
Defending Textual Neural Networks against Black-Box Adversarial
Attacks with Stochastic Multi-Expert Patcher

Anonymous ACL submission

Abstract

Even though several methods have proposed001
to defend textual neural network (NN) models002
against black-box adversarial attacks, they of-003
ten defend against a specific text perturbation004
strategy and/or require re-training the models005
from scratch. This leads to a lack of general-006
ization in practice and redundant computation.007
In particular, the state-of-the-art transformer008
models (e.g., BERT, RoBERTa) require great009
time and computation resources. By borrow-010
ing an idea from software engineering, in or-011
der to address these limitations, we propose012
a novel algorithm, SHIELD, which modifies013
and re-trains only the last layer of a textual014
NN, and thus it “patches” and “transforms”015
the NN into a stochastic weighted ensemble016
of multi-expert prediction heads. Consider-017
ing that most of current black-box attacks rely018
on iterative search mechanisms to optimize019
their adversarial perturbations, SHIELD con-020
fuses the attackers by automatically utilizing021
different weighted ensembles of predictors de-022
pending on the input. In other words, SHIELD023
breaks a fundamental assumption of the attack,024
which is a victim NN model remains constant025
during an attack. By conducting comprehen-026
sive experiments, we demonstrate that all of027
CNN, RNN, BERT, and RoBERTa-based tex-028
tual NNs, once patched by SHIELD, exhibit029
a relative enhancement of 15%–70% in accu-030
racy on average against 14 different black-box031
attacks, outperforming 6 defensive baselines032
across 3 public datasets. All codes are to be033
released.034

1 Introduction035

Adversarial Text Attack and Defense. After be-036

ing trained to maximize prediction performance,037

textual NN models frequently become vulnerable038

to adversarial attacks (Papernot et al., 2016; Wang039

et al., 2019a). In the NLP domain, in general, ad-040

versaries utilize different strategies to perturb an041

input sentence such that its semantic meaning is042

preserved while successfully letting a target NN 043

model output a desired prediction. Text perturba- 044

tions are typically generated by replacing or insert- 045

ing critical words (e.g., HotFlip (Ebrahimi et al., 046

2018), TextFooler (Jin et al., 2019)), characters 047

(e.g., DeepWordBug (Gao et al.), TextBugger (Li 048

et al., 2018)) in a sentence or by manipulating a 049

whole sentence (e.g., SCPNA (Iyyer et al., 2018), 050

GAN-based(Zhao et al., 2018)). 051

Since many recent NLP models are known to be 052

vulnerable to adversarial black-box attacks (e.g., 053

fake news detection (Le et al., 2020; Zhou et al., 054

2019b), dialog systems (Cheng et al., 2019), and so 055

on), robust defenses for textual NN models are re- 056

quired. Even though several papers have proposed 057

to defend NNs against such attacks, they were de- 058

signed for either a specific type of attack (e.g., 059

word or synonym substitution (Wang et al., 2021; 060

Dong et al., 2021; Mozes et al., 2020; Zhou et al., 061

2021), misspellings (Pruthi et al., 2019), character- 062

level (Pruthi et al., 2019), or word-based (Le et al., 063

2021)). Even though there exist some general de- 064

fensive methods, most of them enrich NN mod- 065

els by re-training them with adversarial data aug- 066

mented via known attack strategies (Miyato et al., 067

2016; Liu et al., 2020; Pang et al., 2020) or with 068

external information such as knowledge graphs (Li 069

and Sethy, 2019). 070

However, these augmentations often induce sub- 071

stantial overhead in training or are still limited to 072

only a small set of predefined attacks (e.g., (Zhou 073

et al., 2019a)). Hence, we are in search of defense 074

algorithms that directly enhance NN models’ struc- 075

tures (e.g., (Li and Sethy, 2019)) while achieving 076

higher generalization capability without the need 077

of acquiring additional data. 078

Motivation (Fig. 1). Different from white-box at- 079

tacks, black-box attacks do not have access to a 080

target model’s parameters, which are crucial for 081

achieving effective attacks. Hence, attackers often 082

query the target model repeatedly to acquire the 083

1

Figure 1: Motivation of SHIELD: An attacker optimizes a step objective function (score) to search for the best
perturbation by iteratively replacing each of the original 5 tokens with a perturbed one. (A) The attacker assumes
the model remains unchanged and (B) gives coherent signal during the iteration search, resulting in the true best
attack: “dirty”→“dirrty”. (C) A model patched with SHIELD utilizes a weighted ensemble of 3 diverse heads
depending on the input. Therefore, the ensemble weights keep changing over time during adversaries’ perturbation
search processes – the line width represents the ensemble weights. (D) SHIELD confuses the attacker with 3
varying distributions of the score, resulting in a sub-optimal attack “people”→“pe0ple”.

necessary information for optimizing their strat-084

egy. From our analyses of 14 black-box attacks085

published during 2018–2020 (Table 1), all of them,086

except for SCPNA (Iyyer et al., 2018), rely on a087

searching algorithm (e.g., greedy, genetic) to iter-088

atively replace each character/word in a sentence089

with a perturbation candidate to optimize the choice090

of characters/words and how they should be crafted091

to attack the target model (Fig. 1A). Even though092

this process is effective in terms of attack perfor-093

mance, they assume that the model’s parameters094

remain “unchanged” and the model outputs “coher-095

ent” signals during the iterative search (Fig. 1A and096

1B). Our key intuition is, however, to obfuscate the097

attackers by breaking this assumption. Specifically,098

we want to develop an algorithm that automati-099

cally utilizes a diverse set of models during infer-100

ence. This can be done by training multiple sub-101

models instead of a single prediction model and102

randomly select one of them during inference to ob-103

fuscate the iterative search mechanism. However,104

this then introduces impractical computational over-105

head during both training and inference, especially106

when one wants to maximize prediction accuracy107

by utilizing complex SOTA sub-models such as108

BERT (Devlin et al., 2019) and RoBERTa (Liu109

et al., 2019b). Moreover, it also does not guarantee110

that trained models are sufficiently diverse to fool111

attackers. Furthermore, applying this strategy to112

existing NN models would also require re-training113

everything from the scratch, rendering the approach114

impractical.115

Proposal. To address these challenges, we borrow116

ideas from software engineering where bugs can be117

readily removed by an external installation patch.118

Specifically, we develop a novel neural patching119

algorithm, named as SHIELD, which patches only120

the last layer of an already deployed textual NN121

Attack Method Search Atk Sem. Natr.
Method Level Presv. Presv.

SCPNA Iyyer et al. TP SN X X
TextBugger(TB) Li et al. GD CR X
DeepWordBug(DW) Gao et al. GD CR X
Kuleshov Kuleshov et al. GD WD X X
TextFooler(TF) Jin et al. GD WD X
IGA Wang et al. GN WD
Pruthi Pruthi et al. GD CR
PWWS(PS) Ren et al. GD WD
Alzantot Jia et al. GN WD X
BAE Garg and Ramakrishnan GD WD X
BERT-Atk(BERTK) Li et al. GD WD X
PSO Zang et al. GN WD
Checklist Ribeiro et al. GD WD
Clare Li et al. GD WD X X

TP: Template; GD: Greedy; GN: Genetics
CR: Character; WD: Word; SN: Sentence

Table 1: Different attack methods with i) how they
search for adversarial perturbations, ii) their attack
level, and iii) whether they maintain the original se-
mantics (Sem. Presv.), pursue the naturalness of the
perturbed sentence (Natr. Presv.), or both of them.

model (e.g., CNN, RNN, transformers(Vaswani 122

et al., 2017; Bahdanau et al.)) and transforms it into 123

an ensemble of multi-experts or prediction heads 124

(Fig. 1C). During inference, then SHIELD automat- 125

ically utilizes a stochastic weighted ensemble of ex- 126

perts for prediction depending on inputs. This will 127

obfuscate adversaries’ perturbation search, making 128

black-box attacks much more difficult regardless 129

of attack types, e.g., character or word level at- 130

tacks (Fig. 1C,D). By patching only the last layer 131

of a model, SHIELD also introduces lightweight 132

computational overhead and requires no additional 133

training data. In summary, our contributions are as 134

follows: 135

• We propose SHIELD, a novel neural patching 136

algorithm that transforms a already-trained NN 137

model to a stochastic ensemble of multi-experts 138

2

with little computational overhead.139

• We demonstrate the effectiveness of SHIELD.140

CNN, RNN, BERT, and RoBERTa-based tex-141

tual models patched by SHIELD achieve an in-142

crease of 15%–70% on their robustness across143

14 different black-box attacks, outperforming 6144

defensive baselines on 3 public NLP datasets.145

• To the best of our knowledge, this work by far146

includes the most comprehensive evaluation for147

the defense against black-box attacks.148

2 The Proposed Method: SHIELD149

We introduce Stochastic Multi-Expert Neural150

Patcher (SHIELD) which patches only the last layer151

of an already trained NN model f(x, θ) and trans-152

forms it into an ensemble of multiple expert predic-153

tors with stochastic weights. These predictors are154

designed to be strategically selected with different155

weights during inference depending on the input.156

This is realized by two complementary modules,157

namely (i) a Stochastic Ensemble (SE) module that158

transforms f(·) into a randomized ensemble of dif-159

ferent heads and (ii) a Multi-Expert (ME) module160

that uses Neural Architecture Search (NAS) to dy-161

namically learn the optimal architecture of each162

head to promote their diversity.163

2.1 A Stochastic Ensemble (SE) Module164

This module extends the last layer of f(·), which165

is typically a fully-connected layer (followed by a166

softmax for classification), to an ensemble of K167

prediction heads, denotedH={h(·)}Kj . Each head168

hj(·), parameterized by θhj , is an expert predictor169

that is fed with a feature representation learned by170

up to the second-last layer of f(·) and outputs a171

prediction logit score:172

hj : f(x, θ
∗
L−1) ∈ RQ 7→ ỹj ∈ RM , (1)173

where θ∗L−1 are fixed parameters of f up to the174

second-last layer, Q is the size of the feature175

representation of x generated by the base model176

f(x, θ∗L−1), and M is the number of labels. To ag-177

gregate all logit scores returned from all heads,178

then, a classical ensemble method would aver-179

age them as the final prediction: ŷ∗= 1
K

∑K
j ỹj .180

However, this simple aggregation assumes each181

hj(·) ∈ H learns from very similar training signals.182

Hence, when θ∗L−1 already learns some of the task-183

dependent information,H will eventually converge184

not to a set of experts but very similar predictors.185

To resolve this issue, we introduce stochasticity 186

into the process by assigning prediction heads with 187

stochastic weights during both training and infer- 188

ence. Specifically, we introduce a new aggregation 189

mechanism: 190

ŷ =
1

K

K∑
j

αjwj ỹj , (2) 191

where wj weights ỹj according to head j’s ex- 192

pertise on the current input x, and αj ∈ [0, 1] is a 193

probabilistic scalar, representing how much of the 194

weight wj should be accounted for. Let us denote 195

w, α ∈ RK as vectors containing all scalars wj 196

and αj , respectively, and ỹ ∈ R(K×M) as the con- 197

catenation of all vectors ỹj returned from each of 198

the heads. We calculate w and α as follows: 199

w = WT (ỹ ⊕ f(x, θ∗L−1)) + b, (3) 200

201α = softmax((w + g)/τ), (4) 202

where W ∈ R(K×M+Q)×K , b ∈ RK are train- 203

able parameters, g ∈ RK is a noise vector sam- 204

pled from the Standard Gumbel Distribution and 205

therefore, probability vector α is sampled by a tech- 206

nique known as Gumbel-Softmax (Jang et al., 2016) 207

controlled by the noise vector g and the inverse- 208

temperature τ . Unlike the standard Softmax, the 209

Gumbel-Softmax is able to learn a categorical dis- 210

tribution (over K heads) optimized for a down- 211

stream task (Jang et al., 2016). Annealing τ→0 212

encourages a pseudo one-hot vector (e.g., [0.94, 213

0.03, 0.01, 0.02] when K=4), which makes Eq. 214

(2) a mixture of experts (Avnimelech and Intrator, 215

1999). Importantly, α is sampled in an inherently 216

stochastic way depending on the gumbel noise g. 217

While W,b is learned to deterministically as- 218

signs more weights w to heads that are experts for 219

each input x (Eq. (3)), α introduces stochasticity 220

into the final logits. The multiplication of αjwj 221

in Eq. (2) then enables us to use different sets of 222

weighted ensemble models while still maintaining 223

the ranking of the most important head. Thus, this 224

further diversifies the learning of each expert and 225

confuse attackers when they iteratively try different 226

inputs to find good adversarial perturbations. 227

Finally, to train this module, we use Eq. (2) as 228

the final prediction and train the whole module with 229

Negative Log Likelihood (NLL) loss following the 230

objective: 231

min
W,b,{θh}Kj

LSE = − 1

N

N∑
i

yilog(softmax(ŷi)).

(5) 232

3

Algorithm 1 Training SHIELD Algorithm.
1: Input: pre-trained neural network f(·)
2: Input: O, K, τ , γ
3: Initialize W,b, θO, {β}Kj
4: repeat
5: Freeze {β}Kj and optimize W,b, θO via Eq. (5) in

mini-batch from train set.
6: Freeze W,b, θO and optimize {β}Kj via Eq. (8) with

γ multiplier in mini-batch from validation set.
7: until convergence

2.2 A Multi-Expert (ME) Module233

While the SE module facilitates stochastic weighted234

ensemble among heads, the ME module searches235

for the optimal architecture for each head that236

maximizes the diversity in how they make predic-237

tions. To do this, we utilize the DARTS algo-238

rithm (Liu et al., 2019a) as follows. Let us denote239

Oj={oj(·)}Tt where T is the number of possible240

architectures to be selected for hj ∈ H. We want to241

learn a one-hot encoded selection vector βj ∈ RT242

that assigns hj(·) ← oj,argmax(βj)(·) during pre-243

diction. Since argmax(·) operation is not differ-244

entiable, during training, we relax the categorical245

assignment of the architecture for hj(·) ∈ H to a246

softmax over all possible networks in Oj :247

hj(·)←−
1

T

T∑
t

exp(βtj)∑T
t exp(βTj)

oj,t(·). (6)248

However, the original DARTS algorithm only op-249

timizes prediction performance. In our case, we250

also want to promote the diversity among heads.251

To do this, we force each hj(·) to specialize in dif-252

ferent features of an input, i.e., in how it makes253

predictions. This can be achieved by maximizing254

the difference among the gradients of the word-255

embedding ei of input xi w.r.t to the outputs of256

each hj(·) ∈ H. Hence, given a fixed set of param-257

eters θO of all possible networks for every heads,258

we train all selection vectors {β}Kj by optimizing259

the objective:260

minimize{β}Kj
Lexperts =

N∑
i

K∑
n<m

(
d(∇eiJn;∇eJm)− ||∇eJn−∇eJm||22

)
,

(7)261

where d(·) is the cosine-similarity function, and Jj262

is the NLL loss as if we only use a single prediction263

head hj . In this module, however, not only do we264

want to maximize the differences among gradients265

vectors, but also we want to ensure the selected ar-266

chitectures eventually converge to good prediction267

#Class #Vocab #Example

MR (Pang and Lee, 2005) 2 19K 11K
CB (Anand et al., 2017) 2 25K 32K
HS (Davidson et al.) 3 35K 25K

Table 2: Statistics of experimental datasets.

performance. Therefore, we train the whole ME 268

module with the following objective: 269

minimize{β}Kj
LME = LSE + γLexperts. (8) 270

2.3 Overall Framework 271

To combine the SE and ME modules, we replace Eq. 272

(6) into Eq. (1) and optimize the overall objective: 273

minimize{β}Kj
LvalME + γLvalexperts s.t.

W,b, θO = minimizeW,b,θOL
train
SE .

(9) 274

We employ an iterative training strategy (Liu 275

et al., 2019a) with the Adam optimization algo- 276

rithm (Kingma and Ba, 2013) as in Alg. 1. By al- 277

ternately freezing and training W,b, θO and {β}Kj 278

using a training set Dtrain and a validation set Dval, 279

we want to (i) achieve high quality prediction per- 280

formance through Eq. (5) and (ii) select the optimal 281

architecture for each expert to maximize their spe- 282

cialization through Eq. (7). 283

3 Experimental Evaluation 284

3.1 Set-up 285

Datasets & Metric. Table 2 shows the statistics of 286

all experimental datasets: Clickbait detection (CB) 287

(Anand et al., 2017), Hate Speech detection (HS) 288

(Davidson et al.) and Movie Reviews classification 289

(MR) (Pang and Lee, 2005). We split each dataset 290

into train, validation and test set with the ratio of 291

8:1:1 whenever standard public splits are not avail- 292

able. To report prediction performance on clean 293

examples, we use the weighted F1 score to take the 294

distribution of prediction labels into consideration. 295

To report the robustness, we report prediction accu- 296

racy under adversarial attacks (Morris et al., 2020), 297

i.e., # of failed attacks over total # of examples. A 298

failed attack is only counted when the attacker fails 299

to perturb (i.e., fail to flip the label of a correctly 300

predicted clean example). 301

Defense Baselines. We want to defend four tex- 302

tual NN models (base models) of different architec- 303

tures, namely RNN with GRU cells (Chung et al.), 304

transformer-based BERT (Devlin et al., 2019) and 305

4

RoBERTa (Liu et al., 2019b). We compare SHIELD306

with the following six defensive baselines:307

• Ensemble (Ens.) is the classical ensemble of 5308

different base models. We use the average of all309

NLL losses from the base models as the final310

training loss.311

• Diversity Training (DT) (Kariyappa and Qureshi,312

2019) is a variant of the Ensemble baseline313

where a regularization term is added to maxi-314

mize the coherency of gradient vectors of the315

input text w.r.t each sub-model. DT diversifies316

the feature-level expertise among heads.317

• Adaptive Diversity Promoting (ADP) (Pang318

et al., 2019) is a variant of Ensemble baseline319

where a regularization term is added to maxi-320

mize the diversity among non-maximal predic-321

tions of individual sub-models. ADP diversifies322

the class-level expertise among heads.323

• Mixup Training (Mixup) (Zhang et al., 2018; Si324

et al.) trains a base model with data constructed325

by linear interpolation of two random training326

samples. In this work, we use Mixup to regu-327

larize a NN to adapt linear transformation in-328

between the continuous embeddings of training329

samples.330

• Adversarial Training (AdvT) (Miyato et al.,331

2016) is a semi-supervised algorithm that op-332

timizes the NLL loss on the original training333

samples plus adversarial inputs.334

• Robust Word Recognizer (ScRNN) (Pruthi et al.,335

2019) detects and corrects potential adversarial336

perturbations or misspellings in a text before337

feeding it to the base model for prediction.338

Note that due to the insufficient memory of GPU339

Titian Xp to simultaneously train several BERT and340

RoBERTa sub-models, we exclude Ensemble, DT,341

and ADP baseline for them.342

Attacks. We comprehensively evaluate SHIELD343

under 14 different black-box attacks (Table 1).344

These attacks differ in their attack levels (e.g.,345

character, word, sentence-based), optimization al-346

gorithms for searching adversarial perturbations347

(e.g., through fixed templates, greedy, genetic-348

based search). Apart from lexical constraints such349

as limiting # or % of words to manipulate in a350

sentence, ignoring stop-words, etc., many of them351

also preserve the semantic meanings of a generated352

adversarial text via constraining the l2 distance353

Model/Dataset MR HS CB AVG

RNN 0.73 0.88 0.97 0.86
+Ensemble 0.80 0.90 0.97 0.89
+DT 0.80 0.86 0.97 0.88
+ADP 0.80 0.88 0.97 0.88
+Mixup 0.77 0.87 0.97 0.87
+AdvT 0.76 0.89 0.98 0.88
+ScRNN 0.79 0.85 0.96 0.87
+SHIELD 0.78 0.86 0.97 0.87 (↑1.3%)

BERT 0.84 0.90 1.00 0.91
+Mixup 0.81 0.89 0.99 0.90
+AdvT 0.85 0.91 0.99 0.92
+ScRNN 0.83 0.90 0.99 0.91
+SHIELD 0.86 0.90 0.99 0.91 (0%)

RoBERTa 0.88 0.89 1.00 0.92
+Mixup 0.88 0.91 0.99 0.93
+AdvT 0.87 0.89 0.99 0.92
+ScRNN 0.88 0.90 0.99 0.92
+SHIELD 0.88 0.89 0.99 0.92 (0%)

Table 3: Prediction F1 on clean examples. On average,
SHIELD is still able to maintain the original fidelity.

between its representation vector and that of the 354

original text produced by either Universal Sentence 355

Encoder (USE) (Cer et al., 2018) or GloVe em- 356

beddings (Pennington et al., 2014). Moreover, to 357

ensure that the perturbed texts still look natural, a 358

few of the attack methods employ an external pre- 359

trained language model (e.g., BERT(Devlin et al., 360

2019), L2W (Holtzman et al., 2018)) to optimize 361

the log-likelihood of the adversarial texts. Due 362

to computational limit, we only compare SHIELD 363

with other baselines in 3 representative attacks, 364

namely TextFooler (Jin et al., 2019), DeepWord- 365

Bug (Gao et al.) and PWWS (Ren et al., 2019). 366

They are among the most effective attacks. To 367

ensure fairness and reproducibility, we use the ex- 368

ternal TextAttack (Morris et al., 2020) and OpenAt- 369

tack framework for adversarial text generation and 370

evaluation. 371

Implementation. We train SHIELD of 5 experts 372

(K=5) with γ=0.5 in all experiments. For each 373

expert, we set Oj to 3 (T=3) possible architec- 374

tures: FCN with 1, 2 and 3 hidden layer(s). For 375

each dataset, we use grid-search and try all τ ∈ 376

{1.0, 0.1, 0.01, 0.001} to search for the best pairs 377

of τ used during training and inference according to 378

their prediction accuracy and defense performance 379

under TextFooler (Jin et al., 2019) and DeepWord- 380

Bug (Gao et al.) attacks on the validation set. We 381

use 10% of the training set as a separate develop- 382

ment set during training with early-stop to prevent 383

overfitting. We then report the performance of the 384

best single model across all attacks on the test set. 385

5

Dataset Movie Reviews Hate Speech Clickbait

RNN BERT RoBERTa RNN BERT RoBERTa RNN BERT RoBERTa
Attack Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.

SCPNA 0.37 0.32 0.27 0.24 0.27 0.28 0.51 0.72 0.25 0.29 0.23 0.3 0.51 0.5 0.44 0.49 0.4 0.4
TB 0.2 0.32 0.28 0.37 0.28 0.5 0.35 0.61 0.48 0.59 0.51 0.6 0.79 0.86 0.87 0.93 0.89 0.94
DW 0.2 0.44 0.27 0.42 0.16 0.55 0.27 0.47 0.27 0.55 0.41 0.55 0.67 0.9 0.58 0.95 0.68 0.96
Kuleshov 0.01 0.12 0.07 0.22 0.05 0.28 0.04 0.18 0.09 0.28 0.03 0.25 0.37 0.71 0.52 0.88 0.63 0.9
TF 0.03 0.18 0.08 0.26 0.05 0.39 0.08 0.24 0.25 0.42 0.12 0.37 0.31 0.78 0.44 0.92 0.5 0.93
IGA 0.05 0.29 0.16 0.32 0.13 0.5 0.16 0.34 0.27 0.35 0.24 0.33 0.6 0.8 0.79 0.95 0.77 0.96
Pruthi 0.53 0.56 0.48 0.49 0.54 0.54 0.59 0.71 0.45 0.59 0.53 0.59 0.94 0.92 0.96 0.95 0.96 0.96
PS 0.09 0.3 0.14 0.35 0.15 0.45 0.3 0.54 0.32 0.43 0.32 0.44 0.46 0.85 0.64 0.94 0.66 0.94
Alzantot 0.21 0.36 0.42 0.47 0.46 0.64 0.27 0.54 0.51 0.57 0.56 0.55 0.73 0.83 0.92 0.97 0.9 0.98
BAE 0.44 0.54 0.38 0.46 0.43 0.57 0.6 0.72 0.38 0.52 0.43 0.51 0.83 0.92 0.4 0.81 0.39 0.92
BERTK 0.01 0.18 0.04 0.17 0.03 0.23 0.1 0.21 0.36 0.48 0.22 0.36 0.18 0.65 0.25 0.86 0.41 0.86
PSO 0.05 0.07 0.14 0.12 0.07 0.15 0.35 0.54 0.38 0.4 0.35 0.4 0.6 0.64 0.75 0.87 0.71 0.87
Checklist 0.7 0.76 0.84 0.85 0.88 0.88 0.86 0.81 0.89 0.89 0.88 0.88 0.98 0.98 0.99 1.0 1.0 1.0
Clare 0.16 0.35 0.23 0.28 0.27 0.54 0.76 0.72 0.79 0.78 0.72 0.76 0.7 0.87 0.48 0.86 0.68 0.94

Average 0.27 0.36 0.27 0.46 0.37 0.52 0.41 0.51 0.4 0.49 0.65 0.75 0.62 0.8 0.65 0.88 0.68 0.9
Relative ↑% ↑54.55% ↑33.33% ↑70.37% ↑40.54% ↑24.39% ↑22.5% ↑29.03% ↑35.38% ↑32.35%
Bold, Red: no worse and decreased results from the base models

Table 4: Accuracy under adversarial attacks before (Bef.) and after (Aft.) patched with SHIELD.

The Appendix will include all details on all mod-386

els’ parameters, random seeds, and implementation.387

We will release the code of SHIELD.388

3.2 Results389

Due to space limitation, the results of CNN-based390

models are presented in the Appendix.391

Fidelity We first evaluate SHIELD’s prediction392

performance without adversarial attacks. Table 3393

shows that all base models patched by SHIELD394

still maintain similar F1 scores on average across395

all datasets. Although SHIELD with RNN has a396

slightly decrease in fidelity on Hate Speech dataset,397

this is negligible compared to the adversarial ro-398

bustness benefits that SHIELD will provide (More399

below).400

Computational Complexity Regarding the space401

complexity, SHIELD can extend a NN into an en-402

semble model with a marginal increase of # of pa-403

rameters. Specifically, with B denoting # of param-404

eters of the base model, SHIELD has a space com-405

plexity of O(B+KU) while both Ensemble, DT406

and ADP have a complexity ofO(KB) and U�B.407

In case of BERT with K=5, SHIELD only requires408

an additional 8.3%. While traditional ensemble409

methods require as many as 4 times additional410

parameters. During training, SHIELD only trains411

O(KU) parameters, while other defense methods,412

including ones using data augmentation, update all413

of them. Specifically, with K=5, SHIELD only414

trains 8% of the parameters of the base model and415

1.6% of the parameters of other BERT-based en- 416

semble baselines. During inference, SHIELD is 417

also 3 times faster than ensemble-based DT and 418

ADP on average. 419

Robustness Table 4 shows the performance of 420

SHIELD compared to the base models. Over- 421

all, SHIELD consistently improves the robustness 422

of base models in 154/168 (92%) cases across 423

14 adversarial attacks regardless of their attack 424

strategies. Particularly, all CNN, RNN, BERT and 425

RoBERTa-based textual models that are patched 426

by SHIELD witness relative improvements in the 427

average prediction accuracy from 15% to as much 428

as 70%. Especially in the case of detecting click- 429

bait, SHIELD can recover up to 5% margin within 430

the performance on clean examples in many cases. 431

This demonstrates that SHIELD provides a versa- 432

tile neural patching mechanism that can quickly 433

and effectively defends against black-box adver- 434

saries without making any assumptions on the at- 435

tack strategies. 436

We then compare SHIELD with all defense base- 437

lines under TextFooler (TF), DeepWordBug (DW), 438

and PWWS (PS) attacks These attacks are selected 439

as (i) they are among the strongest attacks and (ii) 440

they provide foundation mechanisms upon which 441

other attacks are built. Table 5 shows that SHIELD 442

achieves the best robustness across all attacks and 443

datasets. On average, SHIELD observes an absolute 444

improvement from +9% to +18% in accuracy over 445

the second-best defense algorithms (DT in case 446

6

Dataset MR HS CB AVG
Attack TF DW PS TF DW PS TF DW PS

RNN 0.02 0.2 0.09 0.09 0.26 0.32 0.31 0.67 0.46 0.27
+Ens. 0.01 0.16 0.06 0.08 0.12 0.29 0.32 0.66 0.48 0.24
+DT 0.03 0.24 0.1 0.32 0.53 0.53 0.35 0.66 0.5 0.36
+ADP 0.02 0.18 0.09 0.18 0.27 0.35 0.33 0.66 0.47 0.28
+Mixup 0.01 0.14 0.04 0.07 0.42 0.29 0.27 0.64 0.44 0.26
+AdvT 0.01 0.3 0.09 0.17 0.18 0.35 0.33 0.69 0.51 0.29
+ScRNN 0.03 0.17 0.08 0.15 0.16 0.32 0.33 0.68 0.47 0.27
+SHIELD 0.18 0.44 0.3 0.26 0.61 0.54 0.78 0.9 0.85 0.54

BERT 0.09 0.2 0.19 0.26 0.16 0.38 0.49 0.5 0.49 0.31
+Mixup 0.11 0.3 0.22 0.15 0.19 0.22 0.39 0.48 0.57 0.29
+AdvT 0.11 0.25 0.19 0.37 0.47 0.47 0.69 0.73 0.81 0.45
+ScRNN 0.03 0.11 0.13 0.34 0.33 0.34 0.41 0.51 0.6 0.31
+SHIELD 0.26 0.42 0.35 0.42 0.55 0.43 0.92 0.95 0.94 0.58

RoBERTa 0.06 0.18 0.16 0.1 0.12 0.12 0.37 0.34 0.45 0.21
+Mixup 0.05 0.16 0.15 0.17 0.43 0.32 0.52 0.69 0.66 0.35
+AdvT 0.1 0.21 0.21 0.34 0.43 0.42 0.67 0.79 0.77 0.44
+ScRNN 0.04 0.18 0.15 0.19 0.38 0.32 0.57 0.74 0.7 0.36
+SHIELD 0.39 0.55 0.45 0.37 0.55 0.44 0.93 0.96 0.94 0.62
Underline: the second best result

Table 5: Accuracy of all defense baselines under TF,
DW and PS attack.

of RNN, and AdvT in case of BERT, RoBERTa).447

Moreover, SHIELD outperforms other ensemble-448

based baselines (DT, ADP), and can be applied on449

top of a pre-trained BERT or RoBERTa model with450

only around 8% additional parameters. However,451

that # would increase to 500% (K←5) in the case452

of DT and ADP, requiring over half a billion # of453

parameters.454

4 Discussion455

Performance under Budgeted Attacks. SHIELD456

not only improves the overall robustness of the457

patched NN model under a variety of black-box458

attacks, but also induces computational cost that459

can greatly discourage malicious actors to exercise460

adversarial attacks in practice. We define compu-461

tational cost as # of queries on a target NN model462

that is required for a successful attack. Since ad-463

versaries usually have an attack budget on # of464

model queries (e.g. a monetary budget, limited465

API access to the black-box model), the higher466

of queries required, the less vulnerable a target467

model is to adversarial threats. A larger budget is468

crucial for genetic-based attacks because they usu-469

ally require larger # of queries than greedy-based470

strategies. We have demonstrated in Sec. 3.2 that471

SHIELD is robust even when the attack budget is472

unlimited. Fig. 2 shows that the performance of473

RoBERTa after patched by SHIELD also reduces474

at a slower rate compared to the base RoBERTa475

Figure 2: Average accuracy of RoBERTa before and
after patched with SHIELD under greedy-based and
genetic-based attacks with different percentages of #
model queries up to 100% budget limit.

model when the attack budget increases, especially 476

under greedy-based attacks. 477

Parameter Sensitivity Analyses. Training 478

SHIELD requires hyper-parameter K,T, γ and τ . 479

We observe that arbitrary value γ=0.5,K=5, T=3 480

works well across all experiments. Although we 481

did not observe any patterns on the effects of K on 482

the robustness, a K≥3 performs well across all at- 483

tacks. On the contrary, different pairs of the inverse- 484

temperature τ during training and inference witness 485

varied performance w.r.t to different datasets. τ 486

gives us the flexibility to control the sharpness of 487

the probability vector α. When τ→∞, α to get 488

closer to one-hot encoded vector, i.e., use only one 489

head at a time. By decreasing τ : 0.1→0.001, we 490

involve more experts in final predictions. Table 491

A.5 (Appendix) shows the best τ found using the 492

validation set as explained in Sec. 3.1. 493

Ablation Tests. This section tests SHIELD with 494

only either the SE or ME module. Table 6 shows 495

that SE and ME performs differently across differ- 496

ent datasets and models. Specifically, we observe 497

that ME performs better than the SE module in case 498

of Clickbait dataset, SE is better than the ME mod- 499

ule in case of Movie Reviews dataset and we have 500

mixed results in Hate Speech dataset. Nevertheless, 501

the final SHIELD model which comprises both the 502

SE and ME modules consistently performs the best 503

across all cases. This shows that both the ME and 504

SE modules are complementary to each other and 505

are crucial for SHIELD’s robustness. 506

5 Limitations and Future Work 507

In this paper, we limit the architecture of each ex- 508

pert to be an FCN with a maximum of 3 hidden 509

layers (except the base model). If we include more 510

options for this architecture (e.g., attention (Luong 511

et al., 2015)), sub-models’ diversity will signifi- 512

cantly increase. The design of SHIELD is model- 513

7

Dataset Movie Reviews Hate Speech Clickbait

Attack TF DW PS TF DW PS TF DW PS

RNN 0.02 0.2 0.09 0.09 0.26 0.32 0.31 0.67 0.46
+SE Only 0.02 0.17 0.08 0.09 0.2 0.32 0.52 0.72 0.61
+ME Only 0.02 0.14 0.07 0.13 0.03 0.01 0.57 0.79 0.61
+SHIELD 0.18 0.44 0.3 0.26 0.61 0.54 0.78 0.9 0.85

BERT 0.09 0.2 0.19 0.26 0.16 0.38 0.49 0.5 0.49
+SE Only 0.07 0.18 0.16 0.26 0.28 0.32 0.45 0.49 0.62
+ME Only 0.06 0.2 0.15 0.21 0.28 0.27 0.74 0.81 0.82
+SHIELD 0.26 0.42 0.35 0.37 0.55 0.44 0.92 0.95 0.94

RoBERTa 0.06 0.18 0.16 0.1 0.12 0.12 0.37 0.34 0.45
+SE Only 0.13 0.22 0.19 0.13 0.26 0.29 0.57 0.70 0.71
+ME Only 0.07 0.17 0.15 0.22 0.4 0.31 0.8 0.87 0.85
+SHIELD 0.39 0.55 0.45 0.37 0.55 0.44 0.93 0.96 0.94

Table 6: Complementary role of SE and ME.

agnostic and is also applicable to other complex514

and large-scale NNs such as transformers-based515

models. Especially with the recent adoption of516

transformer architecture in both NLP and com-517

puter vision (Carion et al., 2020; Chen et al., 2020),518

potential future work includes extending SHIELD519

to patch other complex NN models (e.g., T5 (Raffel520

et al., 2020)) or other tasks and domains such as521

Q&A and language generation.522

6 Related Work523

Defending against Black-Box Attacks. Most of524

previous works (e.g., (Le et al., 2021; Zhou et al.,525

2021; Keller et al., 2021; Pruthi et al., 2019; Dong526

et al., 2021; Mozes et al., 2020; Wang et al., 2021)527

in adversarial defense are designed either for a spe-528

cific type (e.g., word, synonym substitution, mis-529

spellings) or level (e.g., character or word-based)530

of attack. Thus, they are usually evaluated against a531

small subset of (≤4) attack methods. Even though532

there are works that propose general defense meth-533

ods, they are often built upon adversarial train-534

ing (Goodfellow et al., 2015) which requires train-535

ing everything from scratch (e.g., (Si et al.; Miyato536

et al., 2016; Zhang et al., 2018) or limited to a set537

of predefined attacks (e.g., (Zhou et al., 2019a)).538

Even though adversarial training-based defense539

works well against different attacks on BERT and540

RoBERTa, its performance is far out-weighted by541

SHIELD (Table 5).542

Contrast to previous approaches, SHIELD ad-543

dresses not the characteristics of the resulted per-544

turbations from the attackers but their fundamental545

attack mechanism, which is most of the time an546

iterative perturbation optimization process (Fig. 1).547

This allows SHIELD to effectively defend against548

14 different black-box attacks (Table 1), showing 549

its effectiveness in practice. To the best of our 550

knowledge, by far, this works also evaluate with 551

the most comprehensive set of attack methods in 552

the adversarial text defense literature. 553

Ensemble-based Defenses. SHIELD is distin- 554

guishable from previous ensemble-based defenses 555

on two aspects. First, previous approaches such 556

as DT (Kariyappa and Qureshi, 2019), ADP (Pang 557

et al., 2019) are mainly designed for computer vi- 558

sion. Applying these models to the NLP domain 559

faces a practical challenge where training multi- 560

ple memory-intensive SOTA sub-models such as 561

BERT or RoBERTa can be very costly in terms of 562

space and time complexities. In contrast, SHIELD 563

enables to “hot-fix” a complex NN by replacing and 564

training only the last layer, removing the necessity 565

of re-training the entire model from scratch. Sec- 566

ond, previous methods (e.g., DT and ADP) mainly 567

aim to reduce the dimensionality of adversarial 568

subspace, i.e., the subspace that contains all adver- 569

sarial examples, by forcing the adversaries to attack 570

a single fixed ensemble of diverse sub-models at 571

the same time. However, our approach mainly aims 572

to dilute the attack process with noisy signals by 573

forcing the adversaries to attack stochastic, i.e., dif- 574

ferent, ensemble variations of sub-models at every 575

inference passes. This helps SHIELD achieve a 576

much better defense performance compared to DT 577

and ADP across several attacks (Table 5). 578

7 Conclusion 579

This paper presents a novel algorithm, SHIELD, 580

which consistently improves the robustness of tex- 581

tual NN models under black-box adversarial at- 582

tacks by modifying and re-training only their last 583

layers. By extending a textual NN model of 584

varying architectures (e.g., CNN, RNN, BERT, 585

RoBERTa) into a stochastic ensemble of multi- 586

ple experts, SHIELD utilizes differently-weighted 587

sets of prediction heads depending on the input. 588

This helps SHIELD defend against black-box ad- 589

versarial attacks by breaking their most fundamen- 590

tal assumption–i.e., target NN models remain un- 591

changed during an attack. SHIELD achieves aver- 592

age relative improvements of 15%–70% in predic- 593

tion accuracy under 14 attacks on 3 public NLP 594

datasets, while still maintaining similar perfor- 595

mance on clean examples. Thanks to its model- 596

and domain-agnostic design, we expect SHIELD to 597

work properly in other NLP domains. 598

8

References599

Ankesh Anand, Tanmoy Chakraborty, and Noseong600
Park. 2017. We used neural networks to detect click-601
baits: You won’t believe what happened next! In602
ECIR’17, pages 541–547. Springer.603

Ran Avnimelech and Nathan Intrator. 1999. Boosted604
mixture of experts: An ensemble learning scheme.605
Neural computation, 11(2).606

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-607
gio. Neural machine translation by jointly learning608
to align and translate. ICLR’15.609

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,610
Nicolas Usunier, Alexander Kirillov, and Sergey611
Zagoruyko. 2020. End-to-end object detection with612
transformers. ECCV’20.613

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,614
Nicole Limtiaco, Rhomni St John, Noah Constant,615
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,616
et al. 2018. Universal sentence encoder. arXiv617
preprint arXiv:1803.11175.618

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, and619
Heewoo Jun. 2020. Generative pretraining from pix-620
els. In ICML’20.621

Minhao Cheng, Wei Wei, and Cho-Jui Hsieh. 2019.622
Evaluating and enhancing the robustness of dia-623
logue systems: A case study on a negotiation agent.624
ACL’19.625

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,626
and Yoshua Bengio. Empirical evaluation of gated627
recurrent neural networks on sequence modeling.628
NIPS’14 Workshop.629

Thomas Davidson, Dana Warmsley, Michael Macy,630
and Ingmar Weber. Automated hate speech detec-631
tion and the problem of offensive language. In632
ICWSM’17.633

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and634
Kristina Toutanova. 2019. Bert: Pre-training of deep635
bidirectional transformers for language understand-636
ing. In NAACL-HLT’19, pages 4171–4186.637

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and638
Hong Liu. 2021. Towards robustness against nat-639
ural language word substitutions. arXiv preprint640
arXiv:2107.13541.641

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing642
Dou. 2018. Hotflip: White-box adversarial exam-643
ples for text classification. In ACL’18. ACL.644

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-645
jun Qi. Black-box generation of adversarial text646
sequences to evade deep learning classifiers. In647
SPW’18. IEEE.648

Siddhant Garg and Goutham Ramakrishnan. 2020.649
Bae: Bert-based adversarial examples for text clas-650
sification. EMNLP’20.651

Ian Goodfellow, Jonathon Shlens, and Christian 652
Szegedy. 2015. Explaining and harnessing adversar- 653
ial examples. In ICLR’15. 654

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine 655
Bosselut, David Golub, and Yejin Choi. 2018. 656
Learning to write with cooperative discriminators. 657
arXiv preprint arXiv:1805.06087. 658

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke 659
Zettlemoyer. 2018. Adversarial example generation 660
with syntactically controlled paraphrase networks. 661
In ACL’18, pages 1875–1885. 662

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat- 663
egorical reparameterization with gumbel-softmax. 664
ICLR’17. 665

Robin Jia, Aditi Raghunathan, Kerem Göksel, and 666
Percy Liang. 2019. Certified robustness to adversar- 667
ial word substitutions. EMNLP-IJCNLP’19. 668

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter 669
Szolovits. 2019. Is bert really robust? natural lan- 670
guage attack on text classification and entailment. 671
arXiv preprint arXiv:1907.11932. 672

Sanjay Kariyappa and Moinuddin K Qureshi. 2019. 673
Improving adversarial robustness of ensembles with 674
diversity training. arXiv preprint arXiv:1901.09981. 675

Yannik Keller, Jan Mackensen, and Steffen Eger. 2021. 676
Bert-defense: A probabilistic model based on bert 677
to combat cognitively inspired orthographic adver- 678
sarial attacks. arXiv preprint arXiv:2106.01452. 679

Yoon Kim. 2014. Convolutional neural networks for 680
sentence classification. In EMNLP’14. 681

Diederik P Kingma and Jimmy Ba. 2013. Adam: A 682
method for stochastic optimization. In ICLR’13. 683

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung 684
Lau, and Stefano Ermon. 2018. Adversarial ex- 685
amples for natural language classification problems, 686
2018. In URL https://openreview.net/forum. 687

Thai Le, Noseong Park, and Dongwon Lee. 2021. A 688
sweet rabbit hole by darcy: Using honeypots to 689
detect universal trigger’s adversarial attacks. In 690
ACL’21. 691

Thai Le, Suhang Wang, and Dongwon Lee. 2020. Mal- 692
com: Generating malicious comments to attack neu- 693
ral fake news detection models. In ICDM’20. IEEE. 694

Alexander Hanbo Li and Abhinav Sethy. 2019. Knowl- 695
edge enhanced attention for robust natural language 696
inference. arXiv preprint arXiv:1909.00102. 697

Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris 698
Brockett, Ming-Ting Sun, and Bill Dolan. 2020a. 699
Contextualized perturbation for textual adversarial 700
attack. arXiv preprint arXiv:2009.07502. 701

9

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting702
Wang. 2018. TextBugger: Generating Adversarial703
Text Against Real-world Applications. NDSS’18.704

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,705
and Xipeng Qiu. 2020b. Bert-attack: Adversarial706
attack against bert using bert. EMNLP’20.707

Hanxiao Liu, Karen Simonyan, and Yiming Yang.708
2019a. DARTS: Differentiable architecture search.709
In ICLR’19.710

Kai Liu, Xin Liu, An Yang, Jing Liu, Jinsong Su, Su-711
jian Li, and Qiaoqiao She. 2020. A robust adversar-712
ial training approach to machine reading comprehen-713
sion. In AAAI’20, pages 8392–8400.714

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-715
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,716
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.717
Roberta: A robustly optimized bert pretraining ap-718
proach. arXiv preprint arXiv:1907.11692.719

Minh-Thang Luong, Hieu Pham, and Christopher D720
Manning. 2015. Effective approaches to attention-721
based neural machine translation. In EMNLP’15.722

Takeru Miyato, Andrew M Dai, and Ian Goodfellow.723
2016. Training methods for semi-supervised text724
classification. In ICLR’16.725

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,726
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-727
work for adversarial attacks, data augmentation, and728
adversarial training in nlp. In EMNLP’19.729

Maximilian Mozes, Pontus Stenetorp, Bennett Klein-730
berg, and Lewis D Griffin. 2020. Frequency-guided731
word substitutions for detecting textual adversarial732
examples. arXiv preprint arXiv:2004.05887.733

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-734
ing class relationships for sentiment categorization735
with respect to rating scales. In ACL’05.736

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun737
Zhu. 2019. Improving adversarial robustness via738
promoting ensemble diversity. In ICML’19.739

Tianyu Pang, Kun Xu, and Jun Zhu. 2020. Mixup infer-740
ence: Better exploiting mixup to defend adversarial741
attacks. In ICLR’20.742

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt743
Fredrikson, Z Berkay Celik, and Ananthram Swami.744
2016. The limitations of deep learning in adversarial745
settings. In EuroS&P’16, pages 372–387. IEEE.746

Jeffrey Pennington, Richard Socher, and Christopher D747
Manning. 2014. Glove: Global vectors for word rep-748
resentation. In EMNLP’14, pages 1532–1543.749

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-750
ton. 2019. Combating adversarial misspellings with751
robust word recognition. In ACL’19.752

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 753
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 754
Wei Li, and Peter J Liu. 2020. Exploring the limits 755
of transfer learning with a unified text-to-text trans- 756
former. JMLR’20, 21. 757

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 758
2019. Generating natural language adversarial ex- 759
amples through probability weighted word saliency. 760
In ACL’19, pages 1085–1097. 761

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, 762
and Sameer Singh. 2020. Beyond accuracy: Behav- 763
ioral testing of nlp models with checklist. ACL’20. 764

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan 765
Liu, Yasheng Wang, Qun Liu, and Maosong Sun. 766
Better robustness by more coverage: Adversarial 767
and mixup data augmentation for robust finetuning. 768
ACL’21 (Findings). 769

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 770
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 771
Kaiser, and Illia Polosukhin. 2017. Attention is all 772
you need. In NIPS’17, pages 5998–6008. 773

Wenqi Wang, Lina Wang, Run Wang, Zhibo Wang, 774
and Aoshuang Ye. 2019a. Towards a robust deep 775
neural network in texts: A survey. arXiv preprint 776
arXiv:1902.07285. 777

Xiaosen Wang, Hao Jin, and Kun He. 2019b. Natural 778
language adversarial attacks and defenses in word 779
level. arXiv preprint arXiv:1909.06723. 780

Xiaosen Wang, Yichen Yang, Yihe Deng, and Kun He. 781
2021. Adversarial training with fast gradient projec- 782
tion method against synonym substitution based text 783
attacks. In AAAI. 784

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, 785
Meng Zhang, Qun Liu, and Maosong Sun. 2020. 786
Word-level textual adversarial attacking as combina- 787
torial optimization. In ACL’20, pages 6066–6080. 788

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, 789
and David Lopez-Paz. 2018. mixup: Beyond em- 790
pirical risk minimization. In ICLR’18. 791

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 792
2018. Generating natural adversarial examples. In 793
ICLR’18. 794

Yi Zhou, Xiaoqing Zheng, Cho-Jui Hsieh, Kai-Wei 795
Chang, and Xuanjing Huang. 2021. Defense against 796
synonym substitution-based adversarial attacks via 797
dirichlet neighborhood ensemble. ACL’21. 798

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei 799
Wang. 2019a. Learning to discriminate perturba- 800
tions for blocking adversarial attacks in text classi- 801
fication. arXiv preprint arXiv:1909.03084. 802

Zhixuan Zhou, Huankang Guan, Meghana Moorthy 803
Bhat, and Justin Hsu. 2019b. Fake news detection 804
via nlp is vulnerable to adversarial attacks. arXiv 805
preprint arXiv:1901.09657. 806

10

Model/Dataset MR HS CB AVG

CNN 0.719 0.900 0.966 0.862
+Ens. 0.770 0.881 0.975 0.875
+DT 0.767 0.890 0.972 0.876
+ADP 0.764 0.885 0.977 0.875
+Mixup 0.711 0.867 0.965 0.848
+AdvT 0.772 0.884 0.977 0.878
+ScRNN 0.758 0.854 0.972 0.861
+SHIELD 0.787 0.893 0.974 0.885

Table A.1: Prediction performance in F1 on clean ex-
amples of CNN-based NN models.

Dataset MR HS CB

Attack Bef. Aft. Bef. Aft. Bef. Aft.

SCPNA 0.35 0.41 0.27 0.4 0.58 0.53
TB 0.15 0.35 0.23 0.48 0.79 0.82
DW 0.13 0.38 0.1 0.32 0.71 0.86
Kuleshov 0.01 0.13 0.01 0.11 0.43 0.63
TF 0.01 0.19 0.03 0.19 0.44 0.74
IGA 0.05 0.23 0.1 0.2 0.6 0.71
Pruthi 0.49 0.54 0.47 0.59 0.94 0.9
PS 0.05 0.28 0.13 0.34 0.56 0.81
Alzantot 0.22 0.3 0.29 0.36 0.82 0.75
BAE 0.45 0.5 0.43 0.55 0.77 0.85
BERTK 0.0 0.2 0.01 0.18 0.32 0.61
PSO 0.03 0.03 0.23 0.34 0.58 0.56
Checklist 0.7 0.77 0.87 0.88 0.98 0.98
Clare 0.11 0.3 0.48 0.67 0.6 0.81

Average 0.2 0.33 0.26 0.4 0.65 0.75
Relative ↑% ↑65.0% ↑53.85% ↑15.38%

Table A.2: Accuracy of CNN-based NN models under
adversarial attacks before (Bef.) and after (Aft.) being
patched with SHIELD.

Dataset MR HS CB AVG
Attack TF DW PS TF DW PS TF DW PS

CNN 0.01 0.13 0.06 0.03 0.1 0.14 0.45 0.7 0.57 0.24
+Ens. 0.02 0.16 0.07 0.08 0.2 0.26 0.72 0.87 0.78 0.35
+DT 0.03 0.16 0.07 0.08 0.25 0.28 0.75 0.87 0.8 0.37
+ADP 0.0 0.11 0.04 0.08 0.19 0.21 0.19 0.67 0.44 0.21
+Mixup 0.03 0.18 0.1 0.07 0.32 0.24 0.13 0.6 0.37 0.23
+AdvT 0.02 0.17 0.07 0.1 0.18 0.27 0.33 0.73 0.55 0.27
+ScRNN 0.03 0.24 0.11 0.06 0.14 0.22 0.36 0.69 0.54 0.27
+SHIELD 0.19 0.38 0.28 0.19 0.32 0.34 0.74 0.86 0.81 0.46
Underline: the second best result

Table A.3: Accuracy of all defense baselines under TF,
DW and PS attack on CNN-based NN models.

A ADDITIONAL RESULTS807

• Table A.1 shows the performance on clean ex-808

amples of all defense methods on CNN-based809

NN models.810

• Table A.2 shows the performance of SHIELD811

against all 14 black-box attacks on CNN-based812

NN models.813

Dataset MR HS CB

Attack TF DW PS TF DW PS TF DW PS

CNN 0.01 0.13 0.06 0.03 0.1 0.14 0.45 0.7 0.57
+SE Only 0.02 0.15 0.07 0.24 0.42 0.42 0.46 0.64 0.61
+ME Only 0.18 0.19 0.07 0.1 0.25 0.29 0.60 0.80 0.69
+SHIELD 0.19 0.38 0.28 0.19 0.32 0.34 0.74 0.86 0.81

Table A.4: Ablation test of the SE and ME modules on
CNN-based model.

Model Train Test

MR HS CB MR HS CB

CNN+SHIELD 1e-2 1 1 1e-1 1e-1 1e-1

RNN+SHIELD 1 1e-2 1e-3 1e-3 1e-3 1

BERT+SHIELD 1e-2 1e-1 1 1e-1 1e-2 1e-3

RoBERTa+SHIELD 1 1 1e-3 1e-3 1e-3 1e-3

Table A.5: Inverse of the final hyper-parameter τ ’ val-
ues for the selected best SHIELD model for all datasets.

• Table A.3 compares the performance of SHIELD 814

with all defense baselines on CNN-based NN 815

models. SHIELD outperforms all baselines on 816

average. 817

• Table A.4 shows the ablation test of SHIELD on 818

CNN-based NN models. 819

• Table A.5 shows the final τ parameters found 820

using brute-force search on the validation set 821

as described in Sec. 3.1. We use this set of 822

parameters to evaluate all the performance under 823

adversarial attacks throughout the paper. 824

B REPRODUCIBILITY 825

B.1 Infrastructure and Source Code 826

• Software: All the implementations are written 827

in Python (v3.7) with Pytorch (v1.5.1), Numpy 828

(v1.19.1), Scikit-learn (v0.21.3). We rely on 829

Transformers (v3.0.2) library for loading and 830

training transformers-based models (e.g., BERT, 831

RoBERTa). 832

• Hardware: We run all of the experiments on 833

standard server machines installed with Ubuntu 834

OS (v18.04), 20-Core Intel(R) Xeon(R) Silver 835

4114 CPU @ 2.20GHz, 93GB of RAM, and a 836

Titan Xp GPU. 837

• Dataset: We use the python library datasets 838

(v.1.2.0) 1 by Hugginface to load all the 839

1 https://huggingface.co/docs/datasets/#

11

https://huggingface.co/docs/datasets/##

benchmark datasets used in the paper. They840

are also available to download at the fol-841

lowing links: Movie Reviews (http://842

www.eraserbenchmark.com/zipped/843

movies.tar.gz), Clickbait (https:844

//github.com/saurabhmathur96/845

clickbait-detector), Hate Speech846

(https://github.com/t-davidson/847

hate-speech-and-offensive-language/848

raw/master/data/labeled_data.849

csv).850

• Random Seed: To ensure reproducibility,851

we set a consistent random seed using852

torch.manual_seed and np.random.seed func-853

tion for all experiments.854

• Source Code: We will also release the source855

code of SHIELD upon acceptance of this paper.856

B.2 Experimental Settings for Base Models857

B.2.1 Architectures and Parameters858

• CNN: We implement the CNN sentence classifi-859

cation model (Kim, 2014) with three 2D CNN860

layers, each of which is followed by a Max-861

Pooling layer. Concatenation of outputs of all862

Max-Pooling layers is fed into a Dropout layer863

with 0.5 probability, then an FCN + Softmax for864

prediction. We use an Embedding layer of size865

300 with pre-trained GloVe embedding-matrix866

to transform each discrete text tokens into con-867

tinuous input features before feeding them into868

the CNN network. Each of CNN layers uses 150869

kernels with a size of 2, 3, 4, respectively.870

• RNN: Because the original PyTorch implemen-871

tation of RNN does not support double back-872

propagation on CuDNN, which is required by873

DT and SHIELD to run the model on GPU, we874

use a publicly available Just-in-Time (JIT) ver-875

sion of GRU of one hidden layer as RNN cell.876

We use an Embedding layer of size 300 with877

pre-trained GloVe embedding-matrix to trans-878

form each discrete text tokens into continuous879

input features before inputting them into the880

RNN layer. We flatten out all outputs of the881

RNN layer, followed by a Dropout layer with882

0.5 probability, then an FCN + Softmax for pre-883

diction.884

• BERT & RoBERTa: We use the transformers885

library from HuggingFace to fine-tune BERT886

and RoBERTa model. We use the bert-base- 887

uncased version of BERT and the RoBERTa- 888

base version of RoBERTa. 889

B.2.2 Vocabulary and Input Length 890

Due to limited GPU memory, we set the maxi- 891

mum length of inputs for transformer-based mod- 892

els, i.e., BERT and RoBERTa, to 128 during train- 893

ing. For CNN and RNN-based models, we use all 894

the vocabulary tokens that can be extracted from 895

the training set, and we use all of the vocabulary 896

tokens provided by pre-trained models for BERT 897

and RoBERTa-based models. 898

B.3 Experimental Settings for Defense 899

Methods 900

1. SHIELD: For hyper-parameter γ, K and T , we 901

arbitrarily set γ←0.5, K←5 and T←3 and they 902

work well across all datasets. For τ , we already 903

described how to choose the best pair of τ during 904

training and testing in Sec. 3.1. 905

2. Ensemble: We train an ensemble model of 5 sub- 906

models, all of which have the same architecture 907

as the base model. We use the average loss of all 908

sub-models as the final loss to train the model. 909

3. DT: We follow the implementation described 910

in Section 3 of the original paper (Kariyappa 911

and Qureshi, 2019) and train an ensemble DT 912

model with 5 sub-models, all of which have the 913

same architecture as the base model. We set the 914

hyper-parameter λ ← 0.5 as suggested by the 915

original paper. 916

4. ADP: We follow the implementation described 917

in Section 3 of the original paper (Pang et al., 918

2019) and train an ensemble ADP model with 919

5 sub-models, all of which have the same ar- 920

chitecture as the base model. We set the hyper- 921

parameters required by ADP to default values 922

(α ← 1.0 and β ← 0.5) as suggested by the 923

original implementation. 924

5. Mix-up Training (Mix): We sample λ ∈ 925

Beta(1.0, 1.0) as suggested by the implementa- 926

tion provided by the original paper (Zhang et al., 927

2018). 928

6. Adversarial Training: We use a 1:1 ratio be- 929

tween original training samples and adversarial 930

training samples as suggested by (Miyato et al., 931

12

http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
http://www.eraserbenchmark.com/zipped/movies.tar.gz
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/saurabhmathur96/clickbait-detector
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv
https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv

2016). We specifically use the AT method as de-932

scribed in Sec. 3 of the original paper (Miyato933

et al., 2016).934

7. ScRNN: We use the implementation and pre-935

trained model provided by the original paper936

(Pruthi et al., 2019) that is available at https:937

//github.com/danishpruthi/938

Adversarial-Misspellings.939

B.4 Experimental Settings for Attack940

Methods941

Since we use external open-source TextAttack (Mor-942

ris et al., 2020) 2 and OpenAttack 3 framework for943

evaluating the performance of SHIELD and all de-944

fense baselines under adversarial attacks, imple-945

mentation of all the attacks are publicly available.946

Specifically, we use the TextAttack framework for947

evaluating all the word- and character-level attacks,948

and use the OpenAttack for evaluating the sentence-949

level attack SCPNA.950

B.5 Experimental Settings for Training and951

Evaluation952

For every dataset, we train a single SHIELD model953

with the best τ parameters and evaluate this model954

with all of the adversarial attacks. In other words,955

since we have a total of 3 datasets (Movie Reviews,956

Hate Speech, Clickbait) and 4 base architectures957

(CNN, RNN, BERT, RoBERTa), we train a total958

of 12 SHIELD models for evaluation. This is done959

to ensure that we can evaluate the versatility of960

SHIELD’s robustness against different types of at-961

tacks without making any assumptions on their962

strategies. During training, we use a batch size963

of 32, learning rate of 0.005, gradient clipping of964

10.0.965

For every attack evaluation, we generate a new966

set of adversarial examples for every pair of attack967

method and target model. In other words, since968

we have a total of 14 different attack methods, 3969

datasets, and 4 possible architectures for the base970

models, this results in a total of 168 different sets971

of adversarial examples to evaluate in Table 4.972

2 https://github.com/QData/TextAttack
3 https://github.com/thunlp/OpenAttack

13

https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/danishpruthi/Adversarial-Misspellings
https://github.com/QData/TextAttack
https://github.com/thunlp/OpenAttack

