
SurCo: Learning Linear SURrogates
for COmbinatorial Nonlinear Optimization Problems

Anonymous Author(s)
Affiliation
Address
email

Abstract

Optimization problems with nonlinear cost functions and combinatorial constraints1

appear in many real-world applications but remain challenging to solve efficiently2

compared to their linear counterparts. To bridge this gap, we propose SurCo3

that learns linear Surrogate costs which can be used in existing Combinatorial4

solvers to output good solutions to the original nonlinear combinatorial optimiza-5

tion problem. The surrogate costs are learned end-to-end with nonlinear loss by6

differentiating through the linear surrogate solver, combining the flexibility of7

gradient-based methods with the structure of linear combinatorial optimization. We8

propose three SurCo variants: SurCo− zero for individual nonlinear problems,9

SurCo− prior for problem distributions, and SurCo− hybrid to combine10

both distribution and problem-specific information. We give theoretical intuition11

motivating SurCo, and evaluate it empirically. Experiments show that SurCo12

finds better solutions faster than state-of-the-art and domain expert approaches13

in real-world optimization problems such as embedding table sharding, inverse14

photonic design, and nonlinear route planning.15

1 Introduction16

Combinatorial optimization problems with linear objective functions such as mixed integer linear pro-17

gramming (MILP) (Wolsey, 2007), and occasionally linear programming (LP) (Chvatal et al., 1983),18

have been extensively studied in operations research (OR). The resulting high-performance solvers19

like Gurobi (Gurobi Optimization, LLC, 2022) can solve industrial-scale optimization problems with20

tens of thousands of variables in a few minutes.21

However, even with perfect solvers, one issue remains: the cost functions f(x) in many practical22

problems are nonlinear, and the highly-optimized solvers mainly handle linear or convex formulations23

while real-world problems have less constrained objectives. For example, in embedding table24

sharding (Zha et al., 2022a) one needs to distribute embedding tables to multiple GPUs for the25

deployment of recommendation systems. Due to the batching behaviors within a single GPU and26

communication cost among different GPUs, the overall latency (cost function) in this application27

depends on interactions of multiple tables and thus can be highly nonlinear (Zha et al., 2022a).28

To obtain useful solutions to real-world problems, one may choose to directly optimize the nonlinear29

cost, which can be the black-box output of a simulator (Gosavi et al., 2015; Ye et al., 2019), or the30

output of a cost estimator learned by machine learning techniques (e.g., deep models) from offline31

data (Steiner et al., 2021; Koziel et al., 2021; Wang et al., 2021b; Cozad et al., 2014). However, many32

of these direct optimization approaches either rely on human-defined heuristics (e.g., greedy (Korte33

& Hausmann, 1978; Reingold & Tarjan, 1981; Wolsey, 1982), local improvement (Voß et al., 2012;34

Li et al., 2021)), or resort to general nonlinear optimization techniques like gradient descent (Ruder,35

2016), reinforcement learning (Mazyavkina et al., 2021), or evolutionary algorithms (Simon, 2013).36

Submitted to ICML 2023 Workshop: Sampling and Optimization in Discrete Space. Do not distribute.

Figure 1: Overview of our proposed framework SurCo.

While these approaches can work in certain settings, they may lead to a slow optimization process, in37

particular when the cost function is expensive to evaluate, and they often ignore the combinatorial38

nature of most real-world applications.39

In this work, we propose a systematic framework SurCo that leverages existing efficient com-40

binatorial solvers to find solutions to nonlinear combinatorial optimization problems arising in41

real-world scenarios. When only one nonlinear differentiable cost f(x) needs to be minimized, we42

propose SurCo-zero that optimizes a linear surrogate cost ĉ so that the surrogate optimizer (SO)43

minx∈Ω ĉ⊤x outputs a solution that is expected to be optimal w.r.t. the original nonlinear cost f(x).44

Due to its linear nature, SO can be solved efficiently with existing solvers, and the surrogate cost45

ĉ can be optimized in an end-to-end manner by back-propagating through the solver via methods46

proposed in previous work (Pogančić et al., 2019; Niepert et al., 2021; Berthet et al., 2020).47

Thus, SurCo is a general-purpose method for solving combinatorial nonlinear optimization. Off-48

the-shelf nonlinear optimizers are often not directly applicable to these problem domains and often49

require domain-specific solution methodologies to give high-quality solutions in a reasonable amount50

of time, and solution prediction methods fail to give combinatorially feasible solutions without51

problem-specific intervention. Here, learning a linear surrogate problem ensures that the surrogate52

solver is practically efficient, yields gradient information for offline training, and generates solutions53

that are combinatorially feasible.54

When solving a family of nonlinear differentiable functions f(x;y) parameterized by instance55

description y, the surrogate coefficients ĉ(y;θ) are learned on a set of optimization instances (called56

the training set {yi}), by optimizing the parameters θ. For an unseen held-out instance y′, we57

propose SurCo-prior that directly optimizes linear SO: x̂∗(y′) := argminx∈Ω(y′) ĉ
⊤(y′;θ)x to58

get the solution, avoiding optimizing the cost f(x;y′) from scratch. Based on the solution predicted59

by SurCo-prior, we also propose SurCo-hybrid that fine-tunes the surrogate costs ĉ with60

SurCo-zero to leverage both domain knowledge synthesized offline and information about the61

specific instance. We provide a comprehensive description of SurCo in Section 3.62

We evaluate SurCo in three settings: embedding table sharding (Zha et al., 2022a), photonic inverse63

design (Schubert et al., 2022), and nonlinear route planning Fan et al. (2005). In the on-the-fly setting,64

SurCo-zero achieves higher quality solutions in comparable or less runtime, thanks to the help of65

an efficient combinatorial solver. in SurCo-prior, our method obtains better solutions in held-out66

problems compared to other methods that require training (e.g., reinforcement learning).67

We compare SurCo at a high level with related work integrating learning and optimization at the end68

of our paper. We additionally present theoretical intuition that helps motivate why training a model to69

predict surrogate linear coefficients may exhibit better sample complexity than previous approaches70

that directly predict the optimal solution (Li et al., 2018; Ban & Rudin, 2019).71

2 Problem Specification72

Our goal is to solve the following nonlinear optimization problem describe by y:73

min
x

f(x;y) s.t. x ∈ Ω(y) (1)

where x ∈ Rn are the n variables to be optimized, f(x;y) is the nonlinear differentiable cost74

function to be minimized, Ω(y) is the feasible region, typically specified by linear (in)equalities and75

integer constraints, and y ∈ Y are the problem instance parameters drawn from a distribution D over76

Y . For example, in the traveling salesman problem, y can be the distance matrix among cities.77

Differentiable cost function. The nonlinear cost function f(x;y) can either be given analytically, or78

the result of a simulator made differentiable via finite differencing (e.g., JAX (Bradbury et al., 2018)).79

2

Methods Applicable to Objective can be Training Set Generalize to Combinatorial
nonlinear objective free form new instances constraints

Gradient Descent Yes Yes N/A No No
Evolutionary Algorithm Yes Yes N/A No No

Nonlinear combinatorial solvers Yes No N/A No Yes
Learning direct mapping Yes Yes {yi,x

∗
i } Yes No

Predict-then-optimize Limited No {yi,x
∗
i } Yes Yes

SurCo (proposed) Yes Yes {yi} Yes Yes

Table 1: Conceptual comparison of optimizers (both traditional and ML-guided). Our approach (SurCo)
can handle nonlinear objective without a predefined analytical form, does not require pre-computed optimal
solutions in its training set, can handle combinatorial constraints (via commercial solvers it incorporates), and
can generalize to unseen instances.

If the cost function f(x;y) is not differentiable as in one of our experimental settings, we can use80

a cost model that is learned from an offline dataset, often generated via sampling multiple feasible81

solutions within Ω(y), and recording their costs. In this work, we assume the following of f(x;y):82

Assumption 2.1 (Differentiable cost function). During optimization, the cost function f(x;y) and83

its partial derivative ∂f/∂x are accessible.84

Learning a good nonlinear cost model f is non-trivial for practical applications (e.g., Al-85

phaFold (Jumper et al., 2021), Density Functional Theory (Nagai et al., 2020), cost model for86

embedding tables (Zha et al., 2022a)) and is beyond the scope of this work.87

Evaluation Metric. We mainly focus on two aspects: the solution quality evaluated by f(x̂;y),88

and the number of queries of f during optimization to achieve the solution x̂. For both, smaller89

measurements are favorable, i.e., fewer query of f to get solutions closer to global optimum.90

When f(x;y) is linear w.r.t x, and the feasible region Ω(y) can be encoded using mixed integer91

programs, the problem can be solved using existing scalable optimization solvers. When f(x;y) is92

nonlinear, we propose SurCo that learns a surrogate linear objective function, which allow us to93

leverage these existing scalable optimization solvers, and results in a solution that has high quality94

with respect to the original hard-to-encode objective function f(x;y).95

3 SurCo: Learning Linear Surrogates96

SurCo-zero: on-the-fly optimization. We start from the simplest case where we focus on a single97

instance with f(x) = f(x;y) and Ω = Ω(y). SurCo-zero optimizes the following objective:98

(SurCo-zero) : min
c

Lzero(c) := f(gΩ(c)) (2)

where the surrogate optimizer gΩ : Rn 7→ Rn is the output of certain combinatorial solvers with99

linear cost weight c ∈ Rn and feasible region Ω ⊆ Rn. For example, gΩ can be the following:100

gΩ(c) := argmin
x

c⊤x s.t. x ∈ Ω := {Ax ≤ b,x ∈ Zn} (3)

which is the output of a MILP solver. Thanks to previous works (Ferber et al., 2020; Pogančić et al.,101

2019), we can efficiently compute the partial derivative ∂gΩ(c)/∂c. Intuitively, this means that102

gΩ(c) can be backpropagated through. Since f is also differentiable with respect to the solution it is103

evaluating, we thus can optimize Eqn. 2 in an end-to-end manner using any gradient-based optimizer:104

c(t+ 1) = c(t)− α
∂gΩ

∂c

∂f

∂x
, (4)

where α is the learning rate. The procedure starts from a randomly initialized c(0) and converges at a105

local optimal solution of c. While Eqn. 2 is still nonlinear optimization and there is no guarantee106

about the quality of the final solution c, we argue that optimizing Eqn. 2 is better than optimizing107

the original nonlinear cost minx∈Ω f(x). Furthermore, while we cannot guarantee optimality, we108

guarantee feasibility by leveraging a linear combinatorial solver.109

Intuitively, instead of optimizing directly over the solution space x, we optimize over the space of110

surrogate costs c, and delegate the combinatorial feasibility requirements of the nonlinear problem111

to SoTA combinatorial solvers. Compared to naive approaches that directly optimize f(x) via112

general optimization techniques, our method readily handles complex constraints of the feasible113

3

regions, and thus makes the optimization procedure easier. Furthermore, it also helps escape from114

local minima, thanks to the embedded search component of existing combinatorial solvers (e.g.,115

branch-and-bound (Land & Doig, 2010) in MILP solvers). As we see in the experiments, this is116

particularly important when the problem becomes large-scale with more local optima. This approach117

works well when we are optimizing individual instances and may not have access to offline training118

data or the training time is cost-prohibitive.119

Limitation. Note that due to linear surrogate, our approach will always return a vertex in the feasible120

region, while the solution to the original nonlinear objective may be in the interior. We leave this121

limitation for future work. In many real-world settings, such as in the three domains we tested, the122

solutions are indeed on the vertices of feasible regions.123

SurCo-prior: offline surrogate training. We now consider a more general case where we have124

N optimization instances, each parameterized by an instance description yi, i = 1 . . . N , and we125

want to find their solutions to a collection of nonlinear loss functions f(x;yi) simultaneously. Here126

we write Dtrain := {yi}Ni=1 as the training set. A naive approach is just to apply SurCo-zero127

N times, which leads to N independent surrogate costs {ci}Ni=1. However, this approach does not128

consider two important characteristics. First, it fails to leverage possible relationship between the129

instance descriptor yi and its associated surrogate cost ci, since every surrogate cost is independently130

estimated. Second, it fails to learn any useful knowledge from the N instances after optimization. As131

a result, for an unseen instance, the entire optimization process needs to be conducted again, which is132

slow. This motivates us to add a surrogate cost model ĉ(y;θ) into the optimization as a regularizer:133

(SurCo-prior-λ) : min
θ,{ci}

Lprior(θ, {ci};λ) :=
N∑
i=1

f(gΩ(yi)(ci);yi) + λ∥ci − ĉ(yi;θ))∥2

The regressor model ĉ(y;θ) directly predicts the surrogate cost from the instance description. The134

form of the regressor can be a neural network, in which θ is its parameters. Note that when λ = 0, it135

reduces to N independent optimizations, while when λ > 0, the surrogate costs {ci} interact with136

each other. With the regressor, we distill knowledge gained from the optimization procedure into θ,137

which can be used for an unseen instance y′. Indeed, we use the learned regressor model to predict138

the surrogate cost c′ = ĉ(y′;θ), and directly solve the surrogate optimization (SO):139

x̂∗(y′) = arg min
x∈Ω(y)

ĉ⊤(y′;θ)x (5)

A special case is when λ→ +∞, we learn the network parameters θ instead of surrogate costs:140

(SurCo-prior) : min
θ
Lprior(θ) :=

N∑
i=1

f(gΩ(yi)(ĉ(yi;θ));yi)

This approach is useful when the goal is to find high-quality solutions for unseen instances of a141

problem distribution when the upfront cost of offline training is acceptable but the cost of optimizing142

on-the-fly is prohibitive. Here, we require access to a distribution of training optimization problems,143

but at test time only require the feasible region and not the nonlinear objective. Different from144

predict-then-optimize Elmachtoub & Grigas (2022a); Ferber et al. (2020) or ML optimizers Ban &145

Rudin (2019), we do not require the optimal solution {x∗
i }Ni=1 as part of the training set.146

SurCo-hybrid: fine-tuning a predicted surrogate. Naturally, we consider SurCo-hybrid, a147

hybrid approach which initializes the coefficients of SurCo-zero with the coefficients predicted148

from SurCo-prior which was trained on offline data. This allows SurCo-hybrid to start out149

optimization from an initial prediction that has good performance for the distribution at large but150

which is then fine-tuned for the specific instance. Formally, we initialize c(0) = ĉ(yi;θ) and then151

continue optimizing c based on the update from SurCo-zero. This approach is geared towards152

optimizing the nonlinear objective using a high-quality initial prediction that is based on the problem153

distribution and then fine-tuning the objective coefficients based on the specific problem instance154

at test time. Here, high performance comes at the runtime cost of both having to train offline on a155

problem distribution as well as performing fine-tuning steps on-the-fly. However, this additional156

cost is often worthwhile when the main goal is to find the best possible solutions by leveraging157

synthesized domain knowledge in combination with individual problem instances as arises in chip158

design (Mirhoseini et al., 2021) and compiler optimization (Zhou et al., 2020).159

4

4 Surrogate Costs vs Solution Prediction, A Theoretical Analysis160

One of the key ingredient of our proposed methods (SurCo-prior and SurCo-hybrid) is to161

learn a model to predict surrogate cost c from instance description y, which is in contrast with162

previous solution regression approaches that directly learn a mapping from problem description y to163

the solution x∗(y) (Ban & Rudin, 2019). A natural question arise: which one is better?164

In this section, we give theoretical intuition to compare the two approaches using a simple 1-nearest-165

neighbor (1-NN) solution regressor (Fix, 1985). We first relate the number of samples needed to learn166

any mapping to its Lipschitz constant L, and then show that for the direct mapping y 7→ x∗(y), L167

can be very large. Therefore, there exist fundamental difficulties to learn such a mapping. When this168

happens, we can still find surrogate cost mapping y 7→ c∗(y) with finite L that leads to the optimal169

solution x∗(y) of the original nonlinear problems.170

Lipschitz constant and sample complexity. Formally, consider fitting any mapping ϕ : Rd ⊇171

Y 7→ Rm with a dataset C := {yi,ϕi}. Here Y is a compact region with finite volume vol(Y). The172

Lipschitz constant L is the smallest number so that ∥ϕ(y1)−ϕ(y2)∥2 ≤ L∥y1−y2∥2 holds for any173

y1,y2 ∈ Y . The following theorem shows that if the dataset covers the space Y , we could achieve174

high accuracy prediction: ∥ϕ(y)− ϕ̂(y)∥2 ≤ ϵ for any y ∈ Y .175

Definition 4.1 (δ-cover). A dataset C := {(yi,ϕi)}Ni=1 δ-covers the space Y , if for any y ∈ Y , there176

exists at least one yi so that ∥y − yi∥2 ≤ δ.177

Lemma 4.2 (Sufficient condition of prediction with ϵ-accuracy). If the dataset C can (ϵ/L)-cover Y ,178

then for any y ∈ Y , a 1-nearest-neighbor regressor ϕ̂ leads to ∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.179

Lemma 4.3 (Lower bound of sample complexity for ϵ/L-cover). To achieve ϵ/L-cover of Y , the size180

of the dataset set N ≥ N0(ϵ) :=
vol(Y)
vol0

(
L
ϵ

)d
, where vol0 is the volume of unit ball in d-dimension.181

Please find all proofs in the Appendix. While we do not rule out a more advanced regressor than182

1-nearest-neighbor that could lead to better sample complexity, the lemmas demonstrate that the183

Lipschitz constant L plays an important role in sample complexity.184

DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60
Setting

0

10

20

30

40

50

So
lu

tio
n

Lo
ss

 (L
at

en
cy

)

Table Sharding Solution Loss (Latency)

Domain Heuristic
Greedy
SurCo-zero
DreamShard
SurCo-prior
SurCo-hybrid

DLRM-10 DLRM-20 DLRM-30 DLRM-40 DLRM-50 DLRM-60
Setting

0.0

0.5

1.0

1.5

2.0

2.5

D
ep

lo
ym

en
t R

un
tim

e
(s

)

Table Sharding Deployment Runtime (s)

Figure 2: Table placement plan latency (left) and solver runtime (right). We evaluate SurCo against
Dreamshard (Zha et al., 2022b), a SoTA offline RL solver, a domain-heuristic of assigning tables based
on dimension, and a greedy heuristic based on the runtime increase. Striped approaches require pre-training.

Difference between Cost and Solution Regression. In the following we will show that in certain185

cases, the direct prediction y 7→ x∗(y) could have an infinitely large Lipschitz constant L. To show186

this, let us consider a general mapping ϕ : Rd ⊇ Y 7→ Rm. Let ϕ(Y) be the image of Y under187

mapping ϕ and κ(Y) be the number of connected components for region Y .188

Theorem 4.4 (A case of infinite Lipschitz constant). If the minimal distance dmin for different189

connected components of ϕ(Y) is strictly positive, and κ(ϕ(Y)) > κ(Y), then the Lipschitz constant190

of the mapping ϕ is infinite.191

Note that this theorem applies to a wide variety of combinatorial optimization problems. For192

example, when Y is a connected region and the optimization problem can be formulated as an integer193

programming, the optimal solution set x∗(Y) := {x∗(y) : y ∈ Y } is a discrete set of integral194

vertices, so the theorem applies. Combined with analysis in Sec. 4, we know the mapping y 7→ x∗(y)195

is hard to learn even with a lot of samples.196

5

We can see this more clearly with a concrete example in 2D space. Let the 1D instance description197

y ∈ [0, π/2], and the feasible region is a convex hull of 3 vertices {(0, 0), (0, 1), (1, 0)}. The198

nonlinear objective is simply f(x; y) := (x1 cos(y) + x2 sin(y))
2, in which x = (x1, x2) is the 2D199

solution vector. The direct mapping y → x∗ maps a continuous region of instance descriptions (i.e.,200

y ∈ [0, π/2]) into 2 disjoint regions points (x∗ = (0, 1) and x∗ = (1, 0)), and thus according to201

Theorem 4.4, its Lipschitz constant must be infinite. In contrast, there exists a surrogate cost mapping202

c(y) = [cos(y), sin(y)]⊤, and the mapping y → c has finite Lipschitz constant (actually L ≤ 1) and203

can be learned easily.204

5 Empirical Evaluation205

We evaluate the variants of SurCo on three settings, embedding table sharding, inverse photonic206

design, and nonlinear route planning, with the first two being real-world industrial settings. Each207

setting consists of a family of problem instances with varying feasible region and nonlinear objective208

function. Additionally, both table sharding and inverse photonic design lack analytical formulations209

of the objective function which prevents them from being used by many off-the-shelf nonlinear210

solvers like SCIP (Achterberg, 2009).211

Embedding Table Sharding. The task of sharding embedding tables arises in the deployment212

of large-scale neural network models which operate over both sparse and dense inputs (e.g., in213

recommendation systems (Zha et al., 2022a,b, 2023; Sethi et al., 2022)). Given T embedding tables214

and D homogeneous devices, the goal is to distribute the tables among the devices such that no215

device’s memory limit is exceeded, while the tables are processed efficiently. Formally, let xt,d be216

the binary variable indicating whether table t is assigned to device d, and x := {xt,d} ∈ {0, 1}TD217

be the collection of the variables. The optimization problem is minx∈Ω f(x;y) where Ω(y) :=218

{x : ∀t,
∑

t xt,d = 1,∀d,
∑

t mtxt,d ≤M}.219

Here the problem description y includes table memory usage {mt}, and capacity M of each device.220 ∑
d xt,d = 1 means each table t should be assigned to exactly one device, and

∑
d mtxt,d ≤ M221

means the memory consumption at each device d should not exceed its capacity. The nonlinear222

cost function f(x;y) is the latency, i.e., the runtime of the longest-running device. Due to shared223

computation (e.g., batching) among the group of assigned tables, and communication costs across224

devices, the objective is highly nonlinear. f(x;y) is well-approximated by a sharding plan runtime225

estimator proposed by Dreamshard (Zha et al., 2022b). Note that here, the runtime is approximated226

by a differentiable function since the real world deployment runtime isn’t differentiable.227

SurCo learns to predict T ×D surrogate cost ĉt,d, one for each potential table-device assignment.228

During training, the gradients through the combinatorial solver ∂g/∂c are computed via CVXPY-229

Layers (Agrawal et al., 2019a), and the integrality constraints are relaxed. In practice, we obtained230

mostly integral solutions in that only one table on any given device was fractional. At test time, we231

solve for the integer solution using SCIP (Achterberg, 2009), a branch and bound MILP solver.232

Settings. We evaluate SurCo on the public Deep Learning Recommendation Model (DLRM)233

dataset (Naumov et al., 2019). We consider 6 settings placing 10, 20, 30, 40, 50, and 60 tables on 4234

devices, with a 5GB memory limit on GPU devices and 100 instances each (50 train, 50 test).235

Baselines. Greedy allocates tables to devices based on local latency increase f , and the domain-236

expert algorithm Domain-Heuristic balances the aggregate dimension (Zha et al., 2022b). For237

SurCo-prior, we use Dreamshard, the SoTA embedding table sharding RL algorithm.238

Results. Fig. 2, SurCo-zero finds lower latency sharding plans than the baselines, while it takes239

slightly longer than Domain-Heuristic and DreamShard due to taking optimization steps rather240

than building a solution with an RL policy. SurCo-prior obtains lower latency solutions in about241

the same time as DreamShard with a slight runtime increase from SCIP. Lastly, SurCo-hybrid242

obtains the best solutions and has runtime comparable to SurCo-zero. In smaller instances243

(T ≤ 40), SurCo-prior finds better solutions than its impromptu counterpart, SurCo-zero,244

likely by escaping local optima by training on a variety of examples. For larger instances with more245

tables available for placement, SurCo-zero performs better by optimizing for the test instances as246

opposed to SurCo-prior which only uses training data. Using SurCo-hybrid, we obtain the247

best solutions but incur the upfront pretraining cost and the deployment-time optimization cost.248

6

Mode Converter Waveguide Bend Beam SplitterWavelength Multiplexer

Wavelength1 1270nm Wavelength2 1290nm

Figure 3: Inverse photonic design settings from the ceviche challenges Schubert et al. (2022) along with
SurCo-zero solution designs and wavelength intensities. Light is fed in on the left and is routed at desired
intensities to the output by designing the intermediate region. In the Wavelength Multiplexer setting, two
wavelengths of interest are visualized as they are routed to different locations.

Inverse Photonic Design. Photonic devices play an essential role in high-speed communication249

(Marpaung et al., 2019), quantum computing (Arrazola et al., 2021), and machine learning hardware250

acceleration (Wetzstein et al., 2020). The photonic components can be encoded as a binary 2D grid,251

with each cell being filled or void. There are constraints on which binary patterns are physically252

manufacturable: only those that can be drawn by a physical brush instrument with a specific cross253

shape can be manufactured. It remains challenging to find manufacturable designs that satisfy254

design specifications like splitting beams of light. An example solution developed by SurCo is255

shown in Figure 3: beams are routed from the left to output locations, depending on wavelength.256

The solution is also manufacturable: a 3-by-3 cross can fit in all filled and void space. Given the257

design, existing work (Hughes et al., 2019) enables differentiation of the design misspecification cost,258

evaluated as how far off the transmission intensity of the wavelengths are from the desired output259

locations, with zero design loss meaning that the specification is satisfied. Researchers also develop260

the Ceviche Challenges (Schubert et al., 2022) a standard benchmark of inverse photonic design261

problems. Formally, a feasible design is a rectangle of pixels which are either filled or void where262

both the filled and void pixels can be expressed as a unions of the brush shape. Please see (Schubert263

et al., 2022) for an in depth description of the nonlinear objective and feasible region.264

Figure 4: Left The solution loss (% of failed instances when the design loss is not 0), and right test time solver
runtime in log scale. For both, lower is better. We compare against the Pass-Through gradient approach proposed
in Schubert et al. (2022). We observe that SurCo-prior achieves similar success rates to the previous approach
Pass-Through with a substantially improved runtime. Additionally, SurCo-zero runs comparably or faster,
while finding more valid solutions than Pass-Through. SurCo-hybrid obtains valid solutions most often
and is faster than SurCo-zero at the expense of pretraining. Striped approaches use pretraining.

Settings. We compare our approaches against the Pass-Through method (Schubert et al., 2022)265

on randomly generated instances of the four types of problems in Schubert et al. (2022): Waveguide266

Bend, Mode Converter, Wavelengths Division Multiplexer, and Beam Splitter. We generate 50267

instances in each setting (25 training/25 test), randomly sampling the location of input and output268

waveguides, or “pipes” where we are taking in light and desire light to output. We fix the wavelengths269

themselves and so the problem description y contains an image description of the problem instance,270

where each pixel is either “fixed” or “designable”. Further generation details are in the appendix. We271

evaluated several algorithms described in the appendix, such as genetic algorithms and derivative-free272

optimization, which failed to find feasible solutions. We consider two wavelengths (1270nm/1290nm),273

and optimize at a resolution of 40nm, visualizing the test results in Fig. 4.274

Results. Fig. 4, SurCo-zero consistently finds as many or more valid devices compared to the275

Pass-Through baseline (Schubert et al., 2022). Additionally, since the on-the-fly solvers stop276

7

when they either find a valid solution, or reach a maximum of 200 steps, the runtime of SurCo-zero277

is slightly lower than the Pass-Through baseline. SurCo-prior obtains similar success rates as278

Pass-Through while taking two orders of magnitude less time as it does not require impromptu279

optimization. Lastly, SurCo-hybrid finds valid solutions more often than the other approaches. It280

also takes less runtime than the other on-the-fly approaches although it still requires optimization281

on-the-fly so it takes longer than SurCo-prior. In Fig. 5, SurCo-zero has smoother and faster282

convergence than Pass-Through.283

0 25 50 75 100 125 150 175 200

Step

0.0

0.2

0.4

0.6

0.8

1.0

D
es

ig
n

M
is

sp
ec

ifi
ca

ti
o
n

Inverse Photonics Loss Convergence

Method
Pass-Through

SurCo-zero

SurCo-hybrid

Figure 5: Inverse photonic design convergence.
SurCo-zero smoothly lowers the loss while the base-
line converges noisily. SurCo-hybrid fine-tunes an
already high-quality solution.

Nonlinear Route Planning. Nonlinear route284

planning can arise where one wants to maxi-285

mize the probability of arrival before a set time286

in graphs with random edges (Fan et al., 2005;287

Nikolova et al., 2006; Lim et al., 2013). These288

problems occur in risk-aware settings where op-289

erators need to maximize the probability of ar-290

riving before a critical time.291

Given a graph G with edge lengths coming292

from a random distribution, a pair of source293

and destination nodes s, t, and a time limit294

T that we would like to arrive before, we se-295

lect a feasible s − t path Ps,t that maximizes296

the probability of arriving before the deadline297

P [length(Ps,t) ≤ T]. If we assume that edge298

times are distributed according to a random nor-299

mal distribution te ∼ N (µe, σ
2
e), then we could300

write the objective as maximizing f(x; y) =301

Φ
(
(T −

∑
e∈Ps,t

µe)/
√∑

e∈Ps,t
σ2
e

)
, with Φ302

being the cumulative distribution function of a standard Gaussian distribution, with the feasible303

region Ω(y) being the set of s− t paths in the graph. Explicitly, the problem parameters y are the304

graph G, source and destination nodes s, t, time limit T , and the edge weight distributions given305

by means and variances µe, σ
2
e . We only consider the zero-shot setting since we need to solve the306

problem on-the-fly. SurCo trains surrogate edge costs ĉe, finds the shortest path using Bellman-Ford307

(Bellman, 1958), and differentiates using blackbox differentiation (Pogančić et al., 2019).308

Loose Deadline Normal Deadline Tight Deadline
Setting

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

O
n

Ti
m

e
Pr

ob
ab

ili
ty

Stochastic Shortest Path Solution Quality
Method

Domain Heuristic
SCIP-1s
SurCo-zero
SCIP-30min

Figure 6: Comparison of nonlinear route planning prob-
ability of arriving on time. We compare against a domain
heuristic (Nikolova et al., 2006) and SCIP (Achterberg,
2009). SurCo-zero outperforms the domain heuristic,
and is similar to SCIP using less time. SCIP-1s fails to
find feasible solutions.

Settings. We run on a 5x5 grid graph with 25309

draws of edge parameters µe ∼ U(0.1, 1) and310

σ2
e ∼ U(0.1, 0.3)∗ (1−µe), with U(a, b) being311

the uniform random distribution between a and312

b. We have deadline settings based on the length313

of the least expected time path (LET) which is314

simply the shortest path using µe as weights.315

We use loose, normal, and tight deadlines of316

1.1 LET, 1 LET, and 0.9 LET respectively. The317

source and destination are oppose corners of the318

grid graph.319

Results. Fig. 6, we compare SurCo-zero320

against a domain-specific approach that mini-321

mizes a linear combination of mean and variance322

(Nikolova et al., 2006), and SCIP (Achterberg,323

2009). In this setting, we focus on the zero-shot324

performance of SurCo, comparing it against325

two other zero-shot approaches. Furthermore,326

here we are able to encode the objective ana-327

lytically into SCIP whereas the objectives of the other settings do not have readily-encodeable328

formulations, relying on neural networks or physical simulation. Since SurCo-zero and the domain329

approach take much less than 1 second, we use SCIP-1s and find that SCIP cannot find feasible330

solutions at that time scale. SCIP-30min demonstrates how well a general-purpose method can331

do given enough time, with SCIP timing out on all instances. We also find that SurCo-zero332

8

is able to obtain comparable solutions to SCIP-30min. Furthermore, SurCo-zero consistently333

outperforms the domain heuristic, finding paths that reach the deadline with 4.5%, 6.5%, 8.5% times334

higher success rates in loose, normal, and tight deadlines. Finally, the domain heuristic only beats335

SurCo-zero in 2 instances.336

6 Related Work337

Differentiable Optimization. OptNet (Amos & Kolter, 2017) implicitly differentiates through KKT338

conditions: equations that determine the optimal solution. Followup work differentiated through339

linear programs (Wilder et al., 2019a), submodular optimization (Djolonga & Krause, 2017; Wilder340

et al., 2019a; Wang et al., 2020a), cone programs (Agrawal et al., 2019a,b), MaxSAT (Wang et al.,341

2019), mixed integer linear programs (Ferber et al., 2020; Mandi et al., 2020), integer linear programs342

(Mandi et al., 2020), dynamic programs Demirovic et al. (2020), blackbox discrete linear optimizers343

(Pogančić et al., 2019; Rolı́nek et al., 2020a,b), maximum likelihood estimation (Niepert et al., 2021),344

kmeans clustering (Wilder et al., 2019b), knapsack (Guler et al., 2022; Demirović et al., 2019), the345

cross-entropy method (Amos & Yarats, 2020), least squares (Pineda et al., 2022), SVM training (Lee346

et al., 2019). SurCo can use these surrogates as needed.347

Task Based Learning. Task-based learning solves distributions of linear or quadratic optimization348

problems with the true objective hidden at test time but available for training (Elmachtoub & Grigas,349

2022b; Donti et al., 2017; El Balghiti et al., 2019; Liu & Grigas, 2021; Hu et al., 2022). (Donti et al.,350

2021) predicts solutions for continuous nonlinear optimization. Machine learning can also guide351

combinatorial algorithms. Several approaches produce combinatorial solutions (Zhang & Dietterich,352

1995; Khalil et al., 2017; Kool et al., 2018; Nazari et al., 2018; Zha et al., 2022a,b), but are limited353

to constructively building solutions for problems like routing, assignment, or covering. However,354

these approaches fail to handle more complex constraints. Other approaches set parameters that355

improve solver runtime (Khalil et al., 2016; Bengio et al., 2021). Similarly, a neural diving approach356

has been proposed for finding fast MILP solutions Nair et al. (2020), but requires iteratively solving357

subproblems which are nontrivial for nonlinear objectives.358

Learning Latent Space for Optimization. We learn latent linear objectives to optimize nonlinear359

functions while other approaches learn latent embeddings for faster solving. FastMap (Faloutsos &360

Lin, 1995) learns latent embeddings for efficient search, with variants for graph optimization and361

shortest path (Cohen et al., 2018; Hu et al., 2022; Li et al., 2019). Wang et al. (2020b, 2021a); Yang362

et al. (2021); Zhao et al. (2022) use Monte Carlo Tree Search to learn to split the search space.363

Mixed Integer Nonlinear Programming (MINLP). SurCo-zero solves some MINLP instances,364

optimizing nonlinear objectives over discrete linear regions, like some general solvers (Burer &365

Letchford, 2012; Belotti et al., 2013); however, scalability often requires problem-specific techniques.366

7 Conclusion367

We introduced SurCo, a method for learning linear surrogates for combinatorial nonlinear opti-368

mization problems. At its core, SurCo differentiates through the surrogate solver which maps the369

predicted coefficients to a combinatorially feasible solution, combining the flexibility of gradient-370

based optimization with the structure of combinatorial solvers. Our theoretical intuition for SurCo371

poses promising directions for future work in proving convergence guarantees or generalization372

bounds. We present three variants of SurCo, SurCo-zero for individual instances, SurCo-373

prior which trains a coefficient prediction model offline, and SurCo-hybrid which fine-tunes374

the coefficients predicted by SurCo-prior on individual test instances. We evaluated variants of375

SurCo against the state-of-the-art approaches on three domains, with two used in industry, obtaining376

better solutions faster in the embedding table sharding domain, quickly identifying viable photonic377

devices, and finding successful routes in stochastic path planning. Overall, SurCo trains linear378

surrogate coefficients to find high-quality solutions to tackle a broad class of combinatorial problems379

with nonlinear objectives where off-the-shelf solvers fail.380

9

References381

Achterberg, T. Scip: solving constraint integer programs. Mathematical Programming Computation,382

1(1):1–41, 2009.383

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and Kolter, J. Z. Differentiable convex384

optimization layers. Advances in neural information processing systems, 32, 2019a.385

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., and Moursi, W. M. Differentiating through a cone386

program. J. Appl. Numer. Optim, 1(2):107–115, 2019b.387

Amos, B. and Kolter, J. Z. Optnet: Differentiable optimization as a layer in neural networks. In388

International Conference on Machine Learning, pp. 136–145. PMLR, 2017.389

Amos, B. and Yarats, D. The differentiable cross-entropy method. In International Conference on390

Machine Learning, pp. 291–302. PMLR, 2020.391

Arrazola, J. M., Bergholm, V., Brádler, K., Bromley, T. R., Collins, M. J., Dhand, I., Fumagalli, A.,392

Gerrits, T., Goussev, A., Helt, L. G., et al. Quantum circuits with many photons on a programmable393

nanophotonic chip. Nature, 591(7848):54–60, 2021.394

Ban, G.-Y. and Rudin, C. The big data newsvendor: Practical insights from machine learning.395

Operations Research, 67(1):90–108, 2019.396

Bellman, R. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.397

Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., and Mahajan, A. Mixed-integer398

nonlinear optimization. Acta Numerica, 22:1–131, 2013.399

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning for combinatorial optimization: a method-400

ological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.401

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., and Bach, F. Learning with differentiable402

pertubed optimizers. Advances in neural information processing systems, 33:9508–9519, 2020.403

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,404

A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of405

Python+NumPy programs, 2018. URL http://github.com/google/jax.406

Burer, S. and Letchford, A. N. Non-convex mixed-integer nonlinear programming: A survey. Surveys407

in Operations Research and Management Science, 17(2):97–106, 2012.408

Chvatal, V., Chvatal, V., et al. Linear programming. Macmillan, 1983.409

Cohen, L., Uras, T., Jahangiri, S., Arunasalam, A., Koenig, S., and Kumar, T. S. The fastmap410

algorithm for shortest path computations. In IJCAI, 2018.411

Cozad, A., Sahinidis, N. V., and Miller, D. C. Learning surrogate models for simulation-based412

optimization. AIChE Journal, 60(6):2211–2227, 2014.413

Demirović, E., J Stuckey, P., Bailey, J., Chan, J., Leckie, C., Ramamohanarao, K., and Guns, T.414

Predict+ optimise with ranking objectives: Exhaustively learning linear functions. In Proceed-415

ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,416

Macao, China, August 10-16, 2019, pp. 1078–1085. International Joint Conferences on Artificial417

Intelligence, 2019.418

Demirovic, E., J Stuckey, P., Guns, T., Bailey, J., Leckie, C., Ramamohanarao, K., and Chan, J.419

Dynamic programming for predict+ optimise. In The Thirty-Fourth AAAI Conference on Artificial420

Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-421

ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,422

EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 1444–1451. AAAI Press, 2020.423

Djolonga, J. and Krause, A. Differentiable learning of submodular models. Advances in Neural424

Information Processing Systems, 30, 2017.425

10

http://github.com/google/jax

Donti, P., Amos, B., and Kolter, J. Z. Task-based end-to-end model learning in stochastic optimization.426

Advances in neural information processing systems, 30, 2017.427

Donti, P. L., Rolnick, D., and Kolter, J. Z. DC3: A learning method for optimization with hard428

constraints. In International Conference on Learning Representations, 2021. URL https:429

//openreview.net/forum?id=V1ZHVxJ6dSS.430

El Balghiti, O., Elmachtoub, A. N., Grigas, P., and Tewari, A. Generalization bounds in the predict-431

then-optimize framework. Advances in neural information processing systems, 32, 2019.432

Elmachtoub, A. N. and Grigas, P. Smart “predict, then optimize”. Management Science, 68(1):9–26,433

2022a.434

Elmachtoub, A. N. and Grigas, P. Smart “predict, then optimize”. Management Science, 68(1):9–26,435

2022b.436

Faloutsos, C. and Lin, K.-I. Fastmap: A fast algorithm for indexing, data-mining and visualization437

of traditional and multimedia datasets. In Proceedings of the 1995 ACM SIGMOD International438

Conference on Management of Data, SIGMOD ’95, pp. 163–174, New York, NY, USA, 1995.439

Association for Computing Machinery. ISBN 0897917316. doi: 10.1145/223784.223812. URL440

https://doi.org/10.1145/223784.223812.441

Fan, Y., Kalaba, R. E., and Moore, J. E. Arriving on time. Journal of Optimization Theory and442

Applications, 127:497–513, 2005.443

Ferber, A., Wilder, B., Dilkina, B., and Tambe, M. Mipaal: Mixed integer program as a layer. In444

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1504–1511, 2020.445

Fix, E. Discriminatory analysis: nonparametric discrimination, consistency properties, volume 1.446

USAF school of Aviation Medicine, 1985.447

Gad, A. F. Pygad: An intuitive genetic algorithm python library, 2021.448

Gosavi, A. et al. Simulation-based optimization. Springer, 2015.449

Guler, A. U., Demirović, E., Chan, J., Bailey, J., Leckie, C., and Stuckey, P. J. A divide and conquer450

algorithm for predict+ optimize with non-convex problems. In Proceedings of the AAAI Conference451

on Artificial Intelligence, volume 36, pp. 3749–3757, 2022.452

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.453

gurobi.com.454

Hu, Y., Kallus, N., and Mao, X. Fast rates for contextual linear optimization. Management Science,455

2022.456

Hughes, T. W., Williamson, I. A., Minkov, M., and Fan, S. Forward-mode differentiation of maxwell’s457

equations. ACS Photonics, 6(11):3010–3016, 2019.458

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,459

K., Bates, R., Žı́dek, A., Potapenko, A., et al. Highly accurate protein structure prediction with460

alphafold. Nature, 596(7873):583–589, 2021.461

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilkina, B. Learning to branch in mixed462

integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,463

2016.464

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. Learning combinatorial optimization465

algorithms over graphs. Advances in neural information processing systems, 30, 2017.466

Kool, W., van Hoof, H., and Welling, M. Attention, learn to solve routing problems! In International467

Conference on Learning Representations, 2018.468

Korte, B. and Hausmann, D. An analysis of the greedy heuristic for independence systems. In Annals469

of Discrete Mathematics, volume 2, pp. 65–74. Elsevier, 1978.470

11

https://openreview.net/forum?id=V1ZHVxJ6dSS
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://openreview.net/forum?id=V1ZHVxJ6dSS
https://doi.org/10.1145/223784.223812
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com

Koziel, S., Çalık, N., Mahouti, P., and Belen, M. A. Accurate modeling of antenna structures471

by means of domain confinement and pyramidal deep neural networks. IEEE Transactions on472

Antennas and Propagation, 70(3):2174–2188, 2021.473

Land, A. H. and Doig, A. G. An automatic method for solving discrete programming problems. In474

50 Years of Integer Programming 1958-2008, pp. 105–132. Springer, 2010.475

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-learning with differentiable convex476

optimization. In Proceedings of the IEEE/CVF conference on computer vision and pattern477

recognition, pp. 10657–10665, 2019.478

Li, J., Felner, A., Koenig, S., and Kumar, T. S. Using fastmap to solve graph problems in a euclidean479

space. In Proceedings of the international conference on automated planning and scheduling,480

volume 29, pp. 273–278, 2019.481

Li, S., Yan, Z., and Wu, C. Learning to delegate for large-scale vehicle routing. Advances in Neural482

Information Processing Systems, 34:26198–26211, 2021.483

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization with graph convolutional networks and484

guided tree search. Advances in neural information processing systems, 31, 2018.485

Lim, S., Sommer, C., Nikolova, E., and Rus, D. Practical route planning under delay uncertainty:486

Stochastic shortest path queries. In Robotics: Science and Systems, volume 8, pp. 249–256. United487

States, 2013.488

Liu, H. and Grigas, P. Risk bounds and calibration for a smart predict-then-optimize method.489

Advances in Neural Information Processing Systems, 34:22083–22094, 2021.490

Liuzzi, G., Lucidi, S., and Rinaldi, F. Derivative-free methods for mixed-integer constrained491

optimization problems. Journal of Optimization Theory and Applications, 164(3):933–965, 2015.492

Mandi, J., Stuckey, P. J., Guns, T., et al. Smart predict-and-optimize for hard combinatorial optimiza-493

tion problems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.494

1603–1610, 2020.495

Marpaung, D., Yao, J., and Capmany, J. Integrated microwave photonics. Nature photonics, 13(2):496

80–90, 2019.497

Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. Reinforcement learning for combinatorial498

optimization: A survey. Computers & Operations Research, 134:105400, 2021.499

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W., Songhori, E., Wang, S., Lee, Y.-J., Johnson,500

E., Pathak, O., Nazi, A., et al. A graph placement methodology for fast chip design. Nature, 594501

(7862):207–212, 2021.502

Nagai, R., Akashi, R., and Sugino, O. Completing density functional theory by machine learning503

hidden messages from molecules. npj Computational Materials, 6(1):1–8, 2020.504

Nair, V., Bartunov, S., Gimeno, F., Von Glehn, I., Lichocki, P., Lobov, I., O’Donoghue, B., Sonnerat,505

N., Tjandraatmadja, C., Wang, P., et al. Solving mixed integer programs using neural networks.506

arXiv preprint arXiv:2012.13349, 2020.507

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundaraman, N., Park, J., Wang, X., Gupta, U.,508

Wu, C., Azzolini, A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, I., Lu, Y., Krishnamoorthi,509

R., Yu, A., Kondratenko, V., Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong, L., and510

Smelyanskiy, M. Deep learning recommendation model for personalization and recommendation511

systems. CoRR, abs/1906.00091, 2019. URL https://arxiv.org/abs/1906.00091.512

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. Reinforcement learning for solving the vehicle513

routing problem. Advances in neural information processing systems, 31, 2018.514

Niepert, M., Minervini, P., and Franceschi, L. Implicit mle: backpropagating through discrete515

exponential family distributions. Advances in Neural Information Processing Systems, 34:14567–516

14579, 2021.517

12

https://arxiv.org/abs/1906.00091

Nikolova, E., Kelner, J. A., Brand, M., and Mitzenmacher, M. Stochastic shortest paths via quasi-518

convex maximization. In European Symposium on Algorithms, pp. 552–563. Springer, 2006.519

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,520

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,521

S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance522

deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,523

and Garnett, R. (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035.524

Curran Associates, Inc., 2019.525

Pineda, L., Fan, T., Monge, M., Venkataraman, S., Sodhi, P., Chen, R. T., Ortiz, J., DeTone, D., Wang,526

A., Anderson, S., et al. Theseus: A library for differentiable nonlinear optimization. Advances in527

Neural Information Processing Systems, 35:3801–3818, 2022.528

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., and Rolinek, M. Differentiation of blackbox529

combinatorial solvers. In International Conference on Learning Representations, 2019.530

Rapin, J. and Teytaud, O. Nevergrad - A gradient-free optimization platform. https://GitHub.531

com/FacebookResearch/Nevergrad, 2018.532

Reingold, E. M. and Tarjan, R. E. On a greedy heuristic for complete matching. SIAM Journal on533

Computing, 10(4):676–681, 1981.534

Rolı́nek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., and Martius, G. Optimizing535

rank-based metrics with blackbox differentiation. In Proceedings of the IEEE/CVF Conference on536

Computer Vision and Pattern Recognition, pp. 7620–7630, 2020a.537

Rolı́nek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil, V., and Martius, G. Deep graph matching538

via blackbox differentiation of combinatorial solvers. In European Conference on Computer Vision,539

pp. 407–424. Springer, 2020b.540

Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,541

2016.542

Schubert, M. F., Cheung, A. K. C., Williamson, I. A. D., Spyra, A., and Alexander, D. H. Inverse543

design of photonic devices with strict foundry fabrication constraints. ACS Photonics, 9(7):544

2327–2336, 2022. doi: 10.1021/acsphotonics.2c00313.545

Sethi, G., Acun, B., Agarwal, N., Kozyrakis, C., Trippel, C., and Wu, C.-J. Recshard: statistical546

feature-based memory optimization for industry-scale neural recommendation. In Proceedings of547

the 27th ACM International Conference on Architectural Support for Programming Languages548

and Operating Systems, pp. 344–358, 2022.549

Simon, D. Evolutionary optimization algorithms. John Wiley & Sons, 2013.550

Steiner, B., Cummins, C., He, H., and Leather, H. Value learning for throughput optimization of551

deep learning workloads. In Smola, A., Dimakis, A., and Stoica, I. (eds.), Proceedings of Machine552

Learning and Systems, volume 3, pp. 323–334, 2021. URL https://proceedings.mlsys.553

org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf.554

Van Rossum, G. and Drake, F. L. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.555

ISBN 1441412697.556

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and557

Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,558

2017.559

Voß, S., Martello, S., Osman, I. H., and Roucairol, C. Meta-heuristics: Advances and trends in local560

search paradigms for optimization. Springer Science & Business Media, 2012.561

Wang, K., Wilder, B., Perrault, A., and Tambe, M. Automatically learning compact quality-aware562

surrogates for optimization problems. Advances in Neural Information Processing Systems, 33:563

9586–9596, 2020a.564

13

https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/73278a4a86960eeb576a8fd4c9ec6997-Paper.pdf

Wang, L., Fonseca, R., and Tian, Y. Learning search space partition for black-box optimization using565

monte carlo tree search. Advances in Neural Information Processing Systems, 33:19511–19522,566

2020b.567

Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. Sample-efficient neural architecture search by568

learning actions for monte carlo tree search. IEEE Transactions on Pattern Analysis and Machine569

Intelligence, 2021a.570

Wang, P.-W., Donti, P., Wilder, B., and Kolter, Z. Satnet: Bridging deep learning and logical reasoning571

using a differentiable satisfiability solver. In International Conference on Machine Learning, pp.572

6545–6554. PMLR, 2019.573

Wang, X., Liu, Y., Zhao, J., Liu, C., Liu, J., and Yan, J. Surrogate model enabled deep reinforcement574

learning for hybrid energy community operation. Applied Energy, 289:116722, 2021b.575

Wetzstein, G., Ozcan, A., Gigan, S., Fan, S., Englund, D., Soljačić, M., Denz, C., Miller, D. A., and576

Psaltis, D. Inference in artificial intelligence with deep optics and photonics. Nature, 588(7836):577

39–47, 2020.578

Wilder, B., Dilkina, B., and Tambe, M. Melding the data-decisions pipeline: Decision-focused579

learning for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial580

Intelligence, volume 33, pp. 1658–1665, 2019a.581

Wilder, B., Ewing, E., Dilkina, B., and Tambe, M. End to end learning and optimization on graphs.582

Advances in Neural Information Processing Systems, 32, 2019b.583

Wolsey, L. A. An analysis of the greedy algorithm for the submodular set covering problem.584

Combinatorica, 2(4):385–393, 1982.585

Wolsey, L. A. Mixed integer programming. Wiley Encyclopedia of Computer Science and Engineering,586

pp. 1–10, 2007.587

Yang, K., Zhang, T., Cummins, C., Cui, B., Steiner, B., Wang, L., Gonzalez, J. E., Klein, D., and588

Tian, Y. Learning space partitions for path planning. Advances in Neural Information Processing589

Systems, 34:378–391, 2021.590

Ye, Y., Zhang, X., and Sun, J. Automated vehicle’s behavior decision making using deep rein-591

forcement learning and high-fidelity simulation environment. Transportation Research Part C:592

Emerging Technologies, 107:155–170, 2019.593

Zha, D., Feng, L., Bhushanam, B., Choudhary, D., Nie, J., Tian, Y., Chae, J., Ma, Y., Kejariwal,594

A., and Hu, X. Autoshard: Automated embedding table sharding for recommender systems. In595

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.596

4461–4471, 2022a.597

Zha, D., Feng, L., Tan, Q., Liu, Z., Lai, K.-H., Bhargav, B., Tian, Y., Kejariwal, A., and Hu, X.598

Dreamshard: Generalizable embedding table placement for recommender systems. In Advances in599

Neural Information Processing Systems, 2022b.600

Zha, D., Feng, L., Luo, L., Bhushanam, B., Liu, Z., Hu, Y., Nie, J., Huang, Y., Tian, Y., Kejariwal, A.,601

et al. Pre-train and search: Efficient embedding table sharding with pre-trained neural cost models.602

In Sixth Conference on Machine Learning and Systems, 2023.603

Zhang, W. and Dietterich, T. G. A reinforcement learning approach to job-shop scheduling. In IJCAI,604

volume 95, pp. 1114–1120. Citeseer, 1995.605

Zhao, Y., Wang, L., Yang, K., Zhang, T., Guo, T., and Tian, Y. Multi-objective optimization by606

learning space partition. In International Conference on Learning Representations, 2022. URL607

https://openreview.net/forum?id=FlwzVjfMryn.608

Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P., Xu, Q., Liu, H., Phothilimtha, P., Wang, S.,609

Goldie, A., et al. Transferable graph optimizers for ml compilers. Advances in Neural Information610

Processing Systems, 33:13844–13855, 2020.611

14

https://openreview.net/forum?id=FlwzVjfMryn

A Proofs612

Lemma A.1 (Sufficient condition of prediction with ϵ-accuracy). If the dataset C can (ϵ/L)-cover Y ,613

then for any y ∈ Y , a 1-nearest-neighbor regressor ϕ̂ leads to ∥ϕ̂(y)− ϕ(y)∥2 ≤ ϵ.614

Proof. Since the dataset is a ϵ/L-cover, for any y ∈ Y , there exists at least one yi so that ∥y−yi∥2 ≤615

ϵ/L. Let ynn be the nearest neighbor of y, and we have:616

∥y − ynn∥2 ≤ ∥y − yi∥2 ≤ ϵ/L (6)

From the Lipschitz condition and the definition of 1-nearest-neighbor classifier (ϕ̂(y) = ϕ(ynn)),617

we know that618

∥ϕ(y)− ϕ̂(y)∥2 = ∥ϕ(y)− ϕ(ynn)∥2 ≤ L∥y − ynn∥2 ≤ ϵ (7)
619

Lemma A.2 (Lower bound of sample complexity for ϵ/L-cover). To achieve ϵ/L-cover of Y , the size620

of the dataset set N ≥ N0(ϵ) :=
vol(Y)
vol0

(
L
ϵ

)d
, where vol0 is the volume of unit ball in d-dimension.621

Proof. We prove by contradiction. If N < N0(ϵ), then for each training sample (yi,ϕi), we create a622

ball Bi := B (yi, ϵ/L). Since623

vol

(
N⋃
i=1

Bi ∩ Y

)
≤ vol

(
N⋃
i=1

Bi

)
≤

N∑
i=1

vol(Bi) = Nvol0

(ϵ

L

)d
< vol(Y) (8)

Therefore, there exists at least one y ∈ Y so that y /∈ Bi for any 1 ≤ i ≤ N . This means that y is624

not ϵ/L-covered.625

Theorem 4.4 (A case of infinite Lipschitz constant). If the minimal distance dmin for different626

connected components of ϕ(Y) is strictly positive, and κ(ϕ(Y)) > κ(Y), then the Lipschitz constant627

of the mapping ϕ is infinite.628

Proof. Let R1, R2, . . . , RK be the K = κ(ϕ(Y)) connected components of ϕ(Y), and629

Y1, Y2, . . . , YJ be the J = κ(Y) connected components of Y . From the condition, we know630

that mink ̸=k′ dist(Rk, Rk′) = dmin > 0.631

We have Rk ∩ Rk′ = ∅ for k ̸= k′. Each Rk has a pre-image Sk := ϕ−1(Rk) ⊆ Y . These632

pre-images {Sk}Kk=1 form a partition of Y since633

• Sk ∩ Sk′ = ∅ for k ̸= k′ since any y ∈ Y cannot be mapped to more than one connected634

components;635

•
⋃K

k=1 Sk =
⋃K

k=1 ϕ
−1(Rk) = ϕ−1

(⋃K
k=1 Rk

)
= ϕ−1(ϕ(S)) = S.636

Since K = κ(ϕ(Y)) > κ(Y), by pigeonhole principle, there exists one Yj that contains at least part637

of the two pre-images Sk and Sk′ with k ̸= k′. This means that638

Sk ∩ Yj ̸= ∅, Sk′ ∩ Yj ̸= ∅ (9)
Then we pick y ∈ Sk ∩ Yj and y′ ∈ Sk′ ∩ Yj . Since y,y′ ∈ Yj and Yj is a connected component,639

there exists a continuous path γ : [0, 1] 7→ Yj so that γ(0) = y and γ(1) = y′. Therefore, we have640

ϕ(γ(0)) ∈ Rk and ϕ(γ(1)) ∈ Rk′ . Let t0 := sup{t : t ∈ [0, 1],ϕ(γ(t)) ∈ Rk}, then 0 ≤ t0 < 1.641

For any sufficiently small ϵ > 0, we have:642

• By the definition of sup, we know there exists t0 − ϵ ≤ t′ ≤ t0 so that ϕ(γ(t′)) ∈ Rk.643

• Picking t′′ = t0 + ϵ < 1, then ϕ(γ(t′′)) ∈ Rk′′ with some k′′ ̸= k.644

On the other hand, by continuity of the curve γ, there exists a constant C(t0) so that ∥γ(t′) −645

γ(t′′)∥2 ≤ C(t0)∥t′ − t′′∥2 ≤ 2C(t0)ϵ. Then we have646

L = max
y,y′∈Y

∥ϕ(y)− ϕ(y′)∥2
∥y − y′∥2

≥ ∥ϕ(γ(t
′))− ϕ(γ(t′′))∥2

∥γ(t′)− γ(t′′)∥2
≥ dmin

2C(t0)ϵ
→ +∞ (10)

647

15

Task Randomization
mode converter randomize the right and left waveguide width
bend setting randomize the waveguide width and length
beam splitter randomize the waveguide separation, width and length
wavelength division multiplexer randomize the input and output waveguide locations

Table 2: Task randomization of 4 different tasks in inverse photonic design.

B Experiment Details648

B.1 Setups649

Experiments are performed on a cluster of identical machines, each with 4 Nvidia A100 GPUs and650

32 CPU cores, with 1T of RAM and 40GB of GPU memory. Additionally, we perform all operations651

in Python (Van Rossum & Drake, 2009) using Pytorch (Paszke et al., 2019). For embedding652

table placement, the nonlinear cost estimator is trained for 200 iterations and the offline-trained653

models of Dreamshard and SurCo-prior are trained against the pretrained cost estimator for654

200 iterations. The DLRM Dataset Naumov et al. (2019) is available at https://github.655

com/facebookresearch/dlrm_datasets, and the dreamshard (Zha et al., 2022b) code656

is available at https://github.com/daochenzha/dreamshard. Additional details on657

dreamshard’s model architecture and features can be obtained in the paper and codebase. Training658

time for the networks used in SurCo-prior and SurCo-hybrid are on average 8 hours for the659

inverse photonic design settings and 6, 21, 39, 44, 50, 63 minutes for DLRM 10, 20, 30, 40, 50, 60660

settings respectively.661

B.2 Network Architectures662

B.2.1 Embedding Table Sharding663

The table features are the same used in Zha et al. (2022b), and sinusoidal positional encoding Vaswani664

et al. (2017) is used as device features so that the learning model is able to break symmetries between665

the different tables and effectively group them onto homogeneous devices. The table and device666

features are concatenated and then fed into Dreamshard’s initial fully-connected table encoding667

module to obtain scalar predictions ĉt,d for each desired objective coefficient. The architecture is668

trained with the Adam optimizer with learning rate 0.0005. Here, we use the dreamshard backbone to669

predict coefficients for each table-device pair. We add more output dimensions to the dreamshard670

backbone, ensuring that we output the desired number of coefficients.671

B.2.2 Inverse Photonic Design672

Network architectures. The input design specification (a 2D image) is passed through a 3 layer673

convolutional neural network with ReLU activations and a final layer composed of filtering with the674

known brush shape. Then a tanh activation is used to obtain surrogate coefficients ĉ, one component675

for each binary input variable. The architecture is trained with the Adam optimizer with learning rate676

0.001.677

This is motivated by previous work (Schubert et al., 2022) that also uses the fixed brush shape filter678

and tanh operation to transform the latent parameters into a continuous solution that is projected onto679

the space of physically feasible solutions.680

In each setting, optimization is done on a binary grid of different sizes to meet fabrication constraints,681

namely that a 3 by 3 cross must fit inside each fixed and void location. In the beam splitter the design682

is an 80× 60 grid, in mode converter it is a 40× 40 grid, in waveguide bend it is a 40× 40 grid, in683

wavelength division multiplexer it is an 80× 80 grid.684

Previous work formulated the projection as finding a discrete solution that minimized the dot product685

of the input continuous solution and proposed discrete solution. The authors then updated the686

continuous solution by computing gradients of the loss with respect to the discrete solution and using687

pass-through gradients to update the continuous solution. By comparison, our approach treats the688

16

https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
https://github.com/facebookresearch/dlrm_datasets
https://github.com/daochenzha/dreamshard

projection as an optimization problem and updates the objective coefficients so that the resulting689

projected solution moves in the direction of the desired gradient.690

To compute the gradient of this blackbox projection solver, we leverage the approach suggested by691

Pogančić et al. (2019) which calls the solver twice, once with the original coefficients, and again with692

coefficients that are perturbed in the direction of the incoming solution gradient as being an “improved693

solution”. The gradient with respect to the input coefficients are then the difference between the694

“improved solution” and the solution for the current objective coefficients.695

C Pseudocode696

Here is the pseudocode for the different variants of our algorithm. Each of these leverage a differen-697

tiable optimization solver to differentiate through the surrogate optimization problem.698

Algorithm 1 SurCo-zero

Input: feasible region Ω, data y, objective f
c← init surrogate coefs(y)
while not converged do
x← argminx∈Ω(y) c

⊤x
loss← f(x;y)
c←grad update(c,∇closs)

end while
Return x

Algorithm 2 SurCo-prior Training

Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f
θ ← init surrogate model()
while not converged do

Sample batch B = {yi}ki ∼ Dtrain

for y ∈ B do
ĉ← ĉ(y; θ)
x← argminx∈Ω(y) c

⊤x
loss += f(x;y)

end for
θ ←grad update(θ,∇θloss)

end while
Return θ

Algorithm 3 SurCo-prior Deployment

1: Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f , test instance ytest
2: θ ← train SurCo-prior(Ω,Dtrain, f)
3: c← ĉ(y; θ)
4: x← argminx∈Ω(y) c

⊤x
5: Return x

17

Algorithm 4 SurCo-hybrid

1: Input: feasible region Ω, data Dtrain = {yi}Ni=1, objective f , test instance ytest
2: θ ← train SurCo-prior(Ω,Dtrain, f)
3: c← ĉ(y; θ)
4: while not converged do
5: x← argminx∈Ω(y) c

⊤x
6: loss← f(x;y)
7: c←grad update(c,∇closs)
8: end while
9: Return x

D Additional Failed Baselines699

SOGA - Single Objective Genetic Algorithm Using PyGAD (Gad, 2021), we attempted several700

approaches for both table sharding and inverse photonics settings. While we were able to obtain701

feasible table sharding solutions, they underperformed the greedy baseline by 20%. Additionally,702

they were unable to find physically feasible inverse photonics solutions. We varied between random,703

swap, inversion, and scramble mutations and used all parent selection methods but were unable to704

find viable solutions.705

DFL - A Derivative-Free Library We could not easily integrate DFLGEN (Liuzzi et al., 2015)706

into our pipelines since it operates in fortran and we needed to specify the feasible region with707

python in the ceviche challenges. DFLINT works in python but took more than 24 hours to run on708

individual instances which reached a timeout limit. We found that the much longer runtime made this709

inapplicable for the domains of interest.710

Nevergrad We enforced integrality in Nevergrad (Rapin & Teytaud, 2018) using choice variables711

which selected between 0 and 1. This approach was unable to find feasible solutions for inverse712

photonics in less than 10 hours. For table sharding we obtained solutions by using a choice variable713

for each table, selecting one of the available devices. This approach was not able to outperform the714

greedy baseline and took longer time so it was strictly dominated by the greedy approach.715

Solution Prediction We made several attempts at training solution predictors for each of our716

domains. We label each problem instance with the best-known solution obtained (including those717

obtained via SurCo). Note that predicting feasible solutions to combinatorial optimization problems718

is nontrivial for general settings.719

We evaluate solution prediction architectures in each setting. The models here match the architecture720

of SurCo-prior but the output is fed through a sigmoid transformation to get predictions in [0,1]. In721

nonlinear shortest path we use a GCN architecture and predict [0,1] whether edges are in the shortest722

s-t path. Not surprisingly, we found that predicting solutions to combinatorial problems is a nontrivial723

problem, further motivating the use of SurCo which ensures combinatorial feasibility of the generated724

solution.725

Note that the solutions predicted by the networks may not be binary (and thus not feasible). We726

then round the individual decision variables to get binary predictions. Empirically, we found that727

our predictions are very close to binary, indicating that rounding is more a numerical exactness728

operation than an algorithmic decision, with the largest distance from any original to rounded value729

being 0.0008 for inverse photonics, 0.0001 for nonlinear shortest path, and 0.0007 for the assignment730

problem of table sharding.731

We evaluate the results on unseen test instances in Table 3 and find that these solution prediction732

approaches don’t yield combinatorially feasible solutions. We present machin learning performance733

in the table below to verify that the predictive models perform “well” in terms of standard machine734

learning evaluation even though they fail to generate feasible solutions.735

We also iterate on table sharding to produce two more domain-specific approaches. We evaluate a736

model variant which assigns each table into one of the 4 devices using softmax, which empirically737

fails to yield feasible solutions that meet device memory limits for any of our instances. We further738

18

Setting Decision Variable Accuracy Average Solution Accuracy Solution Feasibility Rate

Inverse Photonics - Sigmoid 87% 0% 0%
Nonlinear Shortest Path - Sigmoid 95% 0% 0%

Table Sharding - Sigmoid 92% 0% 0%
Table Sharding - Softmax 88% 0% 0%

Table Sharding - Softmax + Iterative 70% 0% 100%

Table 3: Solution prediction results, most methods give infeasible solutions.

Setting % Latency Increase vs Domain Heuristic (worst baseline)

DLRM-10 6%
DLRM-20 5%
DLRM-30 9%
DLRM-40 7%
DLRM-50 3%
DLRM-60 11%

Table 4: Comparison of only feasible solution prediction method against worst baseline.

develop a method called Softmax + Iterative which iteratively assigns the most likely table-device739

assignment as long as the device has enough memory to hold the device. Luckily, this Softmax +740

Iterative method empirically yields feasible solutions in this setting but we note that this approach is741

not guaranteed to terminate in feasible solutions, unlike SurCo. To see why Softmax + Iterative does742

not necessarily guarantee feasible termination, consider assigning 3 tables (2 small and 1 large) to 2743

devices each with memory limit of 2, the small tables have memory 1 and the large table has memory744

2. If the model’s highest assignment probability is on the small tables being evenly distributed across745

devices, the algorithm will first assign the small tables to devices 1 and 2 but stall because it is unable746

to assign the large table since neither device has enough remaining capacity. We present results for747

this Softmax + Iterative approach compared to our domain heuristic which is the worst performing748

baseline in Table 4.749

For each setting, we evaluate the three metrics:750

• Decision Variable Accuracy Average, is the average percent of variables which are correctly751

predicted.752

• The solution accuracy, is the rate of predicting the full solution correctly (all decision753

variables predicted correctly).754

• The solution feasibility rate, is the percent of instances for which the predicted solution755

satisfies the constraints.756

19

	Introduction
	Problem Specification
	SurCo: Learning Linear Surrogates
	Surrogate Costs vs Solution Prediction, A Theoretical Analysis
	Empirical Evaluation
	Related Work
	Conclusion
	Proofs
	Experiment Details
	Setups
	Network Architectures
	Embedding Table Sharding
	Inverse Photonic Design

	Pseudocode
	Additional Failed Baselines

