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Abstract

Recently, the use of pre-trained generation001
models for extracting sentiment elements has002
resulted in significant advancements in aspect-003
based sentiment analysis benchmarks. How-004
ever, these approaches often overlook the005
importance of explicitly modeling structure006
among sentiment elements. To address this007
limitation, we present a study that aims008
to integrate general pre-trained sequence-to-009
sequence language models with a structure-010
aware transition-based approach. Therefore,011
we depart from a transition system for opin-012
ion tree generation, designed to better ex-013
ploit pre-trained language models for struc-014
tured fine-tuning. Extensive experiments show015
that our model significantly advances the state-016
of-the-art performance on several benchmark017
datasets. In addition, the empirical studies also018
indicate that the proposed opinion tree gener-019
ation with transition system is more effective020
in capturing the sentiment structure than other021
generation models.022

1 Introduction023

Aspect-based sentiment analysis (ABSA) has been024

garnering increasing interest within the commu-025

nity. This area encompasses four key subtasks: as-026

pect term extraction, opinion term extraction, as-027

pect term category classification, and aspect-level028

sentiment classification. The initial two subtasks029

focus on extracting aspect terms and opinion terms030

from within a given sentence. The subsequent031

two subtasks aim to identify the category of the032

extracted aspect term and determine its sentiment033

polarity. Through these subtasks, ABSA offers a034

comprehensive approach to analyzing sentiment at035

a more granular, aspect-based level.036

Previously, most ABSA tasks were formulated037

as either sequence-level (Qiu et al., 2011; Peng038

et al., 2020; Cai et al., 2021) or token-level clas-039

sification problems (Tang et al., 2016b). How-040

ever, these approaches often encountered signif-041

Arc P0OP 0Arc R

Input: The wine list has a good price.

Action Sequence 

Transition-based 
Opinion Tree Generation

Quad 1 …

wine list
(Aspect)

Price
(Category)

good
(Opinion)

Positive
(Polarity)

Opinion Tree

Transition System

Root

Figure 1: An example of transition-based opinion tree
generation.

icant challenges due to error propagation, as the 042

overall prediction performance was heavily depen- 043

dent on the accuracy of each individual step (Peng 044

et al., 2020). As a result, recent studies have 045

shifted towards tackling the ABSA problem with a 046

unified generative approach (Yan et al., 2021; Mao 047

et al., 2022; Hu et al., 2022b; Bao et al., 2023; 048

Zhou et al., 2023). This new approach offers a 049

promising direction for ABSA research, as it aims 050

to mitigate the issues caused by error propagation 051

in traditional methods. 052

Despite their promise, these unified generative 053

approaches for ABSA suffer from certain limita- 054

tions. A notable limitation is lack of a structural 055

guarantee for sentiment elements. This absence 056

means that the model may generate string out- 057

puts that do not conform to a valid opinion tree 058

structure, necessitating additional post-processing 059

steps to establish the necessary relationships be- 060

tween sentiment elements. 061

In this study, we introduce a novel approach 062

named the transition-based opinion generation 063

model to address above challenges. This model 064
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is designed to fully harness the generative power065

of pre-trained language models while simultane-066

ously capturing the explicit structure of sentiment067

elements. As shown in Figure 1, we design a tran-068

sition system composed of a concise set of funda-069

mental actions. This transition system serves as070

the backbone of our model, enabling it to generate071

structurally sound outputs. Utilizing this transi-072

tion system, we develop a neural transition-based073

opinion tree generation model. This model takes a074

review sentence as input and is tasked with gener-075

ating an action sequence that adheres to the prede-076

fined transition system. Once this action sequence077

is generated, it can be seamlessly utilized to recon-078

struct the opinion tree and sentiment elements, en-079

suring structural integrity and alignment with the080

original sentiment structure.081

The detailed evaluation shows that our model082

significantly advances the state-of-the-art perfor-083

mance on several benchmark datasets. In addi-084

tion, the empirical studies also indicate that the085

proposed transition-based opinion tree generation086

is more effective in capturing the sentiment struc-087

ture than generative models.088

2 Related Work089

Aspect-based sentiment analysis (ABSA) has090

drawn wide attention during the last decade. Early091

studies focus on the prediction of a single el-092

ement, such as extracting the aspect term (Qiu093

et al., 2011), detecting the mentioned aspect cate-094

gory (Bu et al., 2021), and predicting the sentiment095

polarity for a given aspect (Tang et al., 2016a;096

Chen et al., 2022; Cao et al., 2022).097

Some works further consider the joint detec-098

tion of two sentiment elements, including the pair-099

wise extraction of aspect and opinion term (Xu100

et al., 2020; Li et al., 2022); the prediction of as-101

pect term and its corresponding sentiment polar-102

ity (Zhang and Qian, 2020); and the co-extraction103

of aspect category and sentiment polarity (Cai104

et al., 2020). Recently, aspect sentiment triplet105

and quadruple prediction tasks are proposed in106

ABSA, they employ end-to-end models to predict107

the sentiment elements in triplet or quadruple for-108

mat (Peng et al., 2020; Wan et al., 2020; Cai et al.,109

2021; Zhang et al., 2021a; Bao et al., 2022; Zhou110

et al., 2023; Bao et al., 2023).111

More recently, there are some attempts on tack-112

ling ABSA problem in a sequence-to-sequence113

manner (Zhang et al., 2021a), either treating the114

class index (Yan et al., 2021) or the desired sen- 115

timent element sequence (Zhang et al., 2021b) 116

as the target of the generation model. For ex- 117

ample, Yan et al. (2021) treated the ABSA as a 118

text generation problem, and employ a sequence- 119

to-sequence pre-trained model to generate the se- 120

quence of aspect terms and opinion words di- 121

rectly. Zhang et al. (2021a) proposed a para- 122

phrase model that utilized the knowledge of the 123

pre-trained model via casting the original task to 124

a paraphrase generation process. They employed 125

the paraphrase to represent aspect-based quads. 126

Bao et al. (2022) employed a generation model to 127

generate all the sentiment elements as a tree struc- 128

ture. Zhou et al. (2023) simultaneously detected 129

aspect categories and co-extract aspect-opinion- 130

sentiment triplets, can absorb deeper interactions 131

between sentiment elements without error propa- 132

gation. 133

Our study differs from previous research in that 134

we integrate pre-trained sequence-to-sequence 135

language models with a transition-based approach 136

for opinion tree parsing. This integration allows us 137

to explore the complementarity between these two 138

powerful techniques and assess their combined po- 139

tential for enhancing sentiment analysis. 140

3 Preliminaries 141

As shown in Figure 2, our proposed approach in- 142

volves several key steps. Firstly, we introduce a 143

transition system that serves to normalize senti- 144

ment elements into an opinion tree structure. Next, 145

we employ a neural transition-based opinion tree 146

generation model to generate an action sequence 147

from a given review text. Following the generation 148

of the action sequence, we construct the opinion 149

tree based on this sequence and the transition sys- 150

tem. Finally, since all sentiment elements are nor- 151

malized into the opinion tree, it becomes straight- 152

forward to recover them from the tree. 153

In this section, we give the definition of the 154

aspect-based sentiment analysis task and the con- 155

struction process of opinion tree. The transition 156

system and the transition-based generation model 157

will be discussed in the next two sections. 158

3.1 Task Definition 159

Given a review sentence x = {x1, x2, ..., xn}, the 160

ABSA task aims to predict all aspect-level senti- 161

ment quadruples (a, c, o, s), which corresponds to 162

the aspect term, aspect category, opinion term, and 163
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Figure 2: An overview of the proposed model.

Type Name Description
ROOT root of opinion tree.
QUAD sentiment quadruple.

AP virtual node of aspect.
Non OP virtual node of opinion.

-terminal AT aspect term.
CA category of aspect.
OT opinion term.
SP sentiment polarity.

Terminal

Aspect e.g., wine list, snacks
Category e.g., food quality
Opinion e.g., good, delicious
Polarity e.g., positive, negative

Table 1: The notation of all symbols.

sentiment polarity, respectively. The aspect cate-164

gory c belongs to a category set C; the aspect term165

a and the opinion term o are typically text spans in166

x while they can be null if the target is not explic-167

itly mentioned. The sentiment polarity s is one of168

the sentiment classes S, which corresponds to the169

positive, neutral, and negative sentiment, respec-170

tively.171

3.2 Opinion Tree Structure172

As shown in Figure 2, we convert all aspect-level173

sentiment quadruples into an opinion tree (Bao174

et al., 2023). The opinion tree explicitly delineates175

intricate connections among vital sentiment com-176

ponents (i.e., aspect term and aspect category).177

This deliberate structuring aims to unveil a more178

comprehensive and intricate aspect-level semantic179

framework, enhancing the efficiency of sentiment180

element extraction.181

To standardize the structure of the opinion tree,182

we introduce a formal representation (N,Σ, P ),183

comprising finite, disjoint sets of non-terminal184

symboles N , terminal symbols Σ, and a set of185

conditional rules denoted as P . The notation for 186

all symbols is detailed in Table 1, where each re- 187

current non-terminal symbol is accompanied by a 188

numerical label indicating its current occurrence 189

count. Notably, we position the category and po- 190

larity elements to the right of the aspect and opin- 191

ion terms, respectively. This structured organiza- 192

tion facilitates the generation of category and po- 193

larity nodes. Additionally, we introduce a virtual 194

node, labeled NULL representing implicit aspect 195

or opinion items. Unrelated nodes are systemati- 196

cally omitted, enhancing the conciseness and intu- 197

itiveness of the opinion tree. Each rule in P fol- 198

lows the form A → α, where A ∈ N , α ∈ N ∪Σ. 199

For example, OP → OT |SP signifies that arcs 200

originating from virtual node OP exclusively con- 201

nect to either opinion term OT or sentiment polar- 202

ity SP in the opinion tree. 203

4 Transition System 204

In this section, we present a transition system 205

specifically designed for opinion tree generation. 206

Figure 3 shows a parsed example of a transition 207

action sequence and the graph structure from opin- 208

ion tree. 209

Diverging from previous transition-based ap- 210

proaches, our transition system operates without 211

employing traditional data structures like stacks 212

or buffers. In particular, receiving a source sen- 213

tence x = {x1, x2, ..., xn}, our transition system 214

undertakes a left-to-right scan of the sentence us- 215

ing a cursor ct, where t ∈ {1, 2, ..., n}. Transi- 216

tion actions involve either shifting the cursor by 217

one token forward or generating multiple nodes 218

and edges while the cursor points to the same to- 219

ken. The transition process concludes when the 220
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final word in the sentence is shifted, signifying the221

completion of parsing processing. Available ac-222

tions for our transition system are as follows:223

• ROOT creates the root node of opinion tree.224

• <non-terminal>-<i> creates a non-terminal225

node of name <non-terminal> labeled i. (i.e.226

QUAD-0). A non-terminal node is one of the227

high-level notation set.228

• <string> creates a terminal or a non-terminal229

node of name <string>. A terminal node230

could be the word under current cursor ct as a231

part of aspect or opinion term, an aspect cat-232

egory c or a sentiment polarity s.233

• ARC<i>-<j> creates an arc from last gener-234

ated node to the corresponding non-terminal235

node in layer i labeled j. Note that we can236

only point to past node generating actions in237

the action history.238

Within a transition system, nodes are ex-239

clusively generated through <non-terminal> and240

<string> actions. This offers an opportunity to241

leverage the pre-trained vocabulary on the target242

side of the generation model, thereby maximizing243

the utilization of linguistic knowledge acquired244

during pre-training. Furthermore, the use of a cur-245

sor variable in the transition system disentangles246

node referencing from source tokens, enabling the247

generation of multiple nodes and edges under the248

same token, even constructing the entire opinion249

tree structure if necessary. This imparts more ex-250

pressiveness and flexibility to opinion tree genera-251

tion, particularly when aspect term or opinion term252

is implicit.253

In summary, our proposed transition system en-254

sures the structural integrity of the generated opin-255

ion tree. By leveraging pre-trained generation256

models and simplifying the transition set, we are257

able to maximize the efficiency and accuracy of258

opinion tree generation. This innovative approach259

paves the way for more effective sentiment analy-260

sis.261

5 Transition-based Opinion Tree262

Generation263

In this section, we employ a sequence-to-sequence264

model to generate the action sequence of the tran-265

sition system via a transformer-based encoder-266

decoder architecture. As discussed in the above267
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Figure 3: An example of generating the opinion pair
(OP) sub-tree with proposed transition system.

sections, the opinion tree can be generated based 268

on the action sequence and the transition system. 269

5.1 Encoder 270

Given the token sequence x = {x1, x2.., xn} 271

as input, the sequence-to-sequence model outputs 272

the target action sequence y = {y1, y2.., ym}. 273

To this end, the sequence-to-sequence model first 274

computes the hidden vector representation H = 275

{h1, h2.., hn} of the input via a multi-layer trans- 276

former encoder: 277

H = Encoder({x1, ..., xn}) (1) 278

where each layer of Encoder is a transformer block 279

with the multi-head attention mechanism. 280

5.2 Decoder 281

After the input token sequence is encoded, the de- 282

coder predicts the output action sequence token- 283

by-token with the sequential input tokens’ hidden 284

vectors. At the i-th step of generation, the self- 285

attention decoder predicts the i-th token yi in the 286

linearized form, and the decoder state hdi as: 287

ti, ẑ
l
i = Decoder([Z; ẑl1, ..., ẑ

l
i−1], ti−1) (2) 288

where each layer of Decoder is a transformer 289

block that contains self-attention with decoder 290

state hdi and cross-attention with encoder state H . 291

The generated output structured sequence starts 292

from the start token “〈bos〉” and ends with the 293

end token “〈eos〉”. The conditional probability 294

of the whole output sequence p(T |X) is progres- 295

sively combined by the probability of each step 296
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p(ti|t<i, X):297

p(T |X) =

m∏
i

p(ti|t<i, X) (3)298

where t<i = {t1...ti−1}, and p(ti|t<i, X) is the299

probability over target vocabulary V normalized300

by softmax.301

5.3 Constrained Decoding302

In this study, we leverage a constrained decoding303

method (Chen et al., 2020; Cao et al., 2021) to304

guide the generation of action sequences.305

Specifically, instead of exhaustively searching306

the entire vocabulary, our constrained decoding307

method dynamically selects and prunes a candi-308

date vocabulary Vt ∈ V based on the current gen-309

erated state, where V represents the set of all pos-310

sible actions in our transition system. The valid311

actions at each generated step are defined by the312

following rules: 1) Generating a token aligned313

with the cursor’s word to serve as the node in the314

opinion tree, and 2) Generating a valid arc imme-315

diately after generating a node.316

As a result, the constrained rules of the transi-317

tion system are injected as prompts into the de-318

coder, ensuring the generation of a valid action se-319

quence during decoding.320

5.4 Objective Functions and Training321

In this subsection, we show the objective function322

and training process of the proposed model.323

The goal is to maximize the target action324

sequence T probability given the review text325

X . Therefore, we optimize the negative log-326

likelihood loss function:327

L = − 1

|τ |
∑

(X,T )∈τ

log p(T |X; θ) (4)328

where θ is the model parameters, and (X,T ) is a329

(input,output) pair in training set τ , then330

log p(T |X; θ) =

=

m∑
i=1

log p(ti|t1, t2, ...ti−1, X; θ)
(5)331

where p(ti|t1, t2, ..., ti−1, X; θ) is calculated by332

the decoder.333

Domain Train Dev. Test
Restaurant 1,529 171 582
Laptop 2,929 326 816
Phone 4,986 1,068 1,061

Table 2: Distribution of three domains.

6 Experiments 334

In this section, we introduce the datasets used for 335

evaluation and the baseline methods employed for 336

comparison. We then report the experimental re- 337

sults conducted from different perspectives. 338

6.1 Setting 339

In this study, we use restaurant and laptop domains 340

in ACOS dataset (Cai et al., 2021) and phone do- 341

main in Zhou et al. (2023)’s dataset for our experi- 342

ments. There are 2,286 sentences in the restaurant 343

domain, 4,076 sentences in the laptop domain and 344

7,115 sentences in the phone domain. The distri- 345

bution of these three domains can be found in Ta- 346

ble 2. 347

We tune the parameters of our models by grid 348

searching on the validation dataset. We employ 349

T5-large1 (Raffel et al., 2020) and fine-tune its pa- 350

rameters for our proposed model, and the parame- 351

ters are optimized by AdamW with a learning rate 352

of 5e-5. The batch size is 16 with a maximum 353

256 token length. Our experiments are carried out 354

with a Nvidia RTX 3090 GPU. The experimen- 355

tal results are obtained by averaging five runs with 356

different random seeds. 357

In evaluation, a quadruple is viewed as correct 358

if and only if the four elements, as well as their 359

combination, are exactly the same as those in the 360

gold quadruple. On this basis, we calculate the 361

Precision and Recall, and use F1 score as the final 362

evaluation metric for aspect sentiment quadruple 363

extraction (Cai et al., 2021; Zhang et al., 2021a). 364

6.2 Main Results 365

As shown in Table 3, We compare the proposed 366

model with various strong baselines, where, 367

• JET (Xu et al., 2020) is an end-to-end frame- 368

work which combines the identification of as- 369

pects, their corresponding opinions, and their 370

sentiment polarities with a position-aware 371

tagging scheme. 372

1https://huggingface.co/t5-large
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Method Restaurant Laptop Phone
P. R. F1. P. R. F1. P. R. F1.

JET 0.5981 0.2894 0.3901 0.4452 0.1625 0.2381 0.3845 0.2213 0.2809
TasBERT 0.2629 0.4629 0.3353 0.4715 0.1922 0.2731 0.3453 0.2207 0.2693
EClassify 0.3854 0.5296 0.4461 0.4556 0.2948 0.3580 0.3128 0.3323 0.3223
GAS 0.6127 0.5860 0.5959 0.4089 0.4219 0.4153 0.5072 0.4815 0.4940
DLO 0.5904 0.6029 0.5966 0.4359 0.4367 0.4363 0.5451 0.5173 0.5308
ILO 0.6071 0.6128 0.6099 0.4359 0.4297 0.4319 0.5307 0.5185 0.5245
Seq2Path 0.6029 0.5961 0.5995 0.4251 0.4317 0.4284 0.5263 0.4994 0.5125
OneASQP 0.6591 0.5624 0.6069 0.4380 0.3954 0.4156 0.5742 0.5096 0.5400
Ours 0.6432 0.6248 0.6338 0.4532 0.4457 0.4494 0.5441 0.5607 0.5523

Table 3: Comparison with baselines.

• TasBERT (Wan et al., 2020) integrates as-373

pect category-based sentiment classification374

and aspect extraction in a unified framework375

by attaching the aspect category and the sen-376

timent polarity to the review sentence and us-377

ing it as the input of BERT.378

• EClassify (Cai et al., 2021) firstly performs379

aspect-opinion co-extraction, and then pre-380

dicts category-sentiment given the extracted381

aspect-opinion pairs.382

• GAS (Zhang et al., 2021b) tackles all ABSA383

tasks in a unified generative framework, and384

formulates ABSA task as a sentiment ele-385

ment sequence generation problem.386

• DLO and ILO (Hu et al., 2022b) first uses387

the pre-trained language model to select the388

template orders with minimal entropy, then389

fine-tunes generation model with these tem-390

plate orders to generate aspect-level senti-391

ment quadruples.392

• Seq2Path (Mao et al., 2022) generates sen-393

timent tuples as paths of a tree, and calculate394

the average loss of over paths for training and395

inference.396

• OneASQP (Zhou et al., 2023) simultane-397

ously detect aspect categories and co-extract398

aspect-opinion-sentiment triplets, can absorb399

deeper interactions between sentiment ele-400

ments without error propagation.401

The results clearly demonstrate that pre-trained402

generation models, such as GAS, DLO, and One-403

ASQP, consistently outperform pipeline-based404

Method Restaurant Laptop Phone
Sequence 0.5991 0.4153 0.4940
Paraphrase 0.6042 0.4197 0.4823
Tree 0.6122 0.4288 0.5307
Actions

0.6338 0.4494 0.5523
(Ours)

Table 4: Results of different sentiment elements gener-
ation paradigms.

methods used in previous research. This dispar- 405

ity highlights the inherent issues with pipeline- 406

based approaches, which are prone to error prop- 407

agation. Conversely, it underscores the effective- 408

ness of a unified generation architecture in captur- 409

ing the rich semantics of natural language labels 410

by directly encoding them into the target output. 411

In comparison to earlier research, our proposed 412

model demonstrates significant enhancement (p < 413

0.05) in all experimental settings, surpassing all 414

preceding studies. This notable superiority under- 415

scores the preeminence of the opinion tree struc- 416

ture in comparison to other generation-based tech- 417

niques. Additionally, the findings indicate that 418

our transition system adeptly parses the opin- 419

ion tree from the input sentence, while maintain- 420

ing the integrity of sentiment structural informa- 421

tion. These compelling results establish that our 422

proposed model can ensure the structural well- 423

formedness of the opinion tree. 424

6.3 Impact of Generation Paradigms 425

We analyze the impact of different sentiment el- 426

ement generation paradigms in Table 4, where 427

Sequence (Zhang et al., 2021b) directly treat the 428

quadruple sequence as the target for learning 429

the generation model; Paraphrase (Zhang et al., 430
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Method Restaurant Laptop Phone
GAS 0.5959 0.4217 0.4940
Chart 0.6271 0.4120 0.5347
Stack 0.5841 0.3745 0.4856
Seq2Seq 0.6014 0.3981 0.4931
Ours 0.6338 0.4532 0.5523

Table 5: Results of different opinion tree parsers.

2021a) proposes a paraphrase modeling paradigm431

to cast the ABSA task to a paraphrase generation432

process, and joint extract all the sentiment ele-433

ments; Tree (Bao et al., 2022) directly generates434

linearized opinion tree structures using generative435

models.436

The results reveal that more complex structures437

yield better performance. For instance, Para-438

phrase outperforms Sequence, and Tree surpasses439

the other two baselines. Furthermore, our pro-440

posed action sequence generation paradigm (i.e.,441

Actions) with transition system exhibits signifi-442

cant improvement (p < 0.05) compared to all443

baselines. This suggests that the action sequence444

with transition system is highly effective in cap-445

turing the explicit structure among sentiment ele-446

ments. The results also indicate that the proposed447

transition-based opinion tree generation model448

provides a more nuanced understanding of senti-449

ment elements and their relationship.450

6.4 Impact of Opinion Tree Parsers451

We then employ three representative mainstream452

parsers to evaluate the effective of them on opin-453

ion tree parsing and aspect-based sentiment anal-454

ysis. Among them, the Chart-based parser (Bao455

et al., 2023) independently scores each span and456

conducts a global search across all possible trees457

to find the highest-scoring opinion tree; the Stack-458

based parser (Zhang et al., 2019) constructs a459

complex output structure holistically through a460

state-transition process with incremental output-461

building actions, relying on the implementation of462

a data structure stack; the Seq2Seq (Yang and Tu,463

2022) parser employs a pointing mechanism for464

bottom-up parsing and use sequence-to-sequence465

backbone. The latter two parsers are designed for466

syntax parsing or information extraction tasks, we467

adopt them for aspect-based sentiment analysis.468

As shown in Table 5, both the chat-based parser469

and the seq2seq parser surpass the basic GAS470

model in performance. This suggests that these471

OTG OTP Ours
AC 0.7680 0.7711 0.7763
AS 0.7677 0.7643 0.7874
OS 0.7663 0.7608 0.7721
ACS 0.6642 0.6752 0.6945
AOS 0.6605 0.6713 0.6836
ACOS 0.6164 0.6271 0.6338

Table 6: Results of sentiment elements combinations
on Restaurant domain.

opinion tree parsers are indeed effective in cap- 472

turing the interdependencies among sentiment el- 473

ements. However, the stack-based parser fails to 474

yield satisfactory results. This could be attributed 475

to the inherent complexity of traditional transition 476

systems, which might hinder their ability to ac- 477

curately model the opinion tree structure. Fur- 478

thermore, our proposed model consistently outper- 479

forms all other baselines. This underscores the ef- 480

ficacy of both our proposed transition system and 481

transition-based opinion tree generation model in 482

capturing the intricate relationships among senti- 483

ment elements. 484

6.5 Influence of Sentiment Elements 485

Combinations 486

We further investigate the capabilities of our 487

proposed transition-based opinion tree generation 488

model when dealing with different combinations 489

of sentiment elements. In this context, A repre- 490

sents the aspect term, C denotes the category of the 491

aspect term, O stands for the opinion term, and S 492

signifies the sentiment polarity towards the aspect 493

term. Each row corresponds to a specific combi- 494

nation. For instance, ACS indicates that the model 495

should jointly generate the aspect term, aspect cat- 496

egory, and sentiment polarity. 497

From the results on Table 6, we observe that as 498

the complexity of the sentiment element combina- 499

tions increases, the performance of the proposed 500

model tends to decrease. However, it is note- 501

worthy that our proposed transition-based opinion 502

tree generation model consistently outperforms 503

OTG (Bao et al., 2022) and OTP (Bao et al., 2023) 504

in all combinations. This underscores the versatil- 505

ity and generality of our proposed model, indicat- 506

ing its applicability to various sentiment analysis 507

tasks. 508

We then analyze the completeness of the tree 509

structure generated by OTG, OTP and the pro- 510
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Figure 4: Tree structure completeness of different
methods.

Models Restaurant Laptop Phone
GAS 0.5959 0.4217 0.4940
BART-base 0.6097 0.4285 0.5310
BART-large 0.6241 0.4337 0.5455
T5-base 0.6217 0.4352 0.5439
T5-large 0.6338 0.4532 0.5523
LLaMA-7b 0.5827 0.3917 0.5214

Table 7: Results of different pre-trained language mod-
els.

posed model with different element combination511

settings. The completeness is calculated through512

the valid rate of a tree structure (Bao et al.,513

2023). As shown in Figure 4, the completeness514

of the proposed model is higher than OTG in all515

the schemas. This findings demonstrate that our516

model ensures structural well-formedness across517

all scenarios, regardless of the specific sentiment518

element combinations. Interestingly, our model’s519

completeness is on par with that of OTP, which520

relies on an original chart-based parser. This521

comparison further emphasizes the robustness and522

adaptability of our approach, indicating its effec-523

tiveness in tackling a wide range of sentiment524

analysis challenges.525

6.6 Influence of Pre-trained Language526

Models527

We conducted an analysis to assess the impact of528

different pre-trained language models on the per-529

formance of our proposed transition-based opinion530

tree generation model. Specifically, we utilized531

the encoder-decoder style models BART (Lewis532

et al., 2020) and T5 (Raffel et al., 2020), as well533

as the decoder-only style large language model534

LLaMA-7b (Touvron et al., 2023), which was fine-535

tuned using Lora approach (Hu et al., 2022a). All536

these models were fine-tuned in the same GPU en-537

vironment to ensure a consistent evaluation.538

Upon analysis, we observed a general trend that539

models with more parameters tend to achieve bet- 540

ter performance. In addition, most of them out- 541

perform the basic GAS model with T5-base pre- 542

trained model, underscoring the robustness and 543

effectiveness of our proposed transition-based ar- 544

chitecture. These findings suggest that the inte- 545

gration of pre-trained language models with our 546

transition-based approach not only enhances per- 547

formance but also demonstrates adaptability and 548

versatility, regardless of the specific pre-trained 549

model used. 550

However, an interesting deviation was noted 551

with LLaMA, which performed relatively poorer 552

compared to other models. We attribute this dis- 553

parity to the inherent challenges large language 554

models face when generating action sequences 555

that diverge from natural language expressions. 556

This suggests that while larger models may offer 557

improved language understanding and generation 558

capabilities, they may not always be optimal for 559

tasks requiring a high degree of precision and con- 560

trol over output sequences. 561

7 Conclusion 562

In this study, we introduce a novel approach 563

named transition-based opinion tree generation, 564

which seeks to bridge the gap between general 565

pre-trained sequence-to-sequence language mod- 566

els and a structure-aware transition-based method- 567

ology. Our approach diverges from traditional 568

methods by incorporating a transition system 569

specifically tailored for opinion tree generation, 570

designed to leverage the power of pre-trained 571

language models through structured fine-tuning. 572

Comprehensive experiments demonstrate that our 573

model achieves substantial improvements over the 574

state-of-the-art performance on multiple bench- 575

mark datasets. Furthermore, empirical studies re- 576

veal that our proposed transition-based opinion 577

tree generation not only outperforms generative 578

models but also excels in capturing the intricate 579

sentiment structure within text. 580

Limitations 581

The limitations of our work can be stated from two 582

perspectives. Firstly, it is necessary to evaluate 583

our proposed transition-based opinion generation 584

model to cross-domain settings and diverse lan- 585

guages. Furthermore, we also need to explore al- 586

ternative parsing schemes for opinion generation, 587

8



aiming to identify approaches that may further en-588

hance the model’s performance and versatility.589
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