prior knowledge of the skill space. To achieve this goal, URSA extends
QDAC (Grillotti et al., 2024) with three key components. First, it incorporates safety constraints
that prevent the robot from executing potentially dangerous skills. Second, it maintains a skill
repertoire R that stores discovered and validated skills. Third, it includes an optional learnable
feature function ϕ(·) that automatically constructs a compact representation of the skill space from
raw state observations.

4.1 ENSURING SAFE SKILL DISCOVERY

In the context of reset-free robotics, some skills can be potentially dangerous for the robot, such as
falling over. We are primarily interested in avoiding these skills since they are neither useful for the
robot’s operation nor worth learning, as they could potentially damage the robot. To address this
concern, we introduce a safety mechanism following the same formalism as constrained reinforcement
learning (Altman, 1999).

We define a safety set Ssafe ⊆ S , which represents the subset of states that are considered safe for the
robot. Our goal is to ensure that the agent avoids states outside of this safety set. To achieve this, we
consider a cost function c : S → R that: s ∈ Ssafe if and only if ct = c(st) ≤ 0. We then ensure
that the associated critic C(s, z) = Eπz

[∑∞
i=0 γ

ict+i|st = s
]

remains non-positive. This constraint
helps the agent learn to avoid unsafe states during optimization. The incorporation of these safety
constraints leads to a modified optimization problem:

maximize V (s, z) subject to ∥(1− γ)ψ(s, z)− z∥2 ≤ δ and C(s, z) ≤ 0 (P3)

To solve this problem, we consider the min-max optimization of the Lagrangian:

max
π

min
λ1,λ2≥0

V (s, z)− λ1(∥(1− γ)ψ(s, z)− z∥2 − δ)− λ2C(s, z)

where λ1 and λ2 are the Lagrange multipliers associated with the distance to skill and safety
constraints, respectively.

In practice, we found that optimizing the following actor objective with 0 ≤ λ1, λ2 ≤ 1 leads to
more stable training:

Jπ = (1− λ1)(1− λ2)V (s, z)− λ1(1− λ2)(∥(1− γ)ψ(s, z)− z∥2 − δ)− λ2C(s, z)

When λ2 increases, the agent places greater emphasis on safety, even at the expense of reward
maximization and skill execution. When λ2 is low, increasing λ1 causes the agent to focus more on
executing the target skill rather than maximizing rewards. With this objective, the agent will first
learn to satisfy safety constraints, then learn how to reach target skills z, and finally learn how to
maximize the reward.
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Both Lagrange multipliers λ1 and λ2 are parameterized as neural networks that take the current state s
and target skill z as inputs, since different state-skill pairs may require different trade-offs between the
competing objectives. During training, the parameters of these networks are continuously optimized
through gradient descent to balance between the competing objectives - increasing emphasis on safety
when constraints are violated, focusing on skill execution when the agent deviates from the target
behavior, and prioritizing reward maximization when both safety and skill objectives are satisfied. For
instance, λ1 increases when the agent struggles to execute the desired skill z, putting more emphasis
on skill execution, and decreases when the agent successfully executes the skill, shifting focus to
reward maximization. Similarly, λ2 increases when safety constraints are violated and decreases
when the agent maintains safe operation.

To optimize for these objectives and learn all these critics, URSA uses the same approach as the model-
based variant of QDAC (Grillotti et al., 2024), which uses world models to optimize policies efficiently.
In this work, we adopt DayDreamer’s (Wu et al., 2022) architecture that runs two asynchronous
processes: one process interacts with the reset-free environment to collect data (Algorithm 1), while
the other process continuously trains the world model and optimizes the policy and critics through
imagination (Algorithm 2, Figure 3). This separation allows us to maximize learning efficiency by
training continuously.

4.2 EFFICIENT SKILL SAMPLING FROM THE REACHABLE SPACE

To achieve effective skill sampling in an unbounded skill space, URSA addresses four key challenges:
(1) providing a flexible parameterization of the surrogate sampling distribution, (2) maximizing the
entropy of this distribution to ensure uniform sampling, (3) considering only safe and reachable skills,
and (4) adaptively tuning the threshold δ to find the optimal balance between strict and relaxed skill
execution constraints. Figure 2 and Algorithm 1 provide high-level overviews of the skill collection
and sampling process.

Adaptive Skill Distribution via Non-Parametric Density Estimation To sample skills from
the reachable skill space Zp, we use a surrogate distribution q that focuses sampling on physically
achievable skills. We model this surrogate distribution q using a Gaussian Kernel Density Estimator
(KDE) (Parzen, 1962; Rosenblatt, 1956), which provides a flexible, non-parametric way to capture
the structure of the reachable skill space. For a fixed-size repertoire of skills R = {zi}NR

i=1, the
surrogate distribution is given by:

q = KDE (R) =
1

NR

NR∑
i=1

N (zi,Σ)

where Σ represents the repertoire’s skill covariance matrix, with a scaling factor of N
− 1

D+4

R (where
D denotes the dimensionality of the skill space), following the approach of Scott (1992).

Maximizing Entropy for Uniform Skill Sampling To approximate a uniform sampling of the
reachable skill space, we maximize the entropy of the sampling distribution q. This entropy can be
approximated via Monte-Carlo sampling with the skills from the repertoire:

H(q) = −
∫

q(x) log q(x)dx ≈ − 1

NR

NR∑
i=1

q(zi) log q(zi) = Ĥ(q)

This estimated entropy, written as Ĥ(q), has a lower bound that only depends on the covariance
matrix Σ and the distances between the skills in the repertoire zi and their nearest neighbors znni .
Using the Mahalanobis distance dΣ(·, ·) with respect to the covariance matrix Σ, we can derive the
following lower bound, where k is a constant:

Ĥ(q) ≥ − 1

NR

NR∑
i=1

log
(
1 + (NR − 1)e−

1
2dΣ(zi,z

nn
i )2

)
+

1

2
log (det(Σ)) + k (1)

This lower bound, whose derivation is provided in Appendix A, provides a tractable objective for
maximizing the entropy of our sampling distribution q through the Mahalanobis distances between
skills. To maximize this bound, we continuously update the repertoire by replacing low-diversity
skills with newly discovered ones that increase the distribution’s spread.
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Algorithm 1 URSA – Data Collection
input Parameters θπ ▷ Initial parameters for the actor
D ← ∅ ▷ Initialize an empty replay buffer
repeat
z ∼ KDE (R)
for T steps do
at ∼ π(·|st,z)
st+1 ∼ p(·|st,at)
rt ← r(st,at)
ϕt ← ϕ(st,at)
D ← D ∪ {(st,at, rt,ϕt, st+1)}
if st ∈ Ssafe then

commit ϕ(st,at) to repertoireR
Fetch θπ and θϕ (if unsupervised) from Algo. 2

until convergence

All highlighted components are specific to URSA

Algorithm 2 URSA – Training
input Parameters θ(·) ▷

Initial parameters for the actor π, critics V , ψ and C,
Lagrange multipliers λi, world modelW , and feature
extractor ϕ (if unsupervised)
repeat

Fetch D andR from Algo. 1
z̃i ∼ KDE (R) for i ∈ {1, . . . , N}
θW ← θW − αW∇JW(θW)

▷Training from rollouts inW with skills z̃i (Fig. 3)
θλi ← θλi − αλ∇Jλi(θλi) for i ∈ {1, 2}
θV ← θV − αV∇JV (θV )
θψ ← θψ − αψ∇Jψ(θψ)
θC ← θC − αC∇JC(θC)
θπ ← θπ + απ∇Jπ(θπ)
if unsupervised then

θϕ ← θϕ − αϕ∇Jϕ(θϕ) withR
until convergence

Filling the Repertoire with Safe and Reachable Skills As skills are defined as the expected
feature vector Eπz [ϕt] (see Definition 2.1), any observed feature vector ϕt can be treated as a
potential new skill. Since each skill in the repertoire is derived from observations, URSA ensures that
the sampling distribution q concentrates on regions of the skill space that are reachable by the robot.
This construction helps focus exploration on the reachable skill space Zp rather than wasting efforts
on unreachable skills.

We take an additional precautionary measure by excluding unsafe states — i.e. states s which
are not in the safety set Ssafe — from the diversity-aware repertoire to ensure that the agent will
not execute or attempt to learn unsafe skills. For example, if the robot finds itself upside down,
we exclude any features observed in this unsafe configuration to prevent the system from learning
skills that could damage the robot. By implementing these safety measures, we can guide the robot
towards discovering and mastering a diverse set of skills while maintaining safe operation. The
features resulting from safe states are all committed to the repertoire to maximize diversity within the
reachable space.

Every time a feature ϕt is committed to the repertoire, we compute all distances dΣ(z, z
nn) for

all z ∈ R ∪ {ϕt}, and remove the skill with the smallest distance. This process maintains a
constant repertoire size while continuously increasing its diversity through the discovery of new skills.
Assuming the impact of those updates on Σ is negligible, this process maximizes the lower bound on
the approximated entropy of the skill-sampling distribution q (see Equation 1). This process ensures
that the repertoire maintains a uniform coverage of the safe and reachable skill space by continuously
incorporating features discovered during exploration.

Dynamic Threshold As the repertoire expands, the increasing distance between skills and their
nearest neighbors requires adjusting the threshold δ. This threshold, which bounds the maximum
distance between the expected state (1 − γ)ψ and skill z (see Problem P3), must be dynamically
updated to maintain achievable constraints. To that end, we define an hyperparameter Nz that controls
the number of distinct skills the robot can execute in practice, such that Nz ≤ NR. The threshold δ
is dynamically set by computing what the mean nearest-neighbor distance would be if the repertoire
R contained exactly Nz skills that were uniformly distributed in the skill space. To compute this
threshold, we first calculate the mean pairwise distance between each skill zi and its nearest neighbor
znni in R, then apply a scaling factor based on the target number of distinct skills Nz .

δ =

(
NR

Nz

)1/D
1

NR

NR∑
i=1

dΣ(zi, z
nn
i )

This dynamic threshold helps ensure that we can choose Nz skills from R without overlap: when the
agent executes a skill z, it is unlikely that the constraint will be satisfied for other skills in R.
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Figure 4: Visualization of how our learned skills cover different joint angles of the robot. These
heatmaps visualize the range of motion achieved by each joint type (Hip, Upper and Lower) across
all four legs of the robot. Each colored cell represents a region of joint angles that the algorithm can
achieve through skills in its repertoire R. For each skill, we compute the average joint angles during
its execution, and color the corresponding cell if at least one skill’s averages fall within that region.

4.3 UNSUPERVISED SKILL DISCOVERY

In scenarios where a feature function is not provided, URSA learns one automatically through
unsupervised learning. Specifically, we employ a feature function ϕ(·) that transforms raw state
observations into a compact representation, which then defines our skill space Z . We implement
this feature function using a variational autoencoder (VAE) Kingma & Welling (2014). The VAE
takes as input the robot’s zeroth-order kinematics variables from S, such as the joints angles and
the robot height, at each timestep t. These instantaneous state observations are encoded into a
lower-dimensional latent space, and similar to Definition 2.1, a skill z is defined as the expected
latent encoding under the policy’s stationary distribution. This architecture enables us to obtain a
meaningful and compressed representation of skills that naturally emerges from the robot’s state
observations over time.

The VAE is trained using the diverse collection of states accumulated in our repertoire R. This
unsupervised approach enables the robot to autonomously discover and acquire diverse behaviors
without requiring any manual skill definition or human supervision.

5 RESULTS

5.1 EXPERIMENTAL SETUP

All experiments were conducted on the A1 robot from Unitree in a simulated PyBullet environment.
This simulated environment is reset-free, meaning that the environment is never reset to a specific
state. The state space is defined by the joint angles and velocities of the robot, and the action space is
defined by the joint target positions. We use a discount factor of γ = 0.995 and maintain a repertoire
size of NR = 5000 skills. The algorithm samples new skills every T = 250 timesteps and runs for a
total of 2M timesteps. The robot’s actuators are controlled by PD controllers operating at 20Hz in
position control mode. For efficient learning, we run the Data Collection Loop and Training Loop
concurrently on a single NVIDIA RTX 6000 Ada GPU.

5.2 UNSUPERVISED SKILL DISCOVERY FOR FORWARD LOCOMOTION

Reward, Feature and Cost Functions In this experiment, we intend to learn a diverse behaviours
for moving forward in an unsupervised manner. As such, the feature function ϕ(·) is implemented
as a VAE encoder network that takes as input the robot’s joint angles and height at each timestep t,
and encodes them into a latent skill space Z of dimension D = 3. The reward function r(st, at) is
designed to promote forward movement while maintaining stability:

r(st, at) = rupr + 1rupr>0.7 · (5rvelx − 0.5rvely − 0.5ryaw)− 0.001(rspeed + rwork + rsmooth)

8



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

No Damage Hip Joint Upper Leg
Joint

Lower Leg
Joint

Hip Joint Upper Leg
Joint

Lower Leg
Joint

−200

−100

0

100

200

R
e

tu
rn

URSA

DayDreamer

Front Leg Damage Rear Leg Damage

Figure 5: Comparison of returns between URSA and DayDreamer across various joint damage
scenarios on the robot. Results show the median return and range (minimum to maximum) across 3
independent runs per algorithm.

where rupr encourages upright posture, rvelx rewards forward velocity, and penalties are applied for
lateral motion (rvely ), yaw velocity (ryaw), and smoothness (rspeed, rwork, rsmooth). Taking inspiration
from (Wu et al., 2022), velocity rewards are only applied when the robot is upright (rupr > 0.7).

The safe state space is defined by all the states where rupr > 0.7, which ensures stability by
maintaining an upright posture. The cost function c(st, at) = 0.7 − r(st, at) naturally penalizes
unstable states and undesirable motions while promoting forward progression when upright. We aim
to learn a diverse repertoire of Nz = 100 distinct skills that capture different locomotion behaviors.

Evaluating Behavioral Diversity We first evaluate the behavioral diversity of the discovered skills
by analyzing the coverage of the average joint angles achieved by each skill. Figure 4 shows that
URSA learns a diverse set of behaviors, with an extended range of average joint angles achieved for
different skills. The joint angle variations result in a diverse set of behaviors, as shown in Figure 1.
This figure illustrates how URSA discovers a diverse range of movement patterns spanning multiple
motion categories - from behaviors where the torso maintains ground contact to more sophisticated
walking-like gaits. In contrast, DayDreamer focuses on learning a single skill that maximizes the
expected return, limiting the diversity of its behavioral repertoire.

Damage Adaptation Building on this diverse skill repertoire, we evaluate how well these learned
behaviors enable adaptation to damage. We compare how well URSA and DayDreamer perform
when the robot undergoes actuator failures and needs to adapt. In particular, we test scenarios where
one actuator stops working, stays fixed in position, and does not respond to any control commands.
We consider damage scenarios where either one front leg or one back leg has a frozen actuator, with
the frozen actuator being either the hip, upper leg, or lower leg joint. We then evaluate the return of
the robot in each of these scenarios.

We find that URSA consistently outperforms DayDreamer across all damage scenarios tested (Fig. 5).
This superior performance can be attributed to the diverse behavioral repertoire R learned by URSA,
which provides multiple alternative movement strategies when the primary locomotion pattern
becomes infeasible due to damage. The performance gap is particularly pronounced in scenarios
involving front upper leg joint damage, where the robot needs to fundamentally alter its movement
strategy. These results demonstrate that the behavioral diversity encouraged by URSA not only leads
to more interesting behaviors but also provides benefits in terms of robustness and adaptability.

5.3 HEURISTIC-BASED SKILL DISCOVERY

Reward, Feature and Cost Functions For the heuristic-based skill discovery experiments, we use
a reward function that encourages stable posture and smooth motion:

r(st, at) = rupr + rhip + rupper + rlower − 0.001(rspeed + rwork + rsmooth)

9
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Figure 6: Velocity tracking errors during skill execution. We evaluate how accurately the robot
follows target velocity commands, measuring both forward and angular velocity tracking errors across
the entire reachable space discovered by URSA. Lower values indicate better velocity control.

where rupr, rhip, rupper, and rlower encourage proper posture for the torso and each joint type respec-
tively. Each posture reward is only active when the previous joint in the kinematic chain has achieved a
good pose (e.g., rhip only activates when rupr > 0.7), encouraging the robot to build stable poses from
the ground up. Similar to the velocity experiments, we define safe states as those where rupr > 0.7,
rhip > 0.7, rupper > 0.7, and rlower > 0.7, ensuring the robot maintains a proper standing posture. The
cost function c(st, at) = max(0.7−rupr, 0)+max(0.7−rhip, 0)+max(0.7−rupper, 0)+(0.7−rlower)
penalizes states where hip, shoulder, knee, or upright posture rewards fall below their target thresholds
of 0.7.

Evaluating Skill Reachability We evaluate the reachability of the discovered skills by analyzing
how well the robot responds to target velocity commands. For each target velocity, we evaluate the
tracking error between the robot’s velocity and the target velocity. Figure 6 shows how well the
robot tracks different target velocities using the discovered skills. The results demonstrate that URSA
learns skills spanning a wide range of velocities, enabling precise control over the robot’s movement.
This reachability analysis confirms that our approach not only discovers diverse behaviors but also
learns skills that are practically useful for controlled robot movement.

6 RELATED WORK

Unsupervised skill discovery: The field of unsupervised skill discovery has seen significant advances
in recent years, with various approaches aiming to learn diverse behaviors without explicit task re-
wards. Information-theoretic methods like DIAYN (Eysenbach et al., 2018) and DADS (Sharma et al.,
2019) have pioneered this direction by maximizing the mutual information between skills and states,
enabling the emergence of distinct behaviors. SMERL (Kumar et al., 2020) and DOMiNO (Zahavy
et al., 2022) extended this approach by learning multiple solutions for each task to improve robustness
to environmental changes. In the Quality-Diversity domain, algorithms like TAXONS (Paolo et al.,
2020), STAX (Paolo et al., 2024), AURORA (Cully, 2019; Grillotti & Cully, 2022), and IMGEP-
UGL (Péré et al., 2018) demonstrated that meaningful skills could emerge without hand-designed
behavioral descriptors, instead learning these descriptors from data. While these methods have shown
impressive results in simulation, they typically require extensive interaction with the environment
and don’t address the unique challenges of real-world learning. Our approach builds upon these
foundations but differs in two key aspects: first, we introduce safety constraints and efficient sampling
methods that make unsupervised skill discovery feasible in a reset-free environment; second, our
algorithm leverages imagination-based planning through world models to reduce the required amount
of real-world interaction.

Real-world robot learning: Learning directly in the real world presents unique challenges due to
limited data collection, safety concerns, and the absence of reset mechanisms. Several approaches
have tackled these challenges from different angles. Reset-free Quality-Diversity (Lim et al., 2022b;
Smith et al., 2023) introduced a novel way to learn without manual resets by intelligently selecting
behaviors that can serve as automatic resets, demonstrating successful learning of locomotion
skills. The work of Laversanne-Finot et al. (2021) demonstrated successful learning of diverse

10
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robotic arm behaviors for ball manipulation through intrinsically motivated goal exploration, though
it still relied on episodic learning in controlled environments. off-DADS (Sharma et al., 2020)
showed that unsupervised skill emergence is possible on real quadrupeds through efficient off-
policy reinforcement learning, though it required careful selection of the discriminator’s observation
space. Recent work like DayDreamer (Wu et al., 2022) demonstrated that world models could
enable efficient real-world learning by allowing policy optimization to occur primarily in imagination.
Similarly, SERL (Luo et al., 2024) and A Walk in the Park (Kostrikov et al., 2023) achieved successful
real-world learning through careful system design and algorithmic innovations focused on sample
efficiency. DayDreamer’s success in teaching a quadruped to walk in just one hour and enabling
visual manipulation tasks with robotic arms established a new standard for sample-efficient real-world
learning. Our work combines the strengths of these approaches while addressing their limitations.
Like DayDreamer, we leverage world models for efficient learning, but we extend this to the discovery
of diverse skills rather than focusing on a single task. We build upon Reset-free Quality-Diversity’s
insights about autonomous learning but incorporate safety constraints and more sophisticated skill
selection mechanisms. Unlike off-DADS, our approach doesn’t require careful reward engineering,
instead discovering meaningful skills through unsupervised learning while maintaining safety and
efficiency.

7 DISCUSSION AND FUTURE WORK

In this work, we presented URSA, demonstrating safe and efficient unsupervised skill discovery in
reset-free robotics. While our results are promising, several key challenges remain. For example,
learning safety boundaries from data rather than using predefined constraints could make the system
more robust to changing environments. Also, developing more sophisticated sampling methods
that target the agent’s zone of proximal development - where learning progress potential is highest -
could significantly improve skill acquisition efficiency. Finally, a key next step would be to validate
our approach through real-world deployment on physical robotic systems. These advances would
represent important steps toward more autonomous and capable robotic systems that can continuously
learn and adapt in real-world settings.
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A MATHEMATICAL DERIVATIONS

We provide here the technical details behind the lower bound on the approximate entropy of the KDE:
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where dΣ(·, ·) is the Mahalanobis distance with respect to the covariance matrix Σ.
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where LSE refers to the log-sum-exp function.

Then we have:
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