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Abstract
In this paper, we investigate deep feedforward
neural networks with random weights. The input
data matrix X is drawn from a Gaussian mix-
ture model. We demonstrate that certain eigen-
values of the conjugate kernel and neural tangent
kernel may lie outside the support of their lim-
iting spectral measures in the high-dimensional
regime. The existence and asymptotic positions
of such isolated eigenvalues are rigorously ana-
lyzed. Furthermore, we provide a precise char-
acterization of the entrywise limit of the projec-
tion matrix onto the eigenspace associated with
these isolated eigenvalues. Our findings reveal
that the eigenspace captures inherent group fea-
tures present in X . This study offers a quantita-
tive analysis of how group features from the input
data evolve through hidden layers in randomly
weighted neural networks.

1. Introduction
In the last decade, deep neural networks (DNNs) have
demonstrated dominating performance in various machine-
learning tasks such as computer vision (Krizhevsky et al.,
2012; He et al., 2016), natural language processing (Amodei
et al., 2016; Brown, 2020; Graves et al., 2013; Torfi et al.,
2020) and game playing (Silver et al., 2016). One of the
empirical findings is their ability to adapt to the features
present in the training data, which is considered a fundamen-
tal reason for their superior performance (see, for instance,
(Bengio et al., 2013; Donahue et al., 2016; Moniri et al.,
2023)). Nowadays, many theoretical results have been estab-
lished to understand the training and generalization of neural
networks. In particular, significant research efforts (Abbe
et al., 2022; Ba et al., 2022; Bai & Lee, 2019; Damian et al.,
2022; Dandi et al., 2024; Mousavi-Hosseini et al., 2022;
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Radhakrishnan et al., 2022; Shi et al., 2022) have demon-
strated the advantages of feature learning in neural networks.
However, understanding the mechanism of DNNs remains
challenging and the current theoretical framework is incom-
plete, largely due to the heavy over-parameterization and
high non-convexity of modern neural networks (Allen-Zhu
et al., 2019).

Among the theoretical analyses, the Neural Tangent Kernel
(NTK, Jacot et al., 2018) has become a powerful tool for
understanding neural networks. It is well established that
NTK, which is associated with the nonlinear feature map
(Bietti & Mairal, 2019), is able to describe the dynamics of
heavily over-parameterized neural networks under a specific
initialization (Jacot et al., 2018; Du et al., 2019). It also
provides insights into the convergence and generalization
properties of very wide DNNs (Xie et al., 2017). The NTK
theory has also been extended to other network architectures,
such as deep residual networks (Belfer et al., 2024) and deep
attention networks (Hron et al., 2020).

The eigenvalues and eigenvectors of both the NTK and its
closely related counterpart, the Conjugate Kernel (CK), are
crucial in understanding the training behavior and general-
ization performance of the underlying DNN (Fan & Wang,
2020; Yang & Salman, 2019; Yang, 2020; Engel et al., 2023).
A recent line of work has analyzed the spectral properties
of such kernel matrices. For instance, one may refer to Pen-
nington & Worah (2017); Fan & Wang (2020); Wang et al.
(2023); Wang & Zhu (2024); Belfer et al. (2024); Wang et al.
(2024); Murray et al. (2022). The spectral properties of these
kernel matrices, particularly spiked or extreme eigenvalues,
are often closely associated with certain properties of neural
networks, including their memorization capacity (Nguyen
et al., 2021), training and generalization performance (Liao
et al., 2020), and their ability to capture the low-dimensional
signal structure inherent in the learning problem (Benigni
& Péché, 2022; Wang et al., 2024; Ba et al., 2023). We
are interested in investigating the limiting properties of the
isolated eigenvalues and their corresponding eigenvectors
of kernel matrices in the high-dimensional regime. Through
this research, we aim to gain deeper insights into how fea-
tures of the input data propagate through DNNs.

In this paper, we study the CK and NTK matrices of
deep fully-connected neural networks. Recent studies have
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demonstrated that, as the network width approaches infin-
ity, the empirical CK and NTK converge to their expected
values (Arora et al., 2019; Jacot et al., 2018). Therefore,
we focus exclusively on the expected forms of these kernel
matrices throughout this paper. We assume that the input
data X ∈ Rp×n are independently drawn from a K-class
Gaussian mixture model (GMM) and are independent of
the random weights. The analysis of class-structured data
is common in the literature. For example, Papyan et al.
(2020) demonstrated that when the training error reaches
zero, the last-layer classifiers collapse to the class-means;
Liao & Couillet (2018) conducted a spectral analysis of
the Gram matrix associated with random feature mappings,
while Couillet et al. (2018) analyzed the asymptotic per-
formance of several classical classification methods under
GMM assumptions; Ali et al. (2022) investigated the spec-
tral behavior of the CK in a high-dimensional regime; and
Gu et al. (2024) derived the deterministic equivalents for
both the CK and NTK. Based on the results established by
Gu et al. (2024), we further show that a finite number of
eigenvalues of these kernel matrices lie outside the support
of the limiting measure. Our analysis reveals a possible
phase transition (Baik et al., 2005) that depends on the
choice of activation functions and the differences in covari-
ance among different classes. We also precisely determine
the positions of these isolated eigenvalues and eigenvector
alignments.

In this article, by demonstrating that the eigenvectors associ-
ated with the isolated eigenvalues may contain information
relevant to unsupervised classification (clustering), we es-
tablish a connection between the features of the input data
and neural networks. The techniques employed in this paper
are grounded in random matrix theory, and from a theoreti-
cal perspective, our analysis falls within the framework of
finite-rank deformation models in this field.

Notations: Throughout the paper, we use ∥ · ∥ to denote the
Euclidean norm for vectors and the spectral norm for ma-
trices. The spectrum of a matrixA is denoted by Spec(A).
We denote an all-ones vector of dimension p by 1p and the
identity matrix of size p × p by Ip. For two sequences of
random matrices A = {An}n≥1 and B = {Bn}n≥1, we
denoteA ∼ B if

1

n
trDn(An −Bn) → 0 and uT

1 (An −Bn)u2 → 0 a.s.

for all deterministic sequences {Dn}n≥1 and all determin-
istic vectors ui ∈ Rn, i = 1, 2 with bounded norms. The
symbolsO(·) and o(·) stand for the standard big-O and little-
o notations. Moreover, if ∥A−B∥ → 0 almost surely, we
write A = B + oa.s.(1). The Hadamard product between
two matrices of the same size is denoted by ◦. The distance
between two sets A,B ⊂ C is denoted by dist(A,B). Let
a ⊗ ν ⊕ b denote the law of ax + b, where x ∼ ν is a

random variable (or random vector) following distribution
ν. The indicator function is represented by δ. For a function
f, we denote its i-th derivative by f (i). Specifically, for
i = 1, 2, we also use f ′ = f (1) and f ′′ = f (2). Addition-
ally, ∥f∥ = supx |f(x)| denotes the supremum norm of f.
The notation 0 may indicate a zero value, a zero vector or
a zero matrix in this paper, changing from line to line. We
use c and C to denote positive constants, whose values may
change from one line to the next.

2. Preliminaries
Let x1, ...,xn ∈ Rp be n random vectors indepen-
dently drawn from one of the K-class Gaussian mixtures
C1, ..., CK , that is

xi ∈ Ca ⇐⇒ xi ∼ N (0, p−1Ca)

for some non-negative definite matrix Ca. For each
a ∈ {1, ...,K}, class Ca has cardinality na, satisfying
n1 + · · ·nK = n. Write the input features in a matrix
X = [x1, ...,xn] ∈ Rp×n. We define the fully-connected
DNN with L hidden layers by

Xℓ =
1√
dℓ
σℓ(W ℓXℓ−1) ∈ Rdℓ×n for ℓ = 1, ..., L,

with weight matrices W ℓ ∈ Rdℓ×dℓ−1 (with convention
d0 = p, X0 = X) and nonlinear activation functions
σ1, ..., σL applied entrywise. The CK of the ℓ-th layer is
given by the Gram matrix

KCK,ℓ =KCK,ℓ(X) := E[XT
ℓXℓ] ∈ Rn×n,

where the expectation is taken with respect to the random
weights W 1, ...,WL. Following Bietti & Mairal (2019)
and Jacot et al. (2018), the CK satisfies that

[KCK,ℓ]ij = E[σℓ(u)σℓ(v)] (1)

with

[u, v]T ∼ N
(
0,

[
[KCK,ℓ−1]ii [KCK,ℓ−1]ij
[KCK,ℓ−1]ji [KCK,ℓ−1]jj

])
,

while the NTK denoted byKNTK,ℓ takes the form

KNTK,ℓ =KCK,ℓ +KNTK,ℓ−1 ◦K ′
CK,ℓ,

KNTK,0 =KCK,0 =XTX,
(2)

where
[K ′

CK,ℓ]ij = E[σ′
ℓ(u)σ

′
ℓ(v)].

We consider the high-dimensional regime where n and p
are comparable and assume the following conditions on the
input data, weights and activation functions.

Assumption 2.1. As n → ∞, the following conditions
hold:
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• The ratios p
n → c0 ∈ (0,∞), and na

n → ca ∈
(0, 1) for each a ∈ {1, ...,K}.

• Denoting C◦ = 1
p

∑K
a=1

na

n Ca, C◦
a = Ca −C◦ and

τ0 =
√
trC◦/p, we have limn→∞ τ0 ∈ (0,∞).

• For a, b ∈ {1, ...,K}, it holds that ∥Ca∥ = O(1) and
trCaCb = O(p).

This assumption ensures the classification task is feasible
and non-trivial (see Gu et al. (2024) for example).
Assumption 2.2. The random weights W 1 ∈ Rd1×p,...,
WL ∈ RdL×dL−1 are independent. Moreover, the entries
ofW ℓ are i.i.d. and satisfy

E[W ℓ]ij = 0, E[W ℓ]
2
ij = 1, E[W ℓ]

4
ij <∞.

This assumption on the random weights is relatively mild
and holds for many common weights such as i.i.d. standard
Gaussian weights.
Assumption 2.3. Let ξ ∼ N (0, 1). The activation functions
σ1, ..., σL satisfy that

max
k∈{0,1,2,3,4}

E[σ(k)
ℓ (ξ)] < C, 1 ≤ ℓ ≤ L (3)

for some universal constant C.

The boundness of E[σ(k)
ℓ (ξ)] in (3) is needed to derive the

deterministic equivalents for the CK and NTK. Moreover, as
noted by Gu et al. (2024), for non-differentiable functions,
Assumption 2.3 holds if |σℓ| is bounded above by some
polynomial function through the application of Gaussian
integration by parts: Eσ′(ξ) = Eξσ(ξ). Consequently,
Assumption 2.3 accommodates commonly used activation
functions such as ReLU, Sigmoid, and Tanh, provided that
these activation functions are centered and normalized to
ensure compliance with (3).

Before presenting the preliminary theoretical results, it is
necessary to introduce several key expressions:

ψ = {ψi}ni=1 := {∥xi∥2 − E∥xi∥2}ni=1 ∈ Rn,

t :=

{
1
√
p
trCo

a

}K

a=1

∈ RK ,

T :=

{
1

p
trCaCb

}K

a,b=1

∈ RK×K .

(4)

The following two lemmas, proved by Gu et al. (2024),
provide asymptotic equivalents for the CK and NTK.
Lemma 2.4. (Asymptotic spectral equivalent for the CK
(Gu et al., 2024)). Suppose Assumptions 2.1-2.3 hold. Let
τ0, τ1..., τL be a sequence of non-negative numbers satisfy-
ing the recursion:

τℓ =
√
E[σ2

ℓ (τℓ−1ξ)], ℓ ∈ {1, ..., L}.

We further assume E[σℓ(τℓ−1ξ)] = 0. Then as n→ ∞, we
have

∥KCK,ℓ(X)− K̃CK,ℓ(X)∥ → 0 a.s.,

K̃CK,ℓ := αℓ,1X
TX + V AℓV

T + αℓ,0In,
(5)

where αℓ,0 = τ2ℓ − τ20αℓ,1 ≥ 0,

V := [J/
√
p,ψ] ∈ Rn×(K+1),

Aℓ :=

[
αℓ,2tt

T + αℓ,3T αℓ,2t
αℓ,2t

T αℓ,2

]
∈ R(K+1)×(K+1),

(6)

for class label vectors J = [j1, ..., jK ] ∈ Rn×K with ja =
{δxi∈Ca}ni=1. The non-negative scalars αℓ,1, αℓ,2, αℓ,3 sat-
isfy the following recursions:

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,1,

αℓ,2 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,2 +
1

4
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,4,

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,3 +
1

2
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,1

(7)
with

αℓ,4 = αℓ−1,4E[(σ′
ℓ(τℓ−1ξ))

2 + σℓ(τℓ−1ξ)σ
′′
ℓ (τℓ−1ξ)],

α0,1 = α0,4 = 1, α0,2 = α0,3 = 0.

Lemma 2.5. (Asymptotic spectral equivalent for the NTK
(Gu et al., 2024)). Suppose Assumptions 2.1-2.3 hold under
the same notation and settings as in Lemma 2.4. Let τ̇0 = 0,
τ̇1, ..., τ̇L ≥ 0 be a sequence non-negative numbers such
that

τ̇ℓ =
√
E[σ′

ℓ(τℓ−1ξ)]2, ℓ ∈ {1, ..., L}

and let κ2ℓ = τ2ℓ + τ̇2ℓ with κ0 = τ0. Then as n → ∞, we
have

∥KNTK,ℓ(X)− K̃NTK,ℓ(X)∥ → 0 a.s.,

K̃NTK,ℓ := βℓ,1X
TX + V BℓV

T + βℓ,0In,
(8)

where βℓ,0 = κ2ℓ − τ20βℓ,1 ≥ 0 and

Bℓ :=

[
βℓ,2tt

T + βℓ,3T βℓ,2t
βℓ,2t

T βℓ,2

]
∈ R(K+1)×(K+1).

The non-negative scalars βℓ,1, βℓ,2, βℓ,3 satisfy

βℓ,1 = αℓ,1 + E [σ′
ℓ(τl−1ξ)]

2
βℓ−1,1,

βℓ,2 = αℓ,2 + E [σ′
ℓ(τℓ−1ξ)]

2
βℓ−1,2,

βℓ,3 = αℓ,3 + E [σ′
ℓ(τℓ−1ξ)]

2
βℓ−1,3

+ E [σ′′
ℓ (τℓ−1ξ)]

2
αℓ−1,1βℓ−1,1

(9)

with β0,1 = 1, β0,2 = β0,3 = 0.
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For an p×pmatrixM with real eigenvalues λM1 ≥ · · ·λMp ,
its empirical spectral distribution is defined as

FM (x) =
1

p
#{i = 1, ..., p, λMi ≤ x},

and the probability measure induced by FM is denoted
by µM . We define the Stieltjes transform of a probability
measure ν as

mν(z) =

∫
1

λ− z
dν(λ), z ∈ C+ = {z : z ∈ C, ℑz > 0}.

It admits a natural extension to the lower-half of the complex
space by the fact that

mG(z) = mG(z̄), z ∈ C− = {z : z ∈ C, ℑz < 0}.

Prior to presenting our results, we need the following lemma,
which guarantees the existence of the limiting spectral dis-
tribution ofXTX . This lemma is established by Benaych-
Georges & Couillet (2016).

Figure 1. Spectrum of K̃CK,3 under the parameter settings: n =
1200, p = 600, c1 = c3 = 0.3, c2 = 0.4 and Ca = (1 + 2(a−
1)/

√
p)Ip for a = 1, 2, 3. The activation functions for the three

layers are σ1 = σ2 = σ3 = Poly, where Poly(t) = 0.2t2 + t.
The weights W 1 ∈ Rd1×p, W 2 ∈ Rd2×d1 and W 3 ∈ Rd3×d2

consist of i.i.d. standard normal entries, where d1 = d2 = 2000,
d3 = 1000.

Lemma 2.6. Suppose Assumption 2.1 holds. For z ∈ C, we
define the resolvents

G(z) = (XTX − zIn)
−1, G(z) = (XXT − zIp)

−1.

Then as n→ ∞, we have

G(z) ∼ Q1(z) := c0 diag {ma(z)1na}
K
a=1 (10)

and

G(z) ∼ Q2(z) := −1

z

(
Ip +

K∑
a=1

cama(z)Ca

)−1

,

(11)
where {ma(z)}Ka=1 ∈ CK is a unique vector such that

ℑzℑma(z) ≥ 0, ℑzℑ(zma(z)) ≥ 0, c0|ma(z)| ≤ (ℑz)−1

and

c0ma(z) = −1

z

1

1 + m̃a(z)
,

m̃a(z) = −1

z

1

p
trCa

(
Ip +

k∑
b=1

cbmb(z)Cb

)−1

=
1

p
trCaQ2(z).

(12)

Besides, c0m1(z), ..., c0mK(z) are Stieltjes transforms
of some R+-compactly supported probability measures
ν1, ..., νK . The probability measure µ defined by the Stieljtes
transform

mµ(z) = c0

K∑
a=1

cama(z) (13)

is a deterministic probability measure with compact support
S =

⋃K
a=1 supp(νa) such that

µXTX → µ in distribution, (14)

dist(Spec(XTX), S ∪ {0}) → 0 (15)

almost surely. For x ∈ R such that dist(x,S ∪ {0}) > c
for some positive constant c, (12) also holds.

According to Lemma 2.4 and Lemma 2.5, the ℓ-th layer
of kernel matrices can be approximated by a linear com-
bination of XTX, In and a low rank matrix. Based on
above results and Lemma A.4, it follows immediately that
∥FKCK,ℓ − F K̃CK,ℓ∥ → 0 (∥FKNTK,ℓ − F K̃NTK,ℓ∥ → 0).
Therefore, the LSD of KCK,ℓ(KNTK,ℓ) can be written as
µCK,ℓ = αℓ,1 ⊗ µ⊕ αℓ,0 (µNTK,ℓ = βℓ,1 ⊗ µ⊕ βℓ,0).

To visualize the ESD of the CK, we present the empirical
spectral distribution of K̃CK,3 in Figure 1, obtained using
the same polynomial activation function across all layers. As
shown, this ESD does not exhibit any isolated eigenvalues.
In the following section, we will investigate scenarios in
which eigenvalues detach from the bulk.

3. Main results: eigen analysis of the CK and
NTK

In this section, we follow the notation established in Lem-
mas 2.4-2.5, and without loss of generality, assume that

xi ∈ Ca for 1 +

a−1∑
j=1

nj ≤ i ≤
a∑

j=1

nj .
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(a) Eigenvalues histogram of
K̃CK,3

(b) Eigenvalues histogram of
KCK,3

Figure 2. Spectra of K̃CK,3 and KCK,3 (with the expectation es-
timated from 500 realizations of weights).

This assumption is also adopted in the simulations. We
denote the supports of the limiting spectral measures of
KCK,ℓ and KNTK,ℓ by SCK,ℓ and SNTK,ℓ, respectively.
According to Lemma 2.4, Lemma 2.5 and Lemma 2.6, we
have

SCK,ℓ = αℓ,1S + αℓ,0, SNTK,ℓ = βℓ,1S + βℓ,0.

3.1. Isolated eigenvalues

This subsection provides a precise characterization of the
isolated eigenvalues of the kernel matrices. Based on the
findings from the previous section, it suffices to focus on the
isolated eigenvalues of K̃CK,ℓ and K̃NTK,ℓ. To illustrate
this, we visualize the spectra of K̃CK,ℓ andKCK,ℓ in Figure
2, for the case where Ca = (1 + 8(a− 1)/

√
p)Ip, with all

other settings kept consistent with those in Figure 1.

We now present the results for the eigenvalues of the CK
and NTK that detach from the bulk of their spectrum, fo-
cusing on the non-trivial case where αℓ,1 (βℓ,1) is bounded
away from zero. The following theorem establishes the
asymptotic behavior of the isolated eigenvalues ofKCK,ℓ.
Theorem 3.1. (Isolated eigenvalues of the CK). Define the
function h1ℓ(z) = 1 +

αℓ,2

αℓ,1

1
p

∑K
a=1 cama(z)trC

2
a and the

set Hp
1,ℓ = {z ∈ C|h1ℓ(z) = 0}. Denote

S1,ℓ = S ∪Hp
1,ℓ ∪ {0},

and

H1(z) =

[
h1ℓ(z)IK +

αℓ,3

αℓ,1
h1ℓ(z)TΓ(z) +

αℓ,2

αℓ,1
ttTΓ(z)

]
,

where T is defined in (4) and

Γ(z) = diag{cama(z)}Ka=1.

Under Assumptions 2.1-2.3, ifH1(ρ) has a zero eigenvalue
with multiplicity kρ and dist(ρ,S1,ℓ) > C for some positive

constant C, thenKCK,ℓ has kρ eigenvalues

λCK
j ≥ · · · ≥ λCK

j+kρ−1

outside SCK,ℓ such that

max
0≤i≤kρ−1

|λCK
j+i − (αℓ,1ρ+ αℓ,0)| → 0 a.s. (16)

Moreover, if there exists a ρ+ ∈ Sc satisfying detH1(ρ+)
= 0 and ρ+ → ρ ∈ Hp

1,ℓ, where H1(z) is defined in (28),
then there are k+ρ eigenvalues ofKCK,ℓ,

λCK
j ≥ · · · ≥ λCK

j+k+
ρ −1

outside SCK,ℓ such that

max
0≤i≤k+

ρ −1
|λCK

j+i − (αℓ,1ρ+ αℓ,0)| → 0 a.s., (17)

where k+ρ is the multiplicity of zero as an eigenvalue of
H1(ρ+).

Lemma 2.5 shows that the asymptotic properties of the
eigenvalues of the CK matrices also hold for the NTK, up
to a change of the associated coefficients αℓ,i to βℓ,i for
i = 1, 2, 3, 4. Therefore, we can immediately obtain the
following theorem, which describes the behaviors of the
isolated eigenvalues of the NTK.
Theorem 3.2. (Isolated eigenvalues of the NTK). De-
fine h2ℓ(z) := 1 +

βℓ,3

βℓ,1

1
p

∑K
a=1 cama(z)trC

2
a and the set

Hp
2,ℓ := {z ∈ C| h2ℓ(z) = 0}. Denote S2,ℓ = S ∪ Hp

2,ℓ ∪
{0} and

H2(z) :=

[
h2ℓIK +

βℓ,3
βℓ,1

h2ℓ(z)TΓ(z) +
βℓ,2
βℓ,1

ttTΓ(z)

]
.

Suppose Assumptions 2.1-2.3 hold, for ρ being a solution to
detH2(ρ) = 0 with mulitiplicity kρ and dist(ρ,S2,ℓ) > C
for some positive constant C, we conclude that there exists
kρ eigenvalues ofKNTK,ℓ,

λNTK
j ≥ · · · ≥ λNTK

j+kρ−1

outside SNTK,ℓ such that

max
0≤i≤kρ−1

|λNTK
j+i − (βℓ,1ρ+ βℓ,0)| → 0 a.s.,

where the scalars βℓ,0 and βℓ,1 are defined in (9) and kρ
is the multiplicity of zero as an eigenvalue of H2(ρ). We
denoteH2(z) by replacing the α’s inH1(z) with β’s. For
ρ+ ∈ Sc being a solution to detH2(z) = 0 and ρ+ → ρ ∈
Hp

2,ℓ, there are k+ρ eigenvalues ofKNTK,ℓ,

λNTK
j ≥ · · · ≥ λNTK

j+k+
ρ −1

such that

max
0≤i≤k+

ρ −1
|λNTK

j+i − (βℓ,1ρ+ βℓ,0)| → 0 a.s.,

where k+ρ is the multiplicity of zero as an eigenvalue of
H2(ρ+).
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(a) Eigenvector associated with the isolated eigenvalue of
K̃CK,3.

(b) Eigenvector associated with the isolated eigenvalue of
KCK,3.

(c) Eigenvector associated with the first eigenvalue of
XTX .

Figure 3. Visualization of the eigenvectors corresponding to the
first eigenvalues of matrices K̃CK,ℓ, KCK,ℓ and XTX under the
setting of Figure 2. In (a), ω1 = [−0.643, 0.005, 0.693] while in
(c), ω1 = [−0.008, 0.036, 0.008].

Theorem 3.1 and Theorem 3.2 establish the conditions for
the occurrence of isolated eigenvalues and provide their
asymptotic positions.

3.2. Behaviors of the eigenvectors

The preceding subsection studied the eigenvalues of the
kernel matrices. We now turn our attention to the asymptotic
properties of the eigenvectors associated with the isolated
eigenvalues. Specifically, we provide a detailed analysis
of the CK matrices, as the NTK matrices exhibit a similar
pattern.

We begin with a toy empirical example. Under the same
setting as Figure 2, Figures 3(a)-(b) display the eigenvec-
tors associated with the isolated eigenvalues of K̃CK,3 and
KCK,3, respectively. Figure 3(c) shows the eigenvector
corresponding to the leading eigenvalue ofXTX .

From these figures, we can reasonably infer that the eigen-
vectors corresponding to the isolated eigenvalues (Figures
3(a)-(b)) are more informative, as they likely capture rele-
vant information for clustering. In contrast, the eigenvector
depicted in Figure 3 (c) can be reasonably regarded as pure

noise. Inspired by these observations, an interesting ques-
tion arises:

How can we understand the structure of the eigenvector
(or eigenspace) associated with an isolated eigenvalue in

a high-dimensional regime?

We use Span(J) to denote the space spanned by ja, a =
1, ...,K. Let P J be the projection onto Span(J). The
eigenvector associated with the ith isolated eigenvalue λCK

i

is denoted by ûi. This eigenvector can be decomposed into
a signal part and a random part:

ûi = P J ûi + (In − P J )ûi =

K∑
a=1

(
ωia

ja√
na

+ σava

)
,

(18)
where va is a random unit vector orthogonal to the ja, and
its entries are identically distributed. The scalar ωia =
ûT
i

ja√
na

measures the cosine between ûi and ja√
na

, and σa
quantifies the extent of fluctuations in ωia

ja√
na

. We denote
ωi = {ωia}Ka=1.

If the isolated eigenvalue λCK
i is simple, it follows from

ωia = ûT
i

ja√
na

that

1

na
[JTûiû

T
i J ]aa =

jTa ûiû
T
i ja

na
= ω2

ia. (19)

Thus, if ρ identified in Theorem 3.1 satisfies that H1(ρ)
has a simple (multiplicity one) zero eigenvalue, we can
explicitly evaluate ωa. Moreover, we say an eigenvector ûi

is non-informative for clustering (i.e., it does not contain any
information about J ) if maxa û

T
i

ja√
na

= oa.s.(1), meaning
that ûi becomes asymptotically orthogonal to Span(J). It
is important to note that the eigenvector is not unique, and
essentially, our analysis concerns the asymptotic behavior
of the matrix 1

na
JTûiû

T
i J , as described in (19).

Let λj , ..., λj+kρ−1 be a group of isolated eigenvalues of
KCK that converge to the same limit αℓ,1ρ + αℓ,0, where
ρ is identified in Theorem 3.1. As per Lemma 2.4, the
eigenspace

Span{ûi ∈ Sn−1|KCK,ℓûi = λj+i−1ûi} (20)

is asymptotically equivalent to the eigenspace associated
with eigenvalues of XTX + α−1

ℓ,1V AℓV
T that have a de-

terministic limit ρ. This relationship is also illustrated in
Figure 3. In Definition 3.3 below, we present a precise math-
ematical criterion for determining when an eigenspace is
considered informative.
Definition 3.3. (Informative eigenspace). We say the
eigenspace defined in (20) is informative if there is a non
zero matrix A(J) depending on J such that

∥1
p
JTΠ̂ρJ −A(J)∥ = oa.s.(1).

6
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Otherwise if A(J) = 0, then the eigenspace is non-
informative.

Denote by Π̂ρ =
∑kρ

i=1 ûiû
T
i the projection onto the

eigenspace defined in (20). Then we can write 1
pj

T
aΠ̂ρjb as

− 1

2πi

∮
∂γρ

1

p
jTa (X

TX + α−1
ℓ,1V AℓV

T − zIn)
−1jbdz

+ oa.s.(1),
(21)

where γρ is an open disc such that ρ belongs to the interior of
γρ and ∂γρ is a positively oriented closed circle. Therefore,
it suffices to investigate the asymptotic properties of the
right hand side (RHS) of (21). We establish the following
Theorem 3.4, which provides the asymptotic behavior of
eigenspace Π̂ρ characterized by uTΠ̂ρv, where u and v
are non-random unit vectors.

Theorem 3.4. Suppose the assumptions in Lemma 2.4 hold.
Let λCK

j , ..., λCK
j+kρ−1 be a group of isolated eigenvalues of

KCK,ℓ converging to the same limit αℓ,1ρ + αℓ,0, where
ρ is defined in Theorem 3.1. For H1(ρ), we denote the
left and right eigenvectors corresponding to 0 as (U l,ρ)i
and (U r,ρ)i respectively, where i ranges from 1 to kρ. If
dist(ρ,S1,ℓ) is bounded away from 0, then for any non-
random unit vectors u,v ∈ Rn, we have

uTΠ̂ρv = −h1ℓ(ρ)uTQ1(ρ)JF (ρ)Γ−1(ρ)JTQ1(ρ)v

+ oa.s.(1),

where

F (ρ) =

kρ∑
i=1

(U r,ρ)i(U l,ρ)
T
i

(U l,ρ)Ti [∂zH1(z)]z=ρ(U r,ρ)i
.

By noticing that 1
pJ

TQ1(z)J = Γ(z), one may immedi-
ately derive the following corollary.

Corollary 3.5. Under the same conditions as those in The-
orem 3.4, we have

1

p
JTΠ̂ρJ = −h1ℓ(ρ)Γ(ρ)F (ρ) + oa.s.(1). (22)

This result identifies the conditions under which the
eigenspace corresponding to the isolated eigenvalues of the
CK matrix are informative. Discussions on non-informative
eigenspace can be found in Remark 3.6 below.
Remark 3.6. For ρ+ satisfying detH1(ρ+) = 0 and ρ+ →
ρ ∈ Hp

1,ℓ, it follows that for any non-random unit vectors
u,v ∈ Rn,

uTΠ̂ρ+
v = oa.s.(1). (23)

When λj+i in Equation (20) has multiplicity one, ∥ωi∥
can be regarded as a measure of the alignment between

ûi and Span(J). Furthermore, if h1ℓ(ρ+) → 0, then ∥ωi∥
approaches 0 by letting u,v ∈ {j1/

√
p, ..., jK/

√
p}, indi-

cating that it can always be considered as a non-informative
eigenvector.

The theoretical results presented above remain valid for the
NTK, as summarized in Theorem 3.7 and Corollary 3.8.

Theorem 3.7. Suppose the assumptions in Lemma 2.5 hold.
Let λNTK

j , ..., λNTK
j+kρ−1 be a group of isolated eigenvalues

ofKNTK,ℓ that converge to the same limit βℓ,1ρ+βℓ,0, and
let Π̃ρ denote the projection onto the eigenspace spanned
by the eigenvectors associated with these eigenvalues. Here,
ρ is defined in Theorem 3.2. Suppose Assumptions 2.1-2.3
hold. ForH2(ρ), we denote the left and right eigenvectors
corresponding to 0 as (V l,z)i and (V r,z)i, respectively,
where i = 1, ..., kρ. If dist(ρ,S2,ℓ) is bounded away from
0, then we have

uTΠ̃ρv = −h2ℓ(ρ)uTQ1(ρ)JF̃ (ρ)Γ−1(ρ)JTQ1(ρ)v

+ oa.s.(1),

where

F̃ (z) =

kρ∑
i=1

(V r,ρ)i(V l,ρ)
T
i

(V l,ρ)Ti [∂zH2(z)]z=ρ(V r,ρ)i
.

Corollary 3.8. Under the same conditions as those in The-
orem 3.7, we have

1

p
JTΠ̃ρJ = −1

p
h2ℓ(ρ)Γ(ρ)F̃ + oa.s.(1).

Remark 3.9. For the NTK, analogous to Remark 3.6, if ρ+
satisfies detH2(ρ+) = 0 and ρ+ → ρ ∈ Hp

2,ℓ, then its
associated eigenspace is non-informative.
Remark 3.10. We note that Wang et al. (2024) investi-
gated how spiked eigenstructures in the input data propagate
through the hidden layers of a neural network by analyz-
ing the spectrum of the CK, under the assumptions that the
input data contains spiked eigenvalues and that the same
activation function is applied at every layer. In contrast,
our work examines both the CK and NTK. Our analysis
demonstrates that isolated eigenvalues in the kernel matri-
ces may arise from the underlying group structure of the
input features, with the corresponding eigenvectors carrying
useful information, even in the absence of a spiked struc-
ture in the original data as required in Wang et al. (2024).
Additionally, our framework allows for different activation
functions across layers and investigates their effects on the
spectral properties of the kernel matrices.

3.3. Additional simulations and real data analysis

In this subsection, we present additional simulations on
both synthetic GMM and real data to further support our
theoretical findings.
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(a) Poly (b) ReLU

(c) Eigenvector associated with the largest eigen-
value of K̃CK,3 when all activation functions of
are Poly.

(d) Eigenvector associated with the isolated eigen-
value of K̃CK,3 when all activation functions are
ReLU.

Figure 4. Eigenvalue histograms ((a)-(b)) and eigenvectors ((c)-
(d)) corresponding to the isolated (largest) eigenvalues of K̃CK,3

obtained with Poly and ReLU activation functions. Parameters
settings: n = 2000, p = 3600, c1 = c3 = 0.2, c2 = c4 = 0.3
and Ca = (1 + 8(a − 1)/

√
p)Ip for a = 1, 2, 3, 4. The width

d1, d2, d3 are identical to those in Figure 1.

Figures 4(a)-(b) visualize the eigenvalues of K̃CK,3 under
different activation function settings. In Figure 4(a), all acti-
vation functions are set to Poly, consistent with those used
in Figure 2, whereas in Figure 4(b), all activation functions
are set to ReLU. The ReLU activation functions have been
normalized and centered to satisfy the conditions specified
in Assumption 2.3. Unlike the results shown in Figure 2(a),
no isolated eigenvalues are observed when all activation
functions are Poly. In contrast, when all activation func-
tions are ReLU, an isolated eigenvalue emerges. Figures
4(c)-(d) show the eigenvectors corresponding to the largest
eigenvalue in Figure 4(a) and the isolated eigenvalue in
Figure 4(b), respectively. The former appears to be non-
informative, whereas the latter is notably informative.

These observations underscore the critical role of activation
function selection in determining the spectral properties of
the kernel matrix.

Next, we turn to real data analysis. The input data consists

of 1600 randomly selected images from each of the digit
classes 1 and 7 in the MNIST dataset, with the class-specific
mean subtracted from each group. Figure 5(a) displays
the spectrum of the CK, obtained using a three-layer neu-
ral network. The eigenvectors associated with the isolated
eigenvalues are shown in Figure 5(b). The spectrum reveals
four isolated eigenvalues, with the eigenvector correspond-
ing to the largest eigenvalue being informative, while the
other three appear non-informative. These observations are
in line with our theoretical findings.

(a) Spectrum of K̃CK,3 estimated from 500 realizations

(b) Eigenvectors associated with the isolated eigenvalues.

Figure 5. Eigenvalue histograms (a) and eigenvectors (b) corre-
sponding to the isolated eigenvalue of K̃CK,3. Activations=[Sin,
ReLU/10, Sin]. The weights W 1 ∈ Rd1×p,W 2 ∈
Rd2×d1 ,W 3 ∈ Rd3×d2 consist of i.i.d. standard normal entries,
where d1 = 2000, d2 = d3 = 1000.

4. Theoretical insights for machine learning
applications

It is known that the NTK theory leads to concrete conver-
gence and generalization results (Bai & Lee, 2019) of neural
networks. Let y be the true label vector of the training data
and ŷ(t) be the prediction at time t. In an ultra-wide neural
network with training loss 1

2∥y− ŷ(t)∥
2, the time evolution

of the residual y − ŷ(t) during early training is approx-
imately described by the following ordinary differential
equation (Jacot et al., 2018; Du et al., 2018; 2019):

d

dt
ŷ(t) =KNTK(y − ŷ(t)). (24)

8
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Based on our theoretical results from Theorem 3.7–Remark
3.9, the first-order limits of entries in the isolated eigenvec-
tors of NTK may or may not contain group features (i.e.
informative or non-informative). When the eigenspace as-
sociated with the largest isolated eigenvalue contains group
features, DNNs tend to prioritize learning from this sub-
space. Conversely, when the eigenspace lacks group fea-
tures, DNNs instead prioritize learning irrelevant informa-
tion, diverting attention away from effective group features.
Moreover, Theorem 3.4–Remark 3.6 indicate similar phe-
nomenon of the eigenspace during the DNN’s initialization
step.

5. Conclusion
This paper investigates the spectral properties of the conju-
gate kernel and neural tangent kernel, revealing the evolu-
tion of inherent group features through hidden layers. From
Theorem 3.1 and Theorem 3.2, it can be seen that the oc-
currence of the isolated eigenvalues depends on two key
factors: (1) differences in the covariance matrices between
different classes and (2) the choice of activation functions.
The former shapes the vector t and the matrix T , while
the latter determines the coefficients α’s (β’s). When iso-
lated eigenvalues are present, these factors also determine
the asymptotic behaviors of the corresponding eigenvec-
tors. This conclusion is further supported by comparing the
simulation results presented in Figures 1-4.

Finally, we discuss several potential directions for future
work. Since our current results rely on the assumption of
GMM-distributed inputs, it is important to explore whether
similar phenomena occur for more general distributions,
particularly those with heavy tails. Additionally, extending
our analysis to other neural network architectures represents
another promising topic for future research.
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A. Appendix
In the later proof, the following lemmas are needed.

Lemma A.1. (Couillet & Benaych-Georges, 2016) Suppose Assumption 2.1 holds and let z ∈ C be a point that is at least a
distance c > 0 away from S. We have

EψTG(z)ψ =
1

p

K∑
a=1

cama(z)trC
2
a +O

(
1

p

)
, E|ψTG(z)ψ − EψTG(z)ψ|m = O(p−

m
2 ).

Lemma A.2. Under Assumption 2.1, for any deterministic u = {ui}ni=1 with finite Euclidean norm, we have

uTG(z)ψ → 0 a.s. for z such that dist(S ∪ {0}, z) > c,

where c is a positive constant.

We postpone the proof of Lemma A.2 to the end of this section.

A.1. Proof of Theorem 3.1 and Theorem 3.2

Noting that the asymptotic spectral equivalents for the CK and NTK are identical up to a change of the associated coefficients
α’s to β’s, we only provide the proof for Theorem 3.1 here and the proof for Theorem 3.2 is exactly the same.

We devote the majority of this section to finding the isolated eigenvalues ofXTX+α−1
ℓ,1V AℓV

T, which, up to multiplication

by αℓ,1 and an addition of αℓ,0, constitute the eigenvalues of K̃CK,ℓ. In order to find the isolated eigenvalues ofXTX +

α−1
ℓ,1V AℓV

T, one only need to solve the determinant equation

det(XTX + α−1
ℓ,1V AℓV

T − zIn) = 0 (25)

for z away from S1,ℓ. An application of Lemma A.8 yields that (25) shares the same solutions as

det(α−1
ℓ,1AℓV

TG(z)V + IK+1) = 0. (26)

According to Lemma 2.6 and the fact that

1

p
JTQ1(z)J =

c0
p
diag{nama(z)}Ka=1 = diag{cama(z)}Ka=1 = Γ(z),

we have
1

p
JTG(z)J =

1

p
JTQ1(z)J + oa.s.(1) = Γ(z) + oa.s.(1).

Lemma A.1 gives

ψTG(z)ψ =
1

p

K∑
a=1

cama(z)trC
2
a + oa.s.(1).

From Lemma A.2, it can be seen that the cross term 1√
pJ

TG(z)ψ vanishes as n→ ∞. Therefore, we can write

V TG(z)V =

[
1
pJ

TG(z)J 1√
pJ

TG(z)ψ
1√
pψ

TG(z)J ψTG(z)ψ

]
=

[
Γ(z) 0

0 1
p

∑K
a=1 cama(z)trC

2
a

]
+ oa.s.(1)

as well as
IK+1 + α−1

ℓ,1AℓV
TG(z)V =H1(z) + oa.s.(1), (27)

where

H1(z) =

[
H11 H12

H21 H22

]
:=

[
IK + α−1

ℓ,1 [αℓ,2tt
T + αℓ,3T ]Γ(z) [h1ℓ(z)− 1]t

α−1
ℓ,1αℓ,2t

TΓ(z) h1ℓ(z)

]
. (28)
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Therefore, it suffices to find the solution of
detH1(z) = 0 (29)

on the real line by (27) and Lemma A.4.

We first consider the case where h1ℓ(z) is bounded away from 0. Using the Schur complement formula, we have

detH1 =H22det
(
H11 −H−1

22H12H21

)
=H1−K

22 det(H11H22 −H12H21) =H
1−K
22 detH1.

(30)

Therefore, if ρ satisfies that dist(ρ,S1,ℓ) > C for some constant C and makesH1(ρ) a singular matrix, with the multiplicity
of the eigenvalue 0 denoted by kρ, then according to (5), there exists at least one eigenvalue ofXTX + α−1

ℓ,1V AℓV
T that

converges to ρ almost surely.

If h1ℓ(z) → 0, studying (30) is not suitable becauseH1−K
22 = h1ℓ(z)

1−K tends to infinity. We instead consider the matrix
H1(z) directly. If (29) has a solution ρ+ such that ρ+ → ρ ∈ Hp

1,ℓ, then ρ is a deterministic limit of certain eigenvalues of

K̃CK,ℓ.

Next, we investigate the number of eigenvalues of KCK,ℓ that converge to the limits identified above. By Lemma 2.6,
we see that the eigenvalues of XTX asymptotically do not escape S ∪ {0}. Therefore, one may find a compact interval
I = [a1, b1] ⊂ (a, b) such that, for large enough n,XTX has no eigenvalue in I with probability one and

{ρ | detH1(ρ) = 0} ∩ {a1, b1} = ∅. (31)

We use D◦
I to denote the open disc centered at (a1 + b1)/2 and of diameter (b1 − a1). Let

L1 := #{zeros of det(XTX + α−1
ℓ,1V AℓV

T − zIn) in D◦
I}, L2 := #{ρ | ρ ∈ D◦

I and detH1(ρ) = 0}.

Note that the functions det(XTX + α−1
ℓ,1V AℓV

T − zIn), detG(z) and detH1(z) are analytic on D◦
I and non-vanishing

on C\R. By Lemma A.5 and the argument principle, we obtain

L1 =
1

2πi

∮
∂D◦

I

∂zdet(X
TX + α−1

ℓ,1V AℓV
T − zIn)

det(XTX + α−1
ℓ,1V AℓV

T − zIn)

=
1

2πi

∮
∂D◦

I

∂zdet(In + α−1
ℓ,1V AℓV

TG(z))

det(In + α−1
ℓ,1V AℓV

TG(z))
+

1

2πi

∮
∂D◦

I

∂zdetG(z)

detG(z)

=
1

2πi

∮
∂D◦

I

∂zdet(IK+1 + α−1
ℓ,1AℓV

TG(z)V )

det(IK+1 + α−1
ℓ,1AℓV

TG(z)V )
→ 1

2πi

∮
∂Do

I

∂zdetH1(z)

detH1(z)
= L2

almost surely, where ∂D◦
I is seen as a positively oriented contour. Since both L1 and L2 are integers, the multiplicity of an

isolated eigenvalue ofXTX + α−1
ℓ,1V AℓV

T, which has a deterministic limit ρ, is the same as that of 0 as an eigenvalue
ofH1(ρ). It is straightforward to see that if ρ+ defined in Theorem 3.1 satisfies h1ℓ(ρ+) → 0, then the multiplicity of ρ+
denoted by k+ρ is equal to the multiplicity of 0 as an eigenvalue ofH1(ρ+). In the case that h1ℓ(ρ) is away from 0, we have
thatH1(ρ) has a 0 eigenvalue of multiplicity kρ by (30). This concludes the proof of Theorem 3.1.

A.2. Proof of Theorem 3.4 and Theorem 3.7

For any closed interval I ⊂ R defined above (31), we have

− 1

2πi

∮
∂D◦

I

uTG(z)vdz = 0

almost surely. Lemma A.2 implies that, for any deterministic u and v with finite Euclidean norm,

uTG(z)V = uTQ1(z)V + oa.s.(1), vTG(z)V = vTQ1(z)V + oa.s.(1).

13
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Then by using Woodbury’s identity, we obtain

uTΠ̂Iv = − 1

2πi

∮
∂Do

I

uT(XTX + α−1
ℓ,1V AℓV

T − zIn)
−1vdz

= − 1

2πi

∮
∂Do

I

uTG(z)vdz

+
1

2πi

∮
∂Do

I

α−1
ℓ,1u

TG(z)V (Ik+1 + α−1
ℓ,1AℓV

TG(z)V )−1AℓV
TG(z)vdz

=
1

2πi

∮
∂Do

I

α−1
ℓ,1u

TQ1(z)V H
−1
1 (z)AℓV

TQ1(z)vdz + oa.s.(1),

(32)

where Π̂I is the projection onto the eigenspace spanned by the eigenvectors corresponding to the eigenvalues ofKCK,ℓ that
lie inside I. Thus what remains to find the limit of (32) is to obtain the deterministic equivalent ofH−1

1 (z)Aℓ. Since the
zeros of hℓ(z) are away from D̄o

I , we obtain

H−1
1 (z) =

[
H22H

−1
1 (z) −H−1

1 (z)H12

−H12H
−1
1 H−1

22 +H−1
22H21H

−1
1 (z)H12

]
.

All notations presented here are defined in (28). Therefore, we can write

H−1
1 (z)Aℓ =

[
[H−1

1 (z)Aℓ]11 [H−1
1 (z)Aℓ]12

[H−1
1 (z)Aℓ]21 [H−1

1 (z)Aℓ]22

]
,

where
[H−1

1 (z)Aℓ]11 = αℓ,3h
1
ℓ(z)H

−1
1 (z)T + αℓ,2H

−1
1 (z)ttT,

[H−1
1 (z)Aℓ]12 = αℓ,2H

−1
1 (z)t,

[H−1
1 (z)Aℓ]21 = −αℓ,2αℓ,3

αℓ,1
tTΓ(z)H−1

1 (z)T +
αℓ,2t

T

h1ℓ(z)
+

1

h1ℓ(z)

α2
ℓ,2

αℓ,1
tTΓ(z)H−1

1 (z)ttT,

[H−1
1 (z)Aℓ]22 =

αℓ,2

h1ℓ(z)
− 1

h1ℓ(z)

α2
ℓ,2

αℓ,1
tTΓ(z)H−1

1 (z)t.

Observing that uTG(z)V = 1√
p [u

TQ1(z)J 0] + oa.s.(1) (vTG(z)V = 1√
p [v

TQ1(z)J 0] + oa.s.(1) ), it becomes

evident that only [H−1
1 (z)Aℓ]11 is needed. Then we deduce that

α−1
ℓ,1u

TQ(z)V H−1
1 (z)AℓV

TQ(z)v

=
1

p
α−1
ℓ,1u

TQ1(z)J [αℓ,3h
1
ℓ(z)H

−1
1 (z)T + αℓ,2H

−1
1 (z)ttT]JQ1(z)v + oa.s.(1).

We denote the spectral decomposition ofH1(z) as

H1(z) = U r,zΛzU
T
l,z.

For ρ ∈ I such thatH1(ρ) is singular and kρ denotes the multiplicity of 0 as an eigenvalue ofH1(ρ), we denote the left
and right eigenvectors corresponding to 0 as (U l,ρ)i and (U r,ρ)i respectively, where i ranges from 1 to kρ. For a matrix
M(z) = {Mij(z)}Ki,j=1, denote Res(M) = {Res(Mij(z))}Ki,j=1. Then we have

lim
z→ρ

(z − ρ)H−1
1 (z) = lim

z→ρ
(z − ρ)U r,zΛ

−1
z UT

l,z

= lim
z→ρ

(z − ρ)

kρ∑
i=1

(U r,z)i(U l,z)
T
i

(U l,z)TiH1(z)(U r,z)i

= lim
z→ρ

kρ∑
i=1

(U r,z)i(U l,z)
T
i

∂z(U l,z)TiH1(z)(U r,z)i
,

14
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where the last equation is obtained by applying the L’Hôpital’s rule. Since

(U l,ρ)
T
iH1(ρ) = 0 and H1(ρ)(U r,ρ)i = 0,

we obtain

[∂z(U l,z)
T
iH1(z)(U r,z)i]z=ρ

= [∂z(U l,z)
T
i ]z=ρH1(z)(U r,z)i + (U l,z)

T
i [∂zH1(z)]z=ρ(U r,z)i + (U l,z)

T
iH1(z)[∂z((U r,z)i)]z=ρ

= (U l,z)
T
i [∂zH1(z)]z=ρ(U r,z)i.

It is easy to see that

1

p
uTQ1(z)J

{
H−1

1 (z)

[
αℓ,3

αℓ,1
h1ℓ(z)T +

αℓ,2

αℓ,1
ttT
]}
JTQ1(z)v

=
1

p
uTQ1(z)J

{
H−1

1 (z)

[
αℓ,3

αℓ,1
h1ℓ(z)T +

αℓ,2

αℓ,1
ttT
]
Γ(z)Γ−1(z)

}
JTQ1(z)v

=
1

p
uTQ1(z)J

{
H−1

1 (z)[H1(z)− h1ℓ(z)]Γ
−1(z)

}
JTQ1(z)v

=
1

p
uTQ1(z)J

[
Γ−1(z)− h1ℓ(z)H

−1
1 (z)Γ−1(z)

]
JTQ1(z)v.

Now one can conclude by (32) that

uTΠ̂Iv = −1

p

∑
z∈I

Res
(
h1ℓ(z)u

TQ1(z)JH
−1
1 (z)JTQ1(z)v

)
+ oa.s.(1)

= −1

p
h1ℓ(ρ)u

TQ1(ρ)J

kρ∑
i=1

(U r,ρ)i(U l,ρ)
T
i

(U l,ρ)Ti [∂zH1(z)]z=ρ(U r,ρ)i
JTQ1(ρ)v + oa.s.(1).

Thus the proof of Theorem 3.4 is completed. Theorem 3.7 can be proved by the same lines as that of Theorem 3.4.

A.3. Proof of Equation (23)

Now, we consider the case that ρ+ → ρ ∈ Hp
1,ℓ, with ρ being at a distance from Sℓ and detH1(ρ+) = 0. Suppose ∥t∥ is

bounded away from 0, we note that limz→ρH1(z) =
αℓ,2

αℓ,1
ttTΓ(z) and the RHS is a rank-1 matrix. Hence there are K − 1

eigenvalues ofH1(ρ+) converging to 0 almost surely. It is natural to see that the derivative ∂zH1(z)|z=ρ+
is well defined

and not close to 0. Based on the above facts and applying the L’Hôpital’s rule again, we have

lim
z→ρ+

(z − ρ+)h
1
ℓ(z)H

−1
1 (z) = lim

z→ρ+

(z − ρ+)h
1
ℓ(z)U r,zΛ

−1
z UT

l,z

= lim
z→ρ+

h1ℓ(z) lim
z→ρ+

K−1∑
i=1

(z − ρ+)
(U r,ρ)i(U l,ρ)

T
i

(U l,ρ+
)TiH1(z)(U r,ρ+

)i

= lim
z→ρ+

h1ℓ(z)

K−1∑
i=1

(U r,ρ+
)i(U l,ρ+

)Ti
(U l,ρ+)

T
i [∂zH1(z)]z=ρ+(U r,ρ+)i

= 0.

If ∥t∥ → 0, then ρ+ becomes a removable singularity for h1ℓ(z)H
−1
1 (z), thereby ensuring that the residue remains zero.

The conclusion can be obtained by repeating the proof of Theorem 3.4.

A.4. Proof of Lemma A.2

We divide the proof into three steps:

Step 1: Fix η > 0. For any z ∈ C with ℑz ≥ η, the expectation EuTG(z)ψ = o(1).

15
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Step 2: Convergence of uTG(z)ψ to EuTG(z)ψ almost surely.

Step 3: For any z such that dist(S ∪ {0}, z) > c for some constant c, we also have uTG(z)ψ → 0 a.s.

We assume ℑz ≥ η > 0 if ℜz = E > 0. For the case ℑz ≤ −η < 0, one only needs to replace η by |η| in the following
proof. Define

X̂j =X − xje
T
j , Ĝj(z) = (X̂

T

j X̂j − zIn)
−1,

where ej ∈ Rn denotes the vector with the kth element being 1 and otherwise being 0. Note that ψ =
∑n

j=1 ψjej . We can
write

uTG(z)ψ =

n∑
j=1

uTG(z)ψjej .

Decompose the term EuTG(z)ψjej as

uTEG(z)ψjej = u
TE[G(z)− Ĝj(z)]ψjej + u

TEĜj(z)ψjej .

Since Ĝj(z) is independent of ψj , we have EĜj(z)ψjej = EĜj(z)Eψjej = 0. Let

Xj = [x1, ...,xj−1,xj+1, ...,xn], Gj(z) = (XT
jXj − zIn−1)

−1,

βj = (xT
j xj − z − xT

j X̂jGj(z)X
T
j xj)

−1, bj =

(
trCg(j)

p
− z −

EtrCg(j)XjGj(z)X
T
j

p

)−1

,

where g(j) ∈ {1, ...,K} denotes the class to which xj belongs. All of these quantities are bounded in absolute value by
η−1. Then from Lemma A.6, we get for m ≥ 2,

E|βj − bj |m ≤ 1

η2m
E

∣∣∣∣∣xT
j xj − xT

jXjGj(z)X
T
j xj −

(
trCg(j)

p
−

EtrCg(j)XjGj(z)X
T
j

p

)∣∣∣∣∣
m

= O
(
(pη6)−

m
2

)
,

(33)

and
Eψm

j =
1

pm
E(xT

j xj − trCg(j))
m = O

(
p−

m
2

)
, m ≥ 2. (34)

By the Schur complement formula, we obtain

ψju
T
[
G(z)− Ĝj(z)

]
ej = −ψj

[
(βj − z−1)uj − βju

T
jGj(z)X

T
j xj

]
,

where uj = [u1, ..., uj−1, uj+1, ..., un]. It follows from (33) and (34) that

|Eψjβjuj | =|Eψj(βj − bj)uj | ≤ |uj |E|ψj(βj − bj)|

≤|uj |
√
E|ψj |2E|βj − bj |2 = |uj |O

(
1

η3p

)
.

Thus we have
n∑

j=1

Eψjβjuj ≤
n∑

j=1

|Eψjβjuj | ≤
c

η3p

n∑
j=1

|uj | = O

(
1

η3p1/2

)
→ 0. (35)

We write xj = 1√
pC

1/2
g(j)zj , where zj = {zji }

p
i=1 is a random vector with i.i.d. standard Gaussian entries. Denote

yT
j = uT

jGj(z)X
T
jC

1/2
g(j) = {yji }

p
i=1. It is easy to see that ∥yj∥ ≤ ∥uj∥∥Gj(z)Xj∥∥C1/2

g(j)∥ = O(η−1). For m ≥ 1, by
Lemma A.7, it is true that

E|uT
jGjX

T
j xj |2m = E

∣∣∣∣ 1
√
p
yT
j zj

∣∣∣∣2m =
1

pm
EE
[
|yT

j zj |2m
∣∣yj

]
=

1

pm
EE

[∣∣∣∣ p∑
i=1

yji z
j
i

∣∣∣∣2myj

]

≤ E
{
c

( p∑
i=1

|yji |2

p

)m

+ cE
[ p∑

i=1

∣∣∣∣yji zji√p
∣∣∣∣2m∣∣∣∣yj

]}

≤ C

η2mpm
+ CE

∑p
i=1 |y

j
i |2m

pm
= O

(
1

η2mpm

)
,

(36)
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where we use the inequality
p∑

i=1

|yji |
2m ≤

( p∑
i=1

|yji |
2

)m

= ∥yj∥2m = O(η−2m).

Write Eψju
T
j βjGj(z)X

T
j xj = Eψju

T
j (βj − bj)Gj(z)X

T
j xj . It can be seen from (33), (34) and (36) that

|Eψju
T
j βjGj(z)X

T
j xj | ≤ E|ψju

T
j (βj − bj)Gj(z)X

T
j xj | ≤ E|ψj ||βj − bj ||uT

jGj(z)X
T
j xj |

≤ (E|ψj |4E|βj − bj |4)
1
4

√
E|yT

j xj |2

≤ c

η4p

√
E|yTzj |2 = O

(
1

η5p3/2

)
.

This, in conjunction with (35), establishes Step 1.

According to the Borel-Cantelli lemma, it suffices to prove that for any ε > 0, the probability P(|uTG(z)ψ−EuTG(z)ψ| >
ε) = O(p−1−c) to establish Step 2, where c is a positive constant. Let E0 denote expectation and Ej denote conditional
expectation with respect to the σ-field generated by x1, ...,xj . Using the Schur complement formula again, we write

uTG(z)ψ − EuTG(z)ψ =

n∑
j=1

(Ej − Ej−1)u
TG(z)ψ

=

n∑
j=1

(Ej − Ej−1)[u
TG(z)ψ − uTĜj(z)(ψ − ejψj)]

=

n∑
j=1

(Ej − Ej−1)[−ujβjψj + ujβjx
T
jXjGjψj + ψjβju

T
jGjX

T
j xj + βju

T
jGjX

T
j xjx

T
jXjGjψj ]

=

n∑
j=1

(Ej − Ej−1)[γj1 + γj2 + γj3 + γj4],

where ψj = [ψ1, ..., ψj−1, ψj+1, ..., ψn]. According to Lemma A.7, we have

E
∣∣∣∣ n∑
j=1

(Ej − Ej−1)γj1

∣∣∣∣4 ≤ cE
( n∑

j=1

E|γj1|2
)2

+ c

n∑
j=1

E|γj1|4

≤ c

η4

( n∑
j=1

u2jEψ2
j

)2

+
c

η4

n∑
j=1

u4jEψ4
j

= O

(
1

η4p2

)
.

Similarly, we obtain

E
∣∣∣∣ n∑
j=1

(Ej − Ej−1)γj2

∣∣∣∣4 ≤ c

η4

( n∑
j=1

u2jE|xT
jXjGjψj |2

)2

+
c

η4

n∑
j=1

u4jE|xT
jXjGjψj |4.

Denote rTj = ψT
jGj(z)X

T
j . It is apparent that

∥rj∥2 = rTj r̄j = ψ
T
jGj(z)X

T
jXjGj(z̄)ψj .

According to Lemma A.1 and the identity

Gj(z)X
T
jXjGj(z̄) = Gj(z̄) + zGj(z)Gj(z̄) = Gj(z̄) + z

Gj(z)−Gj(z̄)

z − z̄
,

17
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we get for m ≥ 1,

E∥rj∥2m ≤ cE
(
ψT

jGj(z)X
T
jXjGj(z̄)ψj − EψT

jGj(z)X
T
jXjGj(z̄)ψj

)m

+ c
(
EψT

jGj(z)X
T
jXjGj(z̄)ψj

)m
≤ CE

(∣∣ψT
jGj(z)ψj − EψT

jGj(z)ψj

∣∣m +
1

ηm
∣∣ψT

j [Gj(z)−Gj(z̄)]ψj − EψT
j [Gj(z)−Gj(z̄)]ψj

∣∣m)
+ C

∣∣∣∣EψT
j

Gj(z)−Gj(z̄)

z − z̄
ψj

∣∣∣∣m + C|EψT
jGj(z)ψj |m

= O(1),

where we use Lemma A.1 and the observations that

EψT
j

Gj(z)−Gj(z̄)

z − z̄
ψj =

∑K
a=1 ca[ma(z)−ma(z̄)]

p[z − z̄]
trC2

a + o(1),

c0
ma(z)−ma(z̄)

z − z̄
=

∫
1

|λ− z|2
dνa(λ) ≥

1

dist2(S, z)
.

Following a similar argument as in (36), we have for m ≥ 1,

E|xT
jXjGjψj |2m = E|rTj xj |2m = EE[|rTj xj |2m |Xj ] ≤ cE

∥rj∥m + ∥rj∥2m

pm
= O

(
1

pm

)
.

Therefore, we have
∑n

j=1(Ej − Ej−1)γj2 → 0 a.s. by showing that

E
∣∣∣∣ n∑
j=1

(Ej − Ej−1)γj2

∣∣∣∣4 ≤ c

η4

[( n∑
j=1

u2j
p

)2

+ c

n∑
j=1

u4j
p2

]
= O

(
1

η4p2

)
.

Similarly, for m ≥ 1, it can be obtained that

E|γj3|2m = E|ψjβju
T
jGjX

T
j xj |2m ≤ 1

η2m

√
Eψ4m

j E|yT
j xj |4m = O

(
1

η6mp2m

)
(37)

and

E|γj4|2m = E|βjuT
jGjX

T
j xjx

T
jXjGjψj |2m ≤ 1

η2m

√
E|yT

j xj |4m|rTj xj |4m = O

(
1

η10mp2m

)
. (38)

One can conclude by Lemma A.7 that∣∣∣∣ n∑
j=1

(Ej − Ej−1)γj3

∣∣∣∣4 ≤ c

( n∑
j=1

E|γj3|2
)2

+ c

n∑
j=1

E|γj3|4 = O

(
1

p2η12

)
and ∣∣∣∣ n∑

j=1

(Ej − Ej−1)γj4

∣∣∣∣4 ≤ c

( n∑
j=1

E|γj4|2
)2

+ c

n∑
j=1

E|γj4|4 = O

(
1

p2η20

)
.

Combining the results above, one can conclude that

P
(∣∣∣∣ n∑

j=1

(Ej − Ej−1)
[
γj1 + γj2 + γj3 + γj4

]∣∣∣∣ > ε

)
≤ ε−4E

∣∣∣∣ n∑
j=1

(Ej − Ej−1)
[
γj1 + γj2 + γj3 + γj4

]∣∣∣∣4

≤ Cε−4
4∑

k=1

E
∣∣∣∣ n∑
j=1

(Ej − Ej−1)γjk

∣∣∣∣4
= O

(
1

η20p2

)
.
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Hence, the proof of Step 2 is completed. Moreover, for any z with ℜz < 0, we can obtain the result by replacing η by |ℜz|
in the proof. Although we assume z is fixed, the same conclusion also holds for η = ηn converging to 0 sufficiently slowly
such as ηn = (log n)−1, when ℜz is bounded away from S ∪ {0}. We notice that uTG(z)ψ is an analytic function on any
open set O ⊂ C if dist(Spec(XTX), O) is away from 0. Recall that dist(Spec(XTX),S ∪ {0}) → 0 almost surely, for
z ∈ O with 0 ≤ |ℑz| ≤ ηn and dist(S ∪ {0},ℜz) > c for some positive constant c. It is clear that

|uTG(z)ψ| ≤ |uTG(z)ψ − uTG(z + iηn)ψ|+ |uTG(z + iηn)ψ| → 0 a.s.

Therefore, we conclude Step 3 and complete the proof of Lemma A.2.

A.5. Auxiliary lemmas

This section contains several established results from previous work which are needed in our proof.

Lemma A.3. (Theorem A.43 in Bai & Silverstein (2010)). LetA andB be two n× n Hermitian matrices, and let FA and
FB denote their respective empirical spectral distributions. Then

∥FA − FB∥ ≤ 1

n
rank(A−B).

Lemma A.4. (Theorem A.46 in Bai & Silverstein (2010)). LetA andB be two Hermitian matrices. Then

max
i

|λi(A)− λi(B)| ≤ ∥A−B∥.

Lemma A.5. Let f1, f2, ... be analytic on D, a connected open set of C, satisfying |fn(z)| ≤M for every n and z in D, and
fn(z) converges, as n→ ∞ for each z in a subset of D having a limit point in D. Then there exists a function f , analytic in
D for which fn(z) → f(z) and f ′n(z) → f ′(z) for all z ∈ D. Moreover, on any set bounded by a contour interior to D
the convergence is uniform and fn(z) is uniformly bounded by 2M/ϵ, where ϵ is the distance between the contour and the
boundary of D.

The proof of Lemma A.5 can be found in Bai & Silverstein (2004).

Lemma A.6. (Lemma 2.2 in Bai & Silverstein (2004)). For z = [z1, ..., zn]
T with i.i.d. standardized random entries, C is

an n× n matrix, we have, for any m ≥ 2,

E|zTCz − trC|m ≤ C[(E|z1|4trCC∗)
m
2 + E|z1|2mtr(CC∗)

m
2 ].

Lemma A.7. (Burkholder’s inequality). Let {xk} be a complex martingale difference sequence with respect to the increasing
σ-field {Fk}. Then for any m ≥ 2,

E
∣∣∣∑xk

∣∣∣m ≤ cmE
(∑

E(|xk|2|Fk)
)m

2

+ cm
∑

E|xk|m.

Lemma A.8. (Sylverster’s determinant identity). IfA andB are matrices of sizes m× n and n×m, then

det(Im +AB) = det(In +BA).
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