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Abstract

Federated learning enables training machine learn-
ing models while preserving the privacy of par-
ticipants. Surprisingly, and to the best of our
knowledge, there is no differentially private dis-
tributed method for smooth non-convex optimiza-
tion problems. The reason is that standard privacy
techniques require bounding the participants’ con-
tributions, usually enforced via clipping of the
updates. Existing literature typically ignores the
effect of clipping by assuming the boundedness
of gradient norms or analyzes distributed algo-
rithms with clipping but ignores DP constraints.
In this work, we study an alternative approach via
smoothed normalization of the updates motivated
by its favorable performance in the centralized
setting. By integrating smoothed normalization
with an error-feedback mechanism, we design a
new distributed algorithm α-NormEC. We prove
that our method achieves a superior convergence
rate over prior works. By extending α-NormEC
to the DP setting, we obtain the first differentially
private distributed optimization algorithm with
provable convergence guarantees. Finally, we
support our theoretical findings with experiments
on practical machine learning problems.

1. Introduction
Federated Learning (FL) (Konečný et al., 2016; McMahan
et al., 2017; 2018) has become a viable approach for dis-
tributed collaborative training of modern machine learning
models (He et al., 2015; Ganesh et al., 2019; Silver et al.,
2016). This growing interest has spurred the development of
novel distributed optimization methods tailored for FL, fo-
cusing on ensuring high communication efficiency (Kairouz
et al., 2021). Although FL optimization methods ensure
that private data is never directly transmitted, Boenisch
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et al. (2023) demonstrated that the global models produced
through FL can still enable the reconstruction of clients’ data
individually. Therefore, it is essential to study differentially
private distributed optimization methods for differentially
private training (Dwork et al., 2014; McMahan et al., 2018;
Sun et al., 2019).

To address emerging privacy risks in FL, differential pri-
vacy (DP) (Dwork et al., 2014) has become the standard
for providing theoretical privacy guarantees in optimization
methods. To enfore DP, clipping is employed. It bounds
gradient sensitivity, allowing the addition of DP noise to the
updates before communication. One common DP gradient
method with clipping is Differentially Private Stochastic
Gradient Descent (DP-SGD) (Abadi et al., 2016). However,
even in the non-private setting, DP-SGD can hinder conver-
gence, due to the bias introduced by clipping (Koloskova
et al., 2023). Often, distributed DP gradient methods with
clipping have been studied in the private setting under as-
sumptions that are unrealistic for heterogeneous FL envi-
ronments, such as bounded gradients (Li et al., 2022; Wang
et al., 2023; Lowy et al., 2023; Zhang et al., 2020), which
effectively ignore the impact of clipping bias. To our knowl-
edge, no existing distributed DP gradient method has been
shown to converge for non-convex, smooth problems with-
out inadequately handling or disregarding the clipping bias.

Error Feedback (EF) mechanisms, also known as Error Com-
pensation (EC), such as EF21 (Richtárik et al., 2021) have
been employed to mitigate the clipping bias and achieve
strong convergence in the non-private setting, as studied
by Khirirat et al. (2023); Yu et al. (2023). However, ex-
tending these methods to the private setting is still an open
problem. Furthermore, as the clipping threshold highly af-
fects the convergence speed and the DP noise variance, opti-
mizing the convergence of distributed DP clipping methods
requires an extensive grid search to determine the appropri-
ate clipping threshold. This process can be computationally
expensive (Andrew et al., 2021), and lead to additional pri-
vacy loss (Papernot & Steinke, 2021). To address the need
for manually tuning the clipping threshold, two major ap-
proaches have emerged. The first approach is to use adaptive
clipping techniques, such as adaptive quantile clipping, ini-
tially proposed by Andrew et al. (2021) and further analyzed
by Merad & Gaïffas (2023); Shulgin & Richtárik (2024).
The second approach, which is the focus in this paper, is to
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Smoothed Normalization for Efficient Distributed Private Optimization

replace clipping with normalization-like operator.

Smoothed normalization originally introduced by Bu et al.
(2024); Yang et al. (2022), serves as an alternative to clip-
ping. Unlike clipping, smoothed normalization eliminates
the need for manually tuning the clipping threshold. By en-
suring that the Euclidean norm of the normalized gradient is
bounded above by one, smoothed normalization guarantees
robust performance of DP-SGD in convergence and privacy.
However, there is very limited literature that characterizes
properties of smoothed normalization, and a rigorous con-
vergence analysis for DP-SGD using this operator especially
in the distributed setting. While the method has been studied
in the single-node setting by Bu et al. (2024) and Yang et al.
(2022), the convergence results rely on unrealistic and/or re-
strictive assumptions, such as symmetric gradient noise (Bu
et al., 2024) and almost sure bounds on the gradient noise
variance (Yang et al., 2022).

1.1. Contributions

Inspired by the success of error feedback and smoothed nor-
malization, we propose α-NormEC. Our method provides,
for the first time, convergence guarantees in the DP setting
without bounded gradient norm assumptions that are typi-
cally imposed in prior work. Our detailed contributions are
summarized as follows:

• Favorable properties of smoothed normalization. In
Section 3.3, we present the novel properties of smoothed
normalization. We show that smoothed normalization en-
joys a “contractive” property similar to biased compression
operators (Beznosikov et al., 2023) widely used for reduc-
ing communication in distributed learning. This property
essentially allows for designing α-NormEC that combines
smoothed normalization with error feedback.

• Convergence for non-convex, smooth problems with-
out bounded gradient norm assumptions. In Section 4,
we prove that α-NormEC achieves optimal convergence
rate (Carmon et al., 2020) for minimizing non-convex,
smooth functions without imposing additional restrictive
assumptions, such as bounded gradient norms or bounded
heterogeneity. Specifically, hyperparameters for tuning α-
NormEC are easy to implement, in contrast to the stepsize of
Clip21 (Khirirat et al., 2023) that depends on the inaccessible
value of f(x0)− f inf . Furthermore, α-NormEC with prop-
erly tuned hyperparameters achieves a faster convergence
rate than Clip21.

• The first provable convergence in the private setting
under standard assumptions. In Section 5, we extend
α-NormEC to the differential privacy (DP) setting. Specifi-
cally, α-NormEC achieves the first convergence guarantees
for DP, non-convex, smooth problems without ignoring the
bias introduced by clipping/normalization. This is the first

provably efficient distributed method in the DP setting under
standard assumptions, thus addressing the theoretical gap
left by prior work such as Khirirat et al. (2023); Yu et al.
(2023), which did not adapt distributed gradient clipping
methods for private training.

• Robust empirical convergence of α-NormEC. In Sec-
tion 6, we verify the theoretical benefits of α-NormEC in
both non-private and private settings via numerical exper-
iments on the image classification task with the CIFAR-
10 dataset using the ResNet20 model. We demonstrate
that α-NormEC achieves robust convergence performance
across a wide range of its tuning parameters. Furthermore,
α-NormEC outperforms distributed methods with direct
smoothed normalization in convergence speed and accu-
racy.

2. Related Work
Clipping and normalization. In machine learning, clip-
ping and normalization address many key challenges. They
mitigate the problem of exploding gradients in recurrent
neural networks (Pascanu, 2013), enhance neural network
training for tasks in natural language processing (Merity
et al., 2017; Brown et al., 2020) and computer vision (Brock
et al., 2021), ensure privacy in differentially private machine
learning (Abadi et al., 2016; McMahan et al., 2018), and
stabilize training in the presence of misbehaving or adver-
sarial workers (Karimireddy et al., 2021; Özfatura et al.,
2023; Malinovsky et al., 2023). In this paper, we consider
smoothed normalization, recently introduced by Bu et al.
(2024); Yang et al. (2022), as an alternative to clipping,
offering its hyperparameter that supports robust empirical
performance in the DP setting.

Private optimization methods. DP-SGD (Abadi et al.,
2016) is the common first-order method that achieves the
DP guarantee by clipping (or normalizing) the gradient be-
fore adding noise scaled with the clipped gradient’s sensi-
tivity. However, existing DP-SGD convergence analyses
often neglect the clipping bias. Specifically, convergence
results for smooth functions under differential privacy often
require either the assumption of bounded gradients (Zhang
et al., 2020; Li et al., 2022; Zhang et al., 2022; Wang et al.,
2023; Lowy et al., 2023; Murata & Suzuki, 2023; Wang
et al., 2024) or conditions where clipping is effectively inac-
tive (Zhang et al., 2024; Noble et al., 2022). Thus, in this
analytical approach, the convergence behaviors of DP-SGD
are not fully understood.

Single-node non-private methods with clipping. The
impact of clipping on single-node gradient methods for
non-private optimization has been extensively studied. Nu-
merous works have shown strong convergence guarantees
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of clipped gradient methods under various conditions, in-
cluding nonsmooth, rapidly growing convex functions Shor
(2012); Ermoliev (1988); Alber et al. (1998), generalized
smoothness (Zhang et al., 2019; Koloskova et al., 2023;
Gorbunov et al., 2024; Vankov et al., 2024; Lobanov et al.,
2024; Hübler et al., 2024b), and heavy-tailed noise (Gor-
bunov et al., 2020a; Nguyen et al., 2023; Gorbunov et al.,
2023; Hübler et al., 2024a; Chezhegov et al., 2024).

Distributed non-private methods with clipping. Apply-
ing gradient clipping in the distributed setting is a chal-
lenging task. Existing convergence analyses often rely on
bounded heterogeneity assumptions, which often do not
hold in cases of arbitrary data heterogeneity. For example,
federated optimization methods with clipping have been an-
alyzed under the bounded difference between the local and
global gradients (Wei et al., 2020; Liu et al., 2022; Craw-
shaw et al., 2023; Li et al., 2024). However, even in the
non-private setting, these distributed clipping methods do
not converge for solving simple problems (Chen et al., 2020;
Khirirat et al., 2023). To address the convergence issue,
one approach is to use error feedback mechanisms, such as
EF21 (Richtárik et al., 2021), as employed by Khirirat et al.
(2023); Yu et al. (2023), to compute local gradient estima-
tors and alleviate clipping bias. However, these distributed
clipping methods using error feedback are limited to the
non-private setting under arbitrary heterogeneity conditions,
and extending the methods to the DP setting is still an open
problem. In this paper, we propose a distributed method
that replaces clipping with smoothed normalization in the
EF21 mechanism. Unlike Clip21 (Khirirat et al., 2023),
our method provides the first provable convergence guar-
antees in the DP setting, and empirically outperforms the
distributed, deterministic version of DP-SGD with smoothed
normalization Bu et al. (2024); Yang et al. (2022), a special
case of Das et al. (2021) (with a single local step).

Error feedback. Error feedback, or error compensation,
has been applied to improve the convergence of distributed
methods with gradient compression for communication-
efficient learning. First introduced by Seide et al. (2014),
EF14 was extensively analyzed for first-order methods in
both single-node (Stich et al., 2018; Karimireddy et al.,
2019; Stich & Karimireddy, 2019; Khirirat et al., 2019) and
distributed settings (Wu et al., 2018; Alistarh et al., 2018;
Gorbunov et al., 2020b; Qian et al., 2021; Tang et al., 2019;
Danilova & Gorbunov, 2022; Qian et al., 2023). Another
error feedback variant is EF21 proposed by Richtárik et al.
(2021) that ensures strong convergence under any contrac-
tive compression operator for non-convex, smooth problems.
Recent variants, e.g. EF21-SGD2M (Fatkhullin et al., 2024)
and EControl (Gao et al., 2023) have been developed to
obtain the lower iteration and communication complexities
than EF21 for stochastic optimization.

3. Preliminaries
3.1. Notations

We define [a, b] := {a, a+ 1, a+ 2, . . . , b} for integers a, b
such that a ≤ b. The expectation of a random variable u is
denoted by E [u]. Furthermore, ⟨x, y⟩ represents the inner
product between x and y in Rd, and the Euclidean norm of
x ∈ Rd is given by ∥x∥ :=

√
⟨x, x⟩. Finally, we use the

standard order notation O(·) to hide absolute constants.

3.2. Problem Formulation

We focus on solving the finite-sum optimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
, (1)

where x ∈ Rd is the vector of model parameters of dimen-
sion d, and fi : Rd → R is either a loss function on client
i ∈ [1, n] (distributed setting) or data point i (single-node
setting). Moreover, we impose the following assumption on
objective functions that are standard for analyzing the con-
vergence of first-order optimization algorithms (Nesterov
et al., 2018).

Assumption 1. Let the function f : Rd → R be
bounded from below by a finite constant f inf , i.e. f(x) ≥
f inf > −∞ for all x ∈ Rd, and be L-smooth, i.e.
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ Rd.

Also, let each component function fi : Rd → R be Li-
smooth, i.e. ∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥ for all
x, y ∈ Rd.

3.3. DP-SGD

The most common approach to solve Problem (1) under the
approximate (ϵ, δ)-differential privacy (Dwork et al., 2006)
is via the DP-SGD method (Abadi et al., 2016)

xk+1 = xk − γ

 1

B

∑
i∈Bk

Ψ(∇fi(x
k)) + zk

 , (2)

where γ > 0 is the stepsize, Bk is a subset of {1, 2, . . . , n}
with cardinality |Bk| = B, zk ∈ Rd is the DP noise, and Ψ :
Rd → Rd is an operator with bounded norm, i.e. ∥Ψ(g)∥ ≤
Φ for any g ∈ Rd and some Φ > 0. The method (2) is
shown to achieve (ϵ, δ)-DP by Abadi et al. (2016) if zk is
zero-mean Gaussian noise with variance

σ2
DP ≥ Φ2 · cB

2

n2

K log(1/δ)

ϵ2
, (3)

where c > 0 is a constant, and K > 0 is the total number of
iterations. A choice to obtain reasonable DP guarantees is
to set ϵ ≤ 10 and δ ≪ 1/n, where n is the number of data
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points (Ponomareva et al., 2023). Note that the variance (3)
is scaled with the sensitivity Φ.

The method (2) has been often analyzed, e.g. by Zhang et al.
(2020; 2022); Murata & Suzuki (2023), under the bounded
gradient norm assumption

∥∇fi(x)∥ ≤ Φ for all i and x ∈ Rd. (4)

However, this assumption has several limitations. Firstly, it
ignores the effect of clipping by setting Ψ(·) as the identity
operator. The sensitivity Ψ is usually impossible to compute
for many loss functions used in training machine learning
models. Even when it can be estimated, its resulting upper
bound is often overly pessimistic, leading to excessively
large DP noise and thus significantly degrading the algorith-
mic convergence performance. Secondly, this assumption
restricts the class of loss functions f . For instance, it does
hold for simple quadratic functions over unbounded do-
main. Thirdly, the condition in (4) is “pathological” in the
distributed setting as it restricts the heterogeneity between
different clients and can result in vacuous bounds (Khaled
et al., 2020).

Therefore, to enforce bounded sensitivity in practice (Abadi
et al., 2016), it is recommended to use clipping with thresh-
old τ > 0

Clipτ (g) := min

(
1,

τ

∥g∥

)
g. (5)

In this case, the sensitivity Ψ is bounded above by the clip-
ping threshold τ , as ∥Ψ(g)∥ = ∥Clipτ (g)∥ ≤ τ = Φ. In
fact, the method (2) that uses clipping (5) is typically re-
ferred to as DP-SGD in the literature. It was analyzed under
the symmetric noise assumption by Chen et al. (2020). How-
ever, Koloskova et al. (2023) showed that without additional
restrictive assumptions, DP-SGD even in the absence of DP
noise does not converge due to the bias introduced by clip-
ping operator (5). Furthermore, as large values of τ imply
stronger privacy, jointly optimizing convergence and privacy
of DP-SGD by carefully tuning τ and γ in the DP setting is
a challenging task (Kurakin et al., 2022; Bu et al., 2024).

Smoothed normalization as an alternative to clipping.
To eliminate the need to tune the threshold τ of clipping,
smoothed normalization is an alternative operator (Bu et al.,
2024; Yang et al., 2022) with its parameter that provides
robust convergence performance of DP-SGD. The operator
is defined by

Normα (g) :=
1

α+ ∥g∥
g, (6)

for some α ≥ 0 and satisfies the following property.

Lemma 1. For any α ≥ 0, β > 0, and g ∈ Rd,

∥Normα (g)∥ ≤ 1, (7)

∥g − βNormα (g)∥2 =

(
1− β

α+ ∥g∥

)2

∥g∥2 . (8)

Clearly, smoothed normalization ensures Property (7) that
the norm of the normalized vector is bounded above by
1. Also, Property (8) states that the distance between the
true vector and a β-multiple of the normalized vector is
bounded by a function of β, α, and ∥g∥. Furthermore, note
that smoothed normalization with α = 0 recovers stan-
dard normalization g/∥g∥ by Nesterov (1984); Hazan et al.
(2015); Levy (2016). However, smoothed normalization
with α > 0 helps improve the contraction factor, compared
to standard normalization. Specifically, as ∥g∥ → 0, the
contraction factor of smoothed normalization approaches
(1 − β/α)2. However, standard normalization lacks this
contraction property.

DP-SGD in (2) with smoothed normalization achieves robust
empirical convergence in the DP setting (Bu et al., 2024).
Nonetheless, the convergence of this method in the single-
node setting without the bounded gradient norm assumption
by Bu et al. (2024) still depends on the central symmetry of
stochastic gradients around the true gradient.

3.4. Limitations of DP Distributed Gradient Methods

Extending the convergence results of DP-SGD to the dis-
tributed setting poses significant challenges due to potential
client heterogeneity. Existing results often address the bias
introduced by the operator (clipping or normalization) by re-
lying on restrictive assumptions, such as assuming that clip-
ping is effectively turned off (Zhang et al., 2024; Noble et al.,
2022), or imposing boundedness of gradient norms (Li et al.,
2022; Zhang et al., 2022; Murata & Suzuki, 2023; Wang
et al., 2024). A recent work by Li et al. (2024) extended the
analysis of Koloskova et al. (2023) to a distributed private
setting under strong gradient dissimilarity condition. How-
ever, their method fails to converge due to the limitation of
clipping, as discussed earlier. More importantly, even in
the absence of the DP noise (zk = 0), the inherent bias in
the gradient estimator can severely impact the convergence.
For instance, the methods with update (2) can diverge ex-
ponentially when Ψ(·) is a Top-1 compressor (Beznosikov
et al., 2023), and fail to converge when Ψ(·) is a clipping
operator (Chen et al., 2020; Khirirat et al., 2023). Moreover,
smoothed normalization (6) with α = 0 also cannot address
this problem as demonstrated in the following example.

Example 1. Consider Problem (1) with n = 2, d = 1,
f1(x) = 1

2 (x− 3)
2 and f2(x) = 1

2 (x+ 3)
2. Then

f(x) = 1
2 (f1(x) + f2(x)) is minimized at x⋆ = 0 and

satisfies Assumption 1. The iterates {xk} generated by (2)

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Smoothed Normalization for Efficient Distributed Private Optimization

(for B = 2) with zk = 0 and α = 0 do not progress when
x0 = 2, as the gradient estimator Normα

(
∇f1(x

k)
)
+

Normα

(
∇f2(x

k)
)

results in

∇f1(x
0)

∥∇f1(x0)∥
+

∇f2(x
0)

∥∇f2(x0)∥
= −1/1 + 5/5 = 0.

Thus, applying normalization directly to the gradients in DP-
SGD leads to the method that does not converge in the dis-
tributed setting without additional assumptions. Moreover,
Example 1 shows a fundamental limitation of algorithms
relying on normalization of the client updates (Das et al.,
2021).

3.5. EF21 Mechanism

To resolve the convergence issues of distributed gradient
methods with biased operators, one approach is to use EF21,
an error feedback mechanism developed by Richtárik et al.
(2021). Instead of directly applying the biased gradient esti-
mator Ψ to the gradient, EF21 applies Ψ to the difference be-
tween the true gradient and the current error feedback vector.
At each iteration of the modified method k = 0, 1, . . . ,K,
each client i receives the current iterate xk from the central
server, and computes its local update gk+1

i via

gk+1
i = gki + βΨ(∇fi(x

k)− gki ), (9)

where β > 0. Next, the central server receives the average
of local error-feedback vectors that are communicated by
all clients 1

n

∑n
i=1 Ψ(∇fi(x

k)− gki ), computes the global
gradient estimator gk := 1

n

∑n
i=1 g

k
i as

gk+1 = gk +
β

n

n∑
i=1

Ψ(∇fi(x
k)− gki ), (10)

and updates the next iterate xk+1 via

xk+1 = xk − γgk+1. (11)

This method generalizes EF21, which utilizes a contractive
compressor (Stich et al., 2018; Beznosikov et al., 2023) is
defined by

∥g − C(g)∥2 ≤ (1− η)2 ∥g∥2 ,

for some η ∈ (0, 1] and any g ∈ Rd. Rather, the method en-
compasses other estimators Ψ(·) such as clipping in Clip21
proposed by Khirirat et al. (2023).

Despite achieving the O(1/K) convergence in the non-
private setting, Clip21 faces difficulty in establishing prov-
able convergence in the presence of DP noise. First, its
convergence analysis relies on descent inequalities that sep-
arately consider cases where clipping is active and inactive,
as the clipping operator does not satisfy the contractive com-
pressor property required by EF21 (see Table 1). Second,

the clipping threshold τ intricately influences both privacy
and convergence. To obtain the descent inequality, τ has
to be chosen sufficiently high, which leads to adding large
Gaussian noise. The accumulation of the DP noise prevents
the convergence. These properties of clipping make it chal-
lenging to establish convergence guarantees for Clip21 in
the DP setting.

4. α-Norm21 in the Non-Private Setting
To address the convergence challenges of Clip21, we propose
α-NormEC, the first distributed method to provide provable
convergence guarantees in the DP setting. α-NormEC im-
plements the update rules defined by (9), (10), and (11),
where Ψ(·) is smoothed normalization (6) that offers key
advantages over clipping. In the update rule in (11), we
use server normalization xk+1 = xk − γgk+1/

∥∥gk+1
∥∥ and

adopt notation 0/0 = 0. See Algorithm 1 for the detailed
description of α-NormEC.

Algorithm 1 (DP-)α-NormEC

1: Input: Step size γ > 0; β > 0; normalization parame-
ter α > 0; starting points x0, g0i ∈ Rd for i ∈ [1, n] and
ĝ0 = 1

n

∑n
i=1 g

0
i ; zki ∈ Rd are sampled from Gaussian

distribution with zero mean and σ2
DP-variance.

2: for each iteration k = 0, 1, . . . ,K do
3: for each client i = 1, 2, . . . , n in parallel do
4: Compute local gradient ∇fi(x

k)
5: Compute ∆k

i = Normα

(
∇fi(x

k)− gki
)

6: Update gk+1
i = gki + β∆k

i

7: Non-private setting: Transmit ∆̂k
i = ∆k

i

8: Private setting: Transmit ∆̂k
i = ∆k

i + zki
9: end for

10: Server computes ĝk+1 = ĝk + β
n

∑n
i=1 ∆̂

k
i

11: Server updates xk+1 = xk − γĝk+1/
∥∥ĝk+1

∥∥
12: end for
13: Output: xK+1

We show that α-NormEC provides stronger convergence
guarantees than Clip21 in the non-private setting, and
achieves the first convergence guarantees in the DP setting.
These theoretical benefits of α-NormEC stem from favor-
able properties of smoothed normalization. Specifically,
smoothed normalization, unlike clipping, behaves similarly
to a contractive compressor (see Table 1), which simplifies
the convergence analysis of α-NormEC compared to Clip21.
Furthermore, the smoothed normalization parameter, unlike
the clipping threshold, does not affect the DP noise vari-
ance, thus facilitating the extension to the DP setting while
maintaining robust convergence.

Now, we begin by presenting the convergence results of
α-NormEC in the non-private setting.
Theorem 1. Consider Algorithm 1 for solving Problem (1)

5
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Operator Property

Contractive compressor C : Rd → Rd ∥C(g)− g∥2 ≤ (1− η)2 ∥g∥2

Clipping Clipτ (g) := min
(
1, τ

∥g∥

)
g ∥Clipτ (g)− g∥2 ≤ max(0, ∥g∥ − τ)2

Smoothed normalization Normα (g) := 1
α+∥g∥g ∥Normα (g)− g∥2 ≤

(
1− 1

α+∥g∥

)2
∥g∥2

Table 1: Comparisons of the property of contractive compressor, clipping, and smoothed normalization. Unlike clipping,
smoothed normalization obtains the contractive property similar to contractive compressors.

in the non-private setting, where Assumption 1 holds. Let
β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ and Lmax =
maxi∈[1,n] Li. Then,

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ.

Theorem 1 demonstrates that in the non-private setting, α-
NormEC converges sublinearly up to the additive constant
of 2R + L

2 γ. This constant diminishes when we properly
choose initialized memory vectors g−1

i and reduce the step-
size γ, as shown in the next corollary.

Corollary 1. Consider Algorithm 1 for solving Problem (1)
under the same setting as Theorem 1. If we choose g0i ∈ Rd

such that maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ = D
(K+1)1/2

with any

D > 0, γ ≤ β
Lmax

D
α+D

1
(K+1)1/2

, and α > β, then

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ C

(K + 1)1/2
,

where C = Lmax(α+D)
βD (f(x0)−f inf)+2D+ L

2
βD

Lmax(α+D) .

According to Corollary 1, α-NormEC enjoys the O(1/
√
K)

convergence rate in the gradient norm when we choose g−1
i

such that R = O(1/
√
K) and γ = O(β/

√
K). By further

choosing α > 1, and

β =
Lmax(α+D)

D

√
2(f(x0)− f inf)

L
,

which ensures Lmax(α+D)
βD (f(x0) − f inf) = L

2
βD

Lmax(α+D) ,
the associated convergence bound from Corollary 1 becomes

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤

√
2L(f(x0)− f inf) + 2D

(K + 1)1/2
. (12)

This convergence bound (12) comprises two terms. The√
2L(f(x0)−f inf )

(K+1)1/2
-term is the convergence bound obtained by

classical gradient descent, while the 2D
(K+1)1/2

-term comes

from the initialized memory vectors g−1
i for running the

error-feedback mechanism.

Comparison between α-NormEC and Clip21. In the non-
private setting, α-NormEC provides stronger convergence
guarantees than Clip21. First, the hyperparameters of α-
NormEC (β, α, γ > 0), as defined in Theorem 1, are easy to
implement. Conversely, the stepsize γ of Clip21 (Theorem
5.6 of Khirirat et al. (2019)) presents a practical challenge,
as it depends on the inaccessible values of f(x0) − f inf .
Furthermore, the convergence bound of α-NormEC (12)
exhibits a smaller convergence factor than that of Clip21, as
detailed in Appendix E. Specifically, by choosing g0i ∈ Rd

such that D is sufficiently small, the convergence bound
of α-NormEC in (12) approaches that of classical gradient
descent (Carmon et al., 2020).

Proof outline of α-NormEC. We outline the proof for α-
NormEC. By the L-smoothness of the objective function f ,
and by the update for xk+1 in α-NormEC,

V k+1 ≤ V k − γ
∥∥∇f(xk)

∥∥+ Lγ2

2
+ 2γW k,

where V k := f(xk) − f inf , and W k :=
1
n

∑n
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥. The key step to estab-
lish the convergence is to bound

∥∥∇fi(x
k)− gk+1

i

∥∥. From
Lemma 2, with appropriate choices of the tuning parameters
β, α, and γ, we obtain∥∥∇fi(x

k)− gk+1
i

∥∥ ≤ max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ , ∀k ≥ 0.

Finally, substituting this bound into the previous inequal-
ity yields the convergence bound in mink∈[0,K]

∥∥∇f(xk)
∥∥.

Deriving the bound on
∥∥∇fi(x

k)− gk+1
i

∥∥ for α-NormEC
by induction is similar to but simpler than Clip21. This sim-
plified proof is possible, because smoothed normalization
possesses a contractive property similar to the contractive
compressor used in EF21.

6
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5. α-Norm21 in the DP Setting
Next, we extend α-NormEC to the DP setting. The DP ver-
sion of α-NormEC is identical to its non-private counterpart,
except for the step of communicating ∆̂k

i of Algorithm 1. In
this step, instead of transmitting the non-private normalized
gradient ∆̂k

i = ∆k
i := Normα

(
∇fi(x

k)− gki
)

as done
in the non-private version, each client in the DP version
communicates the DP normalized gradient ∆̂k

i = ∆k
i + zki ,

where zki is the DP noise.

The next theorem presents the convergence rate for α-
NormEC in the DP setting.

Theorem 2. Consider Algorithm 1 for solving Problem (1)
in the private setting, where Assumption 1 holds. Let
β, α, γ > 0 be chosen such that

β

α+R
< 1, and γ ≤ βR

α+R

1

Lmax
,

where R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and Lmax =
maxi∈[1,n] Li. Then,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ f(x0)− f inf

γ(K + 1)
+ 2R+

L

2
γ

+2
√
β2(K + 1)σ2

DP.

In the DP setting, from Theorem 2, α-NormEC achieves the
sublinear convergence up to the additive constant of 2R+
L
2 γ + 2

√
β2(K + 1)σ2

DP. Notice that α-NormEC in the DP
setting introduces one additional constant that arises from
the DP noise σ2

DP. This additive constant diminishes, when
we choose initialized memory vectors g0i ∈ Rd such that R
becomes small, and decrease tuning parameters γ, β > 0.

Utility guarantees. In the DP setting, unlike Clip21 (Khiri-
rat et al., 2023), α-NormEC achieves the (ϵ, δ)-DP, and
obtains the utility-privacy trade-off. We show this by
setting the standard deviation of the DP noise accord-
ing to Theorem 1 of Abadi et al. (2016), i.e. σDP =
O(
√
(K + 1) log(1/δ)ϵ−1), which yields the following

utility bound.

Corollary 2 (Utility guarantee). Consider Algorithm 1 for
solving Problem (1) under the same setting as Theorem 2.
If σDP = O(

√
(K + 1) log(1/δ)ϵ−1), and β = β0

K+1 with
β0 ≤ ∆ 4

√
nϵ2/(d log(1/δ)) and α > β0, then Algorithm 1

satisfies (ϵ, δ)-DP while attaining the bound:

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ O

(
∆

4

√
d log(1/δ)

nϵ2

)
+ 2R,

where ∆ =
√

Lmax(α+R)(f(x0)− f inf)/R, and R =
maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥.

Unlike Clip21, α-NormEC provides the first utility bound
in the DP distributed setting that accounts for the effect of
smoothed normalization, a factor often neglected in existing
literature. As R is sufficiently small (R → 0), α-NormEC

achieves the utility bound of O
(
∆ 4

√
d log(1/δ)

nϵ2

)
. Our ob-

tained utility bound applies for smooth problems without the
bounded gradient norm assumption, the limitation present
in prior work that analyzes DP-SGD such as Li et al. (2022);
Wang et al. (2023); Lowy et al. (2023); Zhang et al. (2020).

6. Experiments
We present the numerical evaluation of α-NormEC by solv-
ing a non-convex optimization problem of training deep
neural networks. We consider the image classification task
with the CIFAR-10 (Krizhevsky et al., 2009) dataset using
the ResNet20 (He et al., 2016) model. Experimental details
are provided in the Appendix H.

Sensitivity of α-NormEC to hyper-parameters. We in-
vestigate the impact of hyperparameters α and β on the
performance of α-NormEC in the non-private training. Fig-
ure 1 visualizes the highest test accuracy achieved during
training over 300 communication rounds with a fine-tuned,
constant step size γ, while we vary β and α. Appendix H.1
presents additional metrics and convergence curves.

0.01 0.1 1.0

0.
01

0.
1

1.
0

10
.0

83.76 84.35 84.11

85.64 85.78 85.38

84.47 84.66 84.66

81.82 82.16 81.84

Highest test accuracy

82

83

84

85

Figure 1: Best test accuracy achieved by α-NormEC.

Figure 1 reveals that in the non-private training, the conver-
gence of α-NormEC is stable with respect to a wide range
of α values and robust to β. The performance of α-NormEC
is primarily governed by the choice of β. Optimal perfor-
mance (85-86% accuracy) is observed when β is around
0.1. While α-NormEC is stable with respect to α, extreme
values of β lead to suboptimal performance: very large
values (β = 10.0) result in significantly lower accuracy
(81-82%), while very small values (β = 0.01) achieve mod-
erate performance (83-84%). The optimal configuration,
achieving the highest 85.78% accuracy, is β = 0.1 and
α = 0.1. For further experiments, we adopt α = 0.01,
aligning with recommendations from prior empirical works

7
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Figure 2: Comparison of DP-SGD (2) [solid] and α-NormEC
(1) [dashed] without server normalization.
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Figure 3: Performance of DP-α-NormEC.

in the single-node setting (Bu et al., 2024).

Effect of Error Compensation (EC). We examine how
EC improves the convergence performance of distributed
gradient methods using smoothed normalization in non-
private training. To isolate the effect of EC, we compare
α-NormEC 1 without server normalization (Line 11) to a
DP-SGD method (with smoothed normalization) governed
by Equation (2) with B = n, z ≡ 0. Figure 2 displays
convergence in training loss across different β (with tuned
step size γ). In Appendix H.2, we also report the behavior
of test accuracy in Figure 8 and optimal parameters with
final accuracies in Figure 9.

Figure 2 demonstrates the substantial convergence improve-
ments achieved by EC for distributed gradient methods with
smoothed normalization across most β values, with the
exception of β = 10. This large β value, however, is im-
practical for differentially private settings due to increased
noise variance. Moreover, while α-NormEC exhibits ro-
bust performance across different β values, DP-SGD shows
higher sensitivity to this parameter choice, particularly strug-
gling with convergence when β = 0.01. This comparison
highlights how EC not only improves convergence but also
enhances the algorithm’s stability across different parameter
settings.

Furthermore, we present an ablation study on the effect
of server normalization in Appendix H.3. Due to space
constraints the comparison between α-NormEC and Clip21
is presented in Appendix H.4.

Private training. We analyze the performance of α-
NormEC in the differentially private setting. We set the
noise variance at β

√
K log(1/δ)ϵ−1 for ϵ = 8, δ = 10−5.

The test accuracy results in Figure 3 demonstrate that α-
NormEC’s performance is highly dependent on the choice

of parameter β. Small values (β = 0.01) achieve the best
performance, reaching approximately 65% accuracy, while
maintaining stable convergence throughout training. Mod-
erate values (β = 0.1) show slightly slower convergence
but eventually reach similar performance levels. However,
larger values (β = 1.0) significantly degrade the perfor-
mance, with β = 1.0 barely exceeding 33% accuracy due
to excessive noise injection required for privacy guarantees.

7. Conclusion
We have proposed and analyzed α-NormEC, a novel dis-
tributed algorithm that integrates smoothed normalization
with the EF21 mechanism for solving non-convex, smooth
optimization problems in both non-private and private set-
tings. Unlike Clip21, α-NormEC achieves strong conver-
gence guarantees that almost match those of classical gradi-
ent descent for non-private training, and provides the first
utility bound for private training without relying on restric-
tive assumptions such as bounded gradient norms. Our
experiments on neural network training demonstrate that the
proposed method achieves robust convergence performance
with respect to its parameters. Moreover, α-NormEC signifi-
cantly outperforms distributed gradient methods with direct
smoothed normalization in terms of accuracy.

Future work. Our work implies many promising research
directions. One direction is to extend α-NormEC to ac-
commodate the partial participation case, where the central
server receives the local normalized gradients from a few
clients, and the stochastic case, where each client has access
only to stochastic gradients. Another important direction is
to modify α-NormEC to solve federated learning problems,
where the clients run their local updates before the local
updates are normalized and transmitted to the central server.

8
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Impact Statement
This paper proposes distributed optimization methods for
machine learning and differential privacy. Unlike exist-
ing literature, our proposed methods are more practical for
deployment in both non-private and private training, offer-
ing strong convergence guarantees and, for the first time,
utility guarantees under a specified privacy budget. Addi-
tionally, the hyperparameters of the proposed methods are
straightforward to implement, enhancing their practicality
for real-world FL applications.
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A. Proof of Lemma 1
We prove the first statement by taking the Euclidean norm. Next, we prove the second statement. From the definition of the
Euclidean norm,

∥g − βNormα (g)∥2 (6)
= ∥g∥2 + β2

(α+ ∥g∥)2
∥g∥2 − 2β

∥g∥2

α+ ∥g∥

=

(
1− β

α+ ∥g∥

)2

∥g∥2 .

B. Comparison of EF21 between Clipping and Smoothed Normalization
In this section, we compare the EF21 mechanism that is modified by replacing a contractive compressor with clipping
in Clip21, and with smoothed normalization in α-NormEC. To compare these modified updates, given the optimal vector
g⋆ ∈ Rd, consider the single-node EF21 mechanism, which computes the memory vector gk ∈ Rd according to

gk+1 = gk +Ψ(g⋆ − gk), (13)

where Ψ : Rd → Rd is the biased gradient estimator and g0 ∈ Rd is the initial memory vector.

If Ψ(g) = Clipτ (g), then from Theorem 4.3 of Khirirat et al. (2023)∥∥gk − g⋆
∥∥ ≤ max(0,

∥∥g0 − g⋆
∥∥− kτ).

If Ψ(g) = Normα (g), then from Lemma 1∥∥g⋆ − gk
∥∥2 =

∥∥g⋆ − gk−1 − βNormα

(
g⋆ − gk−1

)∥∥2
=

(
1− β

α+ ∥g⋆ − gk−1∥

)2 ∥∥g⋆ − gk−1
∥∥2

...

=
∥∥g⋆ − g0

∥∥2 · k∏
l=1

(
1− β

α+ ∥g⋆ − gl−1∥

)2

.

In conclusion, while the EF21 mechanism with clipping ensures that the memory gk will reach g⋆ within a finite number of
iterations k (when k ≥

∥∥g0 − g⋆
∥∥ /τ ), the EF21 mechanism with smoothed normalization guarantees that gk will eventually

reach g⋆ (provided thatβ/α < 1).

C. Proof of Theorem 1
To prove the result in Theorem 1 requires us to utilize the following lemma, which shows

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R for
some positive scalars R, given that

∥∥∇fi(x
k)− gki

∥∥ ≤ R.
Lemma 2. Consider Algorithm 1 for solving Problem (1) in the non-private setting, where Assumption 1 holds. If∥∥∇fi(x

k)− gki
∥∥ ≤ R, β

α+R < 1, and γ ≤ βR
α+R

1
Lmax

with Lmax = maxi∈[1,n] Li, then
∥∥∇fi(x

k+1)− gk+1
i

∥∥ ≤ R.

Proof. From the definition of the Euclidean norm,∥∥∇fi(x
k+1)− gk+1

i

∥∥ triangle inequality
≤

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥+ ∥∥∇fi(x

k)− gk+1
i

∥∥
gk+1
i=

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥+ ∥∥∇fi(x

k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 1
≤

∥∥∇fi(x
k+1)−∇fi(x

k)
∥∥+ ∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

Assumption 1, and xk+1

≤ Lmaxγ +

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥ .
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If
∥∥∇fi(x

k)− gki
∥∥ ≤ R, and β

α+R < 1, then
∥∥∇fi(x

k+1)− gk+1
i

∥∥ ≤ R when

γ ≤ βR

α+R

1

Lmax
.

Now, we are ready to prove the result in Theorem 1 in four steps.

Step 1) Prove by induction that
∥∥∇fi(x

k)− gki
∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥. For k = 0, this is obvious.
Next, let

∥∥∇fi(x
l)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and
γ ≤ βR

α+R
1

Lmax
, then from Lemma 2

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(x

k)− gk+1
i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(x
k)− gk+1

i

∥∥ gk+1
i=

∥∥∇fi(x
k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 1
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

β/(α+R)<1

≤
(
1− β

α+R

)
R ≤ R.

Step 3) Derive the descent inequality. By the L-smoothness of f , by the definition of xk+1, and by the fact that
ĝk+1 = gk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥gk+1∥
〈
∇f(xk), gk+1

〉
+

Lγ2

2

= f(xk)− f inf − γ
∥∥gk+1

∥∥+ γ

∥gk+1∥
〈
∇f(xk)− gk+1, gk+1

〉
+

Lγ2

2
Cauchy-Schwartz inequality

≤ f(xk)− f inf − γ
∥∥gk+1

∥∥+ γ
∥∥∇f(xk)− gk+1

∥∥+ Lγ2

2
triangle inequality

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
∥∥∇f(xk)− gk+1

∥∥+ Lγ2

2
triangle inequality

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
1

n

n∑
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥+ Lγ2

2
.

Since
∥∥∇fi(x

k)− gk+1
i

∥∥ ≤ R with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, we have

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ Lγ2

2
.

Step 4) Finalize the convergence rate. Now, we prove the first statement. By re-arranging the terms of the inequality,

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ 1

K + 1

K∑
k=0

∥∥∇f(xk)
∥∥

≤ [f(x0)− f inf ]− [f(xK+1)− f inf ]

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ L

2
γ

f inf≥f(xK+1)

≤ f(x0)− f inf

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ L

2
γ.
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D. Proof of Corollary 1
If g0i ∈ Rd is chosen such that maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ = D
(K+1)1/2

with any D > 0, γ ≤ β
Lmax

D
α+D

1
(K+1)1/2

, and

β < α, then γ ≤ βR
α+R

1
Lmax

with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and thus

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ Lmax(α+D)

βD

f(x0)− f inf

(K + 1)1/2
+ 2

D

(K + 1)1/2
+

L

2

βD

Lmax(α+D)

1

(K + 1)1/2
.

E. α-NormEC and Clip21 Comparison
We compare the convergence bound of α-NormEC in (12) with Clip21 (Khirirat et al., 2023). In particular, the convergence
factor of α-NormEC in (12) is potentially smaller than that of Clip21 from Theorem 5.6. of Khirirat et al. (2023)

Let x̂K be selected uniformly at random from a set {x0, x1, . . . , xK}. Then, from Theorem 5.6. of Khirirat et al. (2023),
Clip21 converges at the rate:

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤ E

[∥∥∇f(x̂K)
∥∥]

≤
√
E
[
∥∇f(x̂K)∥2

]
≤ Lmax(f(x

0)− f inf)

τ(K + 1)1/2
+

√
(1 + C1/τ)C2

(K + 1)1/2
,

where τ > 0 is a clipping threshold, C1 = maxi∈[1,n]

∥∥∇fi(x
0)
∥∥, and C2 = max(max(L,Lmax)(f(x

0)− f inf)), C2
1 ).

If τ = Lmax√
2L

√
f(x0)− f inf , then

min
k∈[0,K]

∥∥∇f(xk)
∥∥ ≤

√
2L(f(x0)− f inf)

K + 1
+

√(
1 + C1

√
2L

Lmax

√
f(x0)−f inf

)
C2

(K + 1)1/2

≤

√
2L(f(x0)− f inf)

K + 1
+

√
C2 +O

(
max(

√
C1

4
√
f(x0)− f inf , C3

1/
√
f(x0)− f inf)

)
(K + 1)1/2

.

The first term in the convergence bound of Clip21 matches that of α-NormEC as given in (12). However, the second term
in the convergence bound of α-NormEC is D/

√
K + 1, where D > 0 can be made arbitrarily small. In contrast, the

corresponding term for Clip21 is C/
√
K + 1, where C > 0 may become significantly larger than D if x0 ∈ Rd is far from

the stationary point, leading to a large value of C1 = maxi∈[1,n]

∥∥∇fi(x
0)
∥∥.

F. Proof of Theorem 2
To prove Theorem 2, we use Lemma 2, which proves that if

∥∥∇fi(x
k)− gki

∥∥ ≤ R for some positive scalars R, then∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R. Also, we leverage the following lemma, which bounds the difference between the memory
vectors maintained by the central server and clients.

Lemma 3. Consider Algorithm 1 for solving Problem (1) in the private setting, where Assumption 1 holds. If ĝ0 =
1
n

∑n
i=1 g

0
i , then

E

[∥∥∥∥∥ĝk+1 − 1

n

n∑
i=1

gk+1

∥∥∥∥∥
]
≤
√

β2(K + 1)σ2
DP

n
.

Proof. From the definition of gk and ĝk,

ek+1 = ek + βzk+1,
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Smoothed Normalization for Efficient Distributed Private Optimization

where ek = ĝk − 1
n

∑n
i=1 g

k
i , and zk = 1

n

∑n
i=1 z

k
i . By applying the equation recursively,

ek+1 = e0 + β

k+1∑
l=1

zl.

Therefore, by the triangle inequality,

∥∥ek+1
∥∥ ≤

∥∥e0∥∥+ ∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
If ĝ0 = 1

n

∑n
i=1 g

0
i , then

∥∥ek+1
∥∥ ≤

∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥ .
Taking the expectation, and using the fact that E

[
⟨zj , zi⟩

]
= 0 for i < j and that E

[∥∥zk∥∥2] = σ2
DP

n (zki is independent of

zkj for i ̸= j),

E
[∥∥ek+1

∥∥] ≤ E

[∥∥∥∥∥β
k+1∑
l=1

zl

∥∥∥∥∥
]

≤

√√√√β2

n

k+1∑
l=1

σ2
DP

=

√
β2(k + 1)σ2

DP

n

k≤K

≤
√

β2(K + 1)σ2
DP

n
.

Now, we prove Theorem 2 in the following steps

Step 1) Prove by induction that
∥∥∇fi(x

k)− gki
∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥. For k = 0, this is obvious.
Next, let

∥∥∇fi(x
l)− gli

∥∥ ≤ R for R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥ for l = 0, 1, . . . , k. Then, if β/(α + R) < 1, and
γ ≤ βR

α+R
1

Lmax
, then from Lemma 2

∥∥∇fi(x
k+1)− gk+1

i

∥∥ ≤ R.

Step 2) Bound
∥∥∇fi(x

k)− gk+1
i

∥∥. From the definition of the Euclidean norm,

∥∥∇fi(x
k)− gk+1

i

∥∥ gk+1
i=

∥∥∇fi(x
k)− gki − βNormα

(
∇fi(x

k)− gki
)∥∥

Lemma 2
≤

∣∣∣∣∣1− β

α+
∥∥∇fi(xk)− gki

∥∥
∣∣∣∣∣ ∥∥∇fi(x

k)− gki
∥∥

β/(α+R)<1

≤
(
1− β

α+R

)
R ≤ R.
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Smoothed Normalization for Efficient Distributed Private Optimization

Step 3) Derive the descent inequality in E
[
f(xk)− f inf

]
. Denote gk = 1

n

∑n
i=1 g

k
i . By the L-smoothness of f , and by

the definition of xk+1,

f(xk+1)− f inf ≤ f(xk)− f inf − γ

∥ĝk+1∥
〈
∇f(xk), ĝk+1

〉
+

Lγ2

2

= f(xk)− f inf − γ
∥∥ĝk+1

∥∥+ γ

∥ĝk+1∥
〈
∇f(xk)− ĝk+1, ĝk+1

〉
+

Lγ2

2
Cauchy-Schwartz inequality

≤ f(xk)− f inf − γ
∥∥ĝk+1

∥∥+ γ
∥∥∇f(xk)− ĝk+1

∥∥+ Lγ2

2
triangle inequality

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
∥∥∇f(xk)− ĝk+1

∥∥+ Lγ2

2
triangle inequality

≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ
1

n

n∑
i=1

∥∥∇fi(x
k)− gk+1

i

∥∥+ 2γ
∥∥ĝk+1 − gk+1

∥∥+ Lγ2

2
.

Since
∥∥∇fi(x

k)− gk+1
i

∥∥ ≤ R with R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, we obtain

f(xk+1)− f inf ≤ f(xk)− f inf − γ
∥∥∇f(xk)

∥∥+ 2γ max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ 2γ
∥∥ĝk+1 − gk+1

∥∥+ Lγ2

2
.

Next, by taking the expectation, and by using Lemma 3,

E
[
f(xk+1)− f inf

]
≤ E

[
f(xk)− f inf

]
− γE

[∥∥∇f(xk)
∥∥]+ 2γ max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ 2γ

√
β2(K + 1)σ2

DP

n
+

Lγ2

2
.

Therefore,

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 1

K + 1

K∑
k=0

E
[∥∥∇f(xk)

∥∥]
≤

E
[
f(x0)− f inf

]
− E

[
f(xK+1)− f inf

]
γ(K + 1)

+2 max
i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ 2

√
β2(K + 1)σ2

DP

n
+

L

2
γ

f inf≥f(xK+1)

≤ f(x0)− f inf

γ(K + 1)
+ 2 max

i∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥+ 2

√
β2(K + 1)σ2

DP

n
+

L

2
γ.

G. Proof of Corollary 2

Let σDP = O
(√

(K+1) log(1/δ)

ϵ

)
. Then, if we choose β = β0

K+1 with 0 < β0 < α + R, then γ ≤ β0R
α+R

1
Lmax

1
K+1 with

R = maxi∈[1,n]

∥∥∇fi(x
0)− g0i

∥∥, and

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ Lmax(α+R)(f(x0)− f inf)

β0R
+ 2R+O

(
β0

√
log(1/δ)√
nϵ

)
+

Lβ0R

2(α+R)Lmax

1

K + 1
.

In addition, if β0 ≤
√

Lmax(α+R)(f(x0)−f inf )
R

4
√
n
√
ϵ

4√
d 4
√

log(1/δ)
, and α > β0, then

min
k∈[0,K]

E
[∥∥∇f(xk)

∥∥] ≤ 2R+O

(√
Lmax(α+R)(f(x0)− f inf)

R

4
√
d 4
√
log(1/δ)

4
√
n
√
ϵ

)
+O

(
1

K + 1

)
.
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Smoothed Normalization for Efficient Distributed Private Optimization

H. Experimental details and additional results
Additional details. All the methods are run with constant step size (learning rate) without the use of techniques like
schedulers, warm-up, or weight decay The dataset is split into train (90%) and test (10%) parts. The train samples are
randomly shuffled and distributed across 10 workers. Every worker computes gradients with batch size 32. The training is
performed for 300 communication rounds. The random seed was fixed to 42 for reproducibility.
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Figure 4: Minimal train loss achieved α-NormEC.

Hyper-parameters selection. We evaluate the following
combinations of hyper-parameters:

• step size γ: {0.001, 0.01, 0.1, 1.0},

• Sensitivity/clip threshold β: {0.01, 0.1, 1.0, 10.0},

• α values: {0.01, 0.1, 1.0}.

Our implementation is based on the public GitHub repos-
itory of Idelbayev. Experiments were performed on a
machine with single GPU: NVIDIA GeForce RTX 3090.

H.1. Sensitivity of α-NormEC to parameters β, α

Similarly to Figure 1 (with Accuracy) minimal training
loss is displayed in Figure 4. We also show final metrics
(at the end of training) in Figure 5 (Accuracy) and in
Figure 6 (Loss). These additional plots are consistent
with result in Figure 1.

Figure 7 shows convergence curves which confirm our prior observations that choice of α has a small effect on the method’s
performance as the variations for each β are minor. Especially for the test accuracy results. Interestingly, some of the
convergence curves intersect, which means that the optimal set of parameters may depend on the stopping time of the
method. Namely, β = 0.1 results in the fastest convergence until epoch 170 but later is overtaken by β = 1. A similar
picture is observed for a pair of curves at β = 10 and β = 0.01 but for smaller number of communication rounds k ∼ 50.
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Figure 5: Final test accuracy achieved α-NormEC.
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Figure 6: Final train loss achieved α-NormEC.
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Figure 7: α-NormEC convergence for varying parameters β and α. For each β value, solid lines correspond to α = 0.01,
dashed lines to α = 0.1, and dotted lines to α = 1.0.

H.2. Benefits of Error Compensation
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Figure 8: Comparison of DP-SGD (2) [solid] and α-NormEC (1)
[dashed] without server normalization.

Method β γ Final Accuracy

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

DP-SGD (2) 0.01 1.0 51.10%
0.1 1.0 79.68%
1.0 1.0 83.89%

10.0 0.1 84.50%

Figure 9: Best configurations and final test accuracies.

The test accuracy curves in Figure 8 reveal that Error Compensation (EC) not only improves convergence speed but also
leads to better final performance. This is particularly evident for small β values (β = 0.01), where DP-SGD achieves only
51.10% accuracy while α-NormEC reaches 84.04%. Table 9 shows that α-NormEC consistently outperforms DP-SGD across
most configurations, achieving the best accuracy of 86.09% at β = 0.1. The only exception is at β = 10.0, though this
setting is less practical due to privacy considerations.

These comprehensive results demonstrate that EC provides substantial improvements in both optimization dynamics and
final model quality, while maintaining robustness across different parameter settings.
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Smoothed Normalization for Efficient Distributed Private Optimization

H.3. Effect of server normalization

We conduct an ablation study to analyze the impact of server-side normalization (Line 11 in Algorithm 1) on α-NormEC
performance. Figure 10 illustrates the convergence behavior through training loss and test accuracy curves, while Table 2
summarizes the optimal hyper-parameters and final accuracies.

Our analysis reveals that server normalization has a more nuanced effect on performance compared to Error Compensation.
The impact varies across different β values:

• For large β = 10.0, server normalization proves beneficial, improving accuracy by approximately 2.2.

• For moderate to small β values (β ∈ {0.01, 1.0}), omitting server normalization yields slightly better results.

• Most notably, at β = 0.1, the method without server normalization achieves optimal performance of 86.09%.

These results suggest that while server normalization can be helpful in certain regimes (particularly with large β), it is not
universally beneficial. The choice of whether to employ server normalization should be guided by the selected β value, with
smaller β values generally performing better without this additional normalization step.
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Figure 10: α-NormEC with [solid] and without [dashed] server normalization.

Method: α-NormEC β γ Final Accuracy

With server normalization 0.01 0.01 82.86%
0.1 0.1 85.43%
1.0 0.1 84.29%

10.0 0.1 81.48%

Without server normalization 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

Table 2: Best configurations and final test accuracies.
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H.4. Comparison of Clip21 and α-NormEC

The experimental results, shown in Figure 11, demonstrate that both methods achieve comparable performance across most
β values. For moderate values of β (0.1 and 1.0), both methods show similar convergence patterns and final accuracies,
with α-NormEC achieving marginally better results (86.09% vs 85.91% at β = 0.1).

The methods show different behaviors at extreme β values. At small β = 0.01, α-NormEC demonstrates better performance
(84.04% vs 83.00%), suggesting more stable training under aggressive normalization. Conversely, at large β = 10.0, Clip21
maintains better performance (83.19% vs 79.25%), probably because the clipping is so large that it almost never happens.

Both methods achieve their best performance with γ = 0.1 in most cases, except for α-NormEC at β = 10.0 where a
smaller learning rate (γ = 0.01) was optimal. Note that we run α-NormEC without server normalization is it showed better
performance according to Appendix H.3.
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Figure 11: Comparison of Clip21 [solid] and α-NormEC [dashed].

Method β γ Final Accuracy

Clip21 0.01 0.1 83.00%
0.1 0.1 85.91%
1.0 0.1 84.78%

10.0 0.1 83.19%

α-NormEC 0.01 0.1 84.04%
0.1 0.1 86.09%
1.0 0.1 84.80%

10.0 0.01 79.25%

Table 3: Best configurations and final test accuracies for Clip21 and α-NormEC methods.

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Smoothed Normalization for Efficient Distributed Private Optimization

H.5. Differentially Private results

The training loss trajectories in Figure 12 provide further evidence that smaller β values enable more effective optimization
under privacy constraints, with β = 0.01 achieving the fastest convergence and lowest final loss values.
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Figure 12: Convergence of DP-α-NormEC.
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Figure 13: Best configurations and highest test accuracies.
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