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Abstract

Open agent systems are prevalent in the real world,
where the sets of agents and tasks change over
time. In this paper, we focus on task-open multi-
agent systems, exemplified by applications such
as ridesharing, where passengers (tasks) appear
spontaneously over time and disappear if not at-
tended to promptly. Task-open settings challenge
us with an action space which changes dynami-
cally. This renders existing reinforcement learning
(RL) methods–intended for fixed state and action
spaces–inapplicable. Whereas multi-task learning
approaches learn policies generalized to multiple
known and related tasks, they struggle to adapt to
previously unseen tasks. Conversely, lifelong learn-
ing adapts to new tasks over time, but generally
assumes that tasks come sequentially from a static
and known distribution rather than simultaneously
and unpredictably. We introduce a novel category
of RL for addressing task openness, modeled using
a task-open Markov game. Our approach, MO-
HITO, is a multi-agent actor-critic schema which
represents knowledge about the relationships be-
tween agents and changing tasks and actions as
dynamically evolving 3-uniform hypergraphs. As
popular multi-agent RL testbeds do not exhibit task
openness, we evaluate MOHITO on two realistic
and naturally task-open domains to establish its
efficacy and provide a benchmark for future work
in this setting.

1 INTRODUCTION

In multi-agent systems, each decision-making agent must
determine a strategy to achieve collective and/or individual
objectives. Learning how to coexist and effectively operate
within a shared environment with other agents is challeng-

ing but well-studied in closed environments where the tasks
being accomplished are fixed in time and known in advance.
More challenging is learning how to act in environments
with task openness: a phenomenon where the set of objec-
tives or tasks is neither static nor predefined.

Consider ridesharing, such as Uber Pool, operated by au-
tonomous driver agents or robotaxis. A task in ridesharing is
to transport a passenger to their destination. However, pas-
sengers enter spontaneously, in unbounded quantity, with a
frequency influenced by exogenous factors. Passengers can
also withdraw causing tasks to disappear from the system.
Such task openness makes the set of action choices tran-
sient, alters action-dependent elements of the problem such
as the reward function, and may introduce new relationships
between agents. As such, actions optimal for one state under
one set of tasks might be different from those in the same
state under a different set of tasks. Hence, an agent must rea-
son about the changing meaning of actions and availability
thereof caused by the entry and exit of tasks.

Recent generalizations of multi-agent RL (MARL) targeting
related challenges have produced three important categories
of methods. First, multi-task learning algorithms learn from
multiple related tasks (e.g., Tanaka and Yamamura 2003,
Omidshafiei et al. 2017, Zhang et al. 2023) but falter when
novel tasks appear. Second, lifelong learning enables on-
going adaptation to new tasks over time (e.g., Thrun and
Mitchell 1995, Chen and Liu 2018, Skrynnik et al. 2024) but
assumes a sequential, and not simultaneous, arrival of the
tasks from a known distribution. Third, out-of-distribution
learning enables agents to detect when their current tasks are
different from training (e.g., Sedlmeier et al. 2020, Haider
et al. 2023) but does not say how agents should use that in-
formation. In short, extant MARL may not apply under task
openness due to the underlying constraint where policies
map states to a static action set.

In the context of the novel challenges brought about by task
openness to MARL, this paper contributes the following:

• A first and general decision-making model, task-open



Markov games (TaO-MG), for such multi-agent settings.
• A hypergraph-based knowledge representation schema

modeling the relationships between agents, tasks, and
actions amid openness.

• MOHITO, a deep reinforcement learning method for TaO-
MG. MOHITO interprets the hypergraphs via a graph
neural network to implement its multi-agent actor-critic
schema, thereby learning a relative evaluation of available
actions.

• We present two domains that naturally manifest this form
of openness: rideshare [Eck et al., 2023] and wildfire sup-
pression [Eck et al., 2020] because extant MARL testbeds
generally do not exhibit task openness.

Evaluations on these domains using standard (domain-
agnostic) metrics and domain-centric ones establish MO-
HITO’s efficacy and offer insights into its behavior. Impor-
tantly, this is the first MARL method to fully target task
openness, thereby stimulating further development for this
new and pragmatic multi-agent decision-making setting.

2 BACKGROUND

We situate task openness in the broader context of open
agent systems followed by a review of a well-known frame-
work for modeling multi-agent interactions.

2.1 OPEN AGENT SYSTEMS

Openness can manifest in various ways. A recent sur-
vey [Eck et al., 2023] as well as prior discussions [Shehory,
2000, Calmet et al., 2004, Jumadinova et al., 2014] recog-
nize three types: agent openness, where the set of agents
acting in the environment changes over time; task openness,
where the set of tasks changes over time; and frame/type
openness, where agents’ frames (capabilities, preferences,
and reasoning processes) can change, such as when agents
acquire new abilities or change roles. Among these cate-
gories of open systems, agent openness has received the
most attention whereas task openness remains understudied.

Agent openness was defined more than two decades ago as
adding agents beyond the initial number present in a system
[Shehory, 2000]. Subsequent work defines the degree of
openness as the complexity of the minimal transformation
of a system to add or remove an agent [Jamroga et al., 2013].
Since then, reasoning methods have shown that explicitly
predicting the presence or absence of other agents, where
possible, improves global system behavior [Chandrasekaran
et al., 2016, Cohen et al., 2017, Eck et al., 2020, Kakarla-
pudi et al., 2022]. This leads to the thought that explicitly
modeling task openness may have similar success. However,
new tasks often arrive due to exogenous factors (e.g., end of
a large gathering resulting in many ride-hailing passengers),
which may not be possible to model.

2.2 MARKOV GAMES

Markov games are stochastic games that commonly for-
malize the multi-agent decision-making process of learning
agents that optimize their individual cumulative rewards in
competitive (self-interested) or cooperative environments
[Shapley, 1953, Littman, 1994]. Formally, a Markov game
is represented by:

M = ⟨Ag, S,A, T,R, γ, s0⟩

where •Ag is the set of agents operating in the environment;
• S is the set of states of the environment encapsulating
different situations agents can face; • A = Πi∈AgAi is
the joint action set giving possible combinations of actions
taken simultaneously by all agents, with Ai the action set of
agent i; • T : S ×A× S → [0, 1] is the transition function,
specifying the probability of the problem state transitioning
from state s to s′ when the agents perform their joint action
a; • R : S ×A→ R|Ag| is the reward function, specifying
the collection of individual rewards earned by each agent on
joint action a in state s; • γ ∈ (0, 1) represents the discount
factor for uncertain future rewards; and • s0 ∈ S denotes
the initial state of the environment.

In a RL context, the objective of each agent i ∈ Ag in a
Markov game is to learn a policy πi : S → Ai that pre-
scribes actions that maximize the agent’s sum of discounted
cumulative rewards:

Eτ∼π

[ ∞∑
t=0

γtRi(st,at|s = s0)

]

where Ri(st,at) is the reward of agent i when i chooses
action πi(st) in state st according to its learned policy and
the other agents choose the remaining actions in at.

3 TASK-OPEN MAS

Many real-world environments do not abide by the assump-
tions under which RL generally operates; that the set of
tasks agents seek to complete is known in advance, and
those tasks remain in the environment until completed.

Instead, for example, drivers in a ridesharing application
(e.g., Uber, Lyft) with vacancy in their vehicles must decide
whether to accept new passengers that arrive unexpectedly
in its environment. For larger vehicles (e.g., Uber Pool), the
driver must balance the needs of multiple simultaneous tasks
like multiple passengers sharing the same vehicle but de-
siring different destinations while possibly accommodating
new passengers.

As such, new tasks and goals are introduced over time,
and their presence may alter previously planned or learned
behavior (e.g., picking up a new passenger changing the



intended dropoff order of existing passengers) or cause such
behavior to not be optimal.

Tasks can be seen as outcomes of exogenous or endogenous
events which cause tasks to enter or exit. Exogenous factors
are driven by nature and independent of the agents’ actions,
whereas endogenous ones can be influenced by agents’ ac-
tions.

For a more nuanced view, let X = ⟨T τ , T ω⟩, where T τ in-
cludes parameters of tasks resulting from exogenous events
such as those causing new passengers to arrive, and T ω
contains parameters of tasks affected by endogenous events
such as soliciting a passenger. In some circumstances, tasks
in T τ may be predicted from experience, although reactive
behavior is likely necessary.

3.1 DYNAMIC RIDESHARING

We illustrate task openness using the domain of ridesharing,
labeled as Rideshare, in Fig. 1. Each driver agent i can
transport up to pi passengers simultaneously. Each passen-
ger (task) has a pickup location, a destination, and a fare.
Each agent receives the following information from the en-
vironment: its own position and capacity, the location of
other agents, and the position, destination, and fare of its
accepted passengers and those awaiting service.
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Figure 1: A rideshare driver operates a vehicle in a task-open
MAS where new tasks (passengers) suddenly appear and
existing tasks suddenly exit leading to open action sets Ai.

Because passengers appear dynamically, the set of actions
Ai of a driver agent i changes over time. For each unserved
passenger, the agent can choose to accept the passenger
for transport. For each accepted passenger who is not in
their assigned car, the agent can choose to drive to their
pickup location. Finally, for each riding passenger, the agent
may drive to their destination for drop off. New passen-
gers increase the size of Ai by adding these actions, while
completed tasks reduce it. The rewards, R, also change as
the composition of tasks in the environment changes. New
passengers introduce new fares that provide new opportu-
nities for agents to earn rewards. As a result, each agent’s

learned utility function must adapt to changes in the set of
passengers caused by task openness.

Note that changes in the set of passengers over time can-
not simply be modeled as agent openness, for which there
are existing reinforcement learning and planning solutions
[Cohen et al., 2017, Eck et al., 2020, Rahman et al., 2021,
Kakarlapudi et al., 2022]. This is because a passenger is
not an autonomous actor in Rideshare; only driver agents
deliberately choose actions to complete tasks.

4 TASK-OPEN MARKOV GAMES

Task openness complicates agent decision making within
a Markov game by causing many components of the game
to potentially change according to task dynamics. Specifi-
cally, the states reflect the features of each task. Changes in
task features alter the factored state variables related to the
environment (e.g., the current location of each passenger).
Tasks entering or leaving change the space of unique actions
available to agents. The transition function must handle
the dynamics of both these spaces and possible stochas-
tic changes with current tasks. The reward function also
changes under different tasks, consequently changing the
agent’s ultimate objective as the expected value of an action
may change dramatically as new actions become available.

To support agent reasoning about task openness and handle
its compound impacts on the viability and optimality of an
action, we propose a time-varying model called the task-
open Markov game (TaO-MG), formalized as:

TaO-MG ≜ ⟨M,X,Ψ⟩

where M is the current base decision-making model of the
problem instance. Here, it is a Markov game as previously
described in Section 2.2. X includes (features of) the cur-
rent set of tasks in the system. Ψ is the generator function
that transforms M when exogenous or endogenous events
change the set of available tasks at a given step. These tasks
populateX ′ = ⟨T ′τ , T ′ω⟩. GivenX ′, Ψ updates the current
decision-making model M to M ′,

M ′ =

{
Ψ(M,X ′) if X transitions to X ′

M otherwise

The components of Ψ operate on parameters of the base
model M and generate new ones. Specifically, ΨS : S ×
X ′ −→ S′ updates the state space to include representations
of newly added tasks and remove those of exited tasks. ΨA :
A×X ′ −→ A′ updates the action space, combining existing
actions with those required for new tasks and removing
actions no longer associated with any present tasks. ΨT :
T ×X ′ −→ T ′, adapts the transition function to incorporate
the new states and actions while excluding those related
to exited tasks. ΨR : R ×X ′ −→ R′ similarly updates the



Pick-Up

Agent 1

Hyperedge 1

Hyperedge 3

Hyperedge 4

Hyperedge 2

Hyperedge 5

Agent 2

Agent 3Task B

Task A

Task C

Accept

Drop-Off

(a)

Agent 1

Hyperedge 3 Hyperedge 4

Hyperedge 2

Hyperedge 5

Agent 2

Agent 3

Hyperedge 1

Accept

Pick-Up

Drop-Off

Task B

Task A

Task C

(b)

Hyperedge 4

Agent 2

Accept

Task C

(c)

Figure 2: (a) An interaction hypergraph representation of agents, tasks, and action spaces in the TaO-MG model for a simple
instance of Rideshare. (b) The corresponding 2D, critic incidence graph representation of the hypergraph. (c) Agent 2’s
observation graph: its observed tasks and available hyperedges.

reward function to account for any new or removed states
and actions. Note that the rest of the parameters of the
Markov game do not change.

Let τ = ⟨st,at, Xt⟩ denote a sample experience at timestep
t. The objective of each agent i ∈ Ag in TaO-MG is
to learn a policy πi : S × X → Ai which maxi-
mizes the agent’s expected sum of discounted rewards,
Eτ∼π [

∑∞
t=0 γ

tR′
i(st,at|s = s0)], in the task-open context

where the reward function may change, R′ = ΨR(R,X).

We utilize a Markov game representation for a given X .
We assume that the environment is fully observable and
that rewards can be individual. This base model may be
replaced by a different type of decision-making process
as appropriate (e.g., multi-agent MDP [Boutilier, 1996],
interactive partially observable Markov decision process
(I-POMDP) [Gmytrasiewicz and Doshi, 2005], or decen-
tralized (Dec-POMDP) [Oliehoek and Amato, 2016]). A
related model to TaO-MG is the time-varying Markov de-
cision process (TVMDP) [Liu and Sukhatme, 2018, Ornik
and Topcu, 2021]. TVMDP models a single agent’s deci-
sion process in environments with exogenous changes to the
transition function. Our TaO-MG model can be viewed as
extending TVMDPs to multi-agent settings with dynamic
states, actions, and rewards.

5 MARL UNDER TASK OPENNESS

We present the first RL method for TaO-MG, called Models
Of Hyper Interactions under Task Openness (MOHITO), that
adopts a graphical problem representation and engages in
actor-critic based model-free learning.

5.1 INTERACTION HYPERGRAPHS

The primary challenge in designing a learning algorithm for
a task-open setting lies in accommodating the changing set
of actions from the openness. Conventional RL algorithms

learn π : S −→ A by evaluating each state-action pair. In
contrast, our work performs a relative comparison of the cur-
rent set of actions to choose an action. That is, a generalized
policy must also consider the set of tasks and the correspond-
ing actions available to the agent within that state. It is not
trivial to represent these dynamic relationships induced by
task openness. To address this, we represent actions, tasks,
and agents through a graphical construct, which we call an
interaction hypergraph. This hypergraph generalizes coordi-
nation graphs [Guestrin et al., 2002, Boehmer et al., 2020],
which limit interactions to between agents only.

Definition 1 (Interaction Hypergraph) An interaction
hypergraph is a 3-uniform (tripartite) hypergraph
G = ⟨N ,X ,A, E⟩ comprised of three types of nodes: agent
nodes N = {node(i) | i ∈ Ag} store the state-specific
information of agents Ag, notably including observations
of other agents; task nodes X = {node(x) | x ∈ X}
contain state information about the current tasks X in the
environment; action nodesA = {node(a) | a ∈

⋃
i∈Ag Ai}

hold details about the unique actions currently available to
the agents. E is a set of 3-uniform hyperedges where each
hyperedge (agent, task, action) contains one node from
each set N , X , and A, respectively.

We present the complexity of encoding knowledge of the
environment in hypergraphs in Lemma 1, with its derivation
in Appendices A.1 and A.2. Our bound is quadratic, but the
more common case of tasks that share all unique actions has
a linear bound.

Lemma 1 [Interaction graph complexity] The number of
hyperedges is bounded by O(|N ||X ||A|), and the number
of action nodes is bounded by O(|Ag||Ai|). Thus, we can
construct the graph in O(|Ag|2|X||Ai|) space and time.

Figure 2(a) illustrates an interaction hypergraph for a set-
ting of Rideshare, introduced previously in Sec. 3.1. We



mitigate the representational complexity of working with
hypergraphs by transforming them into 2-uniform bipartite
graphs, referred to as Levi incidence graphs. Figure 2(b)
shows the 2-uniform bipartite graph for the tripartite hyper-
graph in Fig. 2(a). This regular graph adds an additional
set of nodes E which denote hyperedges. We include In-
teractionGraph, a polynomial-time algorithm in Appendix
A.2, for constructing an interaction hypergraph from agent
observation, and empirical time and memory profiling of
our proposed approach in Appendix A.3.

5.2 MOHITO

MOHITO leverages the interaction hypergraph’s explicit
representation of task-open problems to learn a centralized
training decentralized execution (CTDE) actor-critic model
in a task-open environment. Each agent has a local actor
(or policy) and a local critic. Agents’ policies are learned
in a centralized manner by exchanging local observations
among the critics, thereby leveraging joint observations of
the state and the joint action set. This architecture, analogous
to MADDPG’s [Lowe et al., 2017], allows each agent to
learn considering both individual and collective preferences
yet remains an autonomous agent during execution.

As illustrated in Fig. 3, both the actor and critic are graph
neural networks (GNN), specifically graph attention net-
works [Veličković et al., 2018], which are representations
amenable to dynamic environments. We use Gilmer et al.
[2017]’s message passing framework to facilitate aggregat-
ing knowledge of the current state of agents, tasks, and
available actions. Knowledge is aggregated into the hyper-
edge nodes of the Levi incidence graph. Hence, the agents
learn how to combine information about dynamic task and
action sets as represented in the interaction hypergraphs, so
that they can reason about their task-open environment.

The actor network processes the agent’s observed in-
teraction incidence graph, or observation graph, GO=
{G1, ..., G|Ag|} (e.g., Fig. 2(c)). The updated features of
each hyperedge node edik ∈ E for the ith agent and kth

node are the actor’s evaluation of that hyperedge’s connected
(agent, task, action) nodes. At each decision point, agent
i’s actor GNN deterministically selects the hyperedge with
the highest evaluation edi = argmaxk

∑
f edik where f

are the features of ed. The agent then performs the action
linked to that hyperedge. Each actor πθi is a deterministic
model with target πθ′

i . Actor i’s loss function,

Lπi =
1

B

 ∑
j∈batch

−Qϕ
i (G

j
C, ed

j)

+ λA|θi − θ′i|, (1)

includes the ith critic’s evaluationQi over the agent’s action
preferences, the hyperedges from all agents edj , and the
critic graph GjC, over a batch of samples j ∈ batch, B is the
size of the batch, and a regularization component moderated

by λA ≥ 0. The policy gradient is computed as,

∇Lπi =
1

B

 ∑
j∈batch

∇θi
πθi(Gji )∇edji −Q

ϕ
i (G

j
C, ed

j)


+ λA

θi − θ′i
|θi − θ′i|

.

(2)

The critic network processes the critic interaction incidence
graph or critic graph (e.g., Fig. 2(b)), which combines agent
observation graphs and extracts all observed task features
by performing a disjunctive graph join over all observation
graphs, GC =

∨|Ag|
i=1 Gi [Bergami et al., 2016]. Agent i’s

critic value Qϕ
i with target network Qϕ′

i takes as input the
critic graph, GC, and all edi. The target networks θ′ and
ϕ′ are slowly updated, every K batches, by the difference
between the main and the target weighted with hyperparam-
eters ψA and ψQ, respectively. The critic loss,

LQi
=

1

B

∑
j∈batch

(
rji + γQϕ′

i (G′j
C, ed

′j)−Qϕ
i (G

j
C, ed

j)
)2

+ λC |ϕ− ϕ′| (3)

is the mean squared error between expected and calculated
Q values for each critic with a similar λC ≥ 0 regularization
parameter. The gradient remains the same as MADDPG’s
critic gradient except for the use of ed over a. The architec-
tures, hyperparameters, and operational details of the actor
and critic networks are discussed further in Appendix A.4.

Algorithm 1 presents the algorithm for MOHITO. After
collecting observation graphs, which capture the varying
sets of tasks and associated actions, into a batch (lines 4-
9), the algorithm generates the critic graphs (line 10) and
utilizes the batch to engage in actor-critic training (lines
12-20) with the loss functions defined previously in Eqs. 1
and 3. We show the complexity of MOHITO in Theorem 1
with its analysis in Appendices A.1, and A.2. Sizes |θ| and
|ϕ| equal to #layers · #heads · f2 + #heads · f where f is
the feature size of N [Veličković et al., 2018]. Number of
heads and layers are structural parameters of a GAT.

Theorem 1 [MOHITO complexity] We perform O(|Ag|)
network queries in one iteration of training. Each query
is bounded by O(|θ||GC|). All other procedures are domi-
nated by one query. One iteration of MOHITO for |batch| =
B is bounded by O(B|θ||Ag|3|X||Ai|) .

6 EXPERIMENTS

To evaluate the effectiveness of MOHITO, we empirically
test its performance in instances of two experimental do-
mains: the aforementioned Rideshare and the Wildfire Sup-
pression benchmark for studying open agent systems [Chan-
drasekaran et al., 2016, Eck et al., 2020, Kakarlapudi
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Figure 3: MOHITO uses an actor-critic schema with one
actor and critic per agent. Observations (as incidence graphs)
are shared between critics enabling centralized training.

Algorithm 1 MOHITO

1: for episode← 1 to N do
2: Get obs from environment with current tasks X
3: GO:[G1, ..., G|Ag|]← InteractionGraph(obs)
4: while episode not complete do ▷ Online
5: ai, edi ← πθi(Gi) ∀i ∈ Ag
6: a← ⟨a1, ..., ai⟩ or ϵ-greedy
7: obs′, r ← environment(a)
8: G′

O ← InteractionGraph(obs′)
9: a′i, ed

′
i ← πθ′

i(G′
i) ∀i ∈ Ag

10: GC ←
(∨|Ag|

i=1 Gi

)
, G′

C ←
(∨|Ag|

i=1 G
′
i

)
11: batch← batch ∪ (GC, ed, r,G

′
C, ed

′)
12: if |batch| = B then ▷ Offline learning
13: Obtain LQi

from Eq. 3 ∀i ∈ Ag
14: Backprop. LQi and update Qϕi ∀i ∈ Ag
15: Obtain Lπi from Eq. 1 ∀i ∈ Ag
16: Backprop. Lπi

and update πθi ∀i ∈ Ag
17: batch← ∅
18: for agent i after every K episodes do
19: θ′i ← ψA × θi + (1− ψA)× θ′i
20: ϕ′

i ← ψQ × ϕi + (1−ψQ)× ϕ′
i

et al., 2022]. Domain implementations and MOHITO’s code
are available at https://github.com/oasys-mas/
mohito-public.

6.1 DYNAMIC RIDESHARING

We consider settings with |Ag| = 2, 3, and 4 driver agents,
as well as 3 levels of increasing task openness. These
nine environments start with a set of initial tasks |X0| ∼
[|Ag| − 1, |Ag|+ 3]. Due to task openness, additional tasks
are added stochastically over time based on the openness
level (OL), our simulation of the entry of exogenous tasks.
Levels 1, 2 and 3 add 6, 9, and 12 ride requests through-
out the episode at randomly sampled times, respectively.
At each of those times, 1-3 new tasks are introduced with
probabilities 70%, 20%, and 10%, respectively. We formally
define this domain as a TaO-MG in Appendix A.5.

MOHITO’s training in each configuration of number of
agents and openness level generally spans 20,000 episodes
by when we observed stability in the loss. Each episode
consists of at most 100 steps or until all tasks are completed
(scheduled passengers served). We checkpoint each model
every 50 model updates (every batch-size steps, see Ap-
pendix A.4 for parameters) and utilize the best performing
policy from checkpoints. We evaluate Rideshare instances
on 10 episodes for each set of agents and openness level.

6.2 DYNAMIC WILDFIRE SUPPRESSION

We use Wildfire Suppression as our second domain, where
agents coordinate to extinguish fires before they burn out.
Agents do not move. They choose to suppress a fire they
can reach, or engage in No-Op to refill their suppressant.
An agent without suppressant may only No-Op; agents thus
leave the environment when out of suppressant. A fire’s
size (small or medium) dictates how many agents must
attack the fire to stochastically decrease its intensity. In this
cooperative domain, rewards are joint and conditioned on
the size of fires. Fires burn out with a penalty of -10 or -25
and put-out fires award +20 or +400 for small and medium
fires, respectively. Medium fires are more dangerous and
require collaboration, so we set a higher reward for their
put outs and a higher penalty for their burn outs. Fires can
increase in intensity over time if not attended to, and a fire
spreads to adjacent cells using a realistic wildfire spread
model [Boychuk et al., 2009, Ure et al., 2015].
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Figure 4: Wildfire Suppression starting states. Fires start at
intensity 2 or 3 (4 is burned out and 0 is put out). Fires lit in
cells with a caution icon start at intensity 3.
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This environment is naturally task-open. Each grid-cell is a
large sector and therefore allows multiple fires in a sector
(we cap at 13). Some cells have more fuel, and fires lit in
those cells start at a high intensity (of 3), which is one inten-
sity level away from burning out. We formally define this
problem domain as a TaO-MG in Appendix A.5. MOHITO’s
training in each configuration again spans 20K episodes, and
each episode consists of at most 100 steps or until all fires
are put out or burn out. We evaluate Wildfire Suppression
instances on 20 episodes for each start state shown in Fig. 4.

6.3 BASELINES AND MEASURES

As there are no prior MARL solutions for task-open envi-
ronments, we compare MOHITO with effective baselines
inspired by domain-specific strategies.

• FCFS, a first-come, first-serve policy prioritizing the
longest waiting task (as in Uber rides from airports [Uber,
2025], offensive firefighting [U.S. Fire Admin, 2018]).

• NTF: a nearest-task first greedy policy prioritizing the
task nearest to completion (e.g., defensive firefighting
U.S. Fire Admin [2018]).

• MOHITO-NoTaskNodes: an ablation of MOHITO where
we do not include task nodes in the incidence graph. Ac-
tors choose actions without regard to which task they
belong to. The task is then selected randomly among the
tasks with that action.

• TAO-PGELLA: a multi-agent, task-open adaptation of
PG-ELLA [Ammar et al., 2014], a popular RL method for
lifelong learning. TAO-PGELLA learns an actor-critic
architecture using policy gradient. It is parameterized
through fixed-size weights that are global for all tasks
and task-specific weights (see Appendix A.6 for details).

We evaluate the performance of MOHITO and the baselines
using the following performance measures.

• Episodic cumulative rewards: the sum of rewards earned
by all agents across testing episodes, measuring the effec-
tiveness of agents at accomplishing their tasks.

• Duration: the timesteps taken to complete tasks, measur-
ing the efficiency of agents at accomplishing their dynami-
cally changing task set (ride-status shown for Rideshare).

• Pooling (Rideshare only): Time spent by agents multi-
tasking by carrying multiple passengers simultaneously, a
domain measure of efficiency with dynamic tasks.

• Fires Burned/Put-out (Wildfire Suppression only): The
number of fires burned- or put-out. A direct domain-
specific measure of task success or failure as a result
of policy behavior.

6.4 EVALUATIONS

MOHITO improves on the baselines. Figure 5(a)
presents the mean of cumulative rewards (with 95% confi-
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Figure 5: Mean episodic rewards (with 95% CI) (a) MOHITO
performs well in Rideshare (b) Wildfire Suppression shows
larger CI’s likely from stochastic transitions.

dence intervals) earned in Rideshare for the various open-
ness levels. Similarly, mean rewards in Wildfire Suppres-
sion across all start states are shown in Fig. 5(b). MOHITO
outperforms all baselines in each openness level with sta-
tistical significance (Wilcoxon signed rank tests, p < .01,
Rideshare n=30, Wildfire Suppression n=60) for each
domain.1 We do not use TAO-PGELLA in Wildfire Sup-
pression due to its poor performance in Rideshare and
fundamental problems with adapting lifelong learning to
task-open environments. Increased openness offers opportu-
nity to service more passengers and risk when fighting more
fires. Rewards generally increase with openness demonstrat-
ing that MOHITO learns to exploit additional task opportu-
nities to increase its performance over the baselines.

MOHITO’s policy is, in part, similar to NTF in Wildfire

1When all openness levels are considered together, MOHITO’s
performance remains significant except against NTF in Wildfire
Suppression.
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Figure 6: (a) Mean task duration shows passengers spending more time riding with MOHITO while they are pooled. (b)
Mean task duration shows MOHITO only allowing fires to burn about as long as NTF. (c) The amount of time MOHITO
spent carrying multiple passengers (pooling) vs carrying one or none.

Suppression but MOHITO earns a slightly higher reward
than NTF because it puts out more medium fires compared
to NTF (see Fig. 7a) in each openness level. As such, it
displays better collaborative behavior between agents to
tackle the most challenging tasks. Nonetheless, NTF is a
strong baseline across our domains as it uses task-specific
insight to select a greedy action.

Task-action representation matters. In Fig. 5(b), we see
MOHITO significantly outperform MOHITO-NoTaskNodes.
The ablation’s policy is not conditioned on task observa-
tions, so it cannot focus attacks on specific fires. Meanwhile,
the shorter fire durations in Fig. 6(b) and fewer burnouts
(see Fig. 7) indicate that MOHITO better manages risk by
strategically distributing suppressant across fires to reduce
burn-outs. This exemplifies the importance of learning a
task preference in policies.

MOHITO can multitask. In Rideshare, we observe that
MOHITO’s converged policies lead to the complex phe-
nomenon of passenger pooling. This involves picking up
multiple passengers and conveying them efficiently to their
destinations. We observe that the pooling behavior increases
relative to single passenger rides at lower openness levels
and higher agent counts in Fig. 6(c). The learned pooling
behavior prioritizes the agent’s driving efficiency by mini-
mizing total drive distance, albeit at increased time cost as
passenger service times are lengthened (cf., Fig. 6(a)). Such
pooling behavior is the motivation for real-world services
such as Uber Pool.

Lifelong learning underperforms. TAO-PGELLA ex-
hibits poor ability to simultaneously manage existing tasks
alongside new ones, resulting in poor rewards (Fig. 5(a)).
Upon further investigation, we note that TAO-PGELLA
often switches between tasks before completing a particular
task. TAO-PGELLA learns policies that fit groups of tasks
based on their features as a proxy for knowing all tasks
a’priori – as required by the original PG-ELLA. However,
the diversity of task characteristics due to task openness
appears to lead to agent uncertainty about how to prioritize
simultaneous tasks.
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Figure 7: Box plots of the numbers of fires (a) put out and
(b) burned out by various methods per episode. The red dot
indicates the mean. MOHITO has significantly fewer burn
outs than FCFS and MOHITO-NoTaskNodes, even as the
openness increases.

7 RELATED WORK

Lifelong/continual and multi-task learning also learn behav-
ior that generalizes across changing tasks though they do
not encompass fully the complexities of task openness.

Lifelong and continual learning do not choose
tasks. Agents learn to improve their performance on future
tasks by leveraging experiences with prior tasks [Chen and
Liu, 2018]. Some methods use one shared parameterization
of the agents’ policy and try to avoid catastrophic forgetting
as they learn from new tasks [Thrun and Mitchell, 1995].
Others separate knowledge learned from tasks then aggre-
gate it. These are typically modeled as contextual MDPs



[Mendez et al., 2022, Kim et al., 2023]. One notable ap-
proach learns an implicit neural representation by having
agents share task knowledge on a known schedule of tasks
[Kolouri et al., 2023]. In others, agents interact with a se-
quence of single tasks drawn from a distribution [Abel et al.,
2018]. Across lifelong learning, agents interact with the one
present task and do not decide which task to prioritize.

There is a known distribution of tasks in multi-task learn-
ing. Agents learn from a set of tasks, typically fixed, with
the goal of learning generalizable information across tasks
[Tanaka and Yamamura, 2003, Varghese and Mahmoud,
2021]. Similar to lifelong learning, these methods often use
a contextual MDP as the model [Sodhani et al., 2021, An-
dreas et al., 2017] with all contexts available to the agent.
Unlike lifelong learning, multi-task learning can also be ap-
proached by more static models, a traditional MDP learned
via ensemble learning [Rajeswaran et al., 2017], and a de-
centralized POMDP [Omidshafiei et al., 2017, Zhang et al.,
2023]. Prior work also allows agents to explicitly prefer
more rewarding tasks [Yu et al., 2023]. However, across all
of these approaches, tasks are samples from a fixed known
distribution of tasks.

Task openness is also addressed by methods for multi-
agent path finding (MAPF), which often focuses on the
use-case of robots servicing tasks in warehouses [Stern,
2022]. However, the majority of these methods adopt a fully
centralized perspective to the joint problem and build on
search techniques [Okumura, 2023]. Recently, RL has been
explored as well for MAPF [Skrynnik et al., 2024], but
agents do not explicitly reason about other agents’ actions.
RL is used only to navigate the agent to the assigned goal
without collision. In contrast, agents using MOHITO reason
about others’ actions and choose tasks, which then makes
pooling possible in Rideshare.

GNNs have been used for MARL previously. Jiang et al.
[2020] and Rahman et al. [2021] contribute to RL in open
multi-agent systems, both of which target agent openness
without considering task openness. Both rely on the use of
GNNs [Wang et al., 2016, Veličković et al., 2018] that adapt
to changing input sizes [Hamilton et al., 2017]. These embed
fully-connected coordination graphs and may intrinsically
adapt to dynamic team sizes as agents depart or reenter. Our
interaction hypergraphs significantly extend the coordina-
tion graphs to model tasks and actions, which offers a more
expressive representation of the decision-making problem
setting allowing its use for task openness.

8 CONCLUDING REMARKS

Learning how to act in environments with task openness,
where the set of objectives or tasks is neither static nor
predefined, is challenging. This paper presented three con-
tributions towards agent reasoning under task openness: (1)

a novel model, TaO-MG, using an interaction hypergraph to
encode each agent’s dynamic, open, and task-centric action
space; (2) a task-open MARL approach, MOHITO, based
on TaO-MG, which centrally learns to evaluate actions rel-
ative to all present tasks; and (3) two task-open domains,
Rideshare and Wildfire Suppression, one competitive and
the other cooperative, each with unique properties that serve
as a testbed for exploring and evaluating approaches in this
emerging topic. Our experiments demonstrated MOHITO’s
favorable ability to reason about task dynamics. This shows
the sufficiency of the TaO-MG model and the viability and
effectiveness of MOHITO in reasoning with task openness.
Whereas such openness is a feature of many realistic prob-
lems, it may not be easily modeled using traditional games
with fixed and bounded sets.

MOHITO has theoretical and practical limitations. The cur-
rent TaO-MG model is limited to physical states that are
perfectly observed. However, in domains such as Wildfire
Suppression, partial observability is inherent and a key
barrier to success. Practically, MOHITO may suffer from
unstable training as tasks enter and leave, especially due to
exogenous factors. The regularization component of the loss
and utilizing graph norm helps toward this, but it may be
challenging to identify convergence.

A key direction of future work is to allow considerations
of agent openness as well alongside task openness. An ap-
proach would be to investigate ways of extending both TaO-
MG and MOHITO to model and learn in the context of both
these types of openness and the associated uncertainty.
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A TECHNICAL APPENDIX

A.1 SPACE COMPLEXITY

Here we evaluate the space complexity of MOHITO.

A.1.1 Interaction and observation graphs

Consider an arbitrary graph g with nodes with feature size f and edge feature size fe. The space used to store g is the sum
of the space used to store g’ s edges, ge, and g’ s nodes, gn, Eq. 4.

|g| =(|gn| · f)
+(2 · |ge|+ |ge| · fe)

(4)

Now we use Eq. 4 to find O(|GC|), the size of MOHITO’s critic input. Recall that GO ⊆ GC, so |GO| = O(|GC|) thus
we focus on the critic graph rather than, GO, the observation graphs. Both our interaction graphs are composed of task
observations X , action descriptions A, agent observations N , and hyperedge nodes E (i.e. |GnC| as seen in Eq. 5). In
Eq. 5, f is the same for all |Gnc | as all nodes are padded to the largest.

|GnC| = |A|+ |N |+ |X |+ |E| (5)

The environment provides us the number of agents and tasks, so |N | = |Ag| and |X | = |X|. Let Ai be the largest agent
action space. The number of action nodes is bounded by the number of unique actions, so |A| = O(|Ag| · |Ai|). Each
task-action is a relationship between a X ∈ X and a a ∈ A, and task-action nodes, E, represent an agents relationship to
that task-action. Thus |E| is bounded by O(·|A| · |N | · |X |).

Substituting |A|, |N |, |X |, |E|, and Eq. 5 into Eq. 4,

|GC| ≤ f(|A|+ |N |+ |X |+ |E|) + 6(|A| · |N | · |X |)
|GC| = O(f · |Ag|2 · |Ai| · |X|)

(6)

A.1.2 MOHITO execution

MOHITO actors are comprised of #layer-many graph attention transformers (GAT) Veličković et al. [2018] layers, activated
by ReLU layers, and the hyperedge, ed, is selected by ArgMax. GAT scale linearly in |GnC| and |GeC| Veličković et al.



[2018]. Here we assume they scale polynomially in input and output feature size, f, f ′, following their defined single head
GAT time complexity Eq. 7.

GAT time = O(|GnC| × f × f ′ + |GeC| ∗ f ′) (7)

Within MOHITO, f ′ = {f, hidden dim, hidden dim × #heads} across layers. We substitute |GeC|, |GnC|, and simplify with
Eq. 7 to get MOHITO (M ) execution space complexity Eq. 8.

Mspace
exe ≤ #heads(f2 · |Ag|2 · |Ai| · |X|+ f |E|)

Mspace
exe = O(#heads× f × |GC|)

(8)

A.1.3 Critic loss computation, LQ

The critic performs global mean pooling and linear layers subsequent to the prior actor structure, which are O(f × |GnC|),
and O(f × |Ag|), respectively. Both are strictly dominated by |Mspace

exe | because f ∈ N. The only additional concurrent
space requirement is other agents’ choosen hyperedges, ed ∈ E, [ed, ...edn], term two in Eq. 9.

criticspace ≤ (#heads× f × |GC|) + (f × |Ag|)
criticspace = O(#heads× f × |GC|)

(9)

In LQ, we perform two passes Qϕ(j)
i , Qϕ′

i (j) per agent per experience in the batch. The size of the Q-values in the output is
1, and |rji | = 1. The space complexity of storing this loss is dominated by criticspace and the batched inputs. We discuss the
upper bound of batch size in Appendix A.7. Removing dominated terms we get the space complexity of critic loss, Eq. 9.

Mspace
LQ

= O
(
Mspace
exe + batch size×

(
|GC|+ (|Ag| × f)

))
(10)

A.1.4 Actor loss computation, Lπ

As with LQ, the regularization only takes a multiple of parameter space, θ additional space here. Here we calculate Q
′ϕ
i (j)

using the updated main network ϕ. We do not need the other agents’ chosen hyperedges, we need GO per batch, and with
the assertion that GO ⊆ GC, we use the same bound as the critic, Eq. 11.

Mspace
Lπ

= O(Mspace
LQ

) (11)

A.2 TIME COMPLEXITY

Here we evaluate the time complexity of hypergraph construction, policy query, and loss.

A.2.1 Interaction and observation graphs

We have pettingzoo Terry et al. [2021] environments, so it is important to consider the additional time to convert a gymnasium
space observation to an interaction graph. Alg. 2 shows our interaction graph construction. identifying unique actions is
O ((|Ag| × |X| × |Ai|)log(|Ag| × |X| × |Ai|)), and concatenation is O(|Ag|2 + |X| + |Ai|). Here the common case is
linear w.r.t. |Ag| where agents frequently have the same rather than distinct actions available to them, but the worst case is
where all agents have unique actions thus,

GtimeC = O(|Ag|2 × |X| × |Ai|) (12)



Algorithm 2 Interaction Graph Construction

Input: agents < |Ag|, f >,
tasks < |X|, f >,
actspace[Ag,X]→ [A]

Output: GO or GC ▷ GC is returned if all tasks and the union of the action space is given.
1: actions← UNIQUE(actspace.values)
2: nodes← Concatenate(agents, tasks, actions)
3: edges← []
4: taskActions← 0
5: for agent ∈ agents.index do
6: for task ∈ tasks.index+ |agents| do
7: thisActIndex← actspace[agent, task].index
8: for action ∈ thisActIndex+ |agents|+ |tasks| do
9: hyperedge← (agent, task, action)

10: hyperedge← pad(hyperedge, f)
11: APPEND(nodes, hyperedge)
12: APPEND(edges, [agent, hyperedge], [task, hyperedge], [action, hyperedge])

13: return (nodes, edges)

A.2.2 MOHITO execution

In Appendix A.1, we assume that the time complexity of a single head GAT, Eq. 7, is equivalent to its space complexity. We
make the same assumptions on the value of f, f ′ here to get a time upper bound for any layer in the GAT; f, f ′ ≤ f . To
query π we multiply by the number of layers because, with our upper bound, time scales linearly with more layers, Eq. 13.

M time
exe = O(#layers× #heads× f × |GC|) (13)

A.2.3 Critic loss

The time complexities of the mean pooling and linear layer are the same as the space complexity mentioned in, Appendix A.1;
O(f ×|GnC|), andO(f ×|Ag|) respectively. The only difference here is accounting for all Q passes instead of space growth,
Eq. 14

critictime =O(M time
exe )

M time
LQ

=O
(
batch size× (M time

exe + f × (|GnC|+ |Ag|)
) (14)

A.2.4 Actor loss

As in Appendix A.1, these losses must be calculated over seperate runs, LQ(...,ϕ) and Lπ(...,ϕ′). Then mean square error
is calculated which is trivially O(batch size).

M time
Lπ

≤ (M time
exe ∗ 2 + batch size)

M time
Lπ

= O(M time
exe + batch size)

(15)

A.3 MOHITO PROFILING

Results confirm MOHITO’s complexity from Thm. 1. We scale the second starting state to include linearly more agents
and tasks. We execute MOHITO from 8 to 100 agents in increments of 4 agents and 3 tasks. This is run on a Linux virtual
machine with 4 AMD EPYC 7302 16-Core CPUs and 500GB of DDR4 RAM. We show peak memory usage, Fig. 8(a), and
time, Fig. 8(b), to run MOHITO. These fit to a quadratic curve and empirically show our success in avoiding exponential
complexity.
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Figure 8: Results from profiling MOHITO align with Appendix A.2.2.

A.4 MOHITO PARAMETERS AND STRUCTURE

Here we show all parameters used for MOHITO in our two domains. In Table 1, we show all parameters we used in the
experiments shown in this paper.

Table 1: Parameters For MOHITO training

MOHITO Parameters rideshare wildfire
γ 0.9 0.99
#GAT Layers 20 3
hidden dim 50 24
grad_clip: max norm 5 0.0

Environment

training seed 16 16
max steps per episode 100 100
|Episodes| 20,000 20,000
K: batch size 20 16
B: buffer size 0 1,000
Graph Norm yes no
validation frequency every 5 model updates 10 model updates

Actor

learning rate 0.001 0.009
λA: regularization coefficient 0.1 0.01
ψA: coefficient for slow-update 0.05 0.005

Critic

learning rate 0.01 0.01
λQ 0.01 0.0
ψQ 0.05 0.005
Actor Hyperedges MLP, Fig. 10(a) Pooling, Fig. 10(b)

The architecture of the actor, Fig. 9 and critic, Fig. 10, are similar up to their final layers. They both contain 2-head GATConv,
activation (ReLU), and dropout layers per #GAT Layers. The critic considers agent actions through incorporating their
hyperedge features. Either through a MLP at the end of the network (as seen in Fig. 10(a) and Rideshare), or incorporating
all hyperedges into the critic graph and pooling over the selected (as see in Fig. 10(b) and Wildfire Suppression).

In Fig. 11, we show MOHITO validation rewards in Rideshare across 3000 episodes. The set of tasks given to MOHITO in
training is fixed and different from those used in validation. We trained for a fixed duration for each openness level and
agent number then picked the best performing policies for Rideshare.
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Figure 9: Actor network architecture. It is a series of graph attention transformer layers followed by ReLU activation and
dropout. When we use graph norm, it is done before ReLU.
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Figure 10: The critic architecture for MOHITO. It is a series of graph attention transformers activated by ReLU and
normalized by graph norm at all but the last layer.
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Figure 11: Some agents earn 0 rewards. This is a common optima for the system we encountered where a subset of agents
choose to do nothing, and other agents dominate the environment.

A.5 TAO-MG BASED DEFINITIONS OF DOMAINS

A.5.1 Wildfire Suppression

Here we formally define Wildfire Suppression, as a TaO-MG, and we define a general approach to represent task-open
action spaces.

TaO-MG
def
= ⟨M,X,Ψ⟩

X is the current set of lit fires. The features of each fire are,

x = [position, intinitial, fTypex]

M is a Markov game representation of for a given set of fires X .

• Ag is a fixed set of agents. In this work we show a domain with two firefighters. These agents leave the environment
when they run out of suppressant, and as they No-Op, they stochastically regain suppressant and eventually return to
the environment. Here leaving/returning simply effects whether they can act on fires. No new agents appear in this
domain’s experiments.

• S is a set of 4 matrices with the shape of the grid, {fType, int, ag, sup}. fType contains integers where non-zero
elements are burnable tiles. fType corresponds to the number of agents which must collaborate to stochastically fight
and put out the fire. int represents the intensity of each fire [0, n] at time t. ag represents the location of each agent.
sup represents the amount of fire suppressant each agent has at time t.

• A is the Cartesian product of all agent action spaces Ai. An agent can fight any available fire if they can reach it (via
the Chebyshev distance) and they have enough suppressant. Meanwhile, an agent can always No-Op.
In this work we handle task-open action spaces using hypergraphs, but to provide a more general view we next define
agent action spaces using two simpler approaches. Consider an arbitrary, discrete action, task-open, environment env.
In this environment, there exists tasks X such that each task is associated with [0,∞) actions per agent, Atx,i. The full
action space for agent i at time t must identify which action is being taken and on which task it is being taken. We can
enumerate the task-action by shifting the value of each action by the size of the prior task action spaces Eq. 16, or we
explicitly represent action selection as a two-part process: select the task first and then the action, i.e., Eq. 17.

Ati =
⋃
x∈X

{
Atx,i x = 0

Atx,i +
∑x−1
x′=X0

|Atx′,i| x > 0.
(16)



Ati =
⋃
x∈X

(x,At,x,i). (17)

In our examples each task has a single action at any time step, so Eq. 16 is equivalent to Eq. 17 in space requirement.
However there are benefits to both, Eq. 17 is more interpretable for an arbitrary domain with more actions, and
Eq. 16 is convenient for environment implementation. Wildfire Suppression uses the explicit action representation and
Rideshare uses the implicit action representation.

• T transitions in wildfire are stochastic and occur on int, and sup. Fire spread is handled by a 2d convolutional filter
over where intN,S,E,W is determined by the wildfire spread model and scales with the base spread parameter [Boychuk
et al., 2009, Ure et al., 2015]. Note that this convolution applies over the existence of lit fires, so the number of fires in
a cell doesn’t impact fire spread. Additionally there is a 0.1 random ignition probability present in all cells.

conv =

 0.0 int+N 0.0
int+W 0.1 int+E
0.0 int+S 0.0

 , 2d conv w/o bias (18)

Suppressant transitions are determined by whether the agent in question fought a fire, sup− = 1/3, then it decreases
by 1, or No-Op, sup+ = 1/2 where it will be set to its maximum value, 2.
Intensity transitions are determined separately from fire spread. If enough agents have fought a fire |attacks| ≥ fType
the fire intensity decreases stochastically by 1, Eq. 19.

p(int−x ) = 0.8 + .12 (|attacksx| − ftypex) (19)

Otherwise, fire intensity will increase deterministically, int+ = 1.0, unless the fire is about to burn out ex n− 1→ n.
In such a case, fire intensity will increase stochastically, p(int+, int+burn) where int+burn = .2238 is calculated from
the fire spread model (not parameterized by base_spread).

• R rewards are joint in wildfire. While there exists penalties for fighting a not-present fire or fighting a fire without
suppressant, these do not occur because their tasks are not present in such cases. A reward of 400 is given for putting
out the collaborative center fire; 20 is given for putting out any other fire, and a penalty of -10, -25 for a small or
medium fire burning out.

Ψ is the generator function which converts M →M ′ when X changes. S, T , A, and R change when X → X ′.

• S changes when a new task, x, enters the environment its initial intensity and fire type are determined by its position.
accelerated cells produce dangerous medium fires that are at state 3, other cells produce small intensity 2 fires. When a
task leaves the environment that fire will not be included in the action space of any agent. While a theoretically infinite
number of fires can enter the environment in each cell, we cap the number at 13 for practicality.

• A is updated as the union of present task action spaces.

• T is updated to exclude burned out fires, and include newly lit fires. fire_spread changes according to which fires are
now present in the environment, with additional lit cells raising the probability of adjacent fire spread.

• R a new task, x, introduces the possibility of new rewards from its future exit whether that be extinguished or burned-out
fires. When a task x leaves, its reward is removed until it is reignited.

A.5.2 Rideshare

Here we formally define Rideshare as a TaO-MG. First we define X , the underlying Markov game representation, M , and
then we address how we update M to account for a new M , Ψ.

TaO-MG
def
= ⟨M,X,Ψ⟩

X is the current set of passengers. Passenger features, see Eq. 20, are: pick_loc is the initial pick-up location where a task x
spawned. drop_loc is the destination of the passenger. ride_fare is the rewards earned for dropping this passenger off,
determined by Eq. 21 using the Manhattan distance.



xi,j = [pick_loc, drop_loc, ride_fare] (20)

ride_fare = 3×max[3, dist(pick_loc, drop_loc)]
+ rand[−1, 2]

(21)

Passengers can also be in one of three states, referred to as ride_status in the paper:

• Ride request: A new unassigned task that can be accepted.

• Assigned passenger: A passenger who has been assigned and can be picked up by the assigning agent.

• Rider: A passenger riding with an agent who can be dropped off.

This task state is stored by its index: Pi is the ith ride request, Pj,i is the ith accepted passenger for the jth agent if it is not
stored with a agent in s. We define the rate that x→ X ′ in rideshare setup 6.1.

M is a Markov game representation for a given set of passengers X .

• Ag is a fixed set of agents. In this work we considered 2-, 3-, and 4-agent configurations.

• s is represented using a matrix of vectors (see below), where the grid cells indicate the agent and task locations. All
values of these vectors are static task features.

s =


({}, {}) ({}, {}) ({}, {})

({Ag3}, {}) ({}, {}) ({}, {})
({}, {}) ({}, {P1}) ({}, {})
({}, {}) ({}, {}) ({Ag2}, {P21})

({Ag1}, {P11, P12}) ({}, {}) ({}, {})
({}, {}) ({}, {}) ({}, {})


• A is the Cartesian product of all agent action spaces Ai where:

Ai = No-Op
⋃
x∈X


acceptx x is ride_request
pick_upx x is accepted by i
drop_offx x is i’s passenger

• T is the transition function which determines agent and passenger movement. All movement transitions are deterministic.
Agents who use pick_upx or drop_offx move one cell (with diagonals) closer to x, direction determined by A*. When
an agent lands on the same cell as x, with a pick_upx, x will become a passenger. If an agent lands on drop_locx
with drop_offx then x is removed from X . Agents who use acceptx do not move, and x is added to the set of riding
passengers for that agent.

• R is the agent-wise function determining rewards based on the joint action a, the ith agent, and tasks X . We define
this in pieces for simplicty.

farei =

{
ride_farex ai = drop_offx ∧ x /∈ X ′

0 ai ̸= drop_offx ∨ x ∈ X ′

move_costi =

{
−1.2 agent_pos ̸= agent_pos′

0 agent_pos = agent_pos′

pick_costi =

{
−0.1 ai = pick_upx ∧ agent_pos = x_pos
0.0 ai ̸= pick_upx ∨ agent_pos ̸= x_pos

pool_limit_costi =

{
−2 ai = pick_upx ∧ |x ∈ i| > 2

0 ai ̸= pick_upx ∨ |x ∈ i| ≤ 2

(22)

An additional wait_cost, −2, is added to all agents if any x hasn’t changed ride_status for a count of steps (accept:5,
pick_up:10, drop_off:10).



The final cost, unserved_cost = −0.5× (open seats), is applied if the number of unaccepted passengers is greater than
the total number of seats across all passengers. This, together with the wait cost, discourage model inaction.

ri =farei +move_costi + pick_costi
+ pool_limit_costi + wait_cost+ unserved_cost

(23)

Ψ is the generator function which converts M →M ′ when X changes. S, T , and R change when X → X ′.

• S when new passengers, x, enter, x is added to the second set of the x_pos element of s to get s′. Then S′ is the
Cartesian product of s′ across possible pos for all x ∈ X and i ∈ Ag.

• T maintains the same behavior as described prior, but when explicitly defined, it is updated to only include transitions
for S′ removing the transitions for departing passengers and adding new.

• R the reward function is redefined to account for new waiting tasks for wait_cost and unserved_cost. Additionally,
any departing passengers are removed from the reward function.

A.6 TAO-PGELLA

First described by Ammar et al. [2014], PG-ELLA is an extension of the authors’ previous work in linear regression [Ruvolo
and Eaton, 2013]. It is a lifelong learning algorithm and features a modular structure capable of utilizing learning a variety
of base learners [Williams, 1992, Peters and Schaal, 2008] to individually learn policies for like tasks such as cartpole and
quadrotor [Busoniu et al., 2010],[Bouabdallah, 2007]. Information is shared between tasks through a large latent space L
which combines with task specific parameters sx to form task-specific policy weights θx = Lsx.

PG-ELLA falls short of open-task applications in three key aspects. Multi-Agency: PG-ELLA is a single agent model; (2)
Dynamic Spaces: The action and observation space of the environment change as X changes. L has a fixed size and cannot
handle changing shape inputs; (3) Simultaneous tasks: The generation of trajectories depends on a single task present in the
environment at a time. We next describe how we address these challenges, and we show them in Fig. 12.
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Figure 12: Network diagram of TaO-MG, shows how we handle dynamic spaces with shared/individual observations, and
simultaneously present tasks with task-specific policy concatentation.

TAO-PGELLA’s base learners, such as reinforce [Williams, 1992] have existing effective extensions to multi-agent
environments. We use advantage actor critic (A2C) [Mnih et al., 2016]. Rideshare observations can be factored into
task-generic, Os, and task-specific observations, [o1, ..., ox];

• task-generic: my position, the position of other drivers, the number of passengers I have accepted, and the number of
passengers riding with me.

• task-specific: the position of a passenger, the destination of a passenger, the fare for that passenger, how long a passenger
has waited.



We concatenate (Os, ox) whose shape is now the fixed input size of θx∀x to solve the dynamic shape challenge. Simultaneous
tasks require changes in both representation and training. We consider unique tasks as individual tasks rather than X as one
task (the space of X is unbounded in task openness), and in the case of an unbounded number of possible individual tasks,
such as continuous fares in Rideshare, we discretize the space, grouping similar tasks (i.e., x ∈ χ ⊂ X).

We select an action from TAO-PGELLA’s actor by querying all task-specific parameters with present tasks, θx ⇐⇒ x ∈ X ,
then perform a softmax over their concatenated logits to select a task-action.

Algorithm 3 TaO-PGELLA (k, λ, µ)

1: |χ| ← 0
2: A← zerosk×d,k×d
3: b← zerosk×d,1
4: L← zerosd,k
5: while some task is available do
6: L← reinitializeZeroColumns(L)
7: (X,R)← getTrajectories(θ) ▷ Online interaction and ϵ-greedy
8: ⟨o1, ..., ox, Os⟩ ← getTasks(T,R)
9: for oj ∈ ⟨o1, ..., ox⟩ do

10: (X(xj),R(xj))← filterTrajectories(X,R, xj)
11: if isNewTask(xj) then
12: |χ| ← |χ|+ 1
13: else
14: A← A− (s(xi)s(xi)⊤)⊗ Γ(xi)

15: b← b− vec(s(xi)⊤ ⊗ (θ⊤xj
Γ(xj)))

16: compute θ(xj) and Γ(xj) from (X(xj),R(xj))
17: s(xj) ← argminsℓ(L, s, θxj

,Γ(xj)) ▷ optimize local learner by adam SGD
18: A← A+ (s(xj)s

⊤
(xj)

)⊗ Γ(xj)

19: b← b+ vec(s⊤(xj)
⊗ (θ⊤(xj)

Γ(xj)))
)

20: L← mat(( 1
XA+ λIk×d,k×d)

−1 1
|χ|b)

Algorithm 3 presents the algorithm for TAO-PGELLA. We start by initializing how many x we have encountered, |χ|,
and the matrices used with the Hessian to calculate the updated L later (lines 1-4). reinitializeZeroColumns resets all
zero columns, Lc ∼ Uniform[−1, 1]. We interact with the environment given our current θ to obtain trajectories, (X,R),
exploring with ϵ-greedy (line 7). Next, we perform the parameter updates from PG-ELLA Ruvolo and Eaton [2013] looping
over all unique x ∈ X (lines 9-20). filterTrajectories constructs Xj ,Rj ← {x, r|x ∈ X} where x ∈ X means that the action
taken in that trajectory is associated with task x and task x is observed.

A.7 TABULAR RL COMPLEXITY

In this work we proposed a deep RL solution to TaO-MG environments. Here we consider the complexity of MOHITO if we
use classic RL lookup tables in place of our π and Q GNNs. We also consider the upper bound for MOHITO batch size.

A.7.1 MOHITO lookup space

To encode actions conditioned on GO, we make the following assumptions:

1. ΨA is deterministic such that E = E′ if X = X ′.

2. All observations are present solely in Ag and X .

3. No agent openness.

4. |Xtask| ≥ f , and |Xagent| ≥ f .



We define our π lookup table π(G)→ e ∈ E; assumption (1) allows for this static policy with respect to tasks else we must
consider a changing action space despite one observed X . In Eq. 24, we define the space complexity of tasks as a sum of
combinations with replacement. Here Xtask is all possible task observations, and Xagent all possible agent observations.
Here we use assumptions (2); the observation is split into our observation of other agents, "agent", and "task" observations
that describe the state, and (3); the number of agent observations, and the number of agents are fixed.

πspacelookup =

|X|∑
i=1

(
(|Xtask|+ i− 1)!

(|Xtask| − 1)!i!

)
× |Xagent||Ag| (24)

We find a lower bound only considering i = |X|, where the number of tasks present is equal to the largest ever seen number
of tasks, from Eq. 24 to Eq. 25. We use assumption (4); the number of unique task/agent observations are at least their
degree of freedom; to substitute in f and |Ag| making this comparable to our deep RL complexity analysis.

πspacelookup = Ω

(
(f × |X| − 1)!

(f − 1)!|X|!
× |Ag||Ag|

)
(25)

A.7.2 MOHITO lookup time

With a lookup table, we hash the observation graph which is linear, O(|GC|). Then we lookup the preferred e ∈ E at G
which is constant, O(1). The same operation is performed for critic lookup.

πtimelookup = O(|GC|) (26)

A.7.3 MOHITO batch size

An ideal batch contains all possible one-step trajectories, (S, A, S′). The range of possible trajectories is bounded when we
make the prior lookup table assumptions, Eq. 27, represents the state S = {observations of agents, observations of tasks}
and is squared to account for noisy transitions S → S′.

batch size = O

(
|Ag||E|

(
|Xagent||Ag|

|X|∑
i=1

(|Xtask|+ i− 1)!

(|Xtask| − 1)!i!

)2
)

(27)
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