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Abstract

Federated sampling algorithms have recently
gained great popularity in the community of ma-
chine learning and statistics. This paper proposes
a new federated sampling algorithm called Error
Feedback Langevin algorithms (ELF). In partic-
ular, we analyze the combinations of EF21 and
EF21-P with the federated Langevin Monte-Carlo.
We propose three algorithms, P-ELF, D-ELF, and
B-ELF, that use primal, dual, and bidirectional
compressors. We analyze the proposed methods
under Log-Sobolev inequality and provide non-
asymptotic convergence guarantees. Simple exper-
imental results support our theoretical findings.

1 INTRODUCTION

Sampling from high-dimensional distributions holds im-
mense significance in modern statistics and machine learn-
ing. This problem is particularly relevant in Bayesian
inference [Robert, 2007], where sampling from high-
dimensional posterior distributions is the bottleneck. This
work will focus specifically on sampling from posteriors
that arise in Bayesian federated learning [Kassab and Sime-
one, 2022, Vono et al., 2022, Liu and Simeone, 2022].

Federated learning is a machine learning framework that
assumes data is distributed across different devices/clients,
with a central server coordinating them. This scenario com-
monly arises in mobile applications, where each device
possesses data and maintains a (limited) internet connec-
tion with the server [Konečnỳ et al., 2016, McMahan et al.,
2017]. Consequently, the communication complexity be-
comes the computational bottleneck in most cases. The ob-
jective is to train a global model by performing local up-
dates while minimizing the information communicated.

More formally, we want to sample from a target distribu-

tion π, defined on the Euclidean space Rd and is absolutely
continuous with respect to the Lebesgue measure. For con-
venience, we will use π to refer to both the target distribu-
tion and its density function, given by:

π(x) ∝ exp(−F (x)), (1)

where F : Rd → R is called the potential function. In
particular, when solving a Bayesian inference problem, F
corresponds to the negative log-likelihood. In the feder-
ated setting, the potential function is assumed to be sum-
decomposable, with each component stored on one of the
clients or nodes/devices:

F (x) =
1

n

n∑
i=1

Fi(x),

where n is the number of nodes and Fi(x) represents the
potential function of the i-th node. Each node only has ac-
cess to its respective score, the gradient ∇Fi(x).

Building upon this framework, we propose three sampling
algorithms that combine Langevin Monte Carlo (LMC)
with well-known federated optimization techniques called
EF21 [Richtárik et al., 2021] and EF21-P [Gruntkowska
et al., 2022]. The algorithms are as follows:

• D-ELF: LMC with dual compression (Section 3.1);

• P-ELF: LMC with primal compression (Section 3.2);

• B-ELF: LMC with bidirectional compression (Sec-
tion 3.3).

The first algorithm, D-ELF, focuses on client-to-server (up-
link) compression to reduce communication complexity.
Early papers of federated learning, such as [Konečnỳ et al.,
2016] assumerd that the uplink communication is more
costly than server-to-client communication. However, more
recent reports1, indicate that the difference between upload-
ing and downloading speeds is negligible [Philippenko and

1https://www.speedtest.net/global-index



Dieuleveut, 2020]. As a result, downlink compression be-
comes equally important. The second algorithm, P-ELF,
adopts the EF21 scheme for the primal space, applying
compression to the server-to-client (downlink) communi-
cation [Gruntkowska et al., 2022]. This approach leverages
compression in the direction opposite to the traditional up-
link compression. The third algorithm, B-ELF, combines
uplink and downlink compression, hence the term "bidirec-
tional." In the frequentist setting, bidirectional federated
learning has been explored by several authors Liu et al.
[2020], Philippenko and Dieuleveut [2020], Gruntkowska
et al. [2022]. However, this setting has not yet been exten-
sively developed and studied for sampling problems. In this
work, we analyze the first federated sampling algorithm in-
corporating bidirectional compression.

1.1 LANGEVIN SAMPLING

Langevin Monte-Carlo is one of the most common methods
of sampling. It is based on discretizing a stochastic differ-
ential equation (SDE) called Langevin diffusion (LD). The
latter is formulated as follows:

dLt = −∇F (Lt)dt+
√
2dBt,

where Bt is the Brownian motion and F is the potential
function from (1). The critical property of this SDE is that
it has a solution and is ergodic under mild conditions. More-
over, the target π is its invariant distribution [Bhattacharya,
1978]. Let us now define by ρt the density of Lt. Then, the
evolution of ρt is characterized by the Fokker-Planck equa-
tion corresponding to LD [Pavliotis, 2014, Risken, 1996]:

∂ρt(x)

∂t
= ∇ · (F (x)ρt(x)) + ∆ρt(x).

Using the chain rule in the Fokker-Planck equation, one
can verify that π is indeed the stationary distribution for
the Langevin diffusion.

Langevin Monte-Carlo (LMC) is the Euler-Maruyama dis-
cretization of the Langevin diffusion [Parisi, 1981]. That
is,

xk+1 = xk − γ∇F (xk) +
√
2γZk, (2)

where (Zk)k is a sequence of i.i.d. standard Gaussians on
Rd that are independent of previous iterations. If the gradi-
ent of the potential (score) function is Lipschitz continuous,
and the target satisfies the Log-Sobolev inequality, then the
distribution of the K-th iterate converges to π [Vempala
and Wibisono, 2019]. See Section 1.3 for more context on
the LMC.

1.2 EF21 AND EF21-P

The Error Feedback algorithm first appeared in a heuristic
manner in the paper by Seide et al. [2014]. It was proposed

as a stabilization mechanism for supervised learning using
contractive compressors. Later, Alistarh et al. [2018], Stich
et al. [2018] analyzed the method theoretically. Neverthe-
less, the initial EF has issues. Namely, it does not general-
ize to the distributed setting, which is crucial to federated
learning, and the convergence analysis requires unrealistic
assumptions, such as bounds on the gradient norm. See also
Section 2 of Horváth and Richtárik [2020] for more details
on the shortcomings of the Error Feedback method. The
EF21 (Error Feedback 21) algorithm modifies the original
EF proposed by Richtárik et al. [2021]. The method pro-
poses Markov compressors and uses them to compress gra-
dient differences before communicating them to the server.
It solves the above issues, and in particular, it applies to
the distributed setting. The method is state of the art in
theory and practice amongst error feedback mechanisms
[Fatkhullin et al., 2021].

Interestingly, theoretical guarantees on EF21 are rather con-
servative. Compared with other methods, it does not gain
in terms of communication complexity. However, simple
experiments show that EF21 beats all the other FL meth-
ods, hinting that the worst-case analysis is not informative
in this case. We refer the reader to Section 3.1 for the exact
definition and mathematical details of the EF21.

EF21-P is a primal error-feedback method largely inspired
by EF21. The method is essentially the analog of EF21 on
the primal space. Contrary to the dominating approach in
federated learning [Konečnỳ et al., 2016, Stich et al., 2018,
Mishchenko et al., 2019, Richtárik et al., 2021, Fatkhullin
et al., 2021], it performs compression on iterates of the algo-
rithm rather than their gradients. Hence, it reduces the com-
plexity of downlink communication. In general, efficient
server-to-client compression may play a key role when
the model is extremely large [Dean et al., 2012, Brown
et al., 2020]. Furthermore, according to Gruntkowska et al.
[2022], EF21-P can also be viewed as an iteration perturba-
tion method. These methods are used in various settings in
machine learning, including generalization [Orvieto et al.,
2022] and smoothing [Duchi et al., 2012]. For the complete
definition of the method, see Section 3.2.

1.3 RELATED WORK

Langevin Monte-Carlo In their seminal work, Roberts
and Tweedie [1996] investigated the convergence proper-
ties of the Langevin Monte-Carlo (LMC) algorithm and
found that a bias occurs when discretizing the continu-
ous SDE. This bias leads to the stationary distribution of
the generated homogeneous Markov chain differing from
the target distribution π. To address this issue, Roberts
and Tweedie [1996] proposed a Metropolis-Hastings ad-
justment step at each iteration of the LMC, resulting in
the Metropolis Adjusted Langevin Algorithm (MALA)
[Roberts and Rosenthal, 1998, Roberts and Stramer, 2002,



Xifara et al., 2014, Dwivedi et al., 2018]. The bias of LMC
depends on the discretization step size γ, and Dalalyan
[2017] proved a bound on this error. Later, several re-
searchers studied different properties of LMC [Durmus
and Moulines, 2017, Cheng et al., 2018, Cheng and
Bartlett, 2018, Dalalyan and Karagulyan, 2019, Durmus
and Moulines, 2019, Vempala and Wibisono, 2019].

Connecting LMC and SGD The LMC algorithm can
be viewed as an instance of stochastic gradient descent
(SGD) with independent Gaussian noise, as seen in (2).
This similarity has been exploited in various settings for
sampling problems [Raginsky et al., 2017, Chatterji et al.,
2018, Wibisono, 2019, Salim et al., 2019, Karagulyan
and Dalalyan, 2020]. Specifically, federated Langevin al-
gorithms combine LMC with existing optimization mecha-
nisms, such as LMC+FedAvg [McMahan et al., 2017, Deng
et al., 2021, Plassier et al., 2022], LMC+MARINA [Gor-
bunov et al., 2021, Sun et al., 2022], and LMC+QSGD [Al-
istarh et al., 2017, Vono et al., 2022]. Our work extends this
line of research by introducing error-feedback mechanisms
EF21 and EF21-P to the classic LMC algorithm in the fed-
erated setting.

Relaxing strong convexity Strong convexity of the po-
tential function plays a crucial role in the analysis of LMC.
Non-convex optimization has long been a central topic in
the domain, while sampling from non-strongly log-concave
distributions is less studied. Previous studies on LMC con-
vergence focused on strong convexity outside a ball [Cheng
et al., 2018], penalization of the convex potential [Dalalyan
et al., 2019, Karagulyan and Dalalyan, 2020], and non-
convex regimes [Mangoubi and Vishnoi, 2019]. However,
these results either do not cover the general non-convex
case or require conditions that scale poorly with the di-
mension. A more efficient approach is based on isoperi-
metric inequalities, as they imply a rapid mixture of con-
tinuous stochastic processes [Villani, 2008]. Vempala and
Wibisono [2019] proved LMC convergence under Log-
Sobolev inequality, and Sun et al. [2022] extended this
scheme to LMC with stochastic gradient estimators in the
context of federated Langevin sampling. Our work simpli-
fies their proof and adapts it to our setting.

Bayesian approach to FL Most FL algorithms currently
focus on minimizing the training loss. However, they fail
to provide reliable uncertainty quantification mechanisms,
which is necessary for safety-critical applications accord-
ing to some studies [Coglianese and Lehr, 2016, Fatima
et al., 2017]. To address this issue, various authors [Welling
and Teh, 2011, Yurochkin et al., 2019, Chen and Chao,
2021, Izmailov et al., 2021, Wilson et al., 2022, Vedadi
et al., 2024] have proposed using the federated version of
Bayesian inference. For example, the aim can be to calcu-
late the regions with the highest posterior density of the

predictive distribution. An important particular case is the
Bayesian Neural Networks. Using Bayesian inference in
neural networks can lead to better predictions, more ac-
curate uncertainty measurements, and a systematic way of
comparing different models. It can also support active learn-
ing, continual learning, and decision-making when there
is uncertainty. The Bayesian deep learning community has
developed several practical methods that use the Bayesian
approach [Gal and Ghahramani, 2016], which have been
successful in various fields, including astrophysics [Cran-
mer et al., 2021], diagnosing diabetic retinopathy [Filos
et al., 2019], predicting click-through rates in advertising
[Liu et al., 2017], and analyzing fluid dynamics [Geneva
and Zabaras, 2020].

Cao et al. [2023] gives a broad overview on Bayesian feder-
ated learning, which is the Bayesian approach to federated
learning, that targets issues such as data heterogeneity and
client variability.

Federated sampling algorithms All the competitor pa-
pers study federated sampling without compressing the iter-
ate information, unlike our algorithms D-ELF and B-ELF.
See Sections 3.2 and 3.3 for formal definitions.

A standard reference of federated Langevin sampling is
the QLSD algorithm by Vono et al. [2022]. However,
they require strong log-concavity of the target distribution.
Our analysis, instead, relies on the log-Sobolev inequality,
which is a strictly more general assumption.

Another notable method is the federated averaging
Langevin dynamics (FALD) Deng et al. [2021]. Federated
averaging uses local methods as an alternative to compres-
sion to reduce communication complexity. As in the case
of QLSD, the analysis is performed only for log-concave
targets.

The paper Liang et al. [2024] studies federated averaging
with Hamiltonian Monte-Carlo. The iteration of the HMC
algorithm requires solving a differential equation, and thus
is more computationally expensive when compared to first-
order Langevin Monte-Carlo based methods. Moreover,
the convergence analysis in the paper assumes a signifi-
cantly stronger regularity condition, specifically, second-
order smoothness, which combined with the stronger ora-
cle of HMC might lead to faster convergence.

1.4 STRUCTURE OF THE PAPER

This paper is organized as follows. Section 2 describes
the mathematical framework of the problem, the notation,
definitions, and assumptions. In Sections 3.1 and 3.2, we
present respectively the downlink and uplink compressed
Langevin algorithms. That is D-ELF and P-ELF. In Sec-
tion 3.3, we introduce our bidirectional federated Langevin
algorithm: B-ELF. The main convergence results are pre-



sented in Section 4. The analysis of all three methods is
influenced by [Vempala and Wibisono, 2019] and [Sun
et al., 2022]. We simplify and adapt their proofs to our
method; see Appendix B.1 and Appendix B.3. Section 5
provides simple experiments, comparing the proposed al-
gorithm with LMC in the federated setting. We conclude
the main part of the paper with Section 6.

2 PROBLEM SETUP

We denote by Rd the d-dimensional Euclidean space en-
dowed with its usual scalar product and ℓ2-norm defined by
⟨·, ·⟩ and ∥·∥. The gradient of the function H and its Hes-
sian evaluated at the point x ∈ Rd is denoted by ∇H(x)
and ∇2H(x), respectively. As mentioned, we will repeat-
edly use the same notation for probability distributions and
their corresponding densities. For the asymptotic complex-
ity of the algorithms, we will use the O and Õ notations.
We say that f(t) = O(g(t)) when t → +∞, if f(t) ≤
Mg(t), for some M > 0 and when t is large enough. Sim-
ilarly, f(t) = Õ(g(t)), if f(t) log(t) = O(g(t)). For two
measures µ and ν, we use ν ≪ µ to denote that ν is abso-
lutely continuous with respect to µ.

2.1 MATHEMATICAL FRAMEWORK

The vast majority of optimization and sampling literature
relies on the L-smoothness assumption.

Assumption 1 (L-smoothness). The potential function is
L-smooth. That is, for every x, y ∈ Rd

F (y) ≤ F (x) + ⟨∇F (x), y − x⟩+ L ∥x− y∥2

2
.

EF21 and EF21-P rely on contractive compressors to re-
duce the communication complexity.

Definition 2.1 (Contractive compressor). A stochastic
mapping Q : Rd → Rd is a contractive compression op-
erator with a coefficient α ∈ (0, 1] if for any x ∈ Rd,

E
[
∥Q(x)− x∥2

]
≤ (1− α)∥x∥2.

We denote it shortly as Q ∈ B(α).

Here, we notice that we do not require unbiasedness. In
many federated learning algorithms, unbiased compressors
with bounded variance are used (see e.g. [Konečnỳ et al.,
2016, Alistarh et al., 2017, Mishchenko et al., 2019, Gor-
bunov et al., 2021]). Unbiased compressors are defined as
(possibly stochastic) mappings such that E[Q(x)] = x

and E[∥Q(x)− x∥2] ≤ ω ∥x∥2. Then, simple computa-
tion shows that 1

ω+1Q is a 1
ω+1 -contractive compressor.

However, the class of contractive compressors is strictly

larger. Indeed. Let us look at the Top-τ compressor [Al-
istarh et al., 2017]. This compressor returns only the τ co-
ordinates with the largest absolute values of the input vec-
tor. For example, if x = (−4, 3, 10,−1, 2)⊤, then we have
QTop-2(x) = (−4, 0, 10, 0, 0)⊤. It is obvious that Top-τ
cannot be represented with unbiased compressors, as it is
deterministic. This, concludes the argument.

Our analysis relies on the interpretation of sampling as an
optimization problem over the space of measures. In order
to reformulate our problem, let us first recall the definition
of the Kullback-Leibler divergence.

Definition 2.2 (Kullback-Leibler divergence). The
Kullback-Leibler divergence between two probability
measures ν and π is defined as

Hπ (ν) =

{∫
Rd log

(
ν(x)
π(x)

)
ν(x)dx, if ν ≪ π;

+∞, otherwise.

We aim to construct approximate samples from π with ε
accuracy. That is to sample from some other distribution ν
such that Hπ (ν) < ε. Alternatively, it means that we want
to minimize the functional:

min
ν∈P(Rd)

Hπ (ν) .

Indeed, the minimum of this functional is equal to zero and
is attained only when ν = π. Recall now the classical prob-
lem of optimization, that is minimizing a H : Rd → R.
Polyak [1963] and Łojasiewicz [1963] independently pro-
posed an inequality, which is weaker than strong convexity,
but it nevertheless implies linear convergence of the gradi-
ent descent. It is known under the joint name of Polyak-
Łojasiewicz inequality:

H(x)−min
x

H(x) ≤ 1

µ
∥∇H(x)∥2 ,

assuming the objective has a minimum. See [Karimi et al.,
2016, Khaled and Richtárik, 2020] for more details on the
P inequality, as well as its comparison with other similar
conditions for non-convex optimization. In the problem of
sampling, the objective functional is defined on the space of
measures P(Rd). One can define the usual notions of dif-
ferentiability and convexity on this space using the Wasser-
stein distance [Ambrosio et al., 2008]. Then, the Langevin
Monte-Carlo algorithm becomes a first order minimization
method for the KL divergence [Wibisono, 2018]. Further-
more, Fisher information takes the role of the square norm
of the gradient.

Definition 2.3 (Fisher information). The Fisher informa-
tion of probability measures ν and π is denoted by Jπ (ν)
and it is defined as below:

Jπ (ν) :=

{∫
Rd

∥∥∇ log
(
ν
π

)∥∥2 ν(x)dx, if ν ≪ π;

+∞, otherwise.



Algorithm 1 D-ELF

1: Input: Initialization x0 ∼ ρ0, gi0 = ∇Fi(x0) g0 =
∇F (x0), step-size h, iterations K

2: for k = 0, 1, 2, . . . ,K − 1 do
3: The server:
4: draws Zk ∼ N (0, Id);
5: ◦ xk+1 = xk − γgk+

√
2γZk;

6: broadcasts xk+1;
7: The devices in parallel:
8: ◦ gik+1 = gik +QD(∇Fi(xk+1)− gik);
9: broadcast QD(∇Fi(xk+1)− gik);

10: The server:
11: ◦ gk+1 = gk + 1

n

∑n
i=1 QD(∇Fi(xk+1)− gik).

12: end for
13: Return: xK

Since the minimum of our functional is equal to zero, the
Log-Sobolev inequality (LSI) becomes the analog of P in-
equality.

Assumption 2 (Log-Sobolev inequality). The target π sat-
isfies the Log-Sobolev inequality (LSI) with parameter µ.
That is for every probability measure ν ∈ P(Rd) we have

Hπ (ν) ≤
1

2µ
Jπ (ν) .

Bakry and Émery [1985] have shown that strongly
log-concave distributions satisfy LSI. Furthermore, from
Holley-Stroock’s theorem we know that sufficiently small
perturbations of strongly concave distributions still satisfy
LSI [Holley and Stroock, 1986]. The latter distributions
can be non log-concave, which means that we deal with
a strictly larger class of probability measures using LSI.

Analyzing the sampling problems as an optimization prob-
lem on the Wasserstein space has been strongly influenced
by the seminal paper of Jordan et al. [1998]. It has later
been developed in subsequent work; see e.g. [Wibisono,
2018, Durmus et al., 2019]. We use Log-Sobolev inequal-
ity to derive bounds on the convergence error in KL diver-
gence.

3 THE ELF ALGORITHMS

In this section, we present two federated Langevin Monte-
Carlo algorithms, combining EF21 and EF21-P with LMC.
We replace the gradient term ∇F (xk) at each iteration with
the gradient estimator gk from the corresponding error feed-
back method, and add independent Gaussian noise. Details
can be found in Algorithm 1 and Algorithm 2. The pseu-
docode distinguishes between optimization and sampling
methods with a wave symbol.

Algorithm 2 P-ELF

1: Input: Starting point x0 = w0 ∼ ρ0, step-size h, num-
ber of iterations K

2: for k = 0, 1, 2, · · · ,K − 1 do
3: The server:
4: draws Zk ∼ N (0, Id);
5: ◦ ∇F (wk) =

1
n

∑n
i=1 ∇Fi(wk);

6: ◦ xk+1 = xk − γ∇F (wk)+
√
2γZk;

7: ◦ wk+1 = wk +QP(xk+1 − wk);
8: broadcasts in parallel QP(xk+1 − wk).
9: The devices in parallel:

10: ◦ wk+1 = wk +QP(xk+1 − wk);
11: ◦ ∇Fi(wk+1);
12: broadcast ∇Fi(wk+1);
13: end for
14: Return: xK

3.1 DUAL COMPRESSION: D-ELF

The gradient estimator gk of the dual method is defined as
the average of the vectors gik, where each gik is computed
on the i-th node and estimates the gradients ∇Fi(xk). The
key component of this estimator is the contractive com-
pression operator QD ∈ B(αD). At the zeroth iteration,
g0 = ∇F (x0). Then at iteration k, the server computes
the new iterate xk+1 = xk − γgk+

√
2γZk and broadcasts

it parallelly to all the nodes. Each node updates gik with the
formula:

gik+1 = gik +QD(∇Fi(xk+1)− gik),

and broadcasts the compressed term to the server. The
server aggregates the received information and computes
the estimator of ∇Fi(xk+1):

gk+1 = gk +
1

n

n∑
i=1

QD(∇Fi(xk+1)− gik).

For the pseudocode of the D-ELF, please refer to Algo-
rithm 1.

3.2 PRIMAL COMPRESSION: P-ELF

The construction of the P-ELF algorithm is similar to the D-
ELF. In particular, we take the EF21-P algorithm by Grun-
tkowska et al. [2022] and add only the independent Gaus-
sian term. See Algorithm 2 for the complete definition. To
better understand the comparison of the D-ELF and the P-
ELF let us look at the simple one-node setting of the latter:

w0 := QP(x0)

wk+1 = wk +QP(xk+1 − wk)

xk+1 = xk − γ∇F (wk) +
√
2γZk.

(3)

Here, x0 ∼ ρ0 is a random starting point, QP ∈ B(αP),
and (Zk)k is a sequence of i.i.d. standard Gaussians on Rd.



If we remove the additive Gaussian noise Zk, then we re-
cover the P-ELF algorithm, which is known to converge
to the minimum of the potential function F [Gruntkowska
et al., 2022]. The auxiliary sequence wk is meant to esti-
mate the iterate xk. We then use its gradient as the mini-
mizing direction. The important difference with the EF21
is that we apply the compressor QP on the term xk+1−wk,
instead of the gradient and its estimator. Hence, the letter
"P"-primal in the name of the algorithm.

3.3 BIDIRECTIONAL COMPRESSION: B-ELF

This section focuses on the bidirectional setting. We pro-
pose the B-ELF algorithm. The algorithm uses EF21 for
the uplink and EF21-P for the downlink compression. We
use the same notation as for the previous methods and the
details are presented in Algorithm 3.

Algorithm 3 B-ELF

1: Input: Starting point x0 = w0 ∼ ρ0, step-size γ, num-
ber of iterations K, g0 = ∇F (x0), gi0 = ∇Fi(x0).

2: for k = 0, 1, 2, · · · ,K − 1 do
3: The server:
4: draws a Gaussian vector Zk ∼ N (0, Id);
5: computes xk+1 = xk − γgk +

√
2γZk;

6: computes vk := QP(xk+1 − wk);
7: computes wk+1 = wk + vk;
8: broadcasts vk in parallel to the devices;
9: The device i (in parallel for all i = 1, . . . , n):

10: computes wk+1 = wk + vk;
11: computes hi

k+1 = QD(∇Fi(wk+1)− gik);
12: computes gik+1 = gik + hi

k+1;
13: broadcasts hk+1

i ;
14: The server:
15: computes gk+1 = gk + 1

n

∑n
i=1 h

i
k+1;

16: end for
17: Return: xK

4 CONVERGENCE OF THE METHODS

4.1 A UNIFIED ANALYSIS OF D-ELF AND P-ELF

The key component of the analysis of both methods is defin-
ing proper a Lyapunov-type function. For the D-ELF algo-
rithm we define by GD

k the average squared estimation er-
ror of the vectors gik:

GD
k :=

1

n

n∑
i

E
[∥∥gik −∇Fi(xk)

∥∥2] . (4)

As we will later in Appendix B.1, this quantity arises in the
proof of the convergence rates. Important property of the
sequence Gk is the following recurrent identity.

Proposition 4.1. Let xk be the iterates of the D-ELF, gik
be the EF21 estimators and GD

k be defined as (4). Then the
following recurrent inequality is true:

GD
k+1 ≤ (1− p)GD

k +(1− p)βDE
[
∥xk+1 − xk∥2

]
, (5)

where p := 1− (1− αD)(1 + sD) > 0

L̄ :=
1

n

n∑
i=1

L2
i and βD :=

1 + s−1
D

1 + sD
L̄,

for some sD > 0.

The Lyapunov term associated to the P-ELF is a simple
upper bound on GD. We denote it by GP

k and define with
the formula below:

GP
k := L̄E

[
∥wk − xk∥2

]
, where L̄ :=

1

n

n∑
i=1

L2
i . (6)

Indeed, GD
k ≤ GP

k due to Li smoothness of each compo-
nent function Fi. See (26) in Appendix B.3 for the proof.
The following proposition proves a recurrent identity simi-
lar to (5).

Proposition 4.2. Let xk and wk be defined as in P-ELF
and GP be its Lyapunov term. Then the following recurrent
inequality is true:

GP
k+1 ≤ (1− p)GP

k + (1− p)βPE
[
∥xk+1 − xk∥2

]
,

where p := 1− (1−αP)(1+sP) > 0, and βP :=
1+s−1

P

1+sP
L̄,

for some sP > 0.

The next theorem gives a unified bound for both D-ELF
and P-ELF. For the sake of space we use a general notation
M-ELF, where M ∈ {D,P}. This means, for example, that
the M-ELF refers to the D-ELF when M = D.

Theorem 4.3. Let xk be the iterates of the M-ELF algo-
rithm, where M ∈ {D,P}. We denote by ρk := L(xk) for
every k ∈ N. Under Assumptions 1 and 2, if

0 < γ ≤ min

{
1

14

√
p

(1 + βM)
,
p

6µ
,

1

2
√
2L

}
,

then the following is true for the KL error of the M-ELF
algorithm:

Hπ (ρK) ≤ e−µKγΨ+
τ

µ
,

where p := 1 − (1 − αM)(1 + sM) > 0, τ =(
2L2 + C(1− p)βM

) (
16γ2d+ 4dγ

)
,

Ψ = Hπ (ρ0) +
1− e−µγ

µ
CGM

0 ,

C =
8L2γ2 + 2

e−µγ − (1− p) (4γ2βM + 1)
.



Table 1: In this table we compare error-feedback methods
in optimization and sampling. The rates are computed in
the case when αD = αP = α.

METHOD ASSUMPTION COMPLEXITY REFERENCE

GD µ-S.C. Õ
(

dL
µε

)
NESTEROV [2013]

EF21 µ-S.C. Õ
(

L
αµε

)
RICHTÁRIK ET AL. [2021]

EF21-P µ-S.C. Õ
(

L
αµε

)
GRUNTKOWSKA ET AL. [2022]

LMC µ-LSI Õ
(

L2d
µ2ε

)
VEMPALA AND WIBISONO [2019]

D-ELF µ-LSI Õ
(

L̄d
α2µ2ε

)
CORROLLARY 4.6

P-ELF µ-LSI Õ
(

L̄d
α2µ2ε

)
CORROLLARY 4.6

B-ELF µ-LSI Õ
(

L̄d
α4µ2ε

)
CORROLLARY 4.7

We refer the reader to Appendix B.3 for the proof of the
theorem. The right-hand side consists of two terms. The
first term corresponds to the convergence error, while the
second term is the bias that comes from the discretization.
To make the error small, one would first need to choose γ
small enough so that τ/µ < ε. Then, the number of itera-
tions are chosen to be of order Õ(1/µγ). See Section 4.3 for
more on the complexity of D-ELF and P-ELF.

These bounds can also be extended to other probability dis-
tance metrics, such as TV and W2. The relation of TV and
KL is established with Pinsker’s inequality: TV(ν1, ν2) ≤√

1
2Hν2

(ν1). Thus, the convergence in KL divergence im-
plies convergence in TV. Similar result is true for the
Wasserstein-2 distance. It is known that LSI implies Ta-
lagrand’s inequality [Otto and Villani, 2000]. The latter
bounds the W2 distance with KL divergence: W2(ν, π) ≤√

2Hπ(ν)
µ for all ν ∈ P2(Rd). Again, from the convergence

in KL we can deduce convergence in W2.

4.2 CONVERGENCE ANALYSIS OF THE B-ELF

The Lyapunov term for the B-ELF algorithm is the same
as for the D-ELF, that is GD

k . However, the recurrent iden-
tity of Proposition 4.1 is not valid in this case. Instead, an-
other bound is true which includes the term GP

k . The latter
arises because of the downlink compression. We present in-
formally the new recurrent inequality. We refer the reader
to Proposition A.1 in the Appendix for the complete state-
ment.

Proposition 4.4 (Informal). If xk are the iterations of Al-
gorithm 3, GD

k and GP
k are defined as in (4) and (6), then

GD
k+1 ≤ λ1G

D
k + λ2E

[
∥xk − xk+1∥2

]
+ λ3G

P
k ,

where λ1, λ2 and λ3 are positive numbers.

Theorem 4.5. Let xk be the iterates of the B-ELF algo-
rithm. We denote by ρk := L(xk) for every k ∈ N. Under

Assumptions 1 and 2, if

γ ≤ min

αD

4µ
,
αP

4µ
,

αDαP

495
√(

1− αD

2

) (
1− αP

2

)
L̄

 .

Then, for every K ∈ N,

Hπ (νK) ≤ e−µγK

[
Hπ (ρ0) +

1

µ

(
CGD

0 +DGP
0

)]
+

τ

µ
,

where C,D > 0 are constants depending on the parame-
ters of the algorithm and

C =
2.125

e−µγ − λ1
, D =

Cλ3

e−µγ − (1− αP)(1 + w)
,

τ =

(
2L2 +

5Cλ2

αP

)(
16γ2dL+ 4dγ

)
.

The exact definitions of the undefined constants are writ-
ten in the proof of the theorem, which is postponed to Ap-
pendix B.4.

4.3 DISCUSSION ON THE COMMUNICATION
COMPLEXITY

Doing the computations as mentioned at the end of Sec-
tion 4.1, we can deduce the following.

Corollary 4.6. Under the assumptions of Theorem 4.3 and
γ = O

(
µpε
βMd

)
, K = O

(
(1+βM)d

µ2pε log
(
Ψ
ε

))
, the primal

and dual ELF algorithms satisfy Hπ (ρK) ≤ ε.

Similarly, for the bidirectional ELF we have the below.

Corollary 4.7. If αP = αD = α < 1/2, under the con-
ditions of Theorem 4.5, the iteration complexity for the B-
ELF is Õ(dL̄/α4µ2ε).

The proof of Corrollary 4.7 is in Appendix B.5. When
1/α = O(1), the rate of the LMC algorithm is recov-
ered for all three algorithms. In particular, the scaled un-
biased compressors, such as 8

9Q
nat, have a contractive co-

efficient of 8
9 . Our analysis may not match the usual LMC

for other compressors, as the communication complexity is
Õ(d2/ε) for LMC, while both the iteration and communi-
cation complexity is Õ(d5/ε) for B-ELF with Top-1. How-
ever, in the next section we will see, that these theoretical
bounds are conservative and that the performance of the
proposed methods on simple classification tasks match the
performance of LMC.

5 EXPERIMENTS

In this section, we conduct numerical experiments to com-
pare {B,D,P}-ELF with the LMC. The code for the experi-
ments can be found in https://anonymous.4open.

https://anonymous.4open.science/r/elf_code-DE51/
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Figure 1: Bayesian logistic regression with a Gaussian prior performed on three different datasets from LibSVM [Chang
and Lin, 2011]. The X-axis represents the number of bits communicated, while the Y -axis represents the accuracy of the
final estimator on the test set.

science/r/elf_code-DE51/. We implemented all
four algorithms to solve a Bayesian logistic regression
problem. The datasets are a8a, a9a, mushrooms for
the LibSVM repository Chang and Lin [2011].

In Figure 1, we observe that all the methods have similar
communication complexity on the abovementioned prob-
lem. In particular, this means that despite the theoretical re-
sults obtained above, the performance of ELF is not worse
than LMC. Thus, in practice we achieve compression for
free.

6 CONCLUSION

In this paper we proposed three error feedback based fed-
erated Langevin algorithms with dual, primal and bidirec-
tional compression. The first two are analyzed with one the-

orem and have similar theoretical performance. The third
algorithm uses bidirectional compression which is slower
due to the fact that EF21 and EF21-P do not couple. To the
best of our knowledge, this is the first study of the federated
sampling algorithms with bidirectional compression. Our
theoretical findings show that the communication complex-
ity of this algorithm is worse than the one for the standard
LMC, nonetheless, simple experiments show that the the-
oretical analysis is rather conservative and that it can still
be improved. This phenomenon is not surprising, as it was
also observed for the original EF21 algorithm.

6.1 FUTURE WORK

An immediate continuation of our paper would be to con-
duct more thorough experimental analysis of the ELF algo-
rithms with other federated sampling techniques on high-

https://anonymous.4open.science/r/elf_code-DE51/
https://anonymous.4open.science/r/elf_code-DE51/
https://anonymous.4open.science/r/elf_code-DE51/
https://anonymous.4open.science/r/elf_code-DE51/


dimensional data. Another possible direction is the theo-
retical analysis of the Langevin algorithm combined with
EF21-P+DIANA. The latter is a bidirectional federated op-
timization algorithm that uses DIANA gradient estimator
for the uplink compression instead of EF21. This method
matches the performance of the GD due to the coupling of
two methods [Gruntkowska et al., 2022].

Finally, there are yet many important algorithms of opti-
mization that are relevant to our setting. Adaptation of these
methods to the sampling setting can lead to fruitful results.
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A PROOFS OF THE PROPOSITIONS

A.1 PROOF OF PROPOSITION 4.1

From the definition

GD
k+1 =

1

n

n∑
i=1

E
[∥∥gik+1 −∇Fi(xk+1)

∥∥2]
=

1

n

n∑
i=1

E
[
E
[∥∥gik +QD(∇Fi(xk+1)− gik)−∇Fi(xk+1)

∥∥2 | x1, . . . , xk+1

]]
≤ 1− αD

n

n∑
i=1

E
[∥∥gik −∇Fi(xk+1)

∥∥2] .

Applying Cauchy-Schwartz and the Lipschitz continuity of the function ∇Fi(·), we obtain

GD
k+1 ≤ (1− αD)(1 + sD)

n

n∑
i=1

E
[∥∥gik −∇Fi(xk)

∥∥2]
+

(1− αD)(1 + s−1
D )

n

n∑
i=1

E
[
∥∇Fi(xk)−∇Fi(xk+1)∥2

]
≤ (1− αD)(1 + sD)G

D
k +

(1− αD)(1 + s−1
D )

n

n∑
i=1

L2
iE
[
∥xk − xk+1∥2

]
≤ (1− αD)(1 + sD)G

D
k + (1− αD)(1 + s−1

D )L̄E
[
∥xk − xk+1∥2

]
≤ (1− pD)G

D
k + (1− pD)βDE

[
∥xk − xk+1∥2

]
.

This concludes the proof.



A.2 PROOF OF PROPOSITION 4.2

From the definition

GP
k+1 = L2E

[
∥wk+1 − xk+1∥2

]
= L2E

[∥∥wk − xk+1 −QP(wk − xk+1)
∥∥2]

= (1− αP)L
2E
[
∥wk − xk+1∥2

]
= (1− αP)L

2E
[
∥wk − xk + xk − xk+1∥2

]
≤ (1− αP)(1 + sP)L

2E
[
∥wk − xk∥2

]
+ (1− αP)(1 + s−1

P )L2E
[
∥xk − xk+1∥2

]
.

(7)

Choosing sP small enough, we can make the coefficient (1− αP)(1 + sP) smaller than one. Thus, defining p = 1− (1−
αP)(1 + sP), we conclude the proof.

A.3 FULL STATEMENT OF PROPOSITION 4.4 AND ITS PROOF

We state now the complete version of Proposition 4.4.

Proposition A.1. The Lyapunov term GD
k of the bidirectional Langevin algorithm satisfies the following recurrent inequal-

ity:
GD

k+1 ≤ λ1G
D
k + λ2E

[
∥xk − xk+1∥2

]
+ λ3G

P
k ,

where GP
k := L̄E

[
∥wk − xk∥2

]
is the Lyapunov term for P-ELF and

λ1 = (1− αD)(1 + s)(1 + q);

λ2 = (1− αD)(1 + s)(1 + q−1)(1 + u)L̄

+
(
(1− αD)(1 + s)(1 + q−1)(1 + u−1) + (1 + s−1)

)
(1− αP)(1 + w−1)L̄;

λ3 =
(
(1− αD)(1 + s)(1 + q−1)(1 + u−1) + (1 + s−1)

)
(1− αP)(1 + w).

(8)

Here, s, q, u, w are any positive numbers.

Proof. From the definition of GD
k and Young’s inequality we have

GD
k+1 =

1

n

n∑
i=1

E
[∥∥gik+1 −∇Fi(xk+1)

∥∥2]
=

1

n

n∑
i=1

E
[
E
[∥∥gik +QD(∇Fi(wk+1)− gik)−∇Fi(xk+1)

∥∥2 | x1, . . . , xk+1

]]
≤ 1

n

n∑
i=1

{
(1 + s)E

[
E
[∥∥gik +QD(∇Fi(wk+1)− gik)−∇Fi(wk+1)

∥∥2 | x1, . . . , xk+1

]]
+ (1 + s−1)E

[
∥∇Fi(wk+1)−∇Fi(xk+1)∥2

]}
.

The contractivity of QD implies

GD
k+1 ≤ 1

n

n∑
i=1

(1− αD)(1 + s)E
[∥∥gik −∇Fi(wk+1)

∥∥2]+ (1 + s−1)L̄E
[
∥wk+1 − xk+1∥2

]
≤ 1

n

n∑
i=1

(1− αD)(1 + s)(1 + q)E
[∥∥gik −∇Fi(xk)

∥∥2]+ (1− αD)(1 + s)(1 + q−1)E
[
∥∇Fi(xk)−∇Fi(wk+1)∥2

]
+ (1 + s−1)L̄E

[
∥wk+1 − xk+1∥2

]
≤ (1− αD)(1 + s)(1 + q)GD

k + (1− αD)(1 + s)(1 + q−1)L̄E
[
∥xk − wk+1∥2

]
+ (1 + s−1)GP

k+1.



Applying Young’s inequality to the second term, we deduce

L̄E
[
∥xk − wk+1∥2

]
≤ (1 + u)L̄E

[
∥xk − xk+1∥2

]
+ (1 + u−1)L̄E

[
∥xk+1 − wk+1∥2

]
= (1 + u)L̄E

[
∥xk − xk+1∥2

]
+ (1 + u−1)GP

k+1.

Therefore,

GD
k+1 ≤ (1− αD)(1 + s)(1 + q)GD

k + (1− αD)(1 + s)(1 + q−1)(1 + u)L̄E
[
∥xk − xk+1∥2

]
+ (1− αD)(1 + s)(1 + q−1)(1 + u−1)GP

k+1 + (1 + s−1)GP
k+1.

Let us now bound the auxiliary term GP
k+1. We notice that GP

k is the Lyapunov term of the P-ELF algorithm. Thus, from
Proposition 4.2 we have

GP
k+1 = L̄E

[
∥wk+1 − xk+1∥2

]
≤ (1− αP)(1 + w)GP

k + (1− αP)(1 + w−1)L̄E
[
∥xk − xk+1∥2

]
.

(9)

Recalling the definitions of λ1, λ2, λ3 we deduce

GD
k+1 ≤ λ1G

D
k + λ2E

[
∥xk − xk+1∥2

]
+ λ3G

P
k .

This concludes the proof of the proposition.

B PROOFS OF THE MAIN THEOREMS

B.1 GENERAL SCHEME OF THE PROOFS

For all three algorithms the update of the LMC iteration is a stochastic estimator of the gradient ∇F (xk). Generally, it
depends on xk and ξk, where ξk is a sequence of i.i.d. random variables defined on some probability space (Ξ,F ,P).
The sequence ξk comprises the randomness that arises at each step of the particular algorithm and it is independent of xk.
In order to prove convergence in KL divergence, we use the interpolation method proposed in [Vempala and Wibisono,
2019]. The method is based on the Fokker-Planck equation of the Langevin diffusion. We state a lemma for general LMC
algorithms with stochastic drift terms. In particular, all our algorithms can be generally written as

xk+1 = xk − γfξk(xk) +
√
2γZk, (10)

where ξk are i.i.d. random variables defined on some probability space (Ξ,F ,P). On the other hand, each step can be seen
as a realization of a Langevin diffusion with a constant drift term fξk(xk):

dyt = −fξk(xk)dt+
√
2dBt, (11)

with y0 = xk and t ∈ [0, γ]. Indeed,

yγ = y0 −
∫ γ

0

fξk(y0)dt+
√
2(Bγ −B0)

= xk − γfξk(xk) +
√
2γZ1 = xk+1.

The interpolation method is based on analyzing the Fokker-Planck equation of this diffusion. In particular, we will upper
bound the time derivative of Hπ (ρt):

dHπ (ρt)

dt
=

∫
Rd

∂ρt(z)

∂t
log
(ρt
π

)
(z)dz. (12)

Here, the first term of the product under the integral can be computed using the abovementioned Fokker-Planck equation.
The following lemma is the cornerstone of our analysis.



Lemma B.1. If yt is the solution of the diffusion (11) and ρt = L(yt), then for every t ∈ [0, γ],

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

[
∥fξk(y0)−∇F (yt)∥2

]
. (13)

The bound (13) was initially derived by Vempala and Wibisono [2019] for the standard Langevin Monte-Carlo. Its cur-
rent stochastic form was later proved in [Sun et al., 2022] for MARINA Langevin algorithm. The proof is postponed to
Appendix C.1.

Lemma B.1 is valid for all our algorithms. We then insert the value of the gradient estimator for each method and bound
the last term by GD

k . Using the recurrent properties of the Lyapunov terms and replacing Fisher information term by
Kullback-Leibler divergence with LSI inequality we conclude the proof.

B.2 SOME TECHNICAL LEMMAS

We will use repeatedly, sometimes without even mentioning, a simple inequality which is a consequence of Young’s
inequality. It goes as follows.

Lemma B.2. For any two vectors x, y ∈ Rd and any s > 0

∥x+ y∥2 ≤ (1 + s) ∥x∥2 + (1 + s−1) ∥y∥2 .

Proof.
∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

≤ (1 + s) ∥x∥2 + (1 + s−1) ∥y∥2 .

The second passage is due to Young’s inequality.

We also use two lemmas from the literature, which we present below without proofs. The first one is an instance of
Grönwall’s inequality in its integral form. Its proof can be found in [Amann, 2011].

Lemma B.3 (Grönwall’s Inequality). Assume ϕ,B : [0, T ] → R are bounded non-negative measurable function and
C : [0, T ] → R is a non-negative integrable function with the property that

ϕ(t) ≤ B(t) +

∫ t

0

C(τ)ϕ(τ)dτ for all t ∈ [0, T ]. (14)

Then

ϕ(t) ≤ B(t) +

∫ t

0

B(s)C(s) exp

(∫ t

s

C(τ)dτ

)
ds for all t ∈ [0, T ].

The second is a technical lemma borrowed from Chewi et al. [2021].

Lemma B.4. Suppose that ∇F is L-Lipschitz. Then for any probability measure ν, the following inequality is satisfied:

Eν

[
∥∇F∥2

]
≤ Eν

[∥∥∥∇ log
(ν
π

)∥∥∥2]+ 2dL = Jπ (ν) + 2dL.

B.3 PROOF OF THEOREM 4.3

We follow the scheme described in Appendix B.1. Let us recall the initial setting first. The update rule of both D-ELF and
P-ELF can be abstractly defined by

xk+1 = xk − γgk +
√
2γZk.

The vector gk is a stochastic estimator of the potential function’s gradient at the k-th iterate: ∇F (xk). On the other hand,
for each k the next iteration can be computed using the following SDE:

dyt = −gkdt+
√
2dBt, (15)



with y0 = xk and t ∈ [0, γ]. Then, as shown in Appendix B.1, yγ = xk+1. Denote by ρt the distribution of yt. Lemma B.1
yields:

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

[
∥fξk(y0)−∇F (yt)∥2

]
≤ −3

4
Jπ (ρt) + E

[
∥gk −∇F (yt)∥2

]
.

(16)

The proof for D-ELF: The Lyapunov term for the D-ELF algorithm is defined as

GD
k :=

1

n

n∑
i

E
[∥∥gik −∇Fi(xk)

∥∥2] .
Next lemma bounds the second term in (16) using GD

k .

Lemma B.5. If fξk(xk) is the gradient estimator gk from Algorithm 1, then ρt satisfies

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k . (17)

Let us now add CGD
k+1 to both sides of the inequality (17), where C > 0 is a constant to be determined later:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k + CGD
k+1.

Combining Proposition 4.1 and Lemma B.5 we deduce

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k

+ C
(
(1− p)GD

k + (1− p)βDE
[
∥xk+1 − xk∥2

])
= −3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

)
E
[
∥xk+1 − xk∥2

]
+ (2 + C(1− p))GD

k .

The lemma below bounds the term E
[
∥xk+1 − xk∥2

]
.

Lemma B.6. If γ ≤ 1
2
√
2L

, then the iterates of the stochastic LMC algorithm (10) satisfy the following inequality, where
GD

k is the Lyapunov term of D-ELF algorithm defined in (4):

E
[
∥xk+1 − xk∥2

]
≤ 8γ2E

[
∥∇F (yt)∥2

]
+ 4γ2GD

k + 4dγ. (18)

Lemma B.6 yields the following

dHπ (ρt)

dt
+ CGD

k+1≤− 3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

) (
8γ2E

[
∥∇F (yt)∥2

]
+ 4γ2GD

k + 4dγ
)

+ (2 + C(1− p))GD
k .

Let us now apply Lemma B.4 to the right-hand side. We obtain

dHπ (ρt)

dt
+ CGD

k+1 ≤ −3

4
Jπ (ρt) +

(
2L2 + C(1− p)βD

) (
8γ2 (Jπ (ρt) + 2dL) + 4γ2GD

k + 4dγ
)

+ (2 + C(1− p))GD
k

= −
(
3

4
− 8γ2

(
2L2 + C(1− p)βD

))
Jπ (ρt)

+
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2
)
GD

k

+
(
2L2 + C(1− p)βD

) (
16Lγ2d+ 4dγ

)
.



From the definition of τ we obtain the following:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −
(
3

4
− 8γ2

(
2L2 + C(1− p)βD

))
Jπ (ρt)

+
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2
)
GD

k + τ.

(19)

Let C =
(
8L2γ2 + C(1− p)

(
4γ2βD + 1

)
+ 2
)
eµγ . Solving this linear equation w.r.t. C, we get

C =
8L2γ2 + 2

e−µγ − (1− p) (4γ2βD + 1)
. (20)

Without loss of generality we may assume that µγ < 1 and thus we have eµγ ≤ 1 + 2µγ. In order for C to be positive, we
need to assure that

1− (1− p)
(
4βDγ

2 + 1
)
(1 + 2µγ) > 0.

The latter is equivalent to
1− p

p
8µβDγ

3 +
1− p

p
4βDγ

2 +
1− p

p
2µγ < 1.

A simple solution to this inequality is to make all three terms smaller than 1/3. The latter is equivalent to

γ < min

{(
p

24µβD(1− p)

)1/3

,

(
p

12βD(1− p)

)1/2

,
p

6µ(1− p)

}
. (21)

On the other hand, we will require the coefficient of Jπ (ρt) in (19) to be negative. This is to ensure contraction. That
means

8γ2
(
2L2 + C(1− p)βD

)
= 8γ2

(
2L2 +

(8L2γ2 + 2)(1− p)βD

e−µγ − (1− p) (4γ2βD + 1)

)
≤ 1

4
.

Solving this inequality we get

γ ≤ 1

2

√
1− (1− p)eµγ

(16 + (1− p)(17βD − 16)eµγ)
. (22)

From (21), we know that γ < p
6µ(1−p) , so eµγ ≤ 1 + 2µγ ≤ 1 + p

3(1−p) . Inserting this upper bound into (22), we get a
lower bound on the right hand side. That is

1

2

√
2p

[17βD(3− 2p) + 32p]
=

1

2

√√√√ 1− (1− p)(1 + p
3(1−p) )(

16 + (1− p)(17βD − 16)(1 + p
3(1−p) )

)
≤ 1

2

√
1− (1− p)eµγ

(16 + (1− p)(17βD − 16)eµγ)
.

So we need

γ < min

{
1

2

√
2p

[17βD(3− 2p) + 32p]
,

(
p

24µβD(1− p)

)1/3

,

(
p

12βD(1− p)

)1/2

,
p

6µ(1− p)

}
.

We can further simplify this inequality. The first and third terms are larger than a := 1
14

√
p

(1+βD) , while as the fourth term

is larger than b := p
6µ . On the other hand, min{a, b} is less than the second term. Indeed,

min{a, b} ≤ a2/3b1/3 =

(
p2

1176µ(1 + βD)

)1/3

≤
(

p

24µβD(1− p)

)1/3

.

Summing up, we obtain the following bound on the step-size that guarantees C ≥ 0 and (22):

γ ≤ min

{
1

14

√
p

(1 + βD)
,
p

6µ

}
.



Therefore, the above the conditions are satisfies. This yields the following:

dHπ (ρt)

dt
+ CGD

k+1 ≤ −1

2
Jπ (ρt) + e−µγCGD

k + Cτ. (23)

Since π satisfies Log-Sobolev inequality, we deduce

dHπ (ρt)

dt
+ CGD

k+1 ≤ −µHπ (ρt) + e−µγCGD
k + Cτ. (24)

One may check that the equivalent integral form of (24) satisfies (14) with ϕ(t) = Hπ (ρt) , B(t) =(
e−µγCGD

k − CGD
k+1 + τ

)
t+Hπ (ρkγ) , C(t) = −µ. Therefore, from Lemma B.3 we deduce

Hπ (ρt) ≤ e−µtHπ (ρkγ) +
1− e−µt

µ

(
e−µγCGD

k − CGD
k+1 + Cτ

)
,

let t = γ and β = eµγ , then we have

Hπ

(
ρ(k+1)γ

)
+

1− e−µγ

µ
CGD

k+1 ≤ e−µγ

(
Hπ (ρkγ) + eµγ

1− e−µγ

µ
β−1CGD

k

)
+

1− e−µγ

µ
Cτ

= e−µγ

(
Hπ (ρkγ) +

1− e−µγ

µ
CGD

k

)
+

1− e−µγ

µ
Cτ.

(25)

Repeating this step for k = 0, 1, 2, · · · ,K − 1, we obtain

HK ≤ e−KµγH0 +
1− e−Kµγ

µ
τ.

This proves Theorem 4.3 for D-ELF.

The proof for P-ELF: The gradient estimator ∇fξk(xk) in this case is equal to

∇fξk(xk) = ∇F (wk) =
1

n

n∑
i=1

∇Fi(wk).

From Li-smoothness of the i-th component function Fi we deduce the following relation:

GD
k =

1

n

n∑
i

E
[
∥∇Fi(wk)−∇Fi(xk)∥2

]
≤ 1

n

n∑
i

E
[
L2
i ∥wk − xk∥2

]
= GP

k .

(26)

Therefore, combining this inequality with Lemma B.5 we obtain

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k

≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GP

k .

The latter means that we can repeat exactly the rest of the proof of D-ELF by replacing GD
k with GP

k and using Proposi-
tion 4.2 instead of Proposition 4.1. Therefore,

HK ≤ e−KµγH0 +
1− e−Kµγ

µ
τ.

This concludes the proof of Theorem 4.3.



B.4 PROOF OF THEOREM 4.5

We recall the definition of the Lyapunov term GD
k :

GD
k :=

1

n

n∑
i

E
[∥∥gik −∇Fi(xk)

∥∥2] .
As described in Appendix B.1, we use the interpolation proof scheme. That is for the k-th iteration we define the process
yt as in (11). Thus, from Lemma B.1 we have

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

[
∥fξk(y0)−∇F (yt)∥2

]
= −3

4
Jπ (ρt) + E

[
∥g0 −∇F (yt)∥2

]
.

Combining this with Proposition A.1 and (9), we obtain

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k + CGD
k+1 +DGP

k+1

≤ −3

4
Jπ (ρt) + 2L2E

[
∥xk+1 − xk∥2

]
+ 2GD

k + C
(
λ1G

D
k + λ2E

[
∥xk − xk+1∥2

]
+ λ3G

P
k

)
+D

(
(1− αP)(1 + w)GP

k + (1− αP)(1 + w−1)L̄E
[
∥xk − xk+1∥2

])
= −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)
E
[
∥xk − xk+1∥2

]
+ (2 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k .

Lemma B.6 yields
E
[
∥xk+1 − xk∥2

]
≤ 8γ2E

[
∥∇F (yt)∥2

]
+ 4γ2GD

k + 4dγ,

for γ < 1/8L. The latter condition on the step-size is a consequence of our assumptions from the statement of Theorem 4.5.
Therefore,

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
8γ2E

[
∥∇F (yt)∥2

]
+ 4γ2GD

k + 4dγ
)

+ (2 + Cλ1)G
D
k + (Cλ3 +D(1− αP)(1 + w))GP

k .

Applying Lemma B.4 we deduce

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −3

4
Jπ (ρt) +

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
8γ2 [Jπ (ρt) + 2dL] + 4γ2GD

k + 4dγ
)

+ (2 + Cλ1)G
D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

=

(
−3

4
+ 8γ2

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

))
Jπ (ρt)

+
{
2 + Cλ1 + 4γ2

(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)}
GD

k + (Cλ3 +D(1− αP)(1 + w))GP
k

+
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
16γ2dL+ 4dγ

)
.

Let us choose C and D to satisfy

C =
2.125

e−µγ − λ1
and D =

2.125λ3

(e−µγ − λ1) (e−µγ − (1− αP)(1 + w))
, (27)



where µ is the constant from Log-Sobolev inequality. In order for C and D to be positive we need λ1 and (1−αP)(1+w)
to be smaller than e−µγ . We will choose w and q = s as solutions to the following equations:

λ1 = (1− αD)(1 + q)2 = 1− αD

2
;

(1− αP)(1 + w) = 1− αP

2
.

(28)

Then,
e−µγ > 1− µγ > max {1− αD/4, 1− αP/4} (29)

thus the denominators are positive. Furthermore,

D =
2.125λ3

(e−µγ − λ1) (e−µγ − (1− αP)(1 + w))
≤ 4Cλ3

αP
.

Recall that the definitions of λ2 and λ3 are given in (8). Since (1− αP)(1 + w) < 1, from the definition of λ3 we have

λ3 =
(
2(1− αD)(1 + q)(1 + q−1) + (1 + q−1)

)
(1− αP)(1 + w)

≤
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
(1− αP)(1 + w)

≤
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
.

Therefore, (8) implies

λ3(1− αP)(1 + w−1)L̄ =
(
2(1− αD)(2 + q + q−1) + (1 + q−1)

)
(1− αP)(1 + w−1)L̄ ≤ λ2.

Thus,

γ2
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

)
≤ γ2

(
2L2 + Cλ2 +

4Cλ3

αP
(1− αP)(1 + w−1)L̄

)
≤ γ2

(
2L2 + Cλ2 +

4Cλ2

αP

)
≤ γ2

(
2L2 +

5Cλ2

αP

)
.

The next lemma bounds the right hand side of the previous inequality by a constant. This will allow us to get a negative
coefficient for the Jπ (ρt) term.

Lemma B.7. Suppose u = 1, q = s, C and D are defined as in (27). Let (28) and (29) also be true. Under the assumptions
of Theorem 4.5, the step-size satisfies the following inequality:

γ2

(
2L2 +

5Cλ2

αP

)
<

1

32
.

The proof is postponed to Appendix C.4. Applying Lemma B.7 to the first term we finally obtain the following recurrent
inequality

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1

≤ −1

2
Jπ (ρt) + (2.125 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

+
(
2L2 + Cλ2 +D(1− αP)(1 + w−1)L̄

) (
16γ2dL+ 4dγ

)
≤ −1

2
Jπ (ρt) + (2.125 + Cλ1)G

D
k + (Cλ3 +D(1− αP)(1 + w))GP

k

+

(
2L2 +

5Cλ2

αP

)(
16γ2dL+ 4dγ

)
︸ ︷︷ ︸

:=τ

.

Then, inserting the values of C and D, we get

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1 ≤ −1

2
Jπ (ρt) + e−µγCGD

k + e−µγDGP
k + τ.



Let us now apply LSI:

dHπ (ρt)

dt
+ CGD

k+1 +DGP
k+1 ≤ −µHπ (ρt) + e−µγCGD

k + e−µγDGP
k + τ.

Hence, the derivative of the function Hπ (ρt) is bounded by itself plus a term that does not depend on t. Lemma B.3 yields
the following:

Hπ (ρt) ≤ e−µtHπ (ρ0) +
1− e−µt

µ

(
e−µγCGD

k + e−µγDGP
k − CGD

k+1 −DGP
k+1 + τ

)
.

In particular, for t = γ, we have

Hπ (ργ) +
1− e−µγ

µ

(
CGD

k+1 +DGP
k+1

)
≤ e−µγHπ (ρ0) +

1− e−µγ

µ

(
e−µγCGD

k + e−µγDGP
k + τ

)
= e−µγ

[
Hπ (ρ0) +

1− e−µγ

µ

(
CGD

k +DGP
k

)]
+

1− e−µγ

µ
τ.

We first recall that ργ = νK+1 and ρ0 = νK . Repeating this inequality recurrently we deduce the following bound:

Hπ (νK) +
1− e−µγ

µ

(
CGD

K +DGP
K

)
≤ e−µγK

[
Hπ (ρ0) +

1− e−µγ

µ

(
CGD

0 +DGP
0

)]
+

τ

µ
.

This concludes the proof of Theorem 4.5.

Remark B.8. One may check, that repeating the analysis for the case when one of the compressor operators (α = 1) is the
identity, we will recover the previously known algorithms.

B.5 PROOF OF CORROLLARY 4.7

First let us upper bound τ . Similar to the proof of Corrollary 4.6,
(
16γ2dL+ 4dγ

)
< 5dγ. Thus,

τ ≤
(
2L2 +

5Cλ2

αP

)
5dγ ≤ 45λ2

αDαP
5dγ

= O

( (
1− αD

2

) (
1− αP

2

)
qwαDαP (1− αP) (1− αD)

L̄dγ

)

= O
(

L̄dγ

qwαDαP

)
.

C PROOFS OF THE LEMMAS

C.1 PROOF OF LEMMA B.1

Let ρ0t denote the joint distribution of (y0, ξ, yt), which we write in terms of the conditionals and marginals as

ρ0t (z, y0, ξ) = ρ0 (y0, ξ) ρt|0 (z | y0, ξ) = ρt (z) ρ0|t (y0, ξ | z) .

Conditioning on (y0, ξ), the drift vector field fξk(y0) is a constant, so the Fokker-Planck formula for the conditional density
ρt|0 (z | y0, ξ) is given by

∂ρt|0 (z | y0, ξ)
∂t

= ∇z ·
(
ρt|0 (z | y0, ξ) fξ (y0)

)
+∆ρt|0 (z | y0, ξ) . (30)

To derive the evolution of ρt, we integrate w.r.t. (y0, ξ) ∼ ρ0:

∂ρt(z)

∂t
=

∫
Rd×Ξ

∂ρt|0 (z | y0, ξ)
∂t

ρ0 (y0, ξ) dy0dξ

(30)
=

∫
Rd×Ξ

(
∇z ·

(
ρt|0 (z | y0, ξ) fξ (y0)

)
+∆ρt|0 (z | y0, ξ)

)
ρ0 (y0, ξ) dy0dξ.

(31)



Using the definition of conditional densities and Fubini’s theorem we deduce

∂ρt(z)

∂t
=

∫
Rd×Ξ

(∇z · (ρ0t (z, y0, ξ) fξ (y0)) + ∆ρ0t (z, y0, ξ)) dy0dξ

= ∇z ·
(
ρt(z)

∫
Rd×Ξ

ρ0|t (y0, ξ | z) fξ (y0) dy0dξ
)
+∆ρt(z)

= ∇z ·
(
ρt(z)Eρ0|t [fξ (y0) | yt = z]

)
+∆ρt(z).

(32)

Writing down the definition of KL divergence and using Fubini’s theorem, we deduce

dHπ (ρt)

dt
=

∫
Rd

∂ρt(z)

∂t
log
(ρt
π

)
(z)dz

=

∫
Rd

(
∇z ·

(
ρt(z)Eρ0|t [fξ (y0) | yt = z]

)
+∆ρt(z)

)
log
(ρt
π

)
(z)dz

= −
∫
Rd

〈
Eρ0|t [fξ (y0) | yt = z] +∇ log(ρt)(z),∇ log

(ρt
π

)
(z)
〉
ρt(z)dz

= −
∫
Rd

(
∇ log

(ρt
π

)
(z)−∇ log

(ρt
π

)
(z) + Eρ0|t [fξ (y0) | yt = z] +∇ log(ρt)(z)

)⊤
×∇ log

(ρt
π

)
(z)ρt(z)dz

= −
∫
Rd

〈
∇ log

(ρt
π

)
(z) + Eρ0|t [fξ (y0) | yt = z]−∇F (z),∇ log

(ρt
π

)
(z)
〉
ρt(z)dz.

(33)

We recall the definition of Fisher information to bound the first term of the scalar product:

dHπ (ρt)

dt
≤ −Jπ (ρt)−

∫
Rd

〈
Eρ0|t [fξ (y0) | yt = z]−∇F (z),∇ log

(ρt
π

)
(z)
〉
ρt(z)dz. (34)

From the Cauchy-Schwartz inequality, we deduce

dHπ (ρt)

dt
≤ −Jπ (ρt) +

1

4
Jπ (ρt) +

∫
Rd

∥∥Eρ0|t [fξ (y0) | yt = z]−∇F (z)
∥∥2 ρt(z)dz

= −3

4
Jπ (ρt) + E

[
∥E [fξk(y0)−∇F (yt) | yt]∥2

]
≤ −3

4
Jπ (ρt) + E

[
E
[
∥fξk(y0)−∇F (yt)∥2 | yt

]]
= −3

4
Jπ (ρt) + E

[
∥fξk(y0)−∇F (yt)∥2

]
.

(35)

This concludes the proof of the lemma.

C.2 PROOF OF LEMMA B.5

If we replace fξk(y0) by g0 in (13), we will have

dHπ (ρt)

dt
≤ −3

4
Jπ (ρt) + E

[
∥∇F (yt)− g0∥2

]
≤ −3

4
Jπ (ρt) + 2E

[
∥∇F (yt)−∇F (y0)∥2

]
+ 2E

[
∥∇F (x0)− g0∥2

]
= −3

4
Jπ (ρt) + 2E

[
∥∇F (yt)−∇F (x0)∥2

]
+ 2E

∥∥∥∥∥ 1n
n∑

i=1

{
∇Fi(x0)− gi0

}∥∥∥∥∥
2


≤ −3

4
Jπ (ρt) + 2E

[
∥∇F (yt)−∇F (x0)∥2

]
+ 2GD

0 .

Here the last implication is due to Jensen’s inequality. Let us bound the second term. The smoothness of the gradient yields

E
[
∥∇F (yt)−∇F (x0)∥2

]
≤ L2E

[
∥yt − x0∥2

]
= L2E

[∥∥∥tg0 +√
2 (Bt −B0)

∥∥∥2] . (36)



Since the Brownian process has independent increments we get

E
[
∥∇F (yt)−∇F (x0)∥2

]
≤ L2t2 ∥g0∥2 + 2tL2d

≤ L2γ2 ∥g0∥2 + 2hL2d

= L2E
[
∥x1 − x0∥2

]
.

(37)

This concludes the proof.

C.3 PROOF OF LEMMA B.6

Let us apply Lemma B.4 to bound the term E
[
∥xk+1 − xk∥2

]
:

E
[
∥xk+1 − xk∥2

]
= γ2E

[
∥gk∥2

]
+ 2dγ

≤ 2γ2
(
E
[
∥∇F (xk)∥2

]
+ E

[
∥∇F (xk)− gk∥2

])
+ 2dγ

≤ 2γ2E
[
∥∇F (xk)∥2

]
+ 2γ2GD

k + 2dγ

≤ 4γ2
(
E [∥∇F (yt)∥] + E

[
∥∇F (yt)−∇F (xk)∥2

])
+ 2γ2GD

k + 2dγ

≤ 4γ2E [∥∇F (yt)∥] + 4L2γ2E
[
∥xt − xk∥2

]
+ 2γ2GD

k + 2dγ

≤ 4γ2E [∥∇F (yt)∥] + 4L2γ2E
[
∥xk+1 − xk∥2

]
+ 2γ2GD

k + 2dγ.

Regrouping the terms we obtain

(1− 4L2γ2)E
[
∥xk+1 − xk∥2

]
≤ 4γ2E [∥∇F (yt)∥] + 2γ2GD

k + 2dγ.

Dividing both sides on 1− 4L2γ2 and recalling that 2
√
2Lγ < 1, we conclude the proof.

C.4 PROOF OF LEMMA B.7

Is sufficient to show that

γ2 ≤ min

{
1

192L2
,

αP

240Cλ2

}
.

From the assumption of the theorem, we know that γ2 ≤ 1
192L2 . Thus it remains to show that γ2 is bounded by the

minimum of the other two terms:

γ2 ≤ αP

240Cλ2
=

αP (e−µγ − λ1)

510λ2
.

Since u = 1 and s = q we have the following bound on λ2:

λ2 ≤
[
2(1 + q)(1 + q−1) +

(
2(1 + q)(1 + q−1) + (1 + q−1)

)
(1 + w−1)

]
L̄

=
[
2(2 + q + q−1) +

(
2(2 + q + q−1) + (1 + q−1)

)
(1 + w−1)

]
L̄

=
1

q

[
2(2q + q2 + 1) +

(
2(2q + q2 + 1) + (q + 1)

)
(1 + w−1)

]
L̄

≤ 1

qw
5(q + 1)2(1 + w)L̄

≤ 5

qw

(
1− αD

2

) (
1− αP

2

)
(1− αP) (1− αD)

L̄.

Therefore, we have an upper bound on λ2. This means that it is sufficient for us to prove

γ2 ≤ αP (e−µγ − λ1)

510 5
qw

(1−αD
2 )(1−αP

2 )
(1−αP)(1−αD) L̄

=
qwαP (e−µγ − λ1)

2550L̄
· (1− αP) (1− αD)(

1− αD

2

) (
1− αP

2

) .



From µγ < min {αD, αP} /4 and et > 1 + t, we deduce e−µγ − λ1 > αD/4. Combining these inequalities with (28), we
deduce that it is sufficient to prove

γ2 ≤ qwαDαP (1− αP) (1− αD)

10200
(
1− αD

2

) (
1− αP

2

)
L̄
.

Finally, using (28) once again, we derive
qw ≥ αPαD

24(1− αP)(1− αD)
.

Therefore,

γ2 ≤ α2
Dα

2
P

244800
(
1− αD

2

) (
1− αP

2

)
L̄
.

Taking square root on both sides we obtain

γ ≤ αDαP

495
√(

1− αD

2

) (
1− αP

2

)
L̄
.

This concludes the proof.

D DETAILS ON THE EXPERIMENTS

In this section, we describe the experimental setting in details. The code for the experiments can be found in https:
//anonymous.4open.science/r/elf_code-DE51/README.md.

D.1 THE SETTING

We are interested in the Bayesian logistic regression problem with a Gaussian prior. In particular, our goal is to sample
from the posterior distribution, whose negative log-likelihood, that is the potential f , is given by

F (x) =
1

n

n∑
i=1

fi(x); fi(x) =
1

mi

mi∑
j=1

log
(
1 + e−bi,j ·⟨ai,j ,x⟩

)
+

λ

2
∥x∥2 ,

where x ∈ Rd is the model, (ai,j , bi,j) ∈ Rd × {−1, 1} is one data point in the dataset of client i whose size is mi. Here,
the coefficient λ > 0 is the inverse variance of the prior distribution.

The datasets used in this study are chosen from the LibSVM repository [Chang and Lin, 2011]. Specifically, we implement
the B, D, P-ELF algorithms, along with the LMC algorithm for the aforementioned target, to solve a classification problem
on the datasets a8a, a9a, and mushrooms.

For each dataset, we partition the data points into 40 clients. Subsequently, we run all four methods with identical stepsizes
selected from the set 0.01, 0.1, 0.5. The compressor Top-τ is chosen for the ELF methods, where τ takes values from
the set 1, 5, 10, 50, 100. Given the stochastic nature of our algorithms, the final iterates are inherently random. To reduce
variability in the finale estimate, we compute the average of the last 100 iterates for each method.

Each plot in Figure 1 features the communication complexity on the X-axis and the test accuracy on the Y-axis. Remark-
ably, across all plots, despite conservative theoretical expectations, the performance of all four algorithms appears nearly
equivalent.

https://anonymous.4open.science/r/elf_code-DE51/README.md
https://anonymous.4open.science/r/elf_code-DE51/README.md
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