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Abstract

Modern game development faces significant challenges001
in creativity and cost due to predetermined content in tra-002
ditional game engines. Recent breakthroughs in video gen-003
eration models, capable of synthesizing realistic and vir-004
tual environments, present an opportunity to revolutionize005
game creation. In this position paper, we propose Interac-006
tive Generative Video (IGV) as the foundation for Gener-007
ative Game Engines (GGE), enabling unlimited novel con-008
tent generation in next-generation gaming. GGE leverages009
IGV’s unique strengths in unlimited high-quality content010
synthesis, physics-aware world modeling, user-controlled011
interactivity, long-term memory capabilities, and causal012
reasoning. We present a comprehensive framework de-013
tailing GGE’s core modules and a hierarchical maturity014
roadmap (L0-L4) to guide its evolution. Our work charts015
a new course for game development in the AI era, envision-016
ing a future where AI-powered generative systems funda-017
mentally reshape how games are created and experienced.018

019

1. Introduction020

Computer games have witnessed an ever-growing market021
demand, yet the gaming industry faces three critical chal-022
lenges. First, current game engines rely heavily on pre-023
made assets and fixed logic scripts, leading to predeter-024
mined content that players will eventually exhaust, even in025
modern open-world games. Second, existing game engines026
cannot provide adaptive, personalized gaming content tai-027
lored to individual players’ preferences, habits, and back-028
grounds. Third, developing high-quality games, especially029
AAA games, requires substantial human resources and ex-030
tensive development time. How to rapidly create high-031
quality games with unlimited personalized content while032
minimizing costs remains a fundamental challenge for the033
entire gaming industry.034

During the past year, video generation models have035
made remarkable progress [2, 6, 17, 38, 40, 56, 62, 63, 70,036
74, 89], demonstrating unprecedented capabilities in large-037

scale motion dynamics, semantic understanding, concept 038
composition, 3D consistency with physical laws, and long- 039
term temporal coherence in both object structure and ap- 040
pearance. These advances show great potential for effec- 041
tively simulating real-world physics [56, 85, 88], suggest- 042
ing that these models could serve as capable world models 043
for generating physically plausible videos. 044

Building upon these advances in video generation, 045
we propose Interactive Generative Video (IGV), a new 046
paradigm that extends video generation capabilities with 047
interactive features. IGV centers around video generation 048
while incorporating four key characteristics: user control 049
over the generated content, memory of video context, un- 050
derstanding and simulation of physical rules, and causal 051
reasoning intelligence. By combining these elements, IGV 052
effectively constructs an interactive virtual world through 053
video generation, functioning similarly to a simulator. 054

The virtual worlds created by IGV naturally align with 055
video games as they provide interactive environments where 056
players can explore and engage with dynamically gener- 057
ated content, representing a promising direction for next- 058
generation gaming. Recent works [3, 7, 9, 12, 15, 16, 21, 059
23, 26, 35, 73, 81, 86, 92] have demonstrated this poten- 060
tial by training action-conditioned video generation models 061
using action-video pairs collected from classic games like 062
Atari [3], DOOM [73, 86], CS:GO [3], Minecraft [15, 26, 063
81, 92], and Super Mario Bros [86]. These models create in- 064
teractive gaming experiences by iteratively generating pre- 065
dicted video frames in response to user action inputs. 066

However, as pointed out by some works [16, 21, 92], 067
merely replicating existing games through IGV offers lim- 068
ited value over traditional game engines. The revolution- 069
ary potential of IGV lies in its ability to create infinite en- 070
tirely new games through its powerful generative capabili- 071
ties. Imagine a future where everyone can become a game 072
designer, creating their own games by simply providing de- 073
sign instructions to video generation models, which then 074
generate explorable virtual worlds. This will fundamentally 075
transform both game development and gaming experiences. 076

In conclusion, this position paper argues that Interactive 077
Generative Video (IGV) serves as the core technology 078
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for Generative Game Engine (GGE). GGE will reduce079
barriers in game development while boosting productivity080
and creativity through AI-driven content generation.081

In this position paper, we first introduce preliminary082
knowledge about video generation and AI-driven game ap-083
plications in Sec. 2. Sec. 3 analyzes the core capabil-084
ities required for next-generation Generative Game En-085
gines (GGE) and demonstrates why Interactive Generative086
Video (IGV) is uniquely positioned to fulfill these require-087
ments. Sec. 4 presents our comprehensive framework for088
GGE, providing detailed definitions, analysis, and future089
prospects for each module within the framework. To guide090
future research and development, Sec. 5 proposes a hier-091
archical roadmap that outlines progressive milestones to-092
ward fully functional GGE systems. Finally, Sec.6, Sec.7093
and Sec. 8 discuss alternative perspectives, address poten-094
tial ethical issues and provide concluding remarks.095

2. Preliminaries096

Detailed preliminaries are in the Supplementary Material.097
Video Generation Models. Video generation mod-098

els have achieved significant breakthroughs with the rise099
of diffusion models [29, 45, 48, 66, 67], which have be-100
come the mainstream approach due to their superior gen-101
eration quality [2, 6, 17, 38, 40, 56, 62, 63, 70, 74, 89].102
The field has also made substantial progress in conditional103
video generation [27, 54, 83], particularly in camera con-104
trol [4, 22, 28, 79, 87], where methods like MotionC-105
trl [79] and CameraCtrl [28] enable precise manipulation106
of camera movements. For autoregressive video generation,107
which is crucial for creating variable-length or infinite video108
sequences, two representative approaches have emerged:109
GPT-like next-token prediction methods [19, 39, 77] and110
Diffusion Forcing [10, 65].111

AI-driven Game Applications. AI technologies have112
demonstrated diverse applications in game creation. In113
game video generation, recent works leveraging diffusion114
models [3, 15, 73] have achieved high-quality results, with115
open-domain methods [16, 21, 92] even enabling the cre-116
ation of novel game content. AI-powered design assistants117
have enhanced the game development process by automat-118
ing design completion [64] and generating multiple design119
suggestions [44, 52], thereby streamlining development and120
fostering creativity. Furthermore, intelligent game agents121
have evolved from traditional reinforcement learning ap-122
proaches [8, 33] to more sophisticated LLM-based meth-123
ods [75, 78], significantly improving performance in long-124
horizon tasks.125

3. Why IGV for Generative Game Engine?126

Computer games have witnessed an ever-growing mar-127
ket demand, yet developing high-quality games, especially128

Figure 1. GameFactory [92]’s ability to generalize action control
from Minecraft to open-domain scenarios.

AAA games, requires substantial human resources and ex- 129
tensive development time. Traditional game engines like 130
Unreal and Unity rely heavily on pre-made assets and fixed 131
logic scripts, which not only limits game creation to prede- 132
fined scenes and plots, but also means players will eventu- 133
ally exhaust all content. Even in open-world games like The 134
Legend of Zelda: Breath of the Wild, while offering exten- 135
sive freedom, players will ultimately experience all prede- 136
termined content. How to rapidly create high-quality and 137
innovative games at scale while minimizing human costs 138
remains a critical challenge for the entire gaming industry. 139

We propose Generative Game Engine (GGE) as a next- 140
generation solution that dynamically generates both as- 141
sets and logic. This paradigm shift offers several key ad- 142
vantages: (1) lower development costs for game studios 143
through automated content generation; (2) reduced entry 144
barriers for individual developers by eliminating the need 145
for extensive asset creation; and (3) truly open-world expe- 146
riences with unlimited, dynamically generated content that 147
provides endless unique gameplay experiences. 148

Building upon recent advances in video generation, we 149
propose Interactive Generative Video (IGV) as a promising 150
foundation for GGE implementation. As illustrated in Fig. 4 151
(a), IGV is not the entirety of GGE. From a definitional per- 152
spective, IGV is viewed from a technical angle, while GGE 153
is viewed from an application angle. Specifically, IGV rep- 154
resents video generation technology that supports interac- 155
tive user input control, while GGE represents a game engine 156
that utilizes generative AI to create games. IGV, as a po- 157
tential realization of GGE, offers four key advantages: (1) 158
powerful generalizable generative capabilities, (2) physics- 159
aware world modeling, (3) user-controlled generation for 160
interactive experiences, and (4) leveraging vast video data 161
for training. In the following subsections, we elaborate on 162
these advantages in detail. 163

3.1. Generalizable Generation for Unlimited Games 164

Video generation models excel at creating not just high- 165
quality content, but novel and diverse game content. Pre- 166
trained on vast real-world video collections, these mod- 167
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Figure 2. Physics-aware generation capabilities of video models.
Top: Examples from Cosmos [55] demonstrating physical under-
standing in diverse scenarios including robotics, autonomous driv-
ing, manufacturing, and home environments. Bottom: Human mo-
tion examples generated by Kling [38].

els develop comprehensive understanding of visual ele-168
ments and relationships. Their novelty manifests in two169
aspects: (1) generalization ability to transfer skills to un-170
precedented scenarios, as shown by GameFactory [92]171
generating action-controllable videos in open-domain set-172
tings (Fig. 1), and (2) compositional creativity to combine173
learned elements innovatively, demonstrated by Sora [56]’s174
”origami undersea” scenes1. This compositional capability175
has become a key research focus, with dedicated evaluation176
benchmarks [31, 68] measuring such abilities.177

3.2. Physics-aware World Modeling178

Video generation models demonstrate potential in under-179
standing the inherent rules of the real world, particularly180
physical knowledge [56, 85, 88]. During training, to en-181
sure accurate video prediction, these models naturally learn182
implicit physical priors embedded in training videos. These183
priors encompass various common physical phenomena, in-184
cluding gravity, elasticity, explosions, collisions, as well as185
complex motion patterns of humans and animals. While186
traditional game engines typically rely on predefined phys-187
ical formulas, manual annotations, or motion capture, IGV188
leverages its learned physical priors to directly generate189
physically plausible content. This capability significantly190
simplifies game engine design and reduces the technical ex-191
pertise required from developers, thereby enhancing game192
production efficiency. As shown in Figure 2, the generated193
video examples demonstrate IGV’s physics-aware capabili-194
ties, highlighting its potential value for game development.195

3.3. Interactive Generation with User Control196

Precise control of visual generation models has made197
progress [13, 53, 57, 94]. Current video generation models198
support various control signals essential for gaming inter-199

1https://www.youtube.com/watch?v=KGcLSTFEgSk

Figure 3. GameNGen [73] shows interactive gameplay in gener-
ated videos.

actions. These control capabilities excel in intuitive opera- 200
tions such as camera viewpoint adjustment [4, 22, 28, 79] 201
and character movement control [30]. Such precise and 202
responsive control enables players to interact with gener- 203
ated content, creating engaging gaming experiences. With 204
rapid development, more control signal types are being sup- 205
ported, further expanding interactive possibilities [34, 71]. 206
Fig. 3 demonstrates IGV’s strong interactive control capa- 207
bilities and validates its potential for game development. 208

3.4. Video Data Accessibility Enables Scaling 209

Video data offers unique advantages for training generative 210
game engines through its accessibility and unified represen- 211
tation format [88]. Unlike traditional game engines that re- 212
quire various heterogeneous assets (3D models, textures, 213
animations, etc.) with manual effort, videos are widely 214
available across internet platforms and continuously grow- 215
ing through social media and streaming services. Moreover, 216
videos naturally capture diverse real-world phenomena and 217
human experiences, enabling models to learn comprehen- 218
sive world knowledge through large-scale training. This 219
abundant video data facilitates training powerful video gen- 220
eration models at scale, while using video as a unified rep- 221
resentation simplifies the development process by avoiding 222
the complexity of managing different asset formats, making 223
it an ideal foundation for generative game development. 224

4. Framework of Generative Game Engine 225

We decompose our IGV-centered Generative Game Engine 226
into six functional modules. Fig. 4 (a) demonstrates the re- 227
lationships between these modules, while Fig. 4 (b) presents 228
their key components and explanation. IGV consists of 229
five core modules: First, the Generation module repre- 230
sents the basic generative capability of the video generation 231
model. Four extension modules are built upon it: the Con- 232
trol module supports different modal control signals and is 233
key to achieving interactivity; the Memory module main- 234
tains historical generation content from both dynamic and 235
static aspects, crucial for ensuring temporal consistency; 236
the Dynamics module models the internal rule logic of the 237
game’s virtual world, especially physical rules; while the 238
Intelligence module enables advanced capabilities includ- 239
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Module
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Figure 4. Proposed framework of Generative Game Engine (GGE). (a) Architecture and interactions between modules of GGE. (b)
Technical keywords and their explanation of each module.

ing causal reasoning and self-evolution. These five mod-240
ules, through their video interface, create an independent241
virtual world with its own emergent properties and behav-242
iors. However, a virtual world alone does not constitute a243
complete game experience, as games require external rules244
that embody game designers’ intentions, providing players245
with clear objectives and feedback that create gaming en-246
joyment. Therefore, we propose an additional GamePlay247
module based on IGV, which serves as the key differentiator248
between GGE and IGV and is responsible for implementing249
these external rule logic within the virtual game world.250

4.1. Generation251

❑ Concept. The Generation Module handles video gener-252
ation, the fundamental functionality of IGV. While ensur-253
ing basic video generation requirements like visual qual-254
ity and motion coherence, this module encompasses three255
crucial functionalities to achieve optimal interactive experi-256
ence: (1) Streaming Generation enables continuous video257
synthesis with frame-level control frequency. This sup-258
ports endless procedural worlds in No Man’s Sky where259
players can seamlessly explore for hundreds of hours, real-260
time weather and day-night cycles in Red Dead Redemp-261
tion 2 that evolve continuously, and instant response to rapid262
player inputs in rhythm games like Beat Saber where every263
frame matters. (2) Real-time Processing facilitates low-264
latency interaction with users. This is essential in com-265
petitive games like Counter-Strike, Forza Motorsport, and266
League of Legends where instant visual feedback is crucial.267
(3) Multi-modal Generation complements the video out-268
put with other modalities like text and audio. This includes269
dynamic music that responds to gameplay in Journey, po-270
sitional audio cues for enemy locations in PUBG, ambient271
sound effects in Minecraft, and real-time dialogue subtitles272
in Mass Effect.273
❑ Technical Approaches and Future Directions.274

(1) Streaming Generation:275

Diffusion-based methods [56] excel at generating high- 276
quality visual content. A straightforward way to achieve 277
streaming generation is to use different noise levels across 278
frames. The variable noise levels mechanism means that 279
later frames (with higher noise) can depend on previous 280
frames (with lower noise), implementing autoregressive 281
generation. Representative methods like Diffusion Forc- 282
ing [10, 18, 65, 69, 90] have been widely used in game video 283
generation [15, 21, 73, 92]. 284

Next token prediction offers another approach to autore- 285
gressive video generation [39, 77], though its visual quality 286
currently lags behind diffusion methods. However, its po- 287
tential for integration with LLM, which could enable strong 288
causal reasoning abilities [82, 96], makes it a promising di- 289
rection. 290

Recent attempts to combine diffusion models with next 291
token prediction aim to maintain quality while modeling 292
frame causality [19, 43]. While these hybrid approaches 293
show promise, they are still in early stages and their poten- 294
tial to surpass established diffusion-based methods remains 295
to be seen. 296

(2) Real-time Generation: 297
Recent works have demonstrated promising advances in 298

efficient video generation through various algorithmic tech- 299
niques. These include lightweight model distillation [36], 300
ODE-based diffusion step reduction [76], high-compression 301
VAEs [11], and causal architectures like CausVid [90] with 302
distribution matching distillation and Cosmos [55] with 303
Medusa speculative decoding, key-value caching, and ten- 304
sor parallelism. These advances, coupled with hardware op- 305
timizations like GPU parallelization and quantization, sug- 306
gest that real-time video generation will soon be accessi- 307
ble to game developers on common hardware. While large 308
companies can provide cloud computing support, we expect 309
future personal developers to run these models on accessi- 310
ble machines. 311

(3) Multi-modal Generation: 312
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“Break stones.” 

Navigation Control

Interaction Control

“Open the backpack.” 

Figure 5. The Control module manages player control through two
aspect: navigation and interaction control.

One approach is to develop unified large multimodal313
models that support understanding and generation across314
multiple modalities including text, vision, audio, human315
motion, depth maps, and so on. Recent works have started316
exploring this direction [39, 59, 82, 96], though signifi-317
cant challenges remain. An alternative strategy is to first318
develop specialized large models for individual modali-319
ties [5, 20, 32, 84] before integrating them into a unified320
system. Specifically, this requires designing pipeline rela-321
tionships between different expert models within the unified322
system. For example, language models generate video gen-323
eration instructions, the generated videos then serve as input324
for audio models to produce corresponding audio signals,325
ultimately leading to a unified output.326

4.2. Control327

❑ Concept. As shown in Fig. 5, the control module man-328
ages user control of the virtual world through two aspects:329
(1) navigation control enables players to navigate and ex-330
plore the virtual world through camera and character move-331
ment. For example, in racing games, players use arrow keys332
or “WASD” for acceleration, braking, and steering, while in333
open-world games, players typically use “WASD” for char-334
acter movement, mouse for camera rotation, and space bar335
for jumping or climbing. (2) interaction control allows336
players to manipulate objects within the virtual environ-337
ment. For instance, in construction games, players use left338
mouse clicks to select and place buildings, right clicks to339
rotate structures, and keyboard shortcuts like ‘E’ to access340
inventory or ‘Q’ to demolish objects.341

❑ Technical Approaches and Future Directions.342

The technical implementation of control mechanisms343
has been well-studied. Common approaches include: (1)344
Cross Attention [21, 73, 92], where control signals are345
transformed into conditional features that serve as keys and346

Static Memory

Dynamic  Memory

Grass Tree Sun Moon

Water Stone Wood Map

Movement Animation

Figure 6. The Memory module consists of static and dynamic
memory.

values, while the video features serve as queries. (2) An- 347
other approach uses external Adaptors [9, 79], which di- 348
rectly fuses control features with video features. 349

While control is easily mastered in fixed scenes, it should 350
generalize to open-domain scenarios. Some works [16, 21, 351
92] have leveraged video generation priors for this purpose, 352
but generalizing complex actions with limited control an- 353
notations remains challenging and requires further explo- 354
ration. 355

Learning control, especially for interaction control, goes 356
beyond mechanical execution and requires understanding 357
the underlying rules of how interactions change the en- 358
vironment (as part of physical laws). Following a data- 359
driven approach, future work aims to collect large-scale 360
datasets [9, 92] and improve the learning of these interaction 361
rules. Physical laws will be further discussed in Sec. 4.4. 362

For game control signal design, the key design princi- 363
ple is to align with users’ gaming intuitions. A promising 364
research direction would be developing more natural con- 365
trol signals that better match human habits, such as using 366
gesture recognition or brain-computer interfaces. 367

4.3. Memory 368

❑ Concept. Conventional video generation models rely 369
solely on attention mechanisms, struggling to maintain 370
scene layouts, object appearances, and other visual el- 371
ements in long-duration or large-motion scenarios. As 372
demonstrated in Fig. 6, the Memory module addresses these 373
challenges through two aspects: (1) static memory en- 374
compasses scene-level and object-level memory, including 375
game maps, buildings, character models, and object appear- 376
ances. In construction games like Minecraft or SimCity, 377
the module needs to consistently maintain the structure of 378
player-built constructions; inconsistency in building layouts 379
or designs between frames would severely impact player ex- 380
perience. (2) dynamic memory handles short-term motion 381
and behavior patterns, such as character animations, vehi- 382
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cle trajectories, particle effects, and environmental changes383
like weather transitions. This is crucial in games requiring384
precise motion consistency, such as fighting games where385
character movements and attack animations must remain386
fluid and coherent, or rhythm games where dance move-387
ments need to maintain smooth transitions between frames.388

❑ Technical Approaches and Future Directions.389

Current methods mainly rely on attention-based mem-390
ory, utilizing attention’s inherent ability to remember histor-391
ical frames through cross-attention between historical and392
predicted frames [15, 73, 81]. However, this approach is393
unreliable and faces limitations in both precision of mem-394
ory preservation and limited window size. Another promis-395
ing solution is using dedicated memory structures, which396
can be implemented either as implicit high-dimensional fea-397
tures [37] or explicit 3D representations [49–51, 60, 91, 93].398
These structures serve as conditional controls for the gener-399
ation module, ensuring consistent preservation of static ele-400
ments. The adaptation of these methods as memory mecha-401
nisms for game video generation requires further investiga-402
tion.403

4.4. Dynamics404

❑ Concept. As demonstrated in Fig. 7, the Dynamics Mod-405
ule focuses on two key aspects: (1) Physical Laws specifi-406
cally focuses on comprehending and generating videos that407
comply with fundamental physics, especially rigid body408
mechanics including gravity, collision, and acceleration.409
In racing simulators like Forza Motorsport, physics-based410
puzzle games like Portal, and platformers like Super Mario411
Odyssey, where precise physical interactions drive core412
gameplay mechanics. (2) Physics Tuning extends beyond413
Physical Laws by enabling control over physical parame-414
ters rather than simply replicating real-world physics. This415
includes adjusting gravity, friction coefficients, or directly416
modifying time, velocity, and mass values. In games like417
Braid where time manipulation is core to gameplay, Super-418
hot where time moves only when the player moves, and419
Control where physics manipulation powers create unique420
gameplay experiences.421

❑ Technical Approaches and Future Directions.422

A data-driven approach learns physical laws from large-423
scale video data [55, 56], though this requires extensive424
high-quality videos demonstrating diverse physical phe-425
nomena [95]. Physics-based memory control offers an al-426
ternative by using video generation models as renderers on427
top of physics simulators [25, 47], ensuring perfect physics428
compliance but limited to mathematically formulated phe-429
nomena. Establishing appropriate benchmarks for evaluat-430
ing physical accuracy remains crucial [41, 58] to identify431
limitations and guide improvements. Physics tuning capa-432
bility, often overlooked in current research, is crucial for433
models to truly understand and manipulate physical knowl-434

Gravity

Set different gravity constants.

Physical Laws

Physics Tuning

The sand block was shattered.

+ =
Lava meets water to produce obsidian.

Earth Moon Saturn

Figure 7. The Dynamics module focuses on physical laws and
physics tuning.

Reasoning

Self-Evolution

How to fight a fire ?

Evolution of civilization.

Figure 8. The Intelligence module implements reasoning and self-
evolution.

edge, and we encourage future research to explore synthetic 435
data with annotated physical parameters as a potential solu- 436
tion. 437

4.5. Intelligence 438

❑ Concept. As Demonstrated in Fig. 8, the Intelligence 439
module implements two key aspects: (1) Reasoning: This 440
capability enables long-term causal inference based on ini- 441
tial conditions, creating immersive virtual worlds. For ex- 442
ample, the system can predict how a kingdom’s economy 443
and social structure might evolve over centuries based on its 444
initial resources and policies, or simulate wildlife migration 445
patterns when environmental conditions change, such as an- 446
imals seeking new water sources after a river dries up. Simi- 447
lar mechanics can be found in strategy games like Crusader 448
Kings and ecosystem simulations like Planet Zoo. (2) Self- 449
Evolution: This capability goes beyond generating contin- 450
uous video streams with changing virtual worlds; it enables 451
virtual worlds to continuously develop, evolve, and gener- 452
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ate new knowledge, rules, and behaviors through emergent453
properties. In simulation games, civilizations could natu-454
rally emerge and form their own cultures, ecosystems could455
develop new species, and cities could grow and adapt or-456
ganically. Such technology could eventually realize a meta-457
verse similar to The Matrix, where countless agents and458
players live in self-evolving virtual worlds.459

❑ Technical Approaches and Future Directions.460

Implementing reasoning capabilities requires video gen-461
eration models to have a causal structure through autore-462
gressive generation (as discussed in Generation Module in463
Sec.4.1) and large-scale long-context training [24], similar464
to large language models. Alternatively, leveraging (multi-465
modal) large language models for causal reasoning along-466
side video generation models shows promise for unified467
understanding and generation[82, 96]. Furthermore, if all468
previously mentioned capabilities including physics under-469
standing, physical simulation, and causal reasoning are suc-470
cessfully implemented and demonstrate powerful perfor-471
mance in the future, we might witness the emergence of472
remarkable self-evolution capabilities. This convergence473
of advanced capabilities could potentially lead to truly au-474
tonomous virtual worlds, such as metaverses inhabited by475
countless intelligent agents, or brain-in-a-vat worlds similar476
to those depicted in The Matrix.477

4.6. Gameplay478

❑ Concept. The GamePlay Module builds upon IGV by479
implementing external Game Rules, which are designer-480
imposed rules such as game objectives, rewards, penalties,481
and constraints that shape the virtual world’s gameplay ex-482
perience. These include scoring systems in Tetris, health483
and damage systems in Dark Souls, mission objectives and484
reward structures in Grand Theft Auto, achievement systems485
in Minecraft, time limits in Mario, competitive ranking sys-486
tems in League of Legends, and quest completion rewards487
in World of Warcraft.488

❑ Technical Approaches and Future Directions.489

The implementation of the GamePlay module primar-490
ily relies on agent systems empowered by large language491
models [1, 72] or multimodal large models [46], enabling492
various gameplay aspects including level design, difficulty493
scaling, and NPC development. While existing single494
agents [42, 80] show promise, key research challenges495
remain in developing unified multi-agent frameworks for496
game environments. Another practical research direction497
is exploring how agents and agent systems can enable dy-498
namic, adaptive game rules, including reward and penalty499
mechanisms. As players progress through games, their skill500
levels, capabilities, and experience continuously evolve,501
making it essential to adaptively adjust difficulty levels and502
reward-penalty systems accordingly.503

5. Levels of Generative Game Engine 504

We propose a five-level maturity model (L0-L4) to evalu- 505
ate GGE and guide their future development. This frame- 506
work helps assess current technologies and identify key re- 507
search directions in GGE. Below we detail each level, with 508
the overview table presented in Supplementary Material. 509

Level 0: No AI-Assisted Assets Generation. At this 510
foundational level, game engines rely entirely on manu- 511
ally crafted content without any AI-generated elements. All 512
game assets and rules must be pre-designed during the de- 513
velopment phase. Classic examples include Super Mario, 514
where each level layout is carefully hand-crafted, and Tetris, 515
where the game rules and piece designs are fixed. This ap- 516
proach enables precise control but requires heavy resources 517
and restricts players to fixed content. 518

Level 1: AI-Assisted Assets Generation. Game devel- 519
opment combines manual processes with AI-assisted cre- 520
ation of assets and logic during development and gameplay. 521
AI tools generate diverse assets to reduce content creation 522
workload. For instance, in Cyberpunk 2077, developers can 523
utilize image generation models like Stable Diffusion [61] 524
to create varied textures for neon billboards, trash piles, and 525
urban details throughout Night City. During gameplay, the 526
engine generates segments, such as unique explosion ani- 527
mations when a player destroys a bridge in an open-world 528
game, or dynamic NPC dialogues in games like AI Dun- 529
geon. While this approach speeds up development and adds 530
variety, the framework remains pre-designed and needs sig- 531
nificant human intervention and curation. 532

Level 2: Physics-Compliant Interactive World Gen- 533
eration. This level shifts from manual-centric devel- 534
opment to interactive video generation, representing AI- 535
Driven Generative Game Engines. The engine continuously 536
generates physics-compliant content based on player inter- 537
actions in real-time. For example, when a player sets fire 538
to a wooden bridge, the engine dynamically generates not 539
only the realistic blazing effects but also adapts the game 540
world accordingly, such as rerouting enemy paths around 541
the destroyed structure. While many works operate at this 542
level [15, 73, 92], significant improvements are needed in 543
physics understanding, simulation realism, and generaliz- 544
able interaction. 545

Level 3: Causal-Reasoning World Simulation. Build- 546
ing on Level 2’s physics-compliant generation, which fo- 547
cuses on immediate responses, this level adds causal rea- 548
soning across time to address short-term limitations. The 549
engine maintains a world model that understands player ac- 550
tions and logic rules, generating content that reflects long- 551
term cause-and-effect relationships. For example, when a 552
player assassinates a faction leader in Act 1, the engine sim- 553
ulates the resulting political instability, leading to city-wide 554
riots and power struggles that emerge in Act 3. Through 555
this understanding, the game creates storylines where play- 556
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ers’ early choices shape the world’s future development.557
Level 4: Self-Evolving World Ecosystem. Building on558

Level 2’s physics generation and Level 3’s causal reason-559
ing, as these capabilities continuously advance, the model560
emerges with self-evolution abilities. The game world be-561
comes a self-evolving ecosystem where complex systems562
emerge from initial rules and interactions. For example,563
as the NPC population grows, they autonomously organize564
into governance structures and establish trade networks, ex-565
hibiting emergent social behaviors beyond their initial pro-566
gramming. At this stage, the engine will create virtual567
worlds similar to those in Ready Player One or The Matrix,568
where players can not only play but potentially live within569
these worlds. This advancement will revolutionize gaming570
and profoundly impact human society.571

6. Alternative Views572

Alternative View #1: While GGE represents an au-
tomated approach to game content generation, it is
worth examining whether it shares the same lim-
itations as Procedural Content Generation (PCG)
methods, specifically the tendency to produce repet-
itive content and the presence of difficult-to-fix bugs
that potentially limit their practical applications.

573

Potential Solution #1: GGE differs fundamentally from574
Procedural Content Generation (PCG). PCG creates infinite575
content by randomly combining limited assets and prede-576
fined logic rules. In contrast, GGEs learn from massive577
datasets, acquiring knowledge of unlimited assets and world578
logic rules. Unlike PCG’s meaninglessly repetitive content579
generation, GGE can create truly diverse content, similar to580
how AI image generation has enabled diverse, high-quality581
artworks on Civitai [14]. Additionally, GGEs implicitly582
model logic rules and leverage control modules for precise583
control, avoiding PCG limitations such as difficult control,584
procedural bugs and debugging needs.585

Alternative View #2: Given that traditional render-
ing pipelines in standard game engines offer effi-
cient asset rendering and allow more resources to
be allocated to gameplay enhancement, why should
we adopt IGV instead of maintaining the traditional
approach that prioritizes gameplay dynamics over
graphical realism?

586

Potential Solution #2: Traditional rendering pipelines587
efficiently handle graphics, allowing developers to focus588
more resources on gameplay rather than graphics. This589
raises concerns that IGV might shift too many resources590
toward visual realism at the expense of gameplay quality,591
a trade-off that many developers would find unreasonable.592

However, IGV represents a paradigm shift that enhances 593
both graphical realism and gameplay quality together, rather 594
than trading off one for the other. We analyze this from 595
four aspects: (1) Complete system: IGV is not just a gen- 596
eration model, but a system integrating Control, Memory, 597
Dynamics and Intelligence. Beyond improving graphics, 598
it enhances gameplay through, for example, personalized 599
game content, infinite explorable experiences, and intelli- 600
gent NPC behaviors. (2) Enhanced gaming experience: 601
IGV enables dynamic, customized, and infinitely explorable 602
experiences, which traditional game development with tri- 603
angle rendering and added gameplay logic cannot easily 604
achieve. (3) Enhanced creative freedom: IGV’s vitual 605
world generation capabilities free developers from focus- 606
ing on graphics, allowing them to concentrate on gameplay 607
design. Its controllability enables developers to freely ex- 608
ercise creativity in designing more innovative gameplay ex- 609
periences. (4) Positive industry impact: IGV’s efficiency 610
and capabilities accelerate game development and lower 611
entry barriers. This attracts more developers, resulting in 612
more creative games and enriching the gaming experience 613
industry-wide. 614

We also address an additional alternative view regarding 615
the concerns about GGE costs in Supplementary Material. 616

7. Ethical Issues 617

Several key ethical issues need to be carefully consid- 618
ered in the development and application of GGE: copy- 619
right concerns (determining ownership and protection of 620
AI-generated content), security issues (preventing the gen- 621
eration of harmful content), creativity concerns (whether AI 622
enhances or limits human creative expression), democrati- 623
zation implications (the impact of lowering barriers to game 624
creation), and labor concerns (potential effects on gaming 625
industry workers). These critical issues require thorough 626
discussion and resolution, which we address in detail in 627
Supplementary Material. 628

8. Conclusion 629

In this position paper, we have presented Interactive Gen- 630
erative Video (IGV) as a promising foundation for next- 631
generation game engine. We proposed a comprehen- 632
sive framework with six essential modules and established 633
a five-level maturity model (L0-L4) to guide future re- 634
search and development. Through our analysis, we demon- 635
strated that IGV’s unique capabilities in content genera- 636
tion, physics simulation, and interactive control make it an 637
ideal candidate for revolutionizing the gaming industry. We 638
believe this work provides a clear roadmap for advancing 639
game engine technology while identifying key challenges 640
and opportunities for future exploration. 641
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