
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LANGUAGE MODELS CAN LEARN FROM
VERBAL FEEDBACK WITHOUT SCALAR REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLMs are often trained with RL from human or AI feedback, yet such methods
typically compress nuanced feedback into scalar rewards, discarding much of their
richness and inducing scale imbalance. We propose treating verbal feedback as a
conditioning signal. Inspired by language priors in text-to-image generation, which
enable novel outputs from unseen prompts, we introduce the feedback-conditional
policy (FCP). FCP learns directly from response-feedback pairs, approximating
the feedback-conditional posterior through maximum likelihood training on offline
data. We further develop an online bootstrapping stage where the policy generates
under positive conditions and receives fresh feedback to refine itself. This reframes
feedback-driven learning as conditional generation rather than reward optimization,
offering a more expressive way for LLMs to directly learn from verbal feedback.

1 INTRODUCTION

“That all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar
signal (reward).” — Reward Hypothesis by Richard Sutton

The reward hypothesis in reinforcement learning (RL) was proposed over two decades ago (Sutton,
2004), when feedback from the environment had to be reduced to scalar rewards for RL algorithms
to operate. This view shaped much of the field’s progress and remains the prevailing standard in
applying RL to alignment and reasoning for large language models (LLMs) (Ziegler et al., 2019; Bai
et al., 2022; Rafailov et al., 2023; Guo et al., 2025).

Yet in practice, the feedback encountered in RL for LLMs, especially in non-verifiable settings, is most
often verbalized, such as “Good start, but the code can be more efficient”.
Such feedback may come from human users (Stephan et al., 2024), generative reward models (Zhang
et al., 2024; Mahan et al., 2024), or tool outputs in agentic scenarios (Wang et al., 2025b; Jin et al.,
2025). Reducing the verbal feedback into scalar rewards introduces several limitations:

I. Information loss. Scalar rewards capture far less information than verbal feedback/critiques and
are often uninterpretable. For example, the critiques “The response is redundant
but correct” and “The response is compact but has many typos” may
both collapse to a reward of 0.8, despite describing very different response patterns. Further-
more, the verbalized thoughts produced by (generative) reward models are typically discarded
as intermediate outputs, with only the final scalar retained for RL training.

II. Ambiguity. Verbal feedback, especially from human users, is often mixed (containing both
pros and cons), emotional, or uncertain, such as “I’m so happy” or “I’m not sure,
maybe try again?”. Such feedback is far more common than purely positive or negative
signals and carries diverse cues for learning and for understanding user interaction styles.
Mapping these forms of feedback to scalars could be unclear or arbitrary.

III. Imbalanced reward scales across tasks. In multi-task training (e.g., math, code, science,
games), it is difficult to maintain a consistent reward scale. Positive feedback on a simple math
problem is far easier to obtain than on a challenging coding or game-playing task, which induces
imbalanced rewards across domains and biases the learning process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

def flatten(lst):
 return sum(lst, [])

def flatten(lst):
 result = []
 for item in lst:
 if isinstance(item, list):
 result.extend(flatten(item))
 else:
 result.append(item)
 return result

def flatten(lst):
 return [
 x
 for e in lst
 for x in (
 flatten(e) if isinstance(e, list) else [e]
)
]

is expected by users

<latexit sha1_base64="BfD5lArPiNI5gbToYVTIGfOc610=">AAAEQHicbdPNbtNAEADgbcxPCX8pHLlYREitFEVxQYFeUAUHOBZE2kp1FK3X62Qbr+3urt24i5+Bp+EKEm/BG3BDXLmA44k0NGUlS6NvZn+tCbJYaDMYfN9oOdeu37i5eat9+87de/c7Ww8OdZorxkcsjVN1HFDNY5HwkREm5seZ4lQGMT8K5q+X+aOCKy3S5IMpMz6WdJqISDBqapp0dvwinViv8rWQrp+JifUNXxglreJRVW37LEzNR79Y7Ew63UF/0Az3auCtgi5ZjYPJVuuPH6YslzwxLKZan3iDzIwtVUawmFdtP9c8o2xOp/ykDhMquR7b5k6V+6SW0I1SVX+JcRv9d4alUutSBnWlpGam13NL/G8ukJd2totm6R7sYIJ47VwmejG2IslywxMGx4ry2DWpu3xONxSKMxOXdUCZEvXNXDajijJTP3rbD3lU/5hmaSvLkKr5VHGeVPb9m1eVHfRc7+lezx3uVe2m1i+otX4gLa2qaiUBSIDCQBhKCBKicBCOEoFEKFOQKcoMZIYiQATKKcgpyhxkjhKDxCgSRKIkIAlKCpKiZCAZyhnIGYoCUSgaRKMYEIOSg+QoBUiBcg5yjrIAWaCUICXKBchFLXXLeOsNcjU43O17w/7w3bPu/stV82ySR+Qx2SYeeU72yVtyQEaEkU/kM/lCvjrfnB/OT+cXlLY2VnMekkvD+f0XJlp/qg==</latexit>

o1 ⇠ ⇡ref(·|x)
<latexit sha1_base64="CBc5TCh6V+uhORVTBy66MkTdB24=">AAAEQHicbdPNbtNAEADgbcxPCX8pHLlYREitFEVOQYFeUAUHOBZE2kp1FK3X62Qbr+3urt24i5+Bp+EKEm/BG3BDXLmA44k0NGUlS6NvZn+tCbJYaON53zdazrXrN25u3mrfvnP33v3O1oNDneaK8RFL41QdB1TzWCR8ZISJ+XGmOJVBzI+C+etl/qjgSos0+WDKjI8lnSYiEoyamiadHb9IJ3a38rWQrp+JifUNXxglreJRVW37LEzNR79Y7Ew6Xa/vNcO9GgxWQZesxsFkq/XHD1OWS54YFlOtTwZeZsaWKiNYzKu2n2ueUTanU35ShwmVXI9tc6fKfVJL6Eapqr/EuI3+O8NSqXUpg7pSUjPT67kl/jcXyEs720WzdA92MEG8di4TvRhbkWS54QmDY0V57JrUXT6nGwrFmYnLOqBMifpmLptRRZmpH73thzyqf0yztJVlSNV8qjhPKvv+zavKej138HSv5w73qnZT6xfUWj+QllZVtZIAJEBhIAwlBAlROAhHiUAilCnIFGUGMkMRIALlFOQUZQ4yR4lBYhQJIlESkAQlBUlRMpAM5QzkDEWBKBQNolEMiEHJQXKUAqRAOQc5R1mALFBKkBLlAuSilrplBusNcjU43O0Phv3hu2fd/Zer5tkkj8hjsk0G5DnZJ2/JARkRRj6Rz+QL+ep8c344P51fUNraWM15SC4N5/dfKi9/qw==</latexit>

o2 ⇠ ⇡ref(·|x)

<latexit sha1_base64="CZvV7tqEXV2sqnv6Ad+LzQ8LvjA=">AAAEQnicbdPdbtMwFABgb+FnlL8OLrmJqJCGVlXNQIXdoAku4HIguk2aS+U4TuvVTjLbyZqZPARPwy1IvASvwB3iFgnSnEpmHZYiHX3n+Dc6YSa4Nv3+97V178rVa9c3brRu3rp95257896BTnNF2ZCmIlVHIdFM8IQNDTeCHWWKERkKdhjOXi3yhwVTmqfJe1NmbCTJJOExp8TUNG5v4yL9YLcrrLn0ccbHFpspM6TawjRKzUdczLu4oIuSx+N2p9/rN8O/HATLoIOWY3+8uf4HRynNJUsMFUTr46CfmZElynAqWNXCuWYZoTMyYcd1mBDJ9Mg2t6r8R7VEfpyq+kuM3+i/MyyRWpcyrCslMVO9mlvgf3OhvLCznTdLd2EHE4qVc5n4+cjyJMsNSygcK86Fb1J/8aB+xBWjRpR1QKji9c18OiWKUFM/ewtHLK5/TbO0lWVE1GyiGEsq++71y8r2u37wZLfrD3arVlOLC2ItDqUlVVUtJQQJnVAQ6iQCiZwwEOYkBomdTEAmTqYgUycchDs5ATlxMgOZOREgwokEkU4SkMRJCpI6yUAyJ6cgp04UiHKiQbQTA2Kc5CC5kwKkcHIGcuZkDjJ3UoKUTs5BzmupWyZYbZDLwcFOLxj0Bm+fdvZeLJtnAz1AD9EWCtAztIfeoH00RBR9Qp/RF/TV++b98H56v6B0fW055z66MLzffwHmaH/W</latexit>

o+ ⇠ ⇡✓(·|x, c+)

The code is compact and simple, but
only handles one-level nesting

The code works for any nesting, but
is somewhat verbose

The code is compact and simple, and
works for any nesting

<latexit sha1_base64="FTJ5Bd+BTQLeMMBAQsmuP6f7Y2U=">AAAE1XicbdPNb9MwFABwdyswytcGRy4RE9ImwpRstLADaIIDHAdiH9JSKsdxWq+xk9lO1s74hrjyx3HiT+FG2hdmumEp0tPvvTxbfnJcZEzpIPjVWlpu37h5a+V2587de/cfrK49PFR5KQk9IHmWy+MYK5oxQQ800xk9LiTFPM7oUTx+N8sfVVQqlovPelrQPsdDwVJGsK5psMqjigxMaF9vmGjezRS5YppV1DaZL+aZtf7frKBDvJh9bu1mpBj3ioGJNJ1oyQ0VlbUbEUly/TWqJn5U5bPizcHqerAVzJd3PQibYB01a3+wtrwfJTkpORWaZFipkzAodN9gqRnJqO1EpaIFJmM8pCd1KDCnqm/mZ7Xe01oSL81l/QntzfXfPwzmSk15XFdyrEfqam6G/83FfGFnM5m39mEHHWdXzqXTV33DRFFqKggcKy0zT+febCRewiQlOpvWASayvnzikRGWmOh6cJ0ooWk9XLh+Pk2wHA8lpcKaT+/fWhP4Xriz63u9XdtZrL0cJBR266Jwu+t7O127WHg5UygMd7d9r24bNA2jChsTxdxga20jMUjshIAQJwlI4oSCUCcpSOpkCDJ0MgIZOWEgzMkpyKmTMcjYSQaSOeEg3IkAEU5ykNxJAVI4OQM5cyJBpBMFopxoEO2kBCmdVCCVk3OQcycTkImTKcjUyQXIRS31GwyvvrjrweH2Vtjb6n18sb73pnmNK+gxeoI2UIheoj30Ae2jA0TQT/S7tdRabh+1bftb+zuULrWafx6hhdX+8Qf8jrMU</latexit>

c1 = (c+
1 , c�1) ⇠ penv(·|x, o1)

<latexit sha1_base64="VV6Wyt+Q2RA7R9yTaD7L/JIQgIM=">AAAE1XicbdPNb9MwFABwdyswylcHRy4RE9ImwpR0bLADaIIDHAdiH9JSKsdxWq+xk9lO1s74hrjyx3HiT+FG2hdmumEp0tPvvTxbfnJcZEzpIPjVWlpu37h5a+V2587de/cfdFcfHqq8lIQekDzL5XGMFc2YoAea6YweF5JiHmf0KB6/m+WPKioVy8VnPS1on+OhYCkjWNc06PKoIgPTs6/XTTTvZopcMc0qapvMF/PMWv9vVtAhXsw+t3YjUox7xcBEmk605IaKytr1iCS5/hpVEz+q8lnxxqC7FmwG8+VdD8ImWEPN2h+sLu9HSU5KToUmGVbqJAwK3TdYakYyajtRqWiByRgP6UkdCsyp6pv5Wa33tJbES3NZf0J7c/33D4O5UlMe15Uc65G6mpvhf3MxX9jZTOatfdhBx9mVc+n0Vd8wUZSaCgLHSsvM07k3G4mXMEmJzqZ1gImsL594ZIQlJroeXCdKaFoPF66fTxMsx0NJqbDm0/u31gS+F27t+t7Oru0s1l4OEgq366Kwt+17W9t2sfByplAY7vZ8r24bNA2jChsTxdxga20jMUjshIAQJwlI4oSCUCcpSOpkCDJ0MgIZOWEgzMkpyKmTMcjYSQaSOeEg3IkAEU5ykNxJAVI4OQM5cyJBpBMFopxoEO2kBCmdVCCVk3OQcycTkImTKcjUyQXIRS31GwyvvrjrwWFvM9zZ3Pn4Ym3vTfMaV9Bj9AStoxC9RHvoA9pHB4ign+h3a6m13D5q2/a39ncoXWo1/zxCC6v94w8NjrMY</latexit>

c2 = (c+
2 , c�2) ⇠ penv(·|x, o2)

<latexit sha1_base64="6jXCWLTGuUMbA5MUugYwv+kLeWg=">AAAErXicbdPdbtMwFABgbyswys86uOQmokIaohpJRwu9AE0gBJcF0W3S0lWO46Re8zfbydpZfiKehkvgZXB7Krx2s2Tp6DvHx5YtB0XChHTd3xubW7U7d+9t368/ePjo8U5j98mRyEtO6IDkSc5PAixowjI6kEwm9KTgFKdBQo+Dyad5/riiXLA8+yFnBR2mOM5YxAiWhkaNz35FztQr/X5P+YtuqsgFk6yi2mRGytPzrG7dnm1D9uWo0XT33cVwbgbeMmii5eiPdrf6fpiTMqWZJAkW4tRzCzlUmEtGEqrrfilogckEx/TUhBlOqRiqxRm088JI6EQ5NzOTzkKvr1A4FWKWBqYyxXIs1nNzvDUXpCs7q+midQt2kEGydi4ZvRsqlhWlpBmBY0Vl4sjcmV+1EzJOiUxmJsCEm2sjDhljjok0D1L3QxqZR4NrTWch5pOYU5pp9f3LR63cluMd9FpOt6frq7X/nwAKO6bIa3dazkFHrxZmNMbXCr1eu+WYtu6yoV9hpfwgVVhrvZQAJLBCQIiVECS0QkGolQgkshKDxFbGIGMrDIRZOQc5tzIBmVhJQBIrKUhqJQPJrOQguZUCpLByAXJhhYNwKwJEWJEg0koJUlqpQCorlyCXVqYgUyszkJmVK5ArI+YPeus/7mZw1N73uvvdb2+ahx+Wv3EbPUPP0R7y0Ft0iL6iPhoggn6iX+gP+lt7XRvU/NoZlG5uLNc8RSujFv8DL8Sjuw==</latexit>

c+ = (c+
1 , c+

2)

Training phase: Collecting (offline) responses from and feedback from <latexit sha1_base64="zZjnm4lWK+8JTasCnuDTtKqFCjk=">AAAEenicbdNNb9MwGAdwby0wyls3jlyiVUggqinp1kIvaIIDHAui26SlqhzHSb3GSWY7XTPLX4UrfCW+CwfSPpG8dliK9Ojnfx47jhzkCZPKdf/s7DaaDx4+2nvcevL02fMX7f2DM5kVgtAxyZJMXARY0oSldKyYSuhFLijmQULPg/nn1fz5ggrJsvSHKnM64ThOWcQIVhVN2wd+zqbaV3SpBNeCRsZM2x33yF0P537h1UUH1WM03W+M/DAjBaepIgmW8tJzczXRWChGEmpafiFpjskcx/SyKlPMqZzo9eaN87qS0IkyUT2pctZ69w2NuZQlD6okx2omt+dW+N+5gG+srJfr1l1YQQXJ1r5U9GGiWZoXiqYEthUViaMyZ3VuTsgEJSopqwITwaovc8gMC0xUdbotP6RR9QfWrTUvQyzmsaA0Nfr7l09Gu13HOx52ncHQtDazeSarXgtaB/tVyOv1u85x32wGUxrjO0Fv2Os6VVu3bugvsNZ+wDU2xtQSgARWCAixEoKEVigItRKBRFZikNjKDGRmhYEwK1cgV1bmIHMrCUhihYNwKylIaiUDyazkILmVa5BrKwJEWJEg0ooCUVYKkMLKAmRh5QbkxsoSZGmlBCmt3ILcmvUd9LZv3P3irHfkDY4G3046px/r27iHXqFD9AZ56D06RV/RCI0RQUv0E/1Cvxt/m4fNt813EN3dqd95iTZG8+QfG+GO1A==</latexit>⇡ref
<latexit sha1_base64="lVjrU6ec9d7zIkTllWqE3z9q8/Y=">AAAEeHicbdNNb9MwGAdwby0wyss6OHKxqBAgVVXS0UIvaIIDHAui26SlqhzHabPGTmY7WTMr34QrfCe+CifSPpG8dliK9Ojnvx87luyncaS04/zZ2280791/cPCw9ejxk6eH7aNnpyrJJGUTmsSJPPeJYnEk2ERHOmbnqWSE+zE785ef1/NnOZMqSsQPXaRsyslcRGFEia5o1m6nM+NpttKSGybyspy1O07P2Qx8t3DrooPqMZ4dNcZekNCMM6FpTJS6cJ1UTw2ROqIxK1teplhK6JLM2UVVCsKZmprN0Uv8qpIAh4msPqHxRm+vMIQrVXC/SnKiF2p3bo3/nfP51s5mtWndhR20H++cS4cfpiYSaaaZoHCsMIuxTvD61nAQSUZ1XFQFoTKq/gzTBZGE6upuW17Awur+N60NLwIil3PJmCjN9y+fSuN0sXs86uLhqGxtZ9NEVb1yVgcHVcjtD7r4eFBuBwWbk1tBd9Tv4qqtUzf0cmKM53NDyrKsxQfxrVAQaiUACawwEGYlBAmtzEHmVhYgCysRSGTlEuTSyhJkaSUGia1wEG5FgAgrCUhiJQVJrVyBXFmRINKKAlFWNIi2koFkVnKQ3Mo1yLWVFcjKSgFSWLkBuSk3b9DdfXF3i9N+zx32ht/edU4+1q/xAL1AL9Eb5KL36AR9RWM0QRTl6Cf6hX43/jZx83XzLUT39+o1z9HWaPb/AdmMjgc=</latexit>penv Test phase: Users generate responses from <latexit sha1_base64="0iH4VP+UsSP/En2G5Y4WD46S2Wg=">AAAEcnicbdNPb9MwFABwby0wyp9tcINLoELiEE1JRwu9oAkOcCyIbpOWqnIcJ/XqOJntdM2ifA2u8LX4HnwA3L5IXjssRXr6+fn5xdILc86U9rw/O7ut9r37D/Yedh49fvJ0/+Dw2anKCknomGQ8k+chVpQzQceaaU7Pc0lxGnJ6Fs4/r/bPFlQqlokfuszpJMWJYDEjWBsKgpxNq0DPqMb19KDrHXnr5dwN/CboomaNpoetURBlpEip0IRjpS58L9eTCkvNCKd1JygUzTGZ44RemFDglKpJtW66dt4YiZw4k+YT2lnr7RMVTpUq09BkpljP1PbeCv+7F6YbN1fLdWkXbtAh3+pLxx8mFRN5oakg0FZccEdnzuq9nIhJSjQvTYCJZObPHDLDEhNtXrUTRDQ2L78uXaVlhOU8kZSKuvr+5VNdea7jHw9dZzCsO5u5eaZMrQVtEvsmye/1Xee4X28mCprgW4n+sOc6pqzXFAwWuKqCMK1wXdeNhCChFQJCrEQgkRUKQq3EILGVBCSxMgOZWWEgzMolyKWVOcjcCgfhVlKQ1IoAEVYykMxKDpJbuQK5siJBpBUFoqxoEG2lACmsLEAWVq5Brq0sQZZWSpDSyg3IjREzg/72xN0NTntH/uBo8O1d9+RjM4176CV6jd4iH71HJ+grGqExIihHP9Ev9Lv1t/2i/ardjO7uTnPmOdpYbfcfLy+LpA==</latexit>⇡✓

Figure 1: Learning from mixed verbal feedback. The instruction x is “Write a Python function
flatten(lst) that returns a flat list of integers”. The reference policy πref may assign low probability to
the ideal response o+, making purely positive response-feedback pairs (o+, c+) rare in the training
data collected from πref and penv. This resembles the setting of text-to-image generation, where the
language prior enables models to combine seen captions (analogous to mixed feedback c1 and c2)
and generate rare images (analogous to purely positive response o+) such as “a banana surfing on the
ocean” (Figure 4). Motivated by this, our model πθ is trained as a feedback-conditional policy (FCP),
and when conditioning on user-defined positive c+, there is πθ(o|x, c+) ∝ πref(o|x) · penv(c

+|x,o).

Scalarization has long been seen as unavoidable, bridging verbal feedback and the numerical signals
required by RL. With the rise of large-scale language pretraining, however, this view is being re-
examined (Yao, 2025). LLMs embody strong commonsense and linguistic priors, suggesting a new
paradigm: treat verbal feedback as a first-class training signal, rather than forcing it into a scalar form.

After all, LLMs already show the ability to implicitly understand verbal feedback. In agentic tasks,
they iteratively adapt by integrating feedback prompts from human users, external critiques, or tool
calls into their context and refining their responses accordingly (Wang et al., 2025b; Novikov et al.,
2025). This indicates that LLMs can process verbal feedback, but only implicitly, through a latent

“mental model” that does not convert understanding into explicit scalar rewards. The key question,
then, is how to distill such feedback into training so that it directly improves model performance,
rather than relying on inefficient multi-turn trial and error at test time.

To this end, we propose to learn a feedback-conditional policy (FCP) πθ(o|x, c) ∝ πref(o|x) ·
penv(c|x,o), where πref(o|x) is a reference policy that generates a response o given an instruction
x, and penv(c|x,o) is the distribution of environment feedback c. Intuitively, the FCP reweighs the
reference policy by how likely each response o would elicit the observed feedback c. Conditioning on
positive feedback c+ gives πθ(o|x, c+) ∝ πref(o|x) · penv(c

+|x,o), which increases the probability
of generating responses that are more likely to receive favorable feedback. In this way, the FCP learns
a posterior distribution that integrates prior knowledge from πref with verbal feedback, allowing it to
handle diverse forms of feedback, including mixed ones, as illustrated in Figure 1.

After training an offline FCP πθ(o|x, c) ∝ πref(o|x) · penv(c|x,o) that conditions on arbitrary feed-
back c, we further improve it through online bootstrapping. Concretely, we conduct online training
by sampling rollouts from the behavior policy πθ(o|x, c+) (goal-conditioned on positive feedback),
and re-annotating them with fresh feedback from penv, thereby iteratively strengthening the policy.

Our pilot experiments show that FCP matches or surpasses strong scalar-based baselines such as
offline RFT (Dong et al., 2023) and online GRPO (Shao et al., 2024), without relying on verifiers,
scalar conversion, or data filtering. This demonstrates a simple and scalable framework that
preserves the richness of verbal feedback while avoiding the scarcity of rule-based verifiers and the
risk of reward hacking. While our current implementation is naive, advanced training techniques
could further improve FCP’s performance.

2 LEARNING DIRECTLY FROM VERBAL FEEDBACK

Traditional RL methods train a policy by up-weighting responses that receive “good” feedback
and down-weighting those that receive “bad” feedback. From a probabilistic view, RL can be
seen as learning a posterior over responses that are expected to receive good feedback (i.e., high
rewards) (Peters & Schaal, 2007; Peng et al., 2019; Rafailov et al., 2023). Distinguishing what counts
as good or bad typically requires carefully designed reward functions or detailed rubrics to produce
scalar signals, leading to the limitations discussed in Section 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our approach is inspired by language priors in text-to-image generation, where models compose
unseen prompts from mixed captions (Figure 4). Similarly, language priors could enable LLMs to ab-
sorb diverse verbal feedback and yield high-quality responses beyond scalar reinforcement (Figure 1).
Since LLMs already show implicit feedback understanding, we train directly on it: offline to initialize a
feedback-conditional policy (FCP) (Section 2.1), then online to bootstrap performance (Section 2.2).

2.1 OFFLINE TRAINING: INITIALIZING FEEDBACK-CONDITIONAL POLICY

We begin with a reference policy model πref that takes an input instruction x and generates a response
o ∼ πref(·|x). The response o then undergoes a single-turn interaction with the environment, which
provides verbal feedback c ∼ penv(·|x,o). The reference policy πref may represent a base model,
an instruction-tuned model, or a reasoning model, and the response o can include both thinking
processes and the final answer. The environment penv may consist of human users or generative
reward models. In the offline setting, where responses are collected from πref, we define the joint
distribution of response-feedback pairs as Poff(o, c|x) ≜ πref(o|x) · penv(c|x,o), from which we
derive the feedback-conditional posterior distribution:

Poff(o|x, c) =
Poff(o, c|x)
Poff(c|x)

=
πref(o|x) · penv(c|x,o)∑
o πref(o|x) · penv(c|x,o)

. (1)

Informally, let c+ denote purely positive feedback and c− purely negative one. Mixed feedback
can be approximated as c = (c+, c−), while neutral or uncertain feedback may be neither. If we
condition on positive feedback c+, for instance, “The generated code is functionally
correct, efficient, and compact” for a coding instruction x, then Poff(o|x, c+) ∝
πref(o|x) · penv(c

+|x,o), which favors responses o that are more likely to elicit positive feedback.1

While Poff(o|x, c+) ∝ πref(o|x) · penv(c
+|x,o) appears to be the oracle policy we are seeking, it

cannot be directly sampled from, because penv(c
+|x,o) is defined only after the full response o is

generated, and thus cannot guide generation step by step. We therefore aim to learn a policy that ap-
proximates Poff(o|x, c+). Following Rafailov et al. (2023), we show that Poff(o|x, c+) is the optimal
solution to a KL-constrained reward maximization problem with reward function log penv(c

+|x,o):
Poff(o|x, c+) ∈ argmaxπ Eπ(o|x,c+) [log penv(c

+|x,o)]− DKL (π(o|x, c+)||πref(o|x)) . (2)

In the special case where the environment provides verifiable rewards, that is, penv(c
+|x,o+) = 1

for correct responses o+ and penv(c
+|x,o−) = 0 for incorrect responses o−, we can show that

Poff(o|x, c+) reduces to the optimal solution of a 0-1 binary reward maximization problem without
KL regularization: Poff(o|x, c+) ∈ argmaxπ Eπ(o|x,c+) [1(o is o+)] (proof is in Appendix A.1).

Alternative learning objective. In more general scenarios, particularly when feedback comes from
human users, solving Eq. (2) is typically intractable. This is because we can only sample from penv
but cannot compute the exact log-likelihood log penv(c

+|x,o). Note that the objective in Eq. (2) is
equivalent to minimizing the reverse KL divergence between π(o|x, c+) and Poff(o|x, c+):
max
π

Eπ

[
log penv(c

+|x,o)
]
−DKL

(
π(o|x, c+)||πref(o|x)

)
⇔ min

π
DKL

(
π(o|x, c+)||Poff(o|x, c+)

)
,

which is derived in Eq. (7). To avoid intractability of computing log penv(c
+|x,o) in the reverse

KL divergence, we instead turn to minimize the forward KL divergence between π(o|x, c+) and
Poff(o|x, c+). This relaxation is standard in KL-constrained LM training, where forward-KL
objectives have been used for distributional or reward-conditioned generation (Khalifa et al., 2020;
Korbak et al., 2022; Pandey et al., 2024), though our setting differs in conditioning on rich verbal
feedback. In practice, however, we can only obtain feedback from penv(c|x,o), and it is infeasible to
sample exclusively from the constrained subset of positive feedback penv(c

+|x,o) without carefully
designed rubrics or filtering. To address this, we generalize the objective: rather than approximating
only Poff(o|x, c+), we learn to approximate Poff(o|x, c), conditioning directly on any feedback c.

Specifically, we propose to learn a feedback-conditional policy (FCP) πθ(o|x, c) by minimizing
the expected forward KL divergence between πθ(o|x, c) and Poff(o|x, c):
min
πθ

EPoff(c|x) [DKL(Poff(o|x, c)||πθ(o|x, c))]⇔max
πθ

EPoff(c|x)
[
EPoff(o|x,c) [log πθ(o|x, c)]

]
⇔max

πθ

Eπref(o|x)
[
Epenv(c|x,o) [log πθ(o|x, c)]

]
,

(3)

1Conditioning on negative feedback c− would similarly favor poor responses, though this is rarely useful.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Offline training: Initializing feedback-conditional policy (Section 2.1)

Inputs: Reference policy πref(o|x), feedback environment penv(c|x,o), feedback-conditional policy
πθ(o|x, c), instruction corpus X , batch size B, optimizer O

Outputs: The offline-trained parameters θoff

1: Initialize πθ(o|x, c) = πref
(
o
∣∣[<EF>c</EF>,x]) , where <EF> and </EF> are special to-

kens used to wrap the expected feedback c, which is concatenated before the instruction x
2: Collect offline dataset Doff = {(x,o, c)} with x∼X , o∼πref(·|x) then c∼penv(·|x,o)
3: Objective: maxθ E(x,o,c)∼Doff [log πθ(o|x, c)] // Taking expectation over x∼X in Eq. (3)
4: while not converged do
5: Sample {(xi,oi, ci)}Bi=1∼Doff; θ ← O.step

(
θ,∇θ

1
B

∑B
i=1 log πθ(oi|xi, ci)

)
6: return θoff ← θ

where the second equivalence follows from the identities Poff(c|x) · Poff(o|x, c) = Poff(o, c|x) =
πref(o|x) · penv(c|x,o). This objective in Eq. (3) reduces to maximum likelihood training, which is
straightforward to implement and optimize with data collected from πref(o|x) and penv(c|x,o), as
described in Algorithm 1. Its optimal solution is π∗

θ(o|x, c) = Poff(o|x, c) on the support set of
Poff(c|x). Notably, our approach does not require explicitly distinguishing positive c+ from negative
c−; the language prior embedded in LLMs can implicitly interpret and combine information from
diverse forms of feedback, including mixed ones as seen in Figure 1. At test time, users may specify
desired positive feedback c+, and responses can be generated from πθ(o|x, c+).
Remark I: why using Poff(c|x)? In Eq. (3), the expectation on c is taken w.r.t. Poff(c|x). In principle,
any other distribution p(c|x) could be used, and the optimal solution π∗

θ(o|x, c) = Poff(o|x, c)
would remain unchanged on the support supp(p(·|x)). We adopt Poff(c|x) mainly for two reasons:
(i) its support set supp(Poff(·|x)) =

⋃
o∈supp(πref(·|x)) supp(penv(·|x,o)) covers all feedback that

may be encountered when collecting offline data; (ii) it serves as a compensating distribution
that converts the intractable posterior expectation Poff(o|x, c) into the tractable joint expectation
Poff(o, c|x) = πref(o|x) · penv(c|x,o), which is convenient to sample from.

Remark II: FCP as inverse dynamics. We observe that our FCP learning in Eq. (3) aligns with
modeling inverse dynamics (Brandfonbrener et al., 2023), complementing supervised finetuning
(SFT) as behavior cloning, and critique finetuning (CFT) (Wang et al., 2025a) as forward dynamics.
A detailed discussion of this analogy is provided in Appendix A.2.

2.2 ONLINE TRAINING: BOOTSTRAPPING BY CONDITIONING ON POSITIVE FEEDBACK

We denote the model obtained by solving the offline problem in Eq. (3) as πθoff(o|x, c), which is
capable of generating responses conditioned on any user-defined feedback c. Building on this model,
we further perform online training to bootstrap performance by conditioning explicitly on positive
feedback c+. Concretely, we iteratively update parameters θt+1 using rollouts from πθt(o|x, c+) for
t ∈ N, with θ0 = θoff initialized from the offline solution, as described in Algorithm 2.

Formally, we define the joint distribution Pθt(o, c, c
+|x) ≜ puser(c

+|x) ·πθt(o|x, c+) · penv(c|x,o),
where puser(c

+|x) denotes the distribution (fixed or trainable) of user-specified expected positive
feedback. The corresponding feedback-conditional posterior is

Pθt(o|x, c) =
Pθt(o, c|x)
Pθt(c|x)

=

∑
c+ puser(c

+|x) · πθt(o|x, c+) · penv(c|x,o)∑
o

∑
c+ puser(c+|x) · πθt(o|x, c+) · penv(c|x,o)

. (4)

The optimization objective for updating θt+1 based on θt (with gradients stopped through θt) is

min
πθt+1

EPθt (c|x)
[
DKL(Pθt(o|x, c)||πθt+1

(o|x, c))
]

⇔ max
πθt+1

EPθt (c|x)
[
EPθt (o|x,c)

[
log πθt+1(o|x, c)

]]
⇔ max

πθt+1

Epuser(c+|x)
[
Eπθt (o|x,c+)

[
Epenv(c|x,o)

[
log πθt+1

(o|x, c)
]]]

.

(5)

Intuition. In each training round t (distinct from the s-th gradient steps taken within a round), the
current model πθt is conditioned on c+ to sample candidate positive responses. These responses are

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 2 Online training: Bootstrapping by conditioning on positive feedback (Section 2.2)

Inputs: Initialize θ0 = θoff from Algorithm 1, user-desired feedback puser(c
+|x), environment

penv(c|x,o), instruct. corpus X , training rounds T , steps per round S, batch size B, optimizer O
Outputs: The online-bootstrapped parameters θT

1: for t = 1 to T do
2: θt ← θt−1

3: for all instructions x ∼ X sampled in this round do
4: Rollout c+ ∼ puser(·|x) , o ∼ πθt−1

(·|x, c+) then obtain fresh critique c ∼ penv(·|x,o)
5: Push (x,o, c) to buffer Bton // c is usually different (at least linguistically) from c+

6: Objective: maxθtE(x,o,c)∼Bt
on
[log πθt(o|x, c)] // Taking expectation over x∼X in Eq. (5)

7: for s = 1 to S do
8: Sample {(xi,oi, ci)}Bi=1 ∼ Bton; θt ← O.step

(
θt,∇θt

1
B

∑B
i=1 log πθt(oi|xi, ci)

)
9: return θT

then re-annotated with fresh feedback c from the environment. Over successive rounds, the model
learns to identify cases where conditioning on c+ does not in fact yield positive critiques, while
reinforcing those that align with the expected feedback. This iterative process bootstraps the model,
progressively strengthening alignment with user-specified positive feedback. Moreover, following
Lanchantin et al. (2025), the number of gradient steps S between rounds can be flexibly adjusted,
allowing the procedure to interpolate between fully online and semi-online training.

Test-time usage. At test time, FCP does not require any environment-generated feedback. If the user
wishes, they may provide a desired feedback condition cuser. When no such condition is given, we
automatically obtain a positive feedback description by prompting an LLM with instructions such
as: “Provide several possible positive feedback descriptions for the
following query.” This produces a suitable c+ for conditioning. The model then generates an
output o using the feedback conditional policy πθ(o|x, c+). This is a single-pass generation process
that does not require any iterative refinement. In practice, inference simply consists of prepending the
selected feedback description to the input prompt.

3 EXPERIMENTS

We evaluate FCP on mathematical and general reasoning tasks, aiming for a direct comparison with
scalar-based methods. We choose reasoning tasks as the testbed because scalarized RL has been
especially successful in this domain (Guo et al., 2025; Ma et al., 2025), making it a strong and
convincing benchmark. Showing that FCP performs comparably under such demanding conditions
provides a rigorous test of its effectiveness. As shown in Section 3.2, FCP indeed matches scalar
pipelines, with more design choices presented in our ablation studies (Section 4).

3.1 SETUP

Datasets and models. For mathematical reasoning, we use Big-Math (Albalak et al., 2025),
a 251k-problem dataset curated for training and evaluation. For general reasoning, we use
WebInstruct (Yue et al., 2024) from GENERAL-REASONER (Ma et al., 2025). Its multi-domain,
free-form answers are unsuitable for rule-based filters, so prior work relies on generative reward
model—making it a natural testbed to contrast verbal conditioning with scalar-reward pipelines. As
pilot experiments, our base model is Qwen2.5-7B-base (Yang et al., 2024).

Feedback environment simulation. Human feedback is costly and difficult to standardize in both
quality and style. We therefore simulate the feedback environment with GPT-5-nano, which
provides feedback for both offline (Algorithm 1) and online (Algorithm 2) training. Our method only
requires feedback to be non-deceptive (following penv), rather than a detailed breakdown, making
lightweight models sufficient. To implement this, we design a unified prompt template (Figure 6) that
first elicits a low-quality, real-world user-style feedback, then a high-quality, professional reviewer-
style feedback covering multiple aspects, and finally a scalar score summarizing overall quality. This
setup ensures that the same feedback source supplies both the verbal conditions for FCP and the
scalar rewards for RL baselines, enabling a fair comparison.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Math (in-domain) and IFEval (out-of-distribution) results. Here Avg. denotes mean
accuracy (%) over five math benchmarks. CFT is critique finetuning (Wang et al., 2025a), see
Section 4.2, and Critique-GRPO is adopted from Zhang et al. (2025).

Offline Algo. Scalar In-Domain OOD
+ Online Algo. Reward AIME24 AIME25 MATH500 Minerva Olympiad Avg. IFEval

Base - 7.5 ±1.7 6.7 ±0.0 63.8 ±63.8 28.3 ±0.8 28.6 ±0.4 27.0 ±0.5 36.8
+ GRPO ✓ 20.0 ±0.0 13.3 ±2.7 75.7 ±1.7 42.3 ±1.3 40.8 ±0.5 38.4 ±0.9 38.5
+ Critique-GRPO ✓ 15.0 ±1.9 9.2 ±1.7 76.8 ±0.3 36.1 ±0.9 40.1 ±0.5 35.4 ±0.6 39.0

RFT ✓ 13.3 ±0.0 3.3 ±0.0 69.2 ±0.6 32.4 ±0.6 33.8 ±0.9 30.4 ±0.0 37.5
+ GRPO ✓ 25.8 ±1.7 9.2 ±1.7 75.1 ±0.7 36.8 ±0.9 38.9 ±0.1 37.1 ±0.5 38.8
+ Critique-GRPO ✓ 16.7 ±4.7 9.2 ±5.0 75.2 ±0.4 35.8 ±0.7 39.6 ±0.5 35.3 ±1.2 38.6

CFT ✗ 1.7 ±3.3 0.0 ±0.0 27.0 ±3.2 9.2 ±6.4 7.7 ±1.4 9.1 ±1.3 -

FCP ✗ 6.7 ±0.0 3.3 ±3.8 68.9 ±1.0 31.2 ±1.1 32.4 ±1.1 28.5 ±1.1 38.6
+ Bootstrap ✗ 25.0 ±3.3 7.5 ±1.7 76.5 ±0.7 45.8 ±0.7 38.8 ±0.6 38.7 ±0.7 39.0

Baselines. We compare against two strong baselines: Rejection Sampling Finetuning (RFT) and
GRPO (Dong et al., 2023; Shao et al., 2024). RFT filters responses by correctness and finetunes
only on the correct ones, which in the offline case reduces to training on a binary scalar score
(correct/incorrect). While simple and effective, it depends on reliable filtering and a stable verifier.
GRPO instead uses group-normalized scalar rewards to estimate advantages and has become one of
the strongest online methods, especially in math reasoning where answers can usually be verified
automatically. Both baselines rely on scalar-based filtering or scoring, making them dependent on
high-quality verifiable data and an auxiliary verifier. Even rubric-based reward shaping (Zhou et al.,
2025b) still loses much of the feedback richness. Our experiments thus offer a stringent comparison
between scalar-reward pipelines (RFT/GRPO) and FCP learning.

Training details for FCP. In the offline stage (Algorithm 1), the base model generates 8 candidate
responses per prompt. We discard prompts where all responses are entirely correct or incorrect, then
sample one correct and one incorrect response for GPT-5-nano to provide feedback. All collected
feedback is used to train FCP, while a pool of positive feedback {c+} is built from the scalar scores
in the feedback. In the online stage (Algorithm 2), for each prompt x we sample a desired condition
c+∼ puser(·|x) by drawing from the pool {c+}. For rollout, the prompt batch size is 2048 with 4
responses per prompt; for training, the mini-batch size is 512, giving 4 gradient updates per rollout
step. Each response receives a fresh professional reviewer-style feedback from GPT-5-nano, which
is concatenated with the prompt and response (using the Algorithm 1 wrapper <EF> and </EF>) for
cross-entropy training. This bootstrapping loop improves response quality under desired conditions
while grounding updates in new feedback. For fair comparison, GRPO is trained with the same scalar
scores from GPT-5-nano under the identical prompt template.

Evaluation. We assess mathematical reasoning on AIME24&25, MATH500 (Hendrycks et al., 2021),
Minerva-Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), and general reasoning
on GPQA-Diamond (Rein et al., 2024), MMLU-Pro (Wang et al., 2024), and TheoremQA (Chen et al.,
2023). To test instruction-following beyond the training domain, we also include IFEval (Zhou et al.,
2023). All benchmarks use a unified protocol: each dataset is run under four random seeds 2, with
mean accuracy reported. Inference uses vllm (Kwon et al., 2023) with greedy decoding and a max-
imum generation length of 8192 tokens. For FCP, we match the training setup by randomly sampling
one feedback condition from {c+} for each question and prepending it to the prompt template.

3.2 MAIN RESULTS

Offline FCP is comparable to RFT. On Qwen2.5-7B-base, offline FCP attains 28.8% average
accuracy on the math suite, between the base model (27.0%) and RFT (30.4%) (Table 1). General
reasoning shows the same order: 38.7%, 43.5%, and 44.6% for base, FCP, and RFT (Table 2).
This is expected, since FCP directly learns from all response-feedback pairs without filtering and
therefore inevitably absorbs noise, whereas RFT benefits from elaborate correctness filtering. Still,
FCP remains competitive under noisier supervision.

2For MMLU-Pro, the large test set size (∼12k questions) simultaneously leads to a high evaluation cost and
an inherently small variance (typically ≤ 0.3). Consequently, we report results based on a single evaluation run
for this benchmark.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70
Step

28

30

32

34

36

38

A
cc

ur
ac

y
GRPO
RFT+GRPO
FCP+Bootstrap

(a) Average accuracy over five math benchmarks
measured at intermediate checkpoints.

0 10 20 30 40 50 60 70
Step

0.60

0.65

0.70

0.75

0.80

R
ew

ar
d

GRPO
RFT+GRPO
FCP+Bootstrap

(b) Scalar scores assigned by GPT-5-nano to
model rollouts during training.

Figure 2: Training dynamics of FCP and scalar-based baselines. (a) FCP+Bootstrap matches
GRPO and RFT+GRPO accuracy within 30 steps. (b) In contrast, its scalar reward scores lag behind,
consistent with the fact that FCP does not directly optimize against reward model’s preference.

Table 2: General reasoning results. Accuracy (%) across three benchmarks and their average.

Offline Algo. Scalar GPQA-Diamond MMLU-Pro TheoremQA Average+ Online Algo. Reward
Base - 27.9 ±1.0 49.7 38.6 ±0.2 38.7 ±0.4

+ GRPO ✓ 32.5 ±5.3 49.7 49.4 ±1.4 43.9 ±1.7

RFT ✓ 35.2 ±1.3 55.0 43.7 ±0.9 44.6 ±0.2

+ GRPO ✓ 37.2 ±2.5 57.0 48.3 ±0.2 47.5 ±0.8

FCP ✗ 35.0 ±2.9 53.6 42.0 ±1.0 43.5 ±0.6

+ Bootstrap ✗ 39.1 ±2.9 55.3 49.1 ±0.5 47.8 ±0.9

Bootstrapping enables FCP to rival scalarized RL baselines. Online bootstrapping lifts FCP
from 28.8% to 38.7% average accuracy on the math suite (Table 1), slightly surpassing GRPO
(38.4%). A similar trend appears in out-of-distribution case: on IFEval, FCP+Bootstrap reaches
39.0%, comparable to GRPO (38.5%) and RFT+GRPO (38.8%). General reasoning benchmarks
(Table 2) show the same pattern, with FCP+Bootstrap at 47.8%, matching the best scalar-based
baseline (47.5%). These results indicate that bootstrapping gives FCP the effectiveness of scalarized
RL while retaining the advantage of learning directly from richer verbal feedback.

3.3 LEARNING DYNAMICS OF FCP

FCP enables controllable behavior across diverse feedback conditions. A core question is
whether the policy truly learns the conditioning signal c—and, if so, whether this lets us absorb
negative samples into training without hurting best-case performance. We probe this by sampling
representative feedback from the offline pool and evaluating under several conditions.

Table 3 shows a sharp contrast on MATH500: accuracy is 68.5% under fully_positive but only
17.1% under fully_negative, far below the base model’s 63.8% (Table 1). This indicates the
model internalizes the control signal: negative conditions induce poor behavior when requested, yet
positive conditions still yield strong accuracy—showing that including negative samples in training
(using the same cross-entropy loss as positives) does not cap performance under positive ones.

Other conditions also shift behavior as intended. Under neutral, where the condition c asks for
a correct answer and a more verbose solution, accuracy drops slightly but response length grows,
reflecting a trade-off. With has_code, the share of responses containing code rises to 74.3%,
confirming that stylistic attributes in c are also followed. Compared to Qwen2.5-7B-Instruct,
which shows little variation across conditions due to training only on verified positives, FCP learns to
map feedback c to distinct behaviors, enabling broad data use without manual filtering.

FCP achieves strong accuracy without over-optimizing scalar rewards. As seen in Figure 2a, both
FCP and GRPO reach peak accuracy within 30 online steps, with scalar scores from GPT-5-nano
rising sharply at the start. Yet Figure 2b shows FCP’s scores lagging behind GRPO’s later, since it
does not directly optimize against the scalar reward model. Crucially, FCP sustains high accuracy

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70
Step

300

350

400

450

500

550

R
es

po
ns

e
L

en
gt

h

w/ concise
w/o concise

(a) Average response length over training steps.

0 10 20 30 40 50 60 70
Step

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

C
ro

ss
-E

nt
ro

py
 L

os
s

w/ concise
w/o concise

(b) Cross-entropy loss over training steps.

Figure 3: Effect of length-related conditions on bootstrapping stability. Both curves are smoothed
with a 10-step moving average. (a) Without filtering, response length decreases over time, while
filtering out length-related conditions leads to steady growth. (b) The corresponding loss curves show
greater instability when length-related conditions are included.

Table 3: Comparison under different feedback conditions. Accuracy (%), code ratio (proportion
of responses containing code), and average response length are all measured on MATH500.3

Example 1 Example 2 Example 3 Example 4

Feedback type fully_positive fully_negative neutral has_code

Content Accurate and clear;
concise and coherent

reasoning; correct
conclusion.

Incoherent and
incomplete. Random

and unfocused. Unclear
and disorganized.

Correct and readable
overall, but the solution
is verbose and could be
streamlined for tighter

logical flow.

Correct and clear,
though slightly verbose
with superfluous code.

Accuracy Instruct 76.2 77.4 77.5 76.6
FCP 68.5 17.1 61.1 53.9

Code Ratio Instruct 0 0 0 0
FCP 22.7 55.6 46.3 74.3

Response Length Instruct 632 650 638 661
FCP 605 1442 722 659

despite lower scores, indicating it avoids the reward-hacking behavior often seen in scalar-based
methods and underscoring verbal feedback as a more robust training signal.

Length-related conditions destabilize FCP bootstrapping. We find that feedback conditions c+
tied to output length, such as conciseness, can destabilize online bootstrapping. As shown in Figure 3,
these conditions cause average response length to shrink over time while the loss becomes unstable.
This likely reflects a feedback loop: concise rollouts receive affirming feedback, and cross-entropy
updates further shorten responses, eventually collapsing output length. Filtering out length-related
conditions instead yields steadily longer responses, mirroring GRPO’s training behavior (Guo et al.,
2025) and supporting the view that reliable math solving benefits from extended reasoning traces.

4 ABLATION STUDIES

Unless otherwise noted, we use the following default configuration: For rollout, the prompt batch size
is 512 with 4 responses generated per prompt. For training, the mini-batch size is 512, corresponding
to a single gradient update per rollout step, which yields a fully online setting. All rollouts of the same
prompt share an identical feedback condition c+. Training uses token-level mean loss aggregation,
with fresh feedback c provided in the professional reviewer-style by GPT-5-nano.

4.1 REAL-WORLD USER VS. PROFESSIONAL REVIEWER STYLE

Real-world user feedback is abundant and inexpensive but often noisy and inconsistent; professional
reviewer feedback is higher quality but costly and less scalable. We therefore ask: how much feedback
quality does FCP actually require? We use a unified prompt that asks GPT-5-nano to produce both
a low-quality real-world user-style feedback and a high-quality professional reviewer-style feedback
in a single response. As shown in Table 4, user-style feedback is typically subjective and colloquial,
whereas reviewer-style feedback is precise and structured.

3For the Instruct model, evaluation prompts are wrapped as “Your answer should be expected
to get the following critique: <feedback_content>\n{question}”.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Examples of feedback in real-world user-style and professional reviewer-style.

Role Critique Type Examples

Real-World
User

fully_positive That looks right to me, concise and easy to follow. I’m satisfied
with the final result.

fully_negative I have no idea what you were trying to say—the response is
nonsense and not helpful at all.

neutral I’m not completely sure about the logic, but the final answer
matches the number I was expecting.

Professional
Reviewer

fully_positive Correct and clear; succinct and logically sound, with concise
and effective reasoning.

fully_negative Incorrectly structured and incoherent. The reasoning is absent
and the content is unusable.

neutral Correct final result but unclear and incomplete reasoning; con-
cise yet insufficiently rigorous.

Table 5: Ablation results on hyperparameter choices, data sources, and feedback settings. Reported
numbers are average accuracy on math benchmarks; ∆ shows change relative to the default setting.

Variant Changed Setting(s) Avg Acc ∆

Default —— 35.3 0.0

w/ user style feedback critique_type=user 32.8 -2.5
w/ partial online prompt_bsz=2048 38.7 +3.4
w/ unbiased loss loss_agg_mode=seq-mean-token-sum 36.0 +0.7
w/ smaller batch size train_bsz=ppo_mini_bsz=256 37.7 +2.4
w/ more diverse c+ use random c+ per rollout 34.1 -1.2
w/ different dataset use MATH-Train split 34.3 -1.0

Table 5 shows that using only user-style feedback (offline and online) lowers math-suite accuracy by
2.5 points relative to reviewer-style feedback, yet still delivers a +5.8 gain over the base model (27%;
Table 1). While reviewer-style feedback is more effective, user-style feedback remains surprisingly
competitive after FCP training. Its lower cost and broad availability make it a practical source for
scaling, with reviewer-style feedback reserved for targeted quality improvements.

4.2 ADDITIONAL TRAINING DESIGN CHOICES AND COMPARISON TO CFT

We further study how different design choices affect FCP training, with results summarized in Table 5.

Online update strategy. Compared to the fully online setup, using a larger prompt batch size of 2048
while keeping the mini-batch size fixed at 512 results in four gradient updates per rollout step, and
yields better accuracy. This suggests that partial online updates can improve optimization efficiency.

Loss aggregation. In Algorithm 2, cross-entropy on self-sampled responses reduces to policy
gradient with unit advantages, which suffers from length bias (Liu et al., 2025a). A debiased scheme
averaging at the sequence level and summing at the token level gives a consistent +0.7% gain.

Other variations. We also experimented with several alternative configurations. Reducing the
training batch size to 256 improves accuracy by about +2.4%. Training the online stage on a dataset
different from that used for offline pretraining slightly underperforms the default baseline, yet remains
+5.5% above the offline-only initialization, indicating that offline and online datasets need not be
strictly aligned for FCP to be effective.

Comparison to Critique Finetuning (CFT). CFT can perform well with high-quality and detailed
critiques (Wang et al., 2025a), but applying it to the same coarse and lightweight feedback used for
FCP leads to severe degradation—worse than the base model (Table 1). This highlights a key strength
of FCP: it effectively leverages coarse, high-level feedback without costly fine-grained annotations.

5 RELATED WORK

SFT and RL methods for reasoning. The ability to perform reasoning has become a defining
strength of LLMs, enabling progress across mathematics, coding, and scientific domains (Jaech
et al., 2024; Comanici et al., 2025). To enhance these skills, two approaches have proven especially
influential: SFT and RL (Uesato et al., 2022; Rafailov et al., 2023; Guha et al., 2025; Hu et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

2025; Hochlehnert et al., 2025). Following the success of the DeepSeek-R1 recipe (Shao et al.,
2024; Guo et al., 2025), a number of RL variants have been introduced, including Dr. GRPO (Liu
et al., 2025a), DAPO (Yu et al., 2025), REINFORCE++ (Hu, 2025), and VAPO (Yue et al., 2025).
Beyond algorithmic proposals, researchers have systematically investigated the RL design space
for reasoning (Zeng et al., 2025; Team et al., 2025), examining factors such as staged training
curricula (Wen et al., 2025; Luo et al., 2025) and reward formulation (Gao et al., 2024; Cui et al.,
2025; Qi et al., 2025; Zhou et al., 2025a). While much of the initial progress focused on mathematics,
these methods have more recently been extended to software engineering and code reasoning (Liu &
Zhang, 2025; Xie et al., 2025; Wei et al., 2025; Yang et al., 2025; Chen et al., 2025), as well as to
broader agentic applications (Wang et al., 2025b; Jin et al., 2025; Jiang et al., 2025; Xue et al., 2025).

Learning from verbal feedback. Most existing approaches convert verbal feedback into scalar
rewards for RL training (Kim et al., 2024; Ankner et al., 2024; Lightman et al., 2024; Stephan et al.,
2024; Whitehouse et al., 2025; Liu et al., 2025b). More recent efforts explore learning directly from
feedback or critiques: Lloret et al. (2024) propose conditional SFT based on toxicity categorization in
alignment tasks, CFT (Wang et al., 2025a) trains models to imitate critiques, Critique-GRPO (Zhang
et al., 2025) incorporates critique-guided refinements into online RL, Salemi & Zamani (2025) jointly
optimize a feedback model and a policy model, and Chen et al. (2024) introduce a refinement model
that corrects errors using feedback. These approaches generally assume feedback is high-quality,
informative or categorized, and reliably improves self-refinement. In practice, however, human
feedback is often mixed, free-form, emotional, or uncertain. Moreover, while such feedback is easy to
collect, its distribution is difficult to model with generative reward models that must capture diverse
user interaction styles. In contrast, our FCP framework does not require feedback to be high-quality
or rubric-constrained; by treating feedback as a conditioning signal rather than a prediction target, it
can flexibly exploit the full range of verbal feedback, including noisy or mixed forms, for training.

6 DISCUSSION AND FUTURE DIRECTIONS

Our key insight is that the essence of RL lies in online interaction with the environment, not in
scalar rewards or any specific algorithm. Scalarization was historically necessary for control-centric
RL in robotics or strategy-centric RL in games, but it may not be intrinsic to language-centric
systems like LLMs. This reopens the debate around the reward hypothesis: earlier critics could only
offer counterexamples without an alternative framework (Skalse & Abate, 2022), whereas our FCP
approach leverages language priors to provide a principled way to bypass scalar rewards. Crucially,
during training, feedback c is a dependent variable generated from the environment penv(c|x,o)
and cannot be directly controlled, while at test time the conditioning feedback c+ becomes an
independent variable freely specified by users. This asymmetry enables full use of diverse feedback
during training while allowing precise controllability at inference. By directly mapping feedback
to responses, our FCP bypasses reward imbalance, preserves feedback richness, and improves data
efficiency. Unlike RFT (Dong et al., 2023; Touvron et al., 2023), which discards many useful data
pairs, FCP retains diverse feedback, including mixed and uncertain, and can merge complementary
signals across examples at test time (Figure 1). This establishes verbal feedback as a first-class
training signal and FCP as a natural, scalable alternative to scalarized RL.

Future directions. Several extensions of FCP are promising. One is to combine it with verifiable
rewards, for instance by treating the absence of feedback as a neutral condition (e.g., using the null
feedback token <EF></EF>), so that reliable scalar supervision can complement verbal feedback
when available. Another is to extend FCP to multi-turn interactions, where feedback is incorporated
before the next turn of generation in a teacher-forcing style, enabling closer alignment with iterative
human guidance. A third is test-time adaptation: by conditioning on a few user-provided examples,
the model could rapidly adjust to individual feedback styles, similar to personalization in text-to-
image generation. Finally, the feedback condition c could be made multimodal. Collectively, these
future directions would deepen integration of natural feedback into LLM training, bridging offline
and online stages while adapting to diverse user needs.

REFERENCES

Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

scale, high-quality math dataset for reinforcement learning in language models, 2025. URL
https://arxiv.org/abs/2502.17387.

Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
Critique-out-loud reward models. arXiv preprint arXiv:2408.11791, 2024.

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
learning for imitation learning via bi-level optimization. In International Conference on Machine
Learning, pp. 367–376. PMLR, 2020.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

David Brandfonbrener, Ofir Nachum, and Joan Bruna. Inverse dynamics pretraining learns good
representations for multitask imitation. Advances in Neural Information Processing Systems, 36:
66953–66978, 2023.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. Theoremqa: A theorem-driven question answering dataset. arXiv preprint
arXiv:2305.12524, 2023.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through reinforcement
learning. arXiv preprint arXiv:2505.16400, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Prov-
able rl with exogenous distractors via multistep inverse dynamics. arXiv preprint arXiv:2110.08847,
2021.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for llm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning
models. arXiv preprint arXiv:2506.04178, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2(3), 2018.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems, 2024.

11

https://arxiv.org/abs/2502.17387

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
reproducibility. arXiv preprint arXiv:2504.07086, 2025.

Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. arXiv
preprint arXiv:2501.03262, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, Tianyu Pang, and Wenhu Chen. Verltool: Towards holistic agentic reinforcement
learning with tool use. arXiv preprint arXiv:2509.01055, 2025.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
text generation. arXiv preprint arXiv:2012.11635, 2020.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evaluation
capability in language models. In International Conference on Learning Representations (ICLR),
2024.

Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
learning and distribution matching for fine-tuning language models with no catastrophic forgetting.
Advances in Neural Information Processing Systems, 35:16203–16220, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping
Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning for
llms. arXiv preprint arXiv:2506.21495, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations (ICLR), 2024.

Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. https:
//github.com/ganler/code-r1, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025a.

12

https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero
https://github.com/ganler/code-r1
https://github.com/ganler/code-r1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
Inference-time scaling for generalist reward modeling. arXiv preprint arXiv:2504.02495, 2025b.

Saüc Abadal Lloret, Shehzaad Dhuliawala, Keerthiram Murugesan, and Mrinmaya Sachan. Towards
aligning language models with textual feedback. arXiv preprint arXiv:2407.16970, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. arXiv preprint
arXiv:2410.12832, 2024.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025.

Gaurav Pandey, Yatin Nandwani, Tahira Naseem, Mayank Mishra, Guangxuan Xu, Dinesh Raghu,
Sachindra Joshi, Asim Munawar, and Ramón Fernandez Astudillo. Brain: Bayesian reward-
conditioned amortized inference for natural language generation from feedback. In Proceedings of
the 41st International Conference on Machine Learning, pp. 39400–39415, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp.
745–750, 2007.

Penghui Qi, Zichen Liu, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Optimizing anytime
reasoning via budget relative policy optimization. arXiv preprint arXiv:2505.13438, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Alireza Salemi and Hamed Zamani. Learning from natural language feedback for personalized
question answering. arXiv preprint arXiv:2508.10695, 2025.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
reinforcement learning. Advances in Neural Information Processing Systems, 34:12686–12699,
2021.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

Joar Max Viktor Skalse and Alessandro Abate. The reward hypothesis is false. In NeurIPS ML Safety
Workshop, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Moritz Stephan, Alexander Khazatsky, Eric Mitchell, Annie S Chen, Sheryl Hsu, Archit Sharma, and
Chelsea Finn. Rlvf: Learning from verbal feedback without overgeneralization. arXiv preprint
arXiv:2402.10893, 2024.

Richard Sutton. The reward hypothesis. http://incompleteideas.net/rlai.cs.
ualberta.ca/RLAI/rewardhypothesis.html, 2004.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

Yubo Wang, Xiang Yue, and Wenhu Chen. Critique fine-tuning: Learning to critique is more effective
than learning to imitate. arXiv preprint arXiv:2501.17703, 2025a.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025b.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution. arXiv preprint arXiv:2502.18449, 2025.

Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
Tang, Xiaowei Lv, et al. Light-r1: Curriculum sft, dpo and rl for long cot from scratch and beyond.
arXiv preprint arXiv:2503.10460, 2025.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

14

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shunyu Yao. The second half. https://ysymyth.github.io/The-Second-Half/,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. Advances in Neural Information Processing Systems, 37:90629–90660, 2024.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, et al. Vapo: Efficient and
reliable reinforcement learning for advanced reasoning tasks. arXiv preprint arXiv:2504.05118,
2025.

Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and Romain
Laroche. Behavior prior representation learning for offline reinforcement learning. arXiv preprint
arXiv:2211.00863, 2022.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
https://hkust-nlp.notion.site/simplerl-reason, 2025. Notion Blog.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback. arXiv
preprint arXiv:2506.03106, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025a.

Yang Zhou, Sunzhu Li, Shunyu Liu, Wenkai Fang, Jiale Zhao, Jingwen Yang, Jianwei Lv, Kongcheng
Zhang, Yihe Zhou, Hengtong Lu, et al. Breaking the exploration bottleneck: Rubric-scaffolded
reinforcement learning for general llm reasoning. arXiv preprint arXiv:2508.16949, 2025b.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

15

https://ysymyth.github.io/The-Second-Half/
https://hkust-nlp.notion.site/simplerl-reason
http://arxiv.org/abs/2403.13372

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

is expected by users

A banana and an apple on the table A man is surfing on an ocean wave

A banana is surfing on an ocean wave

Training phase: Collecting images from and captions from Test phase: Users generate novel images from

<latexit sha1_base64="XAdoNMjqBLd+UmWbq01drnIpWy4=">AAACcXicbVHLbhMxFHWGVxleKawQG6sRUhEhmoEqpRtUwQK6C4i0lTrRyOO501qxPSP7Dmpk+Sv4GrbwFXwHP4AzyYKmXMnS0bmPc+9x0UhhMUl+96IbN2/dvrN1N753/8HDR/3tx8e2bg2HKa9lbU4LZkEKDVMUKOG0McBUIeGkmH9Y5k++gbGi1l9x0cBMsXMtKsEZBirvv8oUwwvOpDvyuUt9ZoWik9xlCJdolDsK9eD9bsbLGl/k/UEySrqg10G6BgOyjkm+3RtmZc1bBRq5ZNaepUmDM8cMCi7Bx1lroWF8HlTOAtRMgZ257i5PnwempFVtwtNIO/bfDseUtQtVhMrlFXYztyT/myvUFWV32Y0erhSwkBt7YfV25oRuWgTNV2tVraRY06WltBQGOMpFAIwbES6j/IIZxjEYH2clVOFzutFOLUpm5ucGQHv35eN775IhTd8cDOn4wMdx8DfddPM6OH49Ssej8ee9weG7tdNb5BnZIbskJfvkkHwiEzIlnHwnP8hP8qv3J3oa0WhnVRr11j1PyJWIXv4FtUS+Yw==</latexit>I1 ⇠ PImage(·)
<latexit sha1_base64="wHeewn2c6U5XArDK9fyGL7ssWVE=">AAACcXicbVHLbhMxFHWGVxkeTWGF2FiNkIoI0UxBgW5QBQvoLiDSVupEI4/nTmvF9ozsO6iR5a/ga9jCV/Ad/ADOJAuaciVLR+c+zr3HRSOFxST53Ytu3Lx1+87W3fje/QcPt/s7j45t3RoOU17L2pwWzIIUGqYoUMJpY4CpQsJJMf+wzJ98A2NFrb/iooGZYudaVIIzDFTef5kphhecSXfkc7fvMysUneQuQ7hEo9xRqAfv9zJe1vg87w+SUdIFvQ7SNRiQdUzynd4wK2veKtDIJbP2LE0anDlmUHAJPs5aCw3j86ByFqBmCuzMdXd5+iwwJa1qE55G2rH/djimrF2oIlQur7CbuSX531yhrii7y270cKWAhdzYC6u3Myd00yJovlqraiXFmi4tpaUwwFEuAmDciHAZ5RfMMI7B+DgroQqf0412alEyMz83ANq7Lx/fe5cMafrqYEjHBz6Og7/pppvXwfH+KB2Pxp9fDw7frZ3eIk/JLtkjKXlDDsknMiFTwsl38oP8JL96f6InEY12V6VRb93zmFyJ6MVft0K+ZA==</latexit>I2 ⇠ PImage(·)

<latexit sha1_base64="NhgQ0rRHjQ9ZT3Hwu3SLOE/Hw9g=">AAADIHicbZHdbtMwFICd8DfKXwdXiBtrFVInQpV0tNAL0MQugLuC1m3SUirHOe2s2klku9Mq40fgJXga7hCX8Bq8AG5SKtrNkqWjc77zI31JwZnSYfjL869dv3Hz1tbt2p279+4/qG8/PFL5TFIY0Jzn8iQhCjjLYKCZ5nBSSCAi4XCcTA8W9eNzkIrl2aGeFzAUZJKxMaNEu9So/jUWRJ9Rws2hHZnIvm6auJxqilwxzc7BbhCfzTNrg39UBhNyNfXc2t1YMYH7IxNruNBSmANSLNZa24xpmusvq6YPZdPuqN4IW2H58OUgWgYNtHz90bZn4jSnMwGZppwodRqFhR4aIjWjHGwtnikoCJ2SCZy6MCMC1NCUt1v81GVSPM6l+5nGZfb/DkOEUnOROHJxqNqsLZJX1hKxttlclKODaoNO+MZdevxqaFhWzDRktDprPONY53ihDKdMAtV87gJCpZNCMT0jklDtxNbiFMZOfqVDzFMipxMJkFnz6d1ba8IAR3u9AHd7dh1d+a24jmOidifAe50NcKW4AqNeO8BuamhrTle0KedycNRuRd1W9+OLxv6bpbgt9ATtoCaK0Eu0j96jPhogiv54j70dr+F/87/7P/yfFep7y55HaO35v/8CALMCqw==</latexit>

T1 = (T +
1 , T �

1) ⇠ PCaption(·|I1)
<latexit sha1_base64="tZaTLCWPpUm5shPmLyajLBzFbIw=">AAADIHicbZHdbtMwFICd8DfKXwdXiBtrFVInQpV0tNAL0MQugLuC1m3SUirHOe2s2klku9Mq40fgJXga7hCX8Bq8AG5SKtrNkqWjc77zI31JwZnSYfjL869dv3Hz1tbt2p279+4/qG8/PFL5TFIY0Jzn8iQhCjjLYKCZ5nBSSCAi4XCcTA8W9eNzkIrl2aGeFzAUZJKxMaNEu9So/jUWRJ9Rws2hHZm2fd00cTnVFLlimp2D3SA+m2fWBv+oDCbkauq5tbuxYgL3RybWcKGlMAekWKy1thnTNNdfVk0fyqbdUb0RtsLy4ctBtAwaaPn6o23PxGlOZwIyTTlR6jQKCz00RGpGOdhaPFNQEDolEzh1YUYEqKEpb7f4qcukeJxL9zONy+z/HYYIpeYiceTiULVZWySvrCVibbO5KEcH1Qad8I279PjV0LCsmGnIaHXWeMaxzvFCGU6ZBKr53AWESieFYnpGJKHaia3FKYyd/EqHmKdETicSILPm07u31oQBjvZ6Ae727Dq68ltxHcdE7U6A9zob4EpxBUa9doDd1NDWnK5oU87l4Kjdirqt7scXjf03S3Fb6AnaQU0UoZdoH71HfTRAFP3xHns7XsP/5n/3f/g/K9T3lj2P0Nrzf/8FCoACrw==</latexit>

T2 = (T +
2 , T �

2) ⇠ PCaption(·|I2)

<latexit sha1_base64="HghUnK4muMEMovVzRsEqqYj9Ha8=">AAACp3icbVFNbxMxEHW2fJTw0bRw42IRIYG0inZTEsgFVfQANwIiaaQmirzObGrF9q7s2arB2v/CFf4R/wZns4cmZSRLT2/evBnPJLkUFqPobyM4uHf/wcPDR83HT54+O2odn4xtVhgOI57JzEwSZkEKDSMUKGGSG2AqkXCRrM43+YtrMFZk+geuc5gpttQiFZyhp+atF8O5myLcoFHunOUbsiznrXbUiaqgd0FcgzapYzg/brjpIuOFAo1cMmsv4yjHmWMGBZdQNqeFhZzxFVvCpYeaKbAzV41f0teeWdA0M/5ppBV7u8IxZe1aJV6pGF7Z/dyG/G8uUTud3U1lHW47YCL35sL0w8wJnRcImm/HSgtJMaObzdGFMMBRrj1g3Aj/M8qvmGEc/X6b0wWk/gaVtVPrBTOrpQHQpfv++VPpopDGp4OQ9gflrjTPrLe6hlrX85q42wvpaW9PqGHJbgnjQTek3jUqm/5c8f5x7oJxtxP3O/1v79pnH+vDHZKX5BV5Q2LynpyRL2RIRoSTn+QX+U3+BG+Dr8E4mGylQaOueU52ImD/AGVJ0NA=</latexit>

PCaption

<latexit sha1_base64="84fT6P8pmhExhiZnRrgXDF3vHEQ=">AAACpXicbVFNaxsxEJW3X6n7ESc95iJqSntYzK5TO/GlhOaQ5BBwSuwEYrNotbOOsKRdJG2wEftXem3/Uv9N5fUeYicDgsebN29GM3HOmTZB8K/hvXj56vWbnbfNd+8/fNxt7e2PdVYoCiOa8UzdxkQDZxJGhhkOt7kCImION/H8dJW/eQClWSavzTKHqSAzyVJGiXFU1NofRnZiYGGUsBcuB2UZtdpBJ6gCPwVhDdqojmG017CTJKOFAGkoJ1rfhUFuppYowyiHsjkpNOSEzp39nYOSCNBTWw1f4i+OSXCaKfekwRX7uMISofVSxE4piLnX27kV+WwuFhud7aKy9tcdTMy35jLp8dQymRcGJF2PlRYcmwyv9oYTpoAavnSAUMXczzC9J4pQ47bbnCSQugtU1lYsE6LmMwUgS/vr7GdpAx+HhwMf9wflpjTPtLN6gFrXc5qw2/PxYW9LKGFGHgnDQdfHzjUom+5c4fZxnoJxtxP2O/2r7+2TH/XhdtAB+oy+oRAdoRN0joZohChaoN/oD/rrffUuvWtvvJZ6jbrmE9oIL/oPCfHP0Q==</latexit>

PImage
<latexit sha1_base64="pRr9t+X35XUmEU3cQXQGdrCpamk=">AAACo3icbVHBThsxEHW2UGhaSmiPvViNkHpYRbuBBHKpUHugVS8pSgCJrCKvdzZYsb0r2xsRWfsnvbb/1L/B2eyBBEay9PTmzZvxTJxzpk0Q/G94r3Z2X+/tv2m+fXfw/rB19OFaZ4WiMKYZz9RtTDRwJmFsmOFwmysgIuZwE8+/r/I3C1CaZXJkljlEgswkSxklxlHTVms4tRMDD0YJO+r+LMtpqx10girwcxDWoI3qGE6PGnaSZLQQIA3lROu7MMhNZIkyjHIom5NCQ07onMzgzkFJBOjIVqOX+NgxCU4z5Z40uGKfVlgitF6K2CkFMfd6O7ciX8zFYqOzfais/XUHE/OtuUx6Hlkm88KApOux0oJjk+HV1nDCFFDDlw4Qqpj7Gab3RBFq3G6bkwRSt//K2oplQtR8pgBkaa8uv5U28HF4MvBxf1BuSvNMO6sF1Lqe04Tdno9PeltCCTPyRBgOuj52rkHZdOcKt4/zHFx3O2G/0/992r74Wh9uH31Cn9EXFKIzdIF+oCEaI4oW6A/6i/55x94v78obraVeo675iDbCix4BVmjOqQ==</latexit>

PT2I

<latexit sha1_base64="atj47z5e/jjZ8tGtpMkrvflL9dE=">AAAC8HicfZHNbhMxEMed5asNXykce7GIkIpYRbspCeQAquAAx4KatlJ3ibze2dSK17uyvRWR5ffghrj2NfoUPAJXeAGc3QglKWIkS3/N/Dwzmn9ScqZ0EPxoeTdu3rp9Z2u7fffe/QcPOzuPjlVRSQpjWvBCniZEAWcCxpppDqelBJInHE6S2btF/eQCpGKFONLzEuKcTAXLGCXapSadOMqJPqeEmyP72Ty3r/dMVHc1ZaGYZhdgV4iJCWvK+v+n+g31bNLpBr2gDnxdhEvRRcs4nOy0TJQWtMpBaMqJUmdhUOrYEKkZ5WDbUaWgJHRGpnDmpCA5qNjUu1j81GVSnBXSPaFxnV39YUiu1DxPHLnYVm3WFsl/1pJ8bbL5Urf2mwk64Rt76exVbJgoKw2CNmtlFce6wAsLcMokUM3nThAq3fkopudEEqqdUe0ohcyZ2Zw3n6dEzqYSQFjz6f1bawIfh/sjHw9Hdh3960TDDRwT9gc+3h9sgAKmZAUMR30fu66BbTu7wk1zrovjfi8c9oYfX3QP3iyN20K76AnaQyF6iQ7QB3SIxoiiK/QT/UK/Pel99b553xvUay3/PEZr4V3+AT0r8M0=</latexit>

T + = (T +
1 , T +

2)

<latexit sha1_base64="f+TEp8dwRgd3W3/LCfwjsCgsxvE=">AAACznicbZFNbxMxEIadLR8lfDQtRy4WEVIRq2g3JYEICVVwgN4CStpK3RB5vbOpFXt3ZXujRsbiyt/g13CFI/8GZ7NCTcpIll7NPJ4Z+40LzpQOgj8Nb+fW7Tt3d+817z94+GivtX9wqvJSUhjTnOfyPCYKOMtgrJnmcF5IICLmcBbP36/qZwuQiuXZSC8LmAgyy1jKKNEuNW29iQTRl5Rwc2K/mBc2Ukzg4dREGq60FGbUPbH2MKJJrr/+Q0cV+nzaagedoAp8U4S1aKM6htP9homSnJYCMk05UeoiDAo9MURqRjnYZlQqKAidkxlcOJkRAWpiqlda/MxlEpzm0p1M4yp7/YYhQqmliB25WlRt11bJ/9ZisTHZXFWt/fUEHfOtvXT6emJYVpQaMrpeKy051jlefTBOmASq+dIJQiVzL8P0kkhCtbOhGSWQOquq1kYsEyLnMwmQWfP5wztrAh+HRwMf9wd2Ey1y5VotoOZ6jgm7PR8f9bbADGbkGhgOuj52XQPbdHaF2+bcFKfdTtjv9D+9bB+/rY3bRU/QU3SIQvQKHaOPaIjGiKIf6Cf6hX57Q2/hWe/bGvUa9Z3HaCO8738BSQXg6g==</latexit>

I+ ⇠ PT2I(·|T +)

Figure 4: Learning from mixed captions in text-to-image generation. During training, models
learn from realistic image-caption pairs such as “a banana and an apple on the table” or “a man
surfing on an ocean wave”. They can leverage language priors to recombine these captions and
generate novel concepts, such as “a banana surfing on the ocean” (images shown are generated with
Gemini 2.5 Flash Image). By analogy to Figure 1, this illustrates how diverse verbal feedback can be
treated as a conditioning signal, motivating our feedback-conditional learning paradigm.

A ADDITIONAL DERIVATIONS AND DISCUSSIONS

A.1 PROOF OF EQ. (2) AND ITS SPECIAL CASE

Following Rafailov et al. (2023), the optimal solution to a KL-constrained reward maximization
problem Eπ(o|x,c+) [log penv(c

+|x,o)]− DKL (π(o|x, c+)||πref(o|x)) can be written as

π∗(o|x, c+) = πref(o|x) · exp (log penv(c
+|x,o))∑

o πref(o|x) · exp (log penv(c+|x,o))

=
πref(o|x) · penv(c

+|x,o)∑
o πref(o|x) · penv(c+|x,o)

=
Poff(o, c

+|x)
Poff(c+|x)

= Poff(o|x, c+).

(6)

Note that the objective in Eq. (2) is equivalent to minimizing the reverse KL divergence between
π(o|x, c+) and Poff(o|x, c+):

Eπ(o|x,c+)

[
log penv(c

+|x,o)
]
− DKL

(
π(o|x, c+)||πref(o|x)

)
= − DKL

(
π(o|x, c+)||Poff(o|x, c+)

)
+ logPoff(c

+|x).
(7)

In the special case where the environment provides verifiable rewards, that is, penv(c
+|x,o+) = 1

for correct responses o+ and penv(c
+|x,o−) = 0 for incorrect responses o−, we can show that

Poff(o|x, c+) reduces to the optimal solution of a 0-1 reward maximization problem without KL
regularization: Poff(o|x, c+) ∈ argmaxπ Eπ(o|x,c+) [1(o is o+)]. Specially, we have

Poff(o
+|x, c+) = πref(o

+|x) · penv(c
+|x,o+)∑

o πref(o|x) · penv(c+|x,o)
=

πref(o
+|x)∑

o is o+ πref(o|x)
;

Poff(o
−|x, c+) = πref(o

−|x) · penv(c
+|x,o−)∑

o πref(o|x) · penv(c+|x,o)
= 0.

(8)

Thus, taking π(o|x, c+) = Poff(o|x, c+) into the formula of Eπ(o|x,c+) [1(o is o+)], we have

EPoff(o|x,c+)

[
1(o is o+)

]
=

∑
o is o+

πref(o|x) · 1(o is o+)∑
o is o+ πref(o|x)

= 1. (9)

Since there is maxπ Eπ(o|x,c+) [1(o is o+)] = 1, we know that π(o|x, c+) = Poff(o|x, c+) is one
of the optimal solutions (not unique), i.e., Poff(o|x, c+) ∈ argmaxπ Eπ(o|x,c+) [1(o is o+)].

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

x c

o

(a) SFT (behavior cloning)

x c

o

(b) CFT (forward dynamics)

x c

o

(c) Our FCP (inverse dynamics)

Figure 5: Graphical models for SFT, CFT, and our FCP. Following Brandfonbrener et al. (2023),
we use blue color to indicate inputs to the algorithm and green color to indicate prediction targets.

A.2 CONNECTION TO INVERSE DYNAMICS MODELING

In traditional RL, objectives for representation learning are often grouped into three classes: behavior
cloning, forward dynamics, and inverse dynamics. Behavior cloning is typically used for imitation
learning (Arora et al., 2020; Zang et al., 2022), forward dynamics is central to world modeling (Ha &
Schmidhuber, 2018; Schwarzer et al., 2021), and inverse dynamics has been explored for both pretrain-
ing (Brandfonbrener et al., 2023) and feature extraction for exploration in RL (Efroni et al., 2021).

Interestingly, analogous structures appear in the LLM literature. The objectives of supervised
finetuning (SFT), critique finetuning (CFT) (Wang et al., 2025a), and our feedback-conditional policy
(FCP) align naturally with behavior cloning, forward dynamics, and inverse dynamics, respectively:

SFT (behavior cloning): max
πθ

Eπref(o|x) [log πθ(o|x)] ;

CFT (forward dynamics): max
πθ

Eπref(o|x)
[
Epenv(c|x,o) [log πθ(c|x,o)]

]
;

Our FCP (inverse dynamics): max
πθ

Eπref(o|x)
[
Epenv(c|x,o) [log πθ(o|x, c)]

]
.

(10)

We further illustrate this categorization with graphical models in Figure 5. This unified perspective
clarifies the conditional structure underlying each finetuning paradigm and highlights how different
forms of supervision drive model learning. In particular, our FCP extends the analogy by treating
verbal feedback as a first-class supervision signal, positioning it as the natural inverse-dynamics
counterpart to existing finetuning objectives.

B DETAILED EXPERIMENTAL SETUP

All implementations are based on llama-factory (Zheng et al., 2024) and verl (Sheng et al.,
2025). Hyperparameter settings for both offline and online stages of FCP are listed in Table 6.

For the two special tokens <EF> and </EF>, embeddings are initialized by sampling from a
multivariate normal distribution with mean and covariance computed over existing token embeddings.
For general reasoning bootstrapping, we adopt a fully online setup with batch size of 256, differing
from the math setting to illustrate that FCP remains effective under both training strategies.

Finally, Figure 6 shows the unified prompt template used to elicit feedback from GPT-5-nano. The
template produces three outputs in one response: a low-quality real-world user-style feedback, a
high-quality professional reviewer-style feedback, and a scalar score summarizing overall quality.

C MORE EXPERIMENT RESULTS

D LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
column alignment, caption length, placement). The LLM did not contribute to research ideation, exper-
imental design, implementation, data analysis, or technical content beyond surface-level edits. All out-
puts were reviewed and edited by the authors, who take full responsibility for the final text and visuals.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for FCP training used in the offline and bootstrapping (online) stages.

Hyperparameter Offline Online

learning rate 5e-6 1e-6
lr scheduler cosine constant
weight decay 0 0.01
warmup ratio 0.1 0
train batch size 512 2048
ppo mini-batch size — 512
temperature — 1.0
top_p — 1.0
rollout_n — 4
epoch 1
max response length 4096
loss type cross-entropy loss
loss aggregation mode token-mean
feedback environment GPT-5-nano

feedback style professional reviewer

Table 7: Performance comparison under verifiable (rule-based) and LLM-generated supervision
across multiple training methods.

Method Source AIME24 AIME25 MATH500 Minerva Olympiad Avg.
Base - 7.5 6.7 63.8 28.3 28.6 27.0
Base + GRPO rule-based verifier 13.3 14.2 76.3 36.6 41.7 36.4
Base + GRPO LLM 20.0 13.3 75.7 42.3 40.8 38.4
RFT + GRPO rule-based verifier 17.5 15.0 77.0 38.4 41.3 37.8
RFT + GRPO LLM 25.8 9.2 75.1 36.8 38.9 37.1
FCP + Bootstrap LLM 25.0 7.5 76.5 45.8 38.8 38.7

Table 8: Evaluation Results Under In-Distribution (ID) and Out-of-Distribution (OOD) Feedback
Conditions

Method Feedback Style ID/OOD AIME24 AIME25 MATH500 Minerva Olympiad Avg.
Base - - 7.5 6.7 63.8 28.3 28.6 27.0
FCP + Bootstrap Reviewer ID 25.0 7.5 76.5 45.8 38.8 38.7
FCP + Bootstrap User OOD 10.8 7.5 75.1 35.2 38.0 33.3
FCP + Bootstrap “Correct” OOD 16.7 7.5 75.3 35.2 37.2 34.4
FCP + Bootstrap No Feedback OOD 15.8 10.0 74.4 35.6 37.6 34.7

Table 9: Effects of training-used feedback quality on FCP performance across reasoning benchmarks.

Method Feedback Style Quality AIME24 AIME25 MATH500 Minerva Olympiad Avg.
Base - - 7.5 ±1.7 6.7 ±0.0 63.8 ±63.8 28.3 ±0.8 28.6 ±0.4 27.0 ±0.5

FCP + Bootstrap Correctness-Only very low 10.0 ±2.7 5.0 ±1.9 73.4 ±0.7 34.3 ±0.6 35.3 ±0.4 31.6 ±0.8

FCP + Bootstrap User low 16.7 ±2.7 0.8 ±1.7 72.2 ±0.4 37.1 ±0.4 37.1 ±0.8 32.8 ±0.8

FCP + Bootstrap Reviewer-Lite medium 14.2 ±4.2 8.3 ±1.9 74.0 ±0.3 37.4 ±1.5 37.3 ±0.7 34.2 ±1.0

FCP + Bootstrap Reviewer high 25.0 ±3.3 7.5 ±1.7 76.5 ±0.7 45.8 ±0.7 38.8 ±0.6 38.7 ±0.7

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Comparison of FCP performance using weak critique models.

Method / Model Critique Model Feedback Style AIME24 AIME25 MATH500 Minerva Olympiad Avg.
Qwen2.5-1.5B-Instruct - - 0.0 0.0 55.0 20.5 20.3 19.2
Qwen2.5-7B-Base - - 7.5 6.7 63.8 28.3 28.6 27.0

w/ FCP + Bootstrap Qwen2.5-1.5B-Instruct User 14.2 5.8 72.9 35.5 37.4 33.1
w/ FCP + Bootstrap GPT-5-nano User 16.7 0.8 72.2 37.1 37.1 32.8
w/ FCP + Bootstrap GPT-5-nano Reviewer 25.0 7.5 76.5 45.8 38.8 38.7

You are acting as a real-world human user of an LLM.

Inputs:
Question:
\"\"\"
{question}
\"\"\"

Model Answer:
\"\"\"
{model_answer}
\"\"\"

Reference Final Answer (used only for correctness check):
\"\"\"
{reference_answer}
\"\"\"

Your tasks:

1) Simulate "user feedback" from a normal, real-world user reacting to the Model Answer only.
 - Length: 1-3 sentences, colloquial tone, first person.
 - Content: purely subjective sentiment (e.g., helpfulness, confidence, confusion, satisfaction).
 - STRICT: Do NOT mention or allude to any symbols, formulas, variable names, or specialized concepts from the Question or the Model
Answer. Do NOT quote text from the inputs.

For example:
"I think you are right, but your solution is really long and complicated."
"You are a genius! You have all my respect."
"I am confused. There seems to be a mistake in your solution."
"What are you talking about? You are not answering my question."
etc.

2) Simulate a professional reviewer evaluating the Model Answer along several dimensions, including but not limited to:
 • correctness — Compare the Model Answer's final result ONLY against the Reference Final Answer (if provided). Judge whether the end
result matches; do not use the reference for any other purpose.
 • logical_rigor — Assess the soundness and gaplessness of reasoning within the Model Answer itself. Do NOT use the Reference Final
Answer here.
 • completeness — Judge coverage of required parts and edge cases based on the Question and the Model Answer only. Do NOT use the
Reference Final Answer here.
 • clarity — Evaluate organization, readability, and ease of following in the Model Answer. Do NOT use the Reference Final Answer here.

Then provide a high-level summary (1-3 sentences) with overall judgment and broad observations.
- STRICT for the high-level summary: Only use adjectives and adverbs to describe the Model Answer and reasoning process. DO NOT
mention where it goes wrong and where it can do better.

For example:
"Your final answer is correct, but the solution is too long and complicated. There are also several logical errors in your solution."
"The answer is partially correct. The reasoning is sound but not complete. Also, you are being too verbose."
"The answer is totally wrong. It lacks soundness and is not complete. However, the solution is concise and clear."

Hard constraints:
- Keep all content in English.
- Do not mention anything like "reference" or "python snippet".

Output format:
User-style feedback: <your 1-3 sentence feedback>
Analysis along several dimensions: <your 1-3 sentence analysis>
High-level summary: <your 1-3 sentence summary>
Score (0-10): <one overall integer score>

Figure 6: Prompt template used to elicit feedback from GPT-5-nano, including real-world user-
style feedback, professional reviewer-style feedback, and a scalar score.

19

	Introduction
	Learning directly from verbal feedback
	Offline training: Initializing feedback-conditional policy
	Online training: Bootstrapping by conditioning on positive feedback

	Experiments
	Setup
	Main results
	Learning dynamics of FCP

	Ablation studies
	Real-world user vs. professional reviewer style
	Additional training design choices and comparison to CFT

	Related work
	Discussion and future directions
	Additional derivations and discussions
	Proof of Eq. (2) and its special case
	Connection to inverse dynamics modeling

	Detailed experimental setup
	More Experiment results
	LLM usage

