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ABSTRACT

Cis-regulatory elements (CREs), such as promoters and enhancers, are relatively
short DNA sequences that directly regulate the expression of specific genes. The
fitness of CREs, i.e., their functionality to enhance gene expression, highly de-
pend on its nucleotide sequence, especially the composition of some special motifs
known as transcription factor binding sites (TFBSs). Designing CREs to optimize
their fitness is crucial for therapeutic and bioengineering applications. Existing
CRE design methods often rely on simple strategies, such as iteratively introduc-
ing random mutations and selecting variants with high fitness from a large num-
ber of candidates through an oracle, i.e., a pre-trained gene expression predic-
tion model. Due to the vast search space and lack of prior biological knowledge
guidance, these methods are prone to getting trapped in local optima and tend to
produce CREs with low diversity. In this paper, we propose the first method that
leverages reinforcement learning (RL) to fine-tune a pre-trained autoregressive
(AR) generative model for designing high-fitness cell-type-specific CREs while
maintaining sequence diversity. We employ prior knowledge of CRE regulatory
mechanisms to guide the optimization by incorporating the role of TFBSs into the
RL process. In this way, our method encourages the removal of repressor motifs
and the addition of activator motifs. We evaluate our method on enhancer design
tasks for three distinct human cell types and promoter design tasks in two dif-
ferent yeast media conditions, demonstrating its effectiveness and robustness in
generating high-fitness CREs.

1 INTRODUCTION

Cis-regulatory elements (CREs), such as promoters and enhancers, are short functional DNA se-
quences that regulate gene expression in a cell-type-specific manner. Promoters determine when
and where a gene is activated, while enhancers boost gene expression levels. Over the past decade,
millions of putative CREs have been identified, but these naturally evolved sequences only represent
a small fraction of the possible genetic landscape and are not necessarily optimal for specific expres-
sion outcomes. It is crucial to design synthetic CREs with desired fitness (measured by their ability
to enhance gene expression) as they have broad applications in areas such as gene therapy (Boye
et al., 2013), synthetic biology (Shao et al., 2024), precision medicine (Collins & Varmus, 2015),
and agricultural biotechnology (Gao, 2018).

Previous attempts to explore alternative CREs have relied heavily on directed evolution, which in-
volves iterative cycles of mutation and selection in wet-lab settings (Wittkopp & Kalay, 2012; Heinz
et al., 2015). This approach is sub-optimal due to the vastness of the DNA sequence space and the
significant time and cost required for experimental validation. For example, a 200 base pair (bp)
DNA sequence can have up to 2.58× 10120 possible combinations (Gosai et al., 2024), far exceed-
ing the number of atoms in the observable universe. Thus, efficient computational algorithms are
needed to narrow down the design space and prioritize candidates for wet-lab testing.

Advances in high-throughput sequencing technologies, such as massively parallel reporter assays
(MPRAs) (de Boer et al., 2020; Vaishnav et al., 2022), have enabled the screening of large libraries
of random DNA sequences and the measurement of their activity in specific cell types. Recent stud-
ies have begun using fitness prediction models as oracles to guide CRE optimization, enabling the
exploration of sequences that outperform naturally occurring ones (Vaishnav et al., 2022; de Almeida
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Figure 1: (A) TFBS are commonly represented as frequency matrices, indicating the probability
of each nucleotide appearing at specific positions within the binding site. (B) GATA2 and HNF1B
specifically activate gene expression in blood cells and liver cells, respectively, while REST specifi-
cally represses gene expression in neural cells.

et al., 2024). These methods typically rely on straightforward optimization approaches, such as ge-
netic algorithms or greedy-based directed evolution, which involve two iterative steps: randomly
mutating sequences selected in the previous step to form candidates and selecting those with high
fitness through an oracle. The entire search space of all possible candidates is vast, but the explo-
ration in each step is performed by heuristic random mutations. Neither empirically learned policies
nor any prior biological knowledge are used to guide exploration. As a consequence, these meth-
ods are prone to getting trapped in local optima and the produced CREs tend to lack diversity and
interpretability.

Inspired by the success of using Reinforcement Learning (RL) for finetuning autoregressive (AR)
generative language models (Ouyang et al., 2022; Liu et al., 2024), we propose the first RL fine-
tuning for AR model to design cell-type-specific CREs. We pretrain state-of-the-art (SOTA) AR
DNA generative models HyenaDNA (Nguyen et al., 2024b; Lal et al., 2024) on CREs to capture
their authentic distribution, ensuring the generation of realistic and diverse CRE sequences. During
RL finetuning, we treat the current AR model as the policy network, and utilize the fitness predicted
by an oracle as the reward signal. This allows us to update the model parameters to generate CRE
sequences that not only maintain diversity but also exhibit high fitness.

Model yeast human
complex defined hepg2 k562 sknsh

Enformer
(Sequence Feature) 0.87 0.91 0.83 0.85 0.85

LightGBM
(TFBS Frequency Feature) 0.63 0.65 0.65 0.65 0.66

Table 1: Pearson correlation coefficient of the
Oracle on the test set. Enformer is a SOTA DNA
backbone model that uses DNA sequences as in-
put, while LightGBM is a simple tree model that
uses TFBS occurrence frequencies as input.

Additionally, we incorporate domain knowl-
edge of CREs into our RL process. The
regulatory syntax of CREs is largely dictated
by the transcription factors (TFs) that bind to
them (Gosai et al., 2024; de Almeida et al.,
2024; Lal et al., 2024; Zhang et al., 2023).
TFs are proteins that directly influence gene ex-
pression by binding to specific sequence motifs
within CREs, known as TF binding sites (TF-
BSs), and modulating transcriptional activity.
For instance, Fig. 1(A) shows the motif pattern
recognized by the GATA2 TF. Furthermore, the
effects of TFs can vary widely depending on the
cell type. As shown in Fig. 1 (B), GATA2 and HNF1B are TFs that specifically activate gene ex-
pression in blood cells and liver cells (Lal et al., 2024), respectively, while REST acts as a repressor
of gene expression in neural cells (Zullo et al., 2019), illustrating the cell-type-specific nature of TF
activity. More details about the datasets and model can be found in Appendix B and Appendix C.
The method for TFBS scanning can be found in Appendix E.

The effect of a TF can be broken down into its intrinsic role as an activator or repressor (referred
to as its ”vocabulary”) and its interactions with other TFs (such as composition and arrangement).
We found that simply using the frequency of TFBS occurrences within a sequence as features can
achieve reasonably good fitness prediction performance when trained with a decision tree model
LightGBM (Ke et al., 2017). As shown in Tab. 1, the current SOTA DNA model, Enformer, achieves
a Pearson correlation of 0.83 on the test set for predicting fitness in the HepG2 cell line using se-
quence data as input. In contrast, using only simple TFBS frequency features—without any explicit
sequence information—achieved a Pearson correlation of 0.65. This demonstrates that even without
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leveraging sequence details, TF frequency alone can capture a significant portion of the predic-
tive power. Furthermore, we use the trained LightGBM (Ke et al., 2017) model to infer whether
each TFBS feature promotes or represses fitness, which allows us to explicitly incorporate TFBS
domain knowledge into our RL process. We name our proposed method TACO: TFBS-Aware
Cis-Regulatory Element Optimization, which integrates RL finetuning of AR models with domain
knowledge of TFBSs to enhance CRE optimization.

Our main contributions are as follows: (1) We are the first to introduce the RL fine-tuning paradigm
to pretrained AR DNA models for CRE design, enabling the generated sequences to maintain high
diversity while exploring those with higher functional performance. (2) We incorporate key TFBS
information by inferring their regulatory roles and directly integrating their impact into the gen-
eration process, facilitating joint data-driven and knowledge-driven exploration guidance. (3) We
evaluate our approach on real-world datasets, including yeast promoter designs under two media
and human enhancer designs across three cell lines. Not only do we demonstrate the effective-
ness of TACO, but we also validate the impact of our core contributions through detailed ablation
experiments.”

2 RELATED WORK

Conditional DNA Generative Models. DDSM (Avdeyev et al., 2023) was the first to apply dif-
fusion models to DNA design. By leveraging classifier-free guidance Ho & Salimans (2022), the
model conditioned DNA sequences on promoter expression levels. Following this, several works
have employed diffusion models for CRE design Li et al. (2024b); DaSilva et al. (2024); Sarkar
et al. (2024). In addition to diffusion models, regLM (Lal et al., 2024) utilized prefix-tuning on
the AR DNA language model HyenaDNA (Nguyen et al., 2024b), incorporating tokens that encode
expression strength to fine-tune the model specifically for CRE design. However, these generative
methods are designed to fit existing data distributions, limiting their ability to design sequences that
have yet to be explored by humans.

DNA Sequence Optimization. DyNA PPO (Angermueller et al., 2019) was an early exploration
of applying modern RL to biological sequence design. By improving the sampling efficiency of
PPO (Schulman et al., 2017) and leveraging an AR policy, it provided a general framework for bio-
logical sequence design. DyNA PPO and its subsequent works (Jain et al., 2022; Zeng et al., 2024)
primarily focused on advancing general-purpose sequence design algorithms, with an emphasis on
optimizing short TFBS motifs (6-8 bp) in the context of DNA sequence design. .With the avail-
ability of larger CRE fitness datasets, Vaishnav et al. (2022) applied genetic algorithms to design
CREs. Recent works, such as Gosai et al. (2024), explored greedy approaches like AdaLead (Sinai
et al., 2020), simulated annealing (Van Laarhoven et al., 1987), and gradient-based SeqProp (Linder
& Seelig, 2021). Similarly, Taskiran et al. (2024) combined greedy strategies with directed evolu-
tion. However, these methods often start from random sequences, generating biologically irrelevant
sequences, or begin with observed high-fitness sequences, leading to local optima and limited diver-
sity. Our method builds on prior work by incorporating domain knowledge to better explore valid
and high-fitness regions in the DNA space. This includes starting from a CRE-pretrained generative
model and using biologically inspired TFBS soft rewards for CRE-specific design. Further, Reddy
et al. (2024) proposed directly optimizing CREs using gradient ascent (GAs) on a differentiable sur-
rogate trained on offline CRE datasets. They trained a reliable surrogate with regularization to ensure
the outputs of GAs are trustworthy and evaluated the sequences on an independently trained oracle.
Beyond the methodological contributions, Reddy et al. (2024) validated their approach through in
vitro experiments, demonstrating the potential of machine learning techniques to discover suitable
cell-type-specific CREs in real-world scenarios.”

3 METHOD

3.1 PROBLEM FORMULATION

We define a DNA sequence x = (x1, · · · , xL) as a string of nucleotides with length L, where
xi ∈ V is the nucleotide at the i-th position, and V is the vocabulary of 4 nucleotides (A, T, C, G).
In our CRE optimization task, we assume the availability of a large-scale dataset of CRE sequences
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Figure 2: The autoregressive generation of a DNA sequence. An AR model for sequence gen-
eration can be viewed as an RL policy, where the actions at represent the next nucleotides to be
appended to the sequence, and the state is the concatenation of all actions taken up to time t− 1. If
an action generates a TFBS that is known to be repressive, a negative reward is given. Conversely,
generating a TFBS with activating properties results in a positive reward. The final sequence is eval-
uated using an oracle to obtain a fitness reward. BOS stands for the beginning of the sequence, and
ATCG represents the nucleotide bases.

with fitness measurements D = {(x1, f(x1)), · · · , (xN , f(xN ))} to train an ideal in-silico oracle
qθ, where N is the number of sequences in the dataset and f(x) represents the fitness measurement
for sequence x. Here, we use the term fitness to denote the desired regulatory activity of a CRE
sequence. We follow the setting used in protein optimization (Kirjner et al., 2023; Lee et al., 2024)
by sampling a set of low-fitness sequences D∗ from D, which includes only sequences with fitness
values below a certain percentile of D∗.

3.2 RL-BASED FINETUNING FOR AUTOREGRESSIVE DNA MODELS

Pretraining AR Model. We pretrain an AR model starting from the released HyenaDNA
weights (Nguyen et al., 2024b) on the low-fitness dataset D∗. HyenaDNA achieves strong per-
formance on DNA-related tasks by maintaining both linear complexity and high accuracy (More
details in Appendix C). However, as HyenaDNA was originally trained on relatively long human
genomic sequences, there exists a length gap between these sequences and the relatively shorter
CRE sequences in our task. To address this gap, we continue training the HyenaDNA model on D∗,
fine-tuning it to better handle the specific sequence lengths in our dataset (See Appendix Tab. 8).

The pretrained AR model, denoted as πθ, is trained to predict the probability distribution of the next
nucleotide given the preceding sequence. This is achieved by minimizing the negative log-likelihood
loss:

min
θ

Ex∼D∗

[
L∑

t=1

− log πθ(at = At | At−1, · · · , A0)

]
, (1)

where at is the nucleotide at position t, and A0, · · · , At−1 represent the preceding sequence.

where At represents the nucleotide at position t, which corresponds to the action at taken by the
model. This alignment ensures that the notation for nucleotides is consistent with the actions in the
RL setting. Pretraining onD∗ helps the policy learn to generate sequences that already resemble the
true CRE distribution (Jin et al., 2020; Chen et al., 2021), providing a good initialization for RL fine-
tuning and promoting diversity in the generated sequences. Moreover, using the generative model
as the policy ensures that the generated CREs maintain high diversity throughout the optimization
process.

RL-Based Finetuning for AR DNA Models. Next, we formulate the RL finetuning process as a
Markov Decision Process (MDP), as illustrated in Fig. 2. In this formulation, the states st correspond
to the partial sequences generated up to time step t, while the actions at represent the nucleotides
selected by the policy πθ. The reward r(st, at) is defined as a combination of two types of rewards:
TFBS reward rTFBS and fitness reward rfitness, as shown in equation 2:
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r(st, at) =


rfitness, if t = T,

rTFBS(t), if at results in a TFBS t ∈ T ,
0, otherwise.

(2)

Here, rfitness is applied when t is the final time step of the episode (t = T ), and represents the fitness
value of the generated sequence as evaluated by the oracle. On the other hand, rTFBS is a reward
applied whenever a TFBS t ∈ T = {t1, t2, t3, . . . , tn} is identified in the sequence after selecting
at. Details on how TFBSs are identified can be found in Appendix E. The specific values of rTFBS(t)
are discussed in Subsec. 3.3. Negative rewards are assigned for generating repressive TFBSs, while
positive rewards are given for generating activating TFBSs, as shown in Fig. 2. The overall objective
is to maximize the expected cumulative reward:

max
θ

J(θ) = Eπθ

[
T∑

t=1

r(st, at)

]
, (3)

where J(θ) represents the expected cumulative reward, T is the length of the episode, and r(st, at)
is the reward at each time step. This setup ensures that the AR model can learn to generate DNA
sequences with the desired regulatory properties by leveraging both sequence structure and domain-
specific knowledge of TFBS vocabulary.

Supporting RL Designs. To optimize the policy πθ, we employ the REINFORCE algo-
rithm (Williams, 1992). Similar to previous studies in molecule optimization (Ghugare et al., 2024),
we observed that REINFORCE achieves better results than PPO (Schulman et al., 2017) for DNA
sequence generation tasks. Additionally, we leverage a hill climbing replay buffer (Blaschke et al.,
2020), which stores and samples high-fitness sequences during training to further guide exploration.
We also apply entropy regularization (Ghugare et al., 2024) in the form of − 1

log π(a|s) , which pe-
nalizes actions with excessively high probabilities, thereby discouraging overconfident actions and
promoting exploration of less likely ones. This combination of techniques allows the model to ef-
fectively balance exploration and exploitation, resulting in improved performance on complex DNA
optimization tasks. Detailed ablation experiments supporting this can be found in Appendix I.2.

3.3 INFERENCE OF TFBS REGULATORY ROLES

Figure 3: A black-box LightGBM model takes TFBS occur-
rences as input, and SHAP values infer their contributions to
gene expression prediction.

As illustrated in Fig. 3, our approach
to inferring TFBS regulatory roles
consists of two steps. First, we train
a decision tree-based fitness predic-
tion model using TFBS frequency
features as input. Second, we lever-
age model interpretability techniques
to determine the regulatory impact of
each TFBS feature.

To infer the regulatory impact
of each TFBS, we first de-
fine the TFBS frequency fea-
ture of a sequence x as a vector
h(x) = [h1(x),h2(x), . . . ,hn(x)],
where hi(x) denotes the frequency
of the i-th TFBS in sequence x.
This feature vector represents the
occurrence pattern of TFBSs within the sequence, making it suitable for tabular data modeling.
Details on extracting TFBS features by scanning the sequence can be found in Appendix E. Given
the tabular nature of this data, we employ LightGBM (Ke et al., 2017), a tree-based model known
for its interpretability and performance on tabular datasets, to fit the fitness values of sequences.
LightGBM is chosen because decision tree models, in general, offer better interpretability by
breaking down the contribution of each feature in a clear, hierarchical manner. Details of the
LightGBM model can be found in Appendix F.
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After training, we evaluate the model’s performance using the Pearson correlation coefficient be-
tween the true and predicted fitness values, as shown in Tab. 1. This evaluation metric helps us
quantify how well the LightGBM model captures the relationship between TFBS frequencies and
fitness values.

Based on the trained LightGBM model, we use SHAP values (Lundberg, 2017) to interpret the im-
pact of each TFBS on the predicted fitness. SHAP values provide a theoretically grounded approach
to attribute the prediction of a model to its input features by calculating the contribution of each
feature (in our case, each TFBS) to the prediction. The SHAP value for the i-th TFBS in sequence
x, denoted as ϕi(x), is computed as:

ϕi(x) =
∑

S⊆{1,...,n}\{i}

|S|!(n− |S| − 1)!

n!
(f(S ∪ {i})− f(S)) , (4)

where S is a subset of features not containing i, f(S ∪ {i}) is the model prediction when feature i
is included, and f(S) is the prediction when feature i is excluded. This equation ensures that SHAP
values fairly distribute the impact of each feature according to its contribution.

To infer the reward rTFBS(t) for each TFBS t ∈ T = {t1, t2, t3, . . . , tn}, we compute the mean
SHAP value of t over the entire dataset. If the mean SHAP value does not significantly differ from
zero (p-value > 0.05, determined by hypothesis testing), we set the reward of t to zero:

rTFBS(t) =

{
α · µϕ(t), if p-value < 0.05,

0, otherwise,
(5)

where α is a tunable hyperparameter, and µϕ(t) is the mean SHAP value of TFBS t across the
dataset. This approach ensures that only statistically significant TFBSs contribute to the reward, and
α controls the magnitude of the reward.

3.4 SUMMARY OF OUR MEHOD

To summarize, our method integrates two key components. First, we fine-tune an AR generative
model, pretrained on CRE sequences, using RL to optimize sequence generation (see Fig. 2). Sec-
ond, we employ a data-driven approach to infer the role of TFBSs in a cell-type-specific context
within the dataset (see Fig. 3). These inferred roles are seamlessly incorporated into the RL pro-
cess. The complete workflow, detailing the interplay between these components, is presented in
Appendix I Alg. 1.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets and Oracles. We conduct experiments on both yeast promoter and human enhancer
datasets. The yeast promoter dataset includes two types of growth media: complex (de Boer et al.,
2020) and defined (Vaishnav et al., 2022). The human enhancer dataset consists of three cell lines:
HepG2, K562, and SK-N-SH (Gosai et al., 2024). All paired CRE sequences and their correspond-
ing fitness measurements were obtained from massively parallel reporter assays (MPRAs) (Sharon
et al., 2012). Our dataset partitioning strategy is based on Lal et al. (2024) Appendix B). The DNA
sequence length in the yeast promoter dataset is 80, while it is 200 for the human enhancer dataset.

Each dataset represents a cell-type-specific scenario due to distinct TF effect vocabularies and reg-
ulatory landscapes. To simulate optimization from low-fitness CREs, we employ fitness predictors
trained on the complete dataset D as oracles (Lal et al., 2024). These oracles guide the optimization
process of an AR model that is pretrained on a subset of sequences, D∗, within a specified fitness
range. We partition each dataset into three subsets—easy, middle, and hard—based on their fitness
values. Detailed partitioning strategies are provided in Appendix B. We set the maximum number
of optimization iterations to 100, with up to 256 oracle calls allowed per iteration.
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Baselines. We compare our method, TACO, against several established optimization approaches,
including Bayesian optimization as implemented in the FLEXS benchmark (Sinai et al., 2020), and
evolutionary algorithms such as AdaLead (Sinai et al., 2020) and PEX (Anand & Achim, 2022), as
well as covariance matrix adaptation evolution strategy (CMAES) (Auger & Hansen, 2012) using
one-hot encoding. Additionally, we adapt the SOTA protein optimization method LatProtRL (Lee
et al., 2024) for CRE optimization. Given the lack of a powerful backbone model like ESM (Jain
et al., 2022) in the DNA domain (Detailed evidence is provided in Appendix D.2), we remove the
ESM-based latent vector encoding from LatProtRL and refer to the resulting model as DNARL.
DNARL can be viewed as a sequence mutation-based PPO algorithm (Schulman et al., 2017) en-
hanced with a replay buffer mechanism. We do not compare with GAs-based approaches (Reddy
et al., 2024), as our method and other baselines do not rely on differentiable surrogates. For a
detailed discussion on GAs, please refer to Appendix N.

Evaluation Metrics We employ three evaluation metrics: Top, Medium, and Diversity. Top is
defined as the mean fitness value of the top 16 sequences (Lee et al., 2024) in the optimized set G∗ =
{g∗1 , · · · , g∗K}, highlighting the highest-performing sequences in terms of fitness. Both Medium
and Diversity are calculated based on the top K = 128 generated sequences, which are selected
based on their highest fitness values from a total of 256 sequences generated in each iteration (Lee
et al., 2024). Medium refers to the median fitness value among these top 128 sequences, while
Diversity is calculated as the median pairwise distance between every pair of these sequences in
G∗, providing a measure of variability among the best-performing sequences. These metrics are
consistent with those used in LatProtRL (Lee et al., 2024), except for the Novelty metric. We omit
Novelty because, unlike proteins, DNA sequences lack well-defined structural constraints, making
novelty values disproportionately high and less meaningful. For further details, refer to Appendix G.

Implementation Details. We base the architecture of AR model, i.e., the policy network, on
HyenaDNA-1M1. We pre-train all initial policies on the subset D∗ (Lal et al., 2024). We con-
duct all experiments on a single NVIDIA A100 GPU. During optimization, we set the learning rate
to 5e-4 for the yeast task and 1e-4 for the human task. We set the hyperparameter α, which controls
the strength of the TFBS reward in equation 5, to 0.01. We min-max normalize all reported fitness
values and the rewards used for updating the policy, while the oracles are trained on the original
fitness values.

4.2 FITNESS OPTIMIZATION (GUIDED BY THE ORACLE)

We report the mean and standard deviation of the evaluation metrics across five runs with different
random seeds. In this section, our setup follows an active learning paradigm (Lee et al., 2024;
Ghugare et al., 2024), i.e., the model has access to a perfect oracle for feedback at each iteration.

Method Yeast Promoter (Complex) Yeast Promoter (Defined)
Top Medium Diversity Top Medium Diversity

PEX 1 1 9.8 (1.48) 1 1 9.8 (2.59)
AdaLead 1 1 7.6 (0.89) 1 1 6.4 (0.55)
BO 1 1 5.6 (5.57) 1 1 5.6 (1.04)
CMAES 0.79 (0.02) 1 30.0 (2.5) 0.44 (0.03) 1 30.4 (2.3)
DNARL 1 1 7.7 (0.48) 1 1 10.2 (1.4)
TACO 1 1 52.8 (2.77) 1 1 49.6 (3.65)

Table 2: Performance comparison on yeast promoter datasets (hard setting).

Yeast Promoters. As shown in Tab. 2, optimizing yeast promoters is relatively easy, with most
methods generating sequences that significantly exceed the dataset’s maximum observed fitness val-
ues. For such sequences, the results are reported as 1. Therefore, we only present the results for the
hard subset, while the complete results are available in Tab. 11. Among the baselines, only CMAES
fails to fully optimize sequences to the maximum fitness value, although it demonstrates strong per-
formance in terms of diversity. Our method not only achieves the maximum fitness but also exhibits
the highest diversity compared to all other approaches.

1https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf
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Method
HepG2-easy HepG2-medium HepG2-hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.93 (0.02) 0.89 (0.01) 20.2 (6.57) 0.89 (0.04) 0.86 (0.04) 19.2 (7.12) 0.85 (0.04) 0.82 (0.02) 16.0 (2.65)

AdaLead 0.76 (0.00) 0.75 (0.00) 5.2 (0.45) 0.75 (0.03) 0.74 (0.03) 12.4 (4.04) 0.74 (0.02) 0.73 (0.02) 8.0 (1.87)

BO 0.66 (0.06) 0.60 (0.09) 41.6 (8.91) 0.63 (0.05) 0.58 (0.05) 42.0 (7.81) 0.68 (0.04) 0.63 (0.08) 39.8 (5.07)

CMAES 0.61 (0.06) 0.42 (0.04) 77.4 (4.04) 0.67 (0.02) 0.43 (0.03) 75.0 (3.24) 0.69 (0.03) 0.43 (0.02) 77.2 (5.17)

DNARL 0.79 (0.07) 0.71 (0.02) 12.2 (0.08) 0.63 (0.14) 0.84 (0.09) 7.32 (0.01) 0.76 (0.04) 0.72 (0.01) 20.0 (3.42)

TACO 0.78 (0.01) 0.75 (0.01) 131.8 (2.39) 0.76 (0.01) 0.73 (0.01) 139.4 (7.13) 0.76 (0.01) 0.74 (0.01) 131.8 (4.27)

Method
K562-easy K562-medium K562-hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.95 (0.01) 0.93 (0.01) 21.8 (9.68) 0.94 (0.01) 0.92 (0.01) 14.6 (1.82) 0.95 (0.01) 0.92 (0.02) 15.9 (1.34)

AdaLead 0.85 (0.01) 0.84 (0.01) 7.0 (1.00) 0.85 (0.01) 0.84 (0.01) 9.0 (1.87) 0.85 (0.01) 0.84 (0.01) 8.8 (1.64)

BO 0.70 (0.13) 0.65 (0.12) 41.6 (5.32) 0.76 (0.05) 0.70 (0.05) 39.6 (5.55) 0.74 (0.03) 0.70 (0.04) 37.0 (6.52)

CMAES 0.70 (0.05) 0.42 (0.02) 78.8 (4.09) 0.79 (0.03) 0.50 (0.03) 76.0 (3.24) 0.73 (0.05) 0.47 (0.05) 76.8 (4.55)

DNARL 0.89 (0.04) 0.87 (0.01) 23.3 (3.72) 0.90 (0.02) 0.86 (0.01) 26.3 (1.88) 0.89 (0.01) 0.87 (0.02) 17.5 (3.33)

TACO 0.93 (0.00) 0.91 (0.01) 124.6 (3.51) 0.92 (0.01) 0.90 (0.02) 126.0 (1.58) 0.93 (0.01) 0.91 (0.01) 125.6 (2.88)

Method
SK-N-SH-easy SK-N-SH-medium SK-N-SH-hard

Top Medium Diversity Top Medium Diversity Top Medium Diversity

PEX 0.90 (0.01) 0.86 (0.03) 22.2 (5.93) 0.92 (0.02) 0.88 (0.01) 23.8 (7.85) 0.90 (0.02) 0.86 (0.03) 23.0 (2.74)

AdaLead 0.84 (0.08) 0.82 (0.08) 7.4 (1.52) 0.81 (0.06) 0.80 (0.06) 9.4 (3.05) 0.79 (0.05) 0.78 (0.05) 14.4 (4.45)

BO 0.68 (0.07) 0.62 (0.07) 39.8 (7.89) 0.71 (0.08) 0.64 (0.10) 40.4 (4.83) 0.71 (0.06) 0.63 (0.04) 39.9 (6.60)

CMAES 0.73 (0.04) 0.45 (0.02) 77.0 (3.39) 0.74 (0.01) 0.45 (0.03) 76.0 (3.81) 0.74 (0.02) 0.44 (0.03) 76.0 (3.54)

DNARL 0.83 (0.21) 0.80 (0.06) 35.42 (2.99) 0.83 (0.01) 0.81 (0.01) 28.8 (1.93) 0.82 (0.01) 0.81 (0.01) 18.7 (3.21)

TACO 0.91 (0.01) 0.87 (0.02) 133.8 (4.27) 0.90 (0.01) 0.86 (0.01) 135.0 (2.12) 0.92 (0.00) 0.88 (0.01) 137.4 (1.14)

Table 3: Performance comparison on human enhancer datasets.

Figure 4: Evaluation metric by optimization round for TACO, BO, PEX and Adalead. Shaded
regions indicate the standard deviation of 5 runs. The x-axis indicates the number of rounds.

Human Enhancers. Optimizing human enhancers presents a more challenging task. As shown
in Appendix Tab. 6, the 90th percentile min-max normalized fitness values for HepG2, K562, and
SK-N-SH in the real dataset D are 0.4547, 0.4541, and 0.4453, respectively—less than half of the
maximum observed. In Tab. 3, our TACO method demonstrates superior performance compared to
the baselines. For the HepG2 cell line, PEX achieves the highest fitness score, but its diversity is
typically below 20. In contrast, TACO attains SOTA fitness for K562 and SK-N-SH cell lines while
maintaining significantly higher diversity across all datasets (over 1/3 higher than CMAES, which
has the highest diversity among baselines).

Evaluation by Optimization Round. As shown in Fig. 4, we present the evaluation results after
each round of optimization. We observe that AdaLead, a greedy-based algorithm, quickly finds
relatively high-fitness sequences at the initial stages. However, its diversity drops rapidly, causing
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the fitness to plateau and get stuck in local optima. In contrast, PEX demonstrates a steady increase
in fitness, but it consistently maintains a low diversity throughout. Only TACO not only achieves a
stable increase in fitness but also maintains high diversity due to its AR model finetuning paradigm,
which effectively balances fitness and diversity throughout the optimization process.

4.3 OFFLINE MODEL-BASED OPTIMIZATION

We delve into offline model-based optimization (MBO) (Reddy et al., 2024), where the dataset
D is partitioned into a subset Doffline. This approach diverges from the methodology outlined in
Section 3.1 by relying on the surrogate model trained on Doffline to drive the optimization process,
while the oracle remains inaccessible during optimization and is reserved solely for final evaluation.
In this setting, the dataset is no longer divided based on difficulty; instead, all labeled data available
for optimization is drawn from Doffline. Apart from this modification, all other settings are identical
to those in Section 4.2. . The maximum fitness threshold of the offline dataset corresponds to the
95th percentile of the entire dataset’s fitness distribution. Details of the dataset’s construction can be
found in Appendix J.

Given that the oracle is not visible during the optimization process, we can introduce an additional
evaluation metric: the average pairwise cosine similarity of the embeddings of the proposed se-
quences as generated by the oracle model. This metric, referred to as Emb Similarity, quantifies
the diversity of the final proposed sequences.

Tab. 4 presents the results of various methods on the K562 dataset. Under the offline MBO setting,
the performance of all methods degrades compared to the oracle-guided setting, as the optimization
is no longer directly driven by the oracle. The overall trends across methods are consistent with those
observed in Sec. 4.2. TACO achieves results in Top and Median fitness that are comparable to PEX
while significantly outperforming other optimization methods in terms of diversity. The complete
offline MBO results for all datasets are presented in Appendix M. The results of lowering the fitness
threshold for the offline dataset are presented in Appendix N in Tab.17, Tab.18, and Tab. 19. We also
include two conditional generative models, regLM (Lal et al., 2024) and DDSM (Avdeyev et al.,
2023) These methods maintain high diversity in the generated sequences; however, the fitness of
the generated sequences is generally inferior to that achieved by most optimization methods. See
detailed discussion in Appendix L.

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 0.76 (0.02) 0.73 (0.02) 15.8 (4.97) 0.97 (0.01)
AdaLead 0.66 (0.08) 0.58 (0.06) 63.2 (70.01) 0.88 (0.12)
BO 0.71 (0.07) 0.64 (0.08) 43.6 (6.91) 0.87 (0.04)
CMAES 0.66 (0.02) 0.44 (0.03) 79.2 (3.83) 0.35 (0.03)

reglm 0.69 (0.02) 0.47 (0.01) 149.60 (0.49) 0.38 (0.02)
DDSM 0.43 (0.00) 0.40 (0.00) 93.40 (0.49) 0.80 (0.00)

TACO 0.75 (0.09) 0.72 (0.10) 102.6 (20.14) 0.97 (0.04)

Table 4: Offline MBO results for human enhancers (K562).

4.4 ABLATION STUDY

The effect of Pretraining and TFBS Reward: Using RL to finetune an pretrained AR model and
incorporating TFBS reward are our key contributions. Results are shown in Tab. 5.

First, pretraining on real sequences proves to be highly beneficial. While the ”w/o Pretraining” setup
occasionally discovers sequences with high fitness, it underperforms on the Medium metric by 0.03,
0.12, and 0.03 compared to the second-best result across datasets. This demonstrates that pretraining
allows the policy to begin in a relatively reasonable exploration space, enabling it to identify a large
number of suitable sequences more efficiently. This is particularly advantageous in scenarios like
CRE optimization, where large-scale experimental validation can be conducted simultaneously.
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Dataset Setting Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

HepG2

TACO (α = 0.01) 0.69 (0.03) 0.60 (0.05) 141.2 (1.92) 0.82 (0.05)
w/o Pretraining 0.68 (0.00) 0.55 (0.02) 139.4 (2.30) 0.69 (0.02)

w/o TFBS Reward 0.66 (0.05) 0.58 (0.07) 140.8 (1.64) 0.81 (0.05)
α = 0.1 0.65 (0.06) 0.58 (0.06) 138.6 (3.21) 0.86 (0.04)

K562

TACO (α = 0.01) 0.75 (0.09) 0.72 (0.10) 102.6 (20.14) 0.97 (0.04)
w/o Pretraining 0.66 (0.15) 0.59 (0.16) 103.6 (25.77) 0.83 (0.14)

w/o TFBS Reward 0.76 (0.07) 0.71 (0.08) 106.2 (20.90) 0.94 (0.05)
α = 0.1 0.78 (0.01) 0.77 (0.01) 82.8 (4.02) 0.99 (0.00)

SK-N-SH

TACO (α = 0.01) 0.68 (0.08) 0.62 (0.08) 121.4 (7.86) 0.90 (0.03)
w/o Pretraining 0.69 (0.02) 0.57 (0.06) 131.8 (11.17) 0.74 (0.11)

w/o TFBS Reward 0.67 (0.06) 0.60 (0.06) 111.6 (12.86) 0.89 (0.04)
α = 0.1 0.71 (0.01) 0.65 (0.02) 121.2 (5.45) 0.90 (0.05)

Table 5: Ablation study on the effect of Pretraining and TFBS Reward.

Additionally, incorporating the TFBS reward significantly enhances the Medium performance of
TACO, achieving best results across all datasets. The method outperforms the second-best baseline
by margins of 0.02, 0.01, and 0.02, respectively. These prior-informed rewards guide the policy to
explore a more rational sequence space efficiently. Moreover, the biologically guided TFBS Reward
is surrogate-agnostic, with the potential to achieve a similar effect to the regularization applied to
surrogates in (Reddy et al., 2024), by avoiding excessive optimization towards regions where the
surrogate model gives unusually high predictions. The differences in the top fitness and diversity
achieved by various models are relatively minor, with no consistent conclusion.

As the α increases from the default value of 0.01 to 0.1, our method shows improved performance in
both Top and Medium metrics for K562 and SK-N-SH datasets. However, this improvement comes
at the cost of a rapid drop in diversity. Interestingly, all metrics for the HepG2 dataset worsen as
α grows. We hypothesize that this discrepancy arises from the TFBS Reward, precomputed using
the LightGBM model, varying across datasets. Therefore, we recommend carefully tuning α in
real-world scenarios to balance the trade-offs effectively.

5 DISCUSSION

The effectiveness of TACO can be attributed to two main factors: starting from a pretrained autore-
gressive generative model and introducing a biologically informed TFBS Reward. However, there
are still several areas for improvement in our approach: (1) The TFBS candidates we use are derived
from a fixed database, which bounds the upper limit of the TFBS Reward. Exploring data-driven mo-
tif mining (Dudnyk et al., 2024) methods may help to expand this limit. (2) Currently, we infer the
role of TFs based solely on TFBS occurrences. In reality, interactions between TFs and their orienta-
tion can significantly impact their regulatory roles (Georgakopoulos-Soares et al., 2023). Explicitly
incorporating these factors to model more complex TF activities could lead to further improvements.
(3) Evaluating the validity of generated DNA sequences requires further attention. Since defining
what constitutes a valid DNA sequence is more challenging than for molecules or proteins, we need
to more carefully assess validity, potentially by incorporating additional metrics because relying
solely on a trained oracle is insufficient.

6 CONCLUSION

Designing CREs is a highly impactful task, and the increasing availability of fitness data makes it
increasingly feasible. Current methods often rely on basic optimization strategies such as genetic
algorithms and directed evolution, which, while effective, lack the ability to leverage advanced
optimization techniques. To address this limitation, we propose TACO, an RL-based approach that
fine-tunes an pretrained AR generative model, achieving both high fitness and diversity in CRE
design. By incorporating TFBS domain knowledge, TACO offers a promising direction for further
advancements in machine-learning-guided CRE optimization.
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APPENDIX

A PRELIMINARY ON CRES

What are CREs? CREs are non-coding DNA sequences that regulate the expression of nearby
genes by modulating the binding of TFs and RNA polymerase. The two main types of CREs are
promoters, which initiate and maintain mRNA transcription, and enhancers, which are distal ele-
ments that interact with promoters to increase gene expression. CREs play a crucial role in estab-
lishing specific gene expression profiles across different cell types, influencing cellular identity and
function.

Why are CREs cell-type specific? The cell-type specificity of CREs arises from differential TF
binding. TF binding is influenced by several factors, including DNA sequence composition, local
chromatin structure, and interactions with other proteins and cofactors. Human cells express around
1,500 to 2,000 different TFs, and their expression patterns vary across cell types. Each cell type
thus has a unique set of active CREs that drive the expression of genes necessary for its specific
functions. For example, a CRE active in liver cells (hepatocytes) might bind liver-specific TFs such
as HNF4A, whereas in neurons, the same CRE might be inactive due to the absence of these TFs.

How are designed CREs utilized? Designed CREs can be used in both in-vivo and in-vitro settings
depending on the application.In-vivo, CREs are often delivered using viral vectors, such as aden-
oviruses or adeno-associated viruses (AAVs), which facilitate the incorporation of synthetic CREs
into the target cell’s genome. This method is particularly useful for gene therapy, where precise con-
trol over gene expression is crucial for therapeutic efficacy and safety. In-vitro, CREs are typically
introduced into cultured cells using plasmids or CRISPR-based methods, allowing researchers to
test the functionality and regulatory impact of the synthetic CREs under controlled conditions. This
approach is invaluable for high-throughput screening of CRE designs and optimization of regulatory
elements before moving to in-vivo applications.

Applications and Future Prospects. Designing synthetic CREs with precise, cell-type-specific
regulatory functions has significant potential in both basic research and therapeutic applications. In
gene therapy, cell-type-specific CREs can be used to target therapeutic gene expression to specific
tissues, minimizing off-target effects and toxicity. In industrial biotechnology, engineered CREs can
optimize protein production in desired cell lines. Recent advances in deep learning and generative
models have shown promise in predicting and generating CREs with desired regulatory profiles,
opening new avenues for programmable gene regulation.

B DETAILS OF DATASETS

Existing CRE fitness datasets are generated through Massively Parallel Reporter Assays (MPRAs),
which allow for high-throughput measurements of regulatory sequences in in vitro settings. The
yeast promoter dataset includes results from two different media conditions: complex and defined.
The human enhancer dataset, on the other hand, consists of data from three distinct human cell lines:
HepG2 (a liver cell line), K562 (an erythrocyte cell line), and SK-N-SH (a neuroblastoma cell line).
As shown in Tab. 6, the 90th percentile min-max normalized fitness values for HepG2, K562, and
SK-N-SH in the real dataset D are 0.4547, 0.4541, and 0.4453, respectively.

We adopt the dataset splits proposed by RegLM (Lal et al., 2024) and use their defined training set as
our full dataset, denoted as D. To simulate a progression from low-fitness to high-fitness sequences,
we further partition D into a subset D∗ for finetuning and evaluation. Each dataset represents a
cell-type-specific scenario due to distinct TF effect vocabularies and regulatory landscapes.

Our partitioning scheme follows the same approach as RegLM. Specifically, we define three dif-
ficulty levels—hard, medium, and easy—based on fitness percentiles of 20-40, 40-60, and 60-80,
respectively, in both media conditions for the yeast dataset. Since yeast is a single-cell organism, we
ensure that the fitness levels are consistent across both media. For the human enhancer datasets, we
define the hard fitness range as values below 0.2, the medium range as values between 0.2 and 0.75,
and the easy range as values between 0.75 and 2.5. These ranges are selected to maintain fitness
values below 0.2 in other cell lines, thereby simulating a cell-type-specific regulatory scenario.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Cell Line 75th Percentile 90th Percentile
HepG2 0.3994 0.4547
K562 0.3975 0.4541
SK-N-SH 0.3986 0.4453

Table 6: Enhancer fitness.

C ENFORMER SERVES AS ORACLE

Enformer (Avsec et al., 2021) is a hybrid architecture that combines CNNs and Transformers,
achieving SOTA performance across a range of DNA regulatory prediction tasks. In our study,
all CRE fitness prediction oracles are based on the Enformer architecture (Lal et al., 2024; Uehara
et al., 2024). The primary distinction lies in the output: while the original Enformer model predicts
5,313 human chromatin profiles, we modify it to predict a single scalar value representing CRE
fitness.

The oracle model for the human enhancer datasets retains the same number of parameters as the
original Enformer. In contrast, for the yeast promoter datasets, we reduce the model size due to
the simpler nature of yeast promoter sequences. Specific architectural configurations are listed in
Tab. 7. In this study, we directly utilize the oracle weights provided by regLM (Lal et al., 2024) for
consistency.

Model Dimension Depth Number of Downsamples

Human Enhancer 1536 11 7

Yeast Promoter 384 1 3

Table 7: Oracle model parameters for human and yeast datasets.

D DISCUSSION ON DNA FOUNDATION MODELS

Over the past year, there has been significant growth in the development of DNA foundation mod-
els, with many new models emerging. However, most of these models, such as Caduceus (Schiff
et al.), DNABert2 (Zhou et al., 2024), and VQDNA (Li et al., 2024a), are based on BERT-style
pretraining and lack the capability to generate DNA sequences. Among them, HyenaDNA (Nguyen
et al., 2024b) is the only GPT-style DNA language model. Unlike traditional Transformer-based
architectures, HyenaDNA leverages a state space model (SSM), which provides linear computa-
tional complexity, making it suitable for handling long DNA sequences with complex dependencies.
Subsequent work based on HyenaDNA, such as Evo (Nguyen et al., 2024a), has demonstrated the
powerful DNA sequence generation capabilities of this architecture. Additionally, regLM (Lal et al.,
2024) has explored conditional DNA generation by employing a prefix-tuning strategy, where a cus-
tomized token is used as the prefix of the DNA sequence to guide the subsequent generation process.
This approach has enabled reglm to effectively model context-dependent DNA sequence generation.

D.1 EFFECT OF THE TRAINING LENGTH

Although HyenaDNA can serve directly as an initial policy, its pretraining was conducted on se-
quences with a length of 1M. Therefore, as described in Section 3.2, we fine-tune the initial oracle
on CRE data. As shown in Table 8, fine-tuning HyenaDNA on short CRE sequences yields slight
improvements in performance. We attribute this improvement to the fine-tuning process exposing
the model to more short sequences, which aligns with the sequence lengths required for subsequent
CRE design tasks.
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Model Top ↑ Medium ↑

Pretrained HyenaDNA 0.749 0.723
Fine-tuned HyenaDNA 0.751 0.729

Table 8: Performance (hepg2 hard) comparison of pretrained and fine-tuned HyenaDNA on short
CRE sequences.

D.2 LIMITATIONS OF CURRENT DNA FOUNDATION MDOELS

While there have been advancements in DNA foundation models, evidence suggests that they do not
yet match the capabilities of models like ESM (Vaishnav et al., 2022). Specifically: (1) ESM embed-
dings are known for their high versatility and are widely utilized in various downstream tasks, e.g.,
enzyme function prediction (Yu et al., 2023). In contrast, as noted in Tang & Koo (2024), DNA foun-
dation model embeddings often perform no better than one-hot encodings. (2) ESM’s language
model head can achieve AUROC scores above 0.9 in pathogenic mutation prediction by directly cal-
culating the log-likelihood ratio of reference and alternative alleles (Meier et al., 2021). However,
DNA foundation models currently perform significantly worse, with AUROC scores below 0.6 as
reported in Benegas et al. (2023). (3) In addition to sequence-based DNA foundation models, some
supervised DNA models have also been shown to exhibit limitations in distinguishing mutations
across individuals Huang et al. (2023) and recognizing long-range DNA interactions Karollus et al.
(2023).

E TFBS SCAN AND FREQUENCY FEATURE PREPROCESSING

The Jaspar database (Fornes et al., 2020) provides detailed annotations of TFBSs. Each TFBS ti
corresponds to a transcription factor that binds to it, regulating gene expression. Instead of repre-
senting ti as a fixed sequence, it is described by a position frequency matrix Mi ∈ RLi×4, where
Li is the length of the TFBS, and the four columns correspond to the nucleotides {A,C,G,T}. The
matrix encodes the likelihood of each nucleotide appearing at each position in the TFBS, making it
possible to capture variations in TF binding.

We utilize FIMO (Find Individual Motif Occurrences) (Bailey et al., 2015) to scan each sequence
for potential TFBSs. Given a sequence x and a matrix Mi, FIMO evaluates each subsequence xj in
x by calculating a probabilistic score:

score(xj ,Mi) =

Li∏
k=1

P (nk |Mi[k]), (6)

where P (nk | Mi[k]) represents the probability of nucleotide nk occurring at position k in the
matrix Mi. FIMO identifies the subsequences with the highest scores as potential occurrences of
the TFBS.

For each sequence x, FIMO outputs a frequency feature vector h(x) = [h1(x),h2(x), . . . ,hn(x)],
where hi(x) denotes the frequency of the i-th TFBS in sequence x. This frequency feature vector
is then used as input for the downstream prediction model. The use of frequency-based features,
as opposed to binary indicators, captures the varying levels of TFBS occurrences in the sequence,
allowing for a more nuanced understanding of the regulatory role of each TFBS. Given this tabular
representation, we employ LightGBM (Ke et al., 2017), a tree-based model known for its inter-
pretability and effectiveness on tabular datasets, to predict the fitness values of sequences.

E.1 TFBS DISTRIBUTION ANALYSIS

We scanned the yeast promoters (Complex and Defined datasets) and human enhancers (HepG2,
K562, and SK-N-SH datasets) for TFBS occurrences. Figure 5 and Figure 6 show the Venn diagrams
of TFBS overlaps for the yeast and human datasets, respectively.
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Figure 5: Venn diagram showing TFBS overlap between yeast promoters in two media (Complex
and Defined). The TFBS distributions are nearly identical, with minimal differences.

Figure 6: Venn diagrams showing TFBS overlaps for human enhancers across three cell lines
(HepG2, K562, and SK-N-SH). The diagrams highlight significant differences in TFBS distribu-
tion among the cell lines.

For the yeast promoters, as shown in Figure 5, the TFBS distributions in Complex and Defined
datasets are almost identical, with the Venn diagram showing nearly complete overlap. This indicates
that the inferred TFBS roles are consistent across the two media, supporting the robustness of our
approach in this scenario.

In contrast, the human enhancer datasets (Figure 6) reveal substantial differences in TFBS distribu-
tions across the three cell lines. For example, some TFBSs are unique to specific cell lines, while
others overlap partially or entirely among the three. This observation underscores the cell-type-
specific nature of enhancer regulation and highlights the importance of considering such variability
in human enhancer design tasks.

By comparing the yeast and human datasets, we observe that TFBS roles are highly consistent
across different conditions in yeast promoters, while human enhancer regulation exhibits greater
diversity across cell types. This reinforces the significance of incorporating TFBS-specific insights
in designing CREs tailored for human applications.

F DETAILS OF LIGHTGBM

We utilized LightGBM (Ke et al., 2017) to train models that directly predict CRE fitness based on
TFBS frequency features, enabling us to infer the cell type-specific roles of individual TFBSs. To
infer the regulatory impact of each TFBS, we first define the TFBS frequency feature of a sequence
x as a vector h(x) = [h1(x),h2(x), . . . ,hn(x)], where hi(x) denotes the frequency of the i-th
TFBS in sequence x. The LightGBM model is trained to map the TFBS frequency features to the
corresponding fitness values of sequences, using the objective function:

min
γ

∑
(h(x),u(x))∈D∗

d (u(x), û(h(x); γ)) , (7)
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where u(x) is the true fitness value of sequence x, û(h(x); γ) is the fitness value predicted by the
LightGBM model parameterized by γ using the TFBS frequency feature vector h(x). The term
d (u(x), û(h(x); γ)) represents a distance metric measuring the discrepancy between the true and
predicted fitness values.

For each dataset, we independently trained a LightGBM regression model. The specific parameters
used in our model are listed in Table 9.

Parameter Value
Objective Regression
Metric MAE
Boosting Type GBDT
Number of Leaves 63
Learning Rate 0.05
Feature Fraction 0.7
Seed Random State

Table 9: Hyperparameters used for training the LightGBM regression model.

Metric yeast human
complex defined hepg2 k562 sknsh

MAE 0.63 0.65 0.65 0.65 0.66
RMSE 0.63 0.64 0.56 0.57 0.58

Table 10: Ablation study comparing different metrics on CRE fitness prediction for yeast and human
datasets.

We experimented with various metrics corresponding to the metric d in Equation equation 7, specif-
ically testing rmse and mae as well as different learning rates {0.01, 0.05} and number of leaves
{31, 63}. Our preliminary experiments indicate that learning rate and the number of leaves have
minimal impact on the results, while the choice of metric significantly affects performance. The
results for these two factors are shown in Table 10. This is likely because TFBS occurrences are
highly sparse, and MAE tends to perform better with sparse features (Willmott & Matsuura, 2005).

dMAE =
1

n

n∑
i=1

∣∣∣f(xi)− f̂(h(xi); θ)
∣∣∣ (8)

dRMSE =

√√√√ 1

n

n∑
i=1

(
f(xi)− f̂(h(xi); θ)

)2

(9)

Our experiments demonstrate that the MAE metric yields better performance across all cell types,
as shown in Table 10. Therefore, we selected MAE as the final evaluation metric.

G DNA SEQUENCE PLAUSIBILITY

Unlike molecules and proteins (Uehara et al., 2024), which inherently possess well-defined physical
and chemical properties, DNA sequences lack such structural constraints. For example, molecular
structures are subject to physical properties like bond angles and energy states, while protein se-
quences are evaluated based on their 3D folding stability and interactions, making it straightforward
to filter out physically implausible designs. Therefore, in molecule and protein design, oracle-
predicted fitness is often supplemented with physical property constraints to ensure the plausibility
of generated candidates. This helps exclude a significant number of physically infeasible structures,
enhancing the relevance of the optimization process.
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However, DNA sequences pose a unique challenge in this regard. Unlike molecules or proteins,
DNA’s plausibility cannot be easily assessed through physical properties, as its functional attributes
are primarily determined by its interaction with transcription factors and other regulatory proteins in
a context-specific manner. Furthermore, current MPRA (massively parallel reporter assay) datasets
are typically generated from random sequences, meaning there is no inherent concept of ”plausibil-
ity” in the data itself. Consequently, the lack of well-defined constraints in DNA sequences makes
it difficult to develop a robust metric for evaluating their plausibility.

Our observations further highlight this challenge. In our experiments, we found that the novelty val-
ues of generated DNA sequences were disproportionately high compared to the initial low-fitness
sequences, making the novelty metric less informative. This behavior suggests that DNA sequences
tend to diverge significantly from their starting points during optimization, regardless of their bio-
logical relevance or plausibility. Due to these limitations, we exclude the Novelty metric and instead
focus on evaluating the generated sequences using Fitness and Diversity metrics, which better cap-
ture the optimization objectives for CRE design.

H LIMITATIONS

Our ultimate goal is to optimize CREs with higher fitness values than those currently observed.
However, the reliability of such optimized CREs is limited by the fact that our oracles are trained
on existing real-world datasets. As a result, predictions for CREs with fitness values beyond the
training data range may be less accurate. Currently, our primary in-silico experiments simulate an
optimization setting that starts from low-fitness CREs, following the strategy proposed in (Lee et al.,
2024). Previous studies, such as Vaishnav et al. (2022); de Almeida et al. (2024), have successfully
designed CREs using simple optimization methods and validated them in vivo, demonstrating high
fitness and cell-type specificity in real-world scenarios. Our work serves as a complementary effort
to these studies by providing advanced algorithmic strategies for CRE optimization. In the future,
we hope to conduct in vivo experiments to validate the performance of more sophisticated CRE
optimization algorithms.

I DETAILS OF RL

I.1 ALGORITHM OVERVIEW

The overview of our algorithm TACO is shown in Alg. 1.

I.2 THE EFFECT OF SUPPORTING RL DESIGNS

As in Fig. 7, we evaluate two main components of our minor designs: the hill-climb replay buffer
and entropy regularization. First, we test the effect of the hill-climb replay buffer, which stores
past experiences with high fitness values. We find that incorporating a replay buffer significantly
enhances the maximum fitness values explored, consistent with observations from prior studies (Lee
et al., 2024; Ghugare et al., 2024). Next, we explored the use of entropy regularization, which
is designed to encourage exploration by increasing the randomness of the policy and preventing
premature convergence to suboptimal actions. Our experiments demonstrate that this approach leads
to improved action diversity, highlighting its effectiveness in promoting a broader exploration space.

J OFFLINE MODEL-BASED OPTIMIZATION

In Sec. 4.2, we present results under an active learning setting (Lee et al., 2024), which assumes
easy access to a perfect oracle for evaluating generated CRE sequences. However, this setting can
lead to optimization processes that overfit to an imperfect oracle (trained with observed data).

Here, we consider an alternative offline model-based optimization (MBO) setting (Reddy et al.,
2024), which assumes that accessing the true oracle is costly, but some labeled offline data is avail-
able. In this setting, a surrogate model is trained on the offline dataset to guide the optimization
process, and the final sequences are evaluated by the oracle. This approach helps mitigate overfit-
ting to a ”man-made oracle” trained on limited data.
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Algorithm 1 TACO: RL-Based Fine-tuning for Autoregressive DNA Models

Require: Low-fitness dataset D∗, TFBS vocabulary T , Oracle qθ, Pretrained AR model πθ, Num-
ber of Optimization Rounds E

1: Preprocessing:
2: Train LightGBM model on TFBS frequency features h(x) from dataset D∗

3: Compute SHAP values ϕi(x) for each TFBS ti
4: Update TFBS rewards rTFBS(t) based on equation 5
5: for round e = 1 to E do
6: Sample a batch of sequences {xi} from policy πθ

7: for each sequence xi do
8: for time step t = 1 to L do
9: Generate nucleotide at using πθ(at|a<t)

10: Observe state st = (a1, . . . , at−1)
11: if at results in TFBS t ∈ T then
12: Assign reward r(st, at)← rTFBS(t)
13: else
14: Assign reward r(st, at)← 0
15: end if
16: end for
17: Obtain fitness reward rfitness from oracle qθ(xi)

18: Compute total reward R←
∑L

t=1 r(st, at) + rfitness
19: end for
20: Update policy πθ using REINFORCE:

θ ← θ + α∇θEπθ
[R log πθ(at|st)]

21: end for

Figure 7: Ablation study on supporting RL designs.

Fig. 8 illustrates an example (a single run on the yeast complex dataset). The left panel shows the
curve of the Top fitness predicted by the surrogate as the iterations progress. Since the optimization
is guided by the surrogate, the curve continues to increase. Initially, the right panel (representing
the Top fitness as predicted by the oracle) also rises steadily. However, around iteration 80, there
is a sharp increase in the surrogate’s predicted fitness, while the oracle’s predicted fitness exhibits a
brief spike before declining.

This behavior suggests that at 80 iterations, the optimization process discovers a seemingly high-
fitness point. However, the surrogate, believing this direction to be correct, continues optimizing,
leading to an overestimation of the fitness. The oracle’s actual score, however, does not continue to
increase significantly. This example demonstrates that in real optimization processes, the surrogate
can be misled by spurious data points, further emphasizing the importance of the offline MBO
setting.
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Figure 8: Left: The curve of Top fitness predicted by the surrogate during iterations. Right: The
corresponding Top fitness predicted by the oracle. The discrepancy highlights the potential for the
surrogate to overestimate fitness due to spurious data points, emphasizing the need for offline MBO
settings.

Specifically, we still use the oracle trained in Section 4.1 for the final evaluation of sequences, but
we sub-sample a portion of the data to create a predefined offline dataset. The sub-sampling strategy
involves randomly splitting the dataset in half and selecting sequences with fitness values below the
95th percentile to simulate a real-world scenario where observed data may have a lower ceiling.
This dataset is referred to as Doffline. A surrogate model is trained on Doffline, and the optimization
process proceeds similarly to Section 4.1, except that each iteration is guided by the surrogate, with
the oracle used only for final quality evaluation of the generated sequences.

K MOTIF-BASED MACHINE LEARNING IN AI4SCIENCE

Motifs are often regarded as small, critical elements in scientific data, such as functional groups in
molecules or TFBS in DNA sequences. In machine learning, explicitly modeling these motifs can
provide significant benefits. For example, motifs have been successfully used in molecular opti-
mization (Jin et al., 2020; Chen et al., 2021), molecular generation Geng et al., molecular property
prediction (Zhang et al., 2021), and DNA language models (An et al., 2022). In the context of DNA
CREs, TFBS are widely considered the most important motifs. TFBS typically exhibit cell-type
specificity, i.e., the same TFBS may play different roles in different cell types. Our approach is in-
spired by de Almeida et al. (2024), who observed that during direct evolution guided by an oracle,
there is a tendency to first remove repressor TFBS and subsequently add enhancer TFBS to optimize
the sequences.

Initially, we intended not to rely on pre-defined motifs from databases. Instead, our goal was to
iteratively learn potential motifs in a data-driven manner and use these motifs to enhance the fitness
of generated sequences, similar to the idea behind the EM algorithm, which has been explored in
molecule optimization (Chen et al., 2021). However, while extracting motifs from molecular graphs
is relatively straightforward due to their clear structural boundaries, DNA sequences lack explicit
boundaries, making it significantly more challenging to automatically identify meaningful motifs.
Nevertheless, recent advancements in understanding promoter mechanisms (Dudnyk et al., 2024)
may provide valuable insights for revisiting this idea. That said, even in molecule optimization,
where advanced automatic motif mining methods (Geng et al.) are available, the use of pre-defined
motifs has been consistently demonstrated to be highly effective (Wu et al., 2023). Therefore, we
do not view the reliance on pre-defined motifs as a significant limitation.

L DETAILS OF CONDITIONAL GENERATIVE MODELS

Although the objectives of generative models and optimization methods differ, both aim to propose
samples that deviate from the observed real-world data. To this end, we include a discussion and
comparison with SOTA generative models.

Let the data distribution be denoted as P (x), where each data point x is paired with a label y (e.g.,
the fitness of a CRE). The full dataset observed in the real world is represented as D = {(xi, yi)}Ni=1.
In biological sequence data, x typically follows a reasonable underlying distribution P (x), which
can be approximated using a generative model Ppre(x) without requiring knowledge of y. However,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

directly sampling from Ppre(x) often yields sequences with low fitness, as the distribution of y
values (e.g., high-fitness regions) is typically narrow and sparsely represented in the data. Thus, an
unconditional generative model is generally ineffective for designing biological sequences.

To address this limitation, conditional generative modeling can be employed. By training a model
to approximate P (x | y) using the offline labeled dataset D, we can condition on high observed
fitness values y to theoretically generate high-fitness sequences. Formally, given a dataset where y
is partitioned into discrete bins or ranges (e.g., high-fitness values), the conditional generative model
is trained to maximize the likelihood.

Subsequently, sequences are generated by sampling x conditioned on y values corresponding to high
fitness. However, in practice, this approach often underperforms because the distribution of high y
values is extremely narrow, and the model struggles to accurately capture this region.

We compare our method against recent generative models, including the autoregressive generative
model reglm (Lal et al., 2024) and the discrete diffusion model DDSM (Avdeyev et al., 2023). For
evaluations, we adopted conditional generation strategies for both models. Specifically: regLM:
The official pretrained weights were used. Sequences were generated by conditioning on the prefix
label corresponding to the highest fitness score in each dataset. DDSM: This model was trained on
our offline dataset, where labels above the 95th percentile were set to y = 1, and the remaining
labels were set to y = 0. The conditional diffusion model was then trained using this binary labeling
scheme, and sequences were generated by conditioning on y = 1 for evaluation.

As shown in Tab. 15, both regLM and DDSM exhibit high diversity in their generated sequences
but fail to match the fitness values achieved by optimization-based methods. This limitation arises
because generative models are designed to fit the observed data distribution P (x | y), and as such,
their generated sequences are inherently constrained by the data’s fitness distribution. It is also
worth noting that reglm utilized official pretrained weights, which may have been exposed to data
with higher fitness scores than our offline dataset. Even with this advantage, it fails to outperform
optimization-based methods. In contrast, our method builds upon a pretrained distribution Ppre(x)
and further proposes new sequences by iteratively optimizing Ppre(x) through feedback from an
oracle or surrogate. The ultimate goal is to reshape the distribution so that high-fitness sequences
become more accessible during sampling.

M MORE EXPERIMENTAL RESUTLS

Since many conclusions are consistent across different datasets and settings, we have included a
significant portion of the experimental results in the appendix.

The complete experimental results for yeast under the oracle-guided optimization setting are pre-
sented in Fig. 11. The results for offline MBO are detailed in Tab. 12, Tab. 13, Tab. 14, Tab. 15, and
Tab. 16.
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Yeast Promoter (Complex)

Method easy middle hard

Top ↑ Medium ↑ Diversity ↑ Top ↑ Medium ↑ Diversity ↑ Top ↑ Medium ↑ Diversity ↑

PEX 1 1 8.6 (1.14) 1 1 8.4 (1.95) 1 1 9.8 (1.48)
AdaLead 1 1 8.8 (1.3) 1 1 9.0 (1.58) 1 1 7.6 (0.89)
BO 1 1 23.4 (1.52) 1 1 22.6 (1.34) 1 1 25.0 (5.57)
CMAES 1 0.78 (0.13) 30.2 (2.68) 1 0.85 (0.02) 29.4 (1.52) 1 0.79 (0.09) 30.0 (2.5)
DNARL 1 1 8.6 (2.14) 1 1 10.2 (1.14) 1 1 7.7 (0.48)

TACO 1 1 52.2 (1.92) 1 1 48.8 (5.36) 1 1 52.8 (2.77)

Yeast Promoter (Defined)

Method easy middle hard

Top ↑ Medium ↑ Diversity ↑ Top ↑ Medium ↑ Diversity ↑ Top ↑ Medium ↑ Diversity ↑

PEX 1 1 9.2 (0.84) 1 1 9.2 (1.79) 1 1 9.8 (2.59)
AdaLead 1 1 8.0 (2.35) 1 1 7.0 (1.0) 1 1 6.4 (0.55)
BO 1 1 23.0 (1.58) 1 1 22.8 (2.28) 1 1 23.0 (1.87)
CMAES 1 0.26 (0.36) 30.0 (2.92) 1 0.48 (0.17) 29.8 (1.3) 1 0.44 (0.33) 30.4 (2.3)
DNARL 1 1 11.6 (3.04) 1 1 18.5 (3.0) 1 1 10.2 (1.14)

TACO 1 1 43.2 (2.77) 1 1 47.0 (4.64) 1 1 49.6 (3.65)

Table 11: Performance comparison on yeast promoter datasets (Guided by the Oracle).

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 1.16 (0.09) 1.12 (0.08) 11.4 (57.60) 0.98 (0.01)
AdaLead 1.06 (0.02) 1.00 (0.02) 57.6 (0.55) 0.95 (0.00)
BO 1.09 (0.02) 1.03 (0.03) 24.4 (4.77) 0.97 (0.01)
CMAES 1.06 (0.07) 0.70 (0.12) 29.20 (0.45) 0.75 (0.05)

regLM 1.02 (0.00) 0.94 (0.00) 59.00 (0.00) 0.91 (0.01)
ddsm 0.94 (0.02) 0.79 (0.01) 58.20 (0.40) 0.81 (0.01)

TACO 1.06 (0.01) 0.98 (0.01) 57.4 (1.34) 0.93 (0.01)

Table 12: Offline MBO (95 Percentile) results (yeast promoter, complex).

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 1.19 (0.15) 1.10 (0.16) 10.40 (2.61) 0.98 (0.01)
AdaLead 1.02 (0.04) 0.98 (0.04) 8.20 (1.79) 0.98 (0.01)
BO 1.06 (0.03) 1.02 (0.02) 26.00 (2.24) 0.97 (0.01)
CMAES 0.79 (0.10) 0.39 (0.12) 30.80 (2.05) 0.59 (0.05)

regLM 0.98 (0.01) 0.89 (0.01) 58.80 (0.40) 0.90 (0.00)
DDSM 0.92 (0.02) 0.81 (0.00) 56.20 (0.40) 0.86 (0.01)

TACO 1.10 (0.05) 1.03 (0.04) 46.00 (1.87) 0.97 (0.01)

Table 13: Offline MBO (95 Percentile) results (yeast promoter, defined).
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Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 0.75 (0.01) 0.73 (0.01) 13.6 (4.51) 0.98 (0.01)
AdaLead 0.59 (0.01) 0.52 (0.04) 34.2 (59.15) 0.84 (0.16)
BO 0.65 (0.09) 0.61 (0.10) 40.2 (6.14) 0.83 (0.13)
CMAES 0.57 (0.03) 0.41 (0.03) 77.2 (2.28) 0.45 (0.04)

regLM 0.65 (0.01) 0.48 (0.02) 150.00 (0.00) 0.28 (0.02)
DDSM 0.41 (0.00) 0.41 (0.00) 15.40 (0.49) 0.99 (0.00)

TACO 0.69 (0.03) 0.60 (0.05) 141.2 (1.92) 0.82 (0.05)

Table 14: Offline MBO (95 Percentile) results (human enhancer, HepG2).

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 0.76 (0.02) 0.73 (0.02) 15.8 (4.97) 0.97 (0.01)
AdaLead 0.66 (0.08) 0.58 (0.06) 63.2 (70.01) 0.88 (0.12)
BO 0.71 (0.07) 0.64 (0.08) 43.6 (6.91) 0.87 (0.04)
CMAES 0.66 (0.02) 0.44 (0.03) 79.2 (3.83) 0.35 (0.03)

regLM 0.69 (0.02) 0.47 (0.01) 149.60 (0.49) 0.38 (0.02)
DDSM 0.43 (0.00) 0.40 (0.00) 93.40 (0.49) 0.80 (0.00)

TACO 0.75 (0.09) 0.72 (0.10) 102.6 (20.14) 0.97 (0.04)

Table 15: Offline MBO (95 Percentile) results (human enhancer, K562).

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓

PEX 0.69 (0.01) 0.68 (0.00) 17.8 (3.90) 0.98 (0.01)
AdaLead 0.59 (0.08) 0.56 (0.08) 8.6 (2.30) 0.96 (0.03)
BO 0.61 (0.09) 0.52 (0.08) 42.4 (4.77) 0.80 (0.08)
CMAES 0.58 (0.05) 0.42 (0.03) 78.6 (1.14) 0.40 (0.06)

regLM 0.61 (0.00) 0.47 (0.01) 149.60 (0.49) 0.38 (0.03)
DDSM 0.54 (0.00) 0.49 (0.00) 102.20 (1.17) 0.91 (0.01)

TACO 0.68 (0.08) 0.62 (0.08) 121.4 (7.86) 0.90 (0.03)

Table 16: Offline MBO (95 Percentile) results (human enhancer, S-KN-SH).

N ANALYSIS OF GRADIENT ASCENT’S PERFORMANCE IN OFFLINE MBO
SETTINGS.

As stated in Reddy et al. (2024), in offline MBO settings, directly applying Gradient Ascent (GAs) to
a surrogate is theoretically expected to generate adversarial examples with poor performance. How-
ever, in our current CRE dataset, we did not observe this phenomenon. Instead, directly performing
GAs yields surprisingly good results. This is indeed a surprising observation. To the best of our
knowledge, prior CRE design work has not extensively explored GAs methods, except for Reddy
et al. (2024). However, Reddy et al. (2024) does not seem to include an ablation study on regulariza-
tion terms. Therefore, in the context of DNA CRE design—where Enformer-based models (Avsec
et al., 2021) are widely used to train scoring functions—it remains an open question whether di-
rectly applying GAs to a differentiable surrogate would result in adversarial examples with poor
performance. We acknowledge that in the case of a perfect oracle, adversarial examples would
likely emerge. However, due to the simple data partitioning strategies commonly used in this field,
it appears that a surrogate trained on a subset can sufficiently approximate the oracle.

To further address this concern, we validated GAs performance across different fitness quantiles (95
shown in Fig 9, 80 shown in Fig. 10, 60 shown in Fig. 11) using K562 cells (our default setting was
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the 95th percentile). Our GAs implementation directly operates on the one-hot encoded probabil-
ity simplex following Reddy et al. (2024), which allows for smooth updates during optimization.
Therefore, we report both the results on the one-hot-encoded simplex (Prob) and the hard-decoded
sequences optimized (Sequence) in each iteration. We reported the scores predicted by both the
surrogate and oracle for these two representations. Our findings indicate: 1. For the 95th percentile,
as shown in Fig. 9, the fitness in the sequence space initially rises sharply but then drops. For the
60th percentile, as shown in Fig. 11, a similar pattern is observed in the oracle’s predictions within
the Prob space. This reveals a gap between the surrogate and the oracle, as the surrogate’s pre-
dictions consistently increase. This aligns with our expectations of the offline MBO setting, i.e., the
surrogate cannot fully reflect the oracle. 2. However, the oracle’s predictions do show significant
improvement at the start, indicating that directly applying GAs to the surrogate can still benefit the
oracle’s results. This suggests that, under the current CRE data partitioning strategy, even a surrogate
trained on low-fitness subsets can reasonably capture the trends of the oracle’s predictions (although
the surrogate itself, having never encountered high-fitness data, predicts much lower upper bounds).

Figure 9: Results of GAs using the 95th percentile subset.

Figure 10: Results of GAs using the 80th percentile subset.
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Figure 11: Results of GAs using the 60th percentile subset.

Based on the current evidence, we believe that the observed good performance of GAs may be an
inherent property (possibly related to the inherent data distribution of CREs and our current data
partitioning strategy). Even a surrogate trained on the 60th percentile subset can achieve decent
performance. This is an interesting question for future research in CRE design.

However, we emphasize that our primary focus is on designing optimization algorithms rather than
relying on a differentiable surrogate. Our current offline MBO setting has already made the task
more challenging, achieving the intended goal of designing an offline MBO setting. Nevertheless,
we do not yet fully understand why GAs does not lead to significantly poor results. Figuring this
out is left for future work, but I believe it is crucial for machine-learning-driven CRE design.

Besidies, we have also added the results of different methods (including GAs) guided by a surro-
gate trained on the 60th percentile shown in Tab. 17, Tab. 18 and Tab. 19. It can be observed that,
despite the significant gap between the surrogate and the oracle under the 60th percentile training,
GAs still achieves relatively good performance. Notably, under the 60th percentile setting, PEX,
which performed well at the 95th percentile, shows moderate results, while CMAES, which previ-
ously performed the worst, achieves excellent performance. Our TACO, in this setting, continues to
maintain SOTA results.

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓
PEX 0.54 (0.02) 0.48 (0.02) 16.4 (5.13) 0.80 (0.03)
AdaLead 0.50 (0.05) 0.42 (0.02) 146.6 (2.61) 0.36 (0.03)
BO 0.46 (0.04) 0.41 (0.02) 41.2 (6.91) 0.71 (0.07)
CMAES 0.55 (0.04) 0.41 (0.02) 78.4 (3.97) 0.41 (0.05)
GAs 0.59 (0.01) 0.51 (0.01) 136.20 (0.40) 0.80 (0.01)
TACO 0.56 (0.08) 0.50 (0.08) 134.6 (14.03) 0.77 (0.08)

Table 17: Results of HepG2 (60 Percentile).

Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓
PEX 0.50 (0.06) 0.45 (0.04) 13.6 (2.19) 0.87 (0.02)
AdaLead 0.62 (0.09) 0.49 (0.10) 138.6 (20.7) 0.55 (0.11)
BO 0.55 (0.03) 0.44 (0.03) 43.6 (7.37) 0.66 (0.11)
CMAES 0.66 (0.07) 0.47 (0.05) 79.0 (4.36) 0.49 (0.06)
GAs 0.52 (0.02) 0.43 (0.00) 126.60 (1.20) 0.84 (0.01)
TACO 0.63 (0.04) 0.48 (0.02) 132.4 (25.7) 0.62 (0.21)

Table 18: Results of K562 (60 Percentile).
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Model Top ↑ Medium ↑ Diversity ↑ Emb Similarity ↓
PEX 0.50 (0.11) 0.47 (0.11) 19.6 (3.21) 0.74 (0.04)
AdaLead 0.55 (0.06) 0.44 (0.03) 141.6 (13.24) 0.54 (0.09)
BO 0.55 (0.09) 0.46 (0.05) 48.8 (11.65) 0.72 (0.09)
CMAES 0.61 (0.09) 0.44 (0.03) 75.2 (1.92) 0.50 (0.05)
GAs 0.48 (0.01) 0.42 (0.00) 140.00 (0.63) 0.59 (0.01)
TACO 0.69 (0.04) 0.57 (0.06) 135.6 (5.5) 0.78 (0.06)

Table 19: Results of S-KN-SH (60 Percentile).
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