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ABSTRACT

LLMs are often trained with RL from human or Al feedback, yet such methods
typically compress nuanced feedback into scalar rewards, discarding much of their
richness and inducing scale imbalance. We propose treating verbal feedback as a
conditioning signal. Inspired by language priors in text-to-image generation, which
enable novel outputs from unseen prompts, we introduce the feedback-conditional
policy (FCP). FCP learns directly from response-feedback pairs, approximating
the feedback-conditional posterior through maximum likelihood training on offline
data. We further develop an online bootstrapping stage where the policy generates
under positive conditions and receives fresh feedback to refine itself. This reframes
feedback-driven learning as conditional generation rather than reward optimization,
offering a more expressive way for LLMs to directly learn from verbal feedback.

1 INTRODUCTION

“That all of what we mean by goals and purposes can be well thought of as
maximization of the expected value of the cumulative sum of a received scalar
signal (reward).” — Reward Hypothesis by Richard Sutton

The reward hypothesis in reinforcement learning (RL) was proposed over two decades ago (Sutton,
2004), when feedback from the environment had to be reduced to scalar rewards for RL algorithms
to operate. This view shaped much of the field’s progress and remains the prevailing standard in
applying RL to alignment and reasoning for large language models (LLMs) (Ziegler et al., 2019; Bai
et al., 2022; Rafailov et al., 2023; Guo et al., 2025).

Yet in practice, the feedback encountered in RL for LLMs, especially in non-verifiable settings, is most
often verbalized, such as “Good start, but the code can be more efficient”.
Such feedback may come from human users (Stephan et al., 2024), generative reward models (Zhang
et al., 2024; Mahan et al., 2024), or tool outputs in agentic scenarios (Wang et al., 2025b; Jin et al.,
2025). Reducing the verbal feedback into scalar rewards introduces several limitations:

I. Information loss. Scalar rewards capture far less information than verbal feedback/critiques and
are often uninterpretable. For example, the critiques “The response is redundant
but correct” and “The response is compact but has many typos” may
both collapse to a reward of 0.8, despite describing very different response patterns. Further-
more, the verbalized thoughts produced by (generative) reward models are typically discarded
as intermediate outputs, with only the final scalar retained for RL training.

II. Ambiguity. Verbal feedback, especially from human users, is often mixed (containing both
pros and cons), emotional, or uncertain, such as “I'm so happy” or “I’'m not sure,
maybe try again?”. Such feedback is far more common than purely positive or negative
signals and carries diverse cues for learning and for understanding user interaction styles.
Mapping these forms of feedback to scalars could be unclear or arbitrary.

III. Imbalanced reward scales across tasks. In multi-task training (e.g., math, code, science,
games), it is difficult to maintain a consistent reward scale. Positive feedback on a simple math
problem is far easier to obtain than on a challenging coding or game-playing task, which induces
imbalanced rewards across domains and biases the learning process.
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Training phase: Collecting (offline) responses from 7rcf and feedback from Penv

def flatten(lst):
return sum(1lst, [])

o1 ~ Tet(*] @)
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def flatten(lst):

result = []
for item in lst:
if isinstance(item, list):
result.extend(flatten(item))
else:
result.append(item)
return result

02 ~ Tret(*] @)

<

The code is compact and simple, but
only handles one-level nesting

The code works for any nesting, but

is somewhat verbose

Test phase: Users generate responses from 7y

The code is compact and simple, and
works for any nesting

ct = (c],c]) is expected by users

<

def flatten(lst):
return [
x
for e in 1st
for x in (

flatten(e) if isinstance(e, list) else [e]

+

c1 = (¢, ¢1) ~ Penv(-|x, 01) e =(c3,¢5) ~ Penv (|, 02) ot ~mg(-|m,cT)

Figure 1: Learning from mixed verbal feedback. The instruction x is “Write a Python function
flatten(lst) that returns a flat list of integers”. The reference policy m.s may assign low probability to
the ideal response o™, making purely positive response-feedback pairs (o™, ¢*) rare in the training
data collected from 7 and peqy. This resembles the setting of text-to-image generation, where the
language prior enables models to combine seen captions (analogous to mixed feedback ¢; and c3)
and generate rare images (analogous to purely positive response o) such as “a banana surfing on the
ocean” (Figure 4). Motivated by this, our model 7y is trained as a feedback-conditional policy (FCP),
and when conditioning on user-defined positive ¢*, there is 7y (0|, ¢T) X Tet(0|T)  Peny (€T |, 0).

Scalarization has long been seen as unavoidable, bridging verbal feedback and the numerical signals
required by RL. With the rise of large-scale language pretraining, however, this view is being re-
examined (Yao, 2025). LLMs embody strong commonsense and linguistic priors, suggesting a new
paradigm: treat verbal feedback as a first-class training signal, rather than forcing it into a scalar form.

After all, LLMs already show the ability to implicitly understand verbal feedback. In agentic tasks,
they iteratively adapt by integrating feedback prompts from human users, external critiques, or tool
calls into their context and refining their responses accordingly (Wang et al., 2025b; Novikov et al.,
2025). This indicates that LLMs can process verbal feedback, but only implicitly, through a latent
“mental model” that does not convert understanding into explicit scalar rewards. The key question,
then, is how to distill such feedback into training so that it directly improves model performance,
rather than relying on inefficient multi-turn trial and error at test time.

To this end, we propose to learn a feedback-conditional policy (FCP) 7y (o|x, c) x met(o|x) -
Penv(c|z, 0), where m(0|x) is a reference policy that generates a response o given an instruction
@, and peny (|, 0) is the distribution of environment feedback c. Intuitively, the FCP reweighs the
reference policy by how likely each response o would elicit the observed feedback c. Conditioning on
positive feedback ™ gives my(o|x, ™) o Tref(0|T) - Penv(c |, 0), Which increases the probability
of generating responses that are more likely to receive favorable feedback. In this way, the FCP learns
a posterior distribution that integrates prior knowledge from 7.¢ with verbal feedback, allowing it to
handle diverse forms of feedback, including mixed ones, as illustrated in Figure 1.

After training an offline FCP 7y (0|, ¢) X (0] ) « peny (€|, 0) that conditions on arbitrary feed-
back ¢, we further improve it through online bootstrapping. Concretely, we conduct online training
by sampling rollouts from the behavior policy mg(o|z, ct) (goal-conditioned on positive feedback),
and re-annotating them with fresh feedback from p.,y, thereby iteratively strengthening the policy.

Our pilot experiments show that FCP matches or surpasses strong scalar-based baselines such as
offline RFT (Dong et al., 2023) and online GRPO (Shao et al., 2024), without relying on verifiers,
scalar conversion, or data filtering. This demonstrates a simple and scalable framework that
preserves the richness of verbal feedback while avoiding the scarcity of rule-based verifiers and the
risk of reward hacking. While our current implementation is naive, advanced training techniques
could further improve FCP’s performance.

2 LEARNING DIRECTLY FROM VERBAL FEEDBACK

Traditional RL methods train a policy by up-weighting responses that receive “good” feedback
and down-weighting those that receive “bad” feedback. From a probabilistic view, RL can be
seen as learning a posterior over responses that are expected to receive good feedback (i.e., high
rewards) (Peters & Schaal, 2007; Peng et al., 2019; Rafailov et al., 2023). Distinguishing what counts
as good or bad typically requires carefully designed reward functions or detailed rubrics to produce
scalar signals, leading to the limitations discussed in Section 1.
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Our approach is inspired by language priors in text-to-image generation, where models compose
unseen prompts from mixed captions (Figure 4). Similarly, language priors could enable LLMs to ab-
sorb diverse verbal feedback and yield high-quality responses beyond scalar reinforcement (Figure 1).
Since LLMs already show implicit feedback understanding, we train directly on it: offline to initialize a
feedback-conditional policy (FCP) (Section 2.1), then online to bootstrap performance (Section 2.2).

2.1 OFFLINE TRAINING: INITIALIZING FEEDBACK-CONDITIONAL POLICY

We begin with a reference policy model 7 that takes an input instruction  and generates a response
0 ~ Tt(+|x). The response o then undergoes a single-turn interaction with the environment, which
provides verbal feedback ¢ ~ peny (|2, 0). The reference policy s may represent a base model,
an instruction-tuned model, or a reasoning model, and the response o can include both thinking
processes and the final answer. The environment p.,, may consist of human users or generative
reward models. In the offline setting, where responses are collected from 7.s, we define the joint
distribution of response-feedback pairs as Pyg(0, c|x) £ Tef(0|T) - peny(c|, 0), from which we
derive the feedback-conditional posterior distribution:
Poff(oac‘m) o 7Tref(o|m) ’penv(c‘xvo)
Poe(cle) 2, Mer(0]X) - penv(cl, 0)
Informally, let ¢ denote purely positive feedback and ¢~ purely negative one. Mixed feedback
can be approximated as ¢ = (¢, ¢™), while neutral or uncertain feedback may be neither. If we
condition on positive feedback ¢, for instance, “The generated code is functionally

correct, efficient, and compact” for a coding instruction x, then Pyg(o|x,c™) o
Tref(0|X) - peny (¢ |2, 0), which favors responses o that are more likely to elicit positive feedback.

Pyg(o|x, c) =

ey

While Pog(o|x, cT) o met(0|T) - penv(c™|x, 0) appears to be the oracle policy we are seeking, it
cannot be directly sampled from, because pey (¢ |, 0) is defined only after the full response o is
generated, and thus cannot guide generation step by step. We therefore aim to learn a policy that ap-
proximates Pyg(o|x, cT). Following Rafailov et al. (2023), we show that Py(o|x, ¢™) is the optimal
solution to a KL-constrained reward maximization problem with reward function log peny (™|, 0):

Pyi(olx, ™) € argmaxy Er(ofa,c+) [108 peny (cT |, 0)] — Dii (7(0|, )||mes(0]2)) .  (2)

In the special case where the environment provides verifiable rewards, that is, peny(c™|x,0™) = 1
for correct responses ot and peyy (¢t|x,07) = 0 for incorrect responses o™, we can show that
Pyi(o|x, 1) reduces to the optimal solution of a 0-1 binary reward maximization problem without
KL regularization: Pegt(o|x, ) € argmaxy E (o|z,c+) [1(0is 0F)] (proof is in Appendix A.1).

Alternative learning objective. In more general scenarios, particularly when feedback comes from
human users, solving Eq. (2) is typically intractable. This is because we can only sample from peqy
but cannot compute the exact log-likelihood log peqy (¢ |, 0). Note that the objective in Eq. (2) is
equivalent to minimizing the reverse KL divergence between 7 (o|x, ct) and Pyg(o|z,c™):

max E[10g penv (¢T |, 0)] =Dk (7 (0|, c*)||met(0]T)) < min D, (m(o|z, c*)|| Por(0], c1)),

which is derived in Eq. (7). To avoid intractability of computing log pen (¢™ |, 0) in the reverse
KL divergence, we instead turn to minimize the forward KL divergence between 7(o|x, ct) and
Pyt(o|x,ct). This relaxation is standard in KL-constrained LM training, where forward-KL
objectives have been used for distributional or reward-conditioned generation (Khalifa et al., 2020;
Korbak et al., 2022; Pandey et al., 2024), though our setting differs in conditioning on rich verbal
feedback. In practice, however, we can only obtain feedback from pey, (¢|, 0), and it is infeasible to
sample exclusively from the constrained subset of positive feedback pey (¢ |2, 0) without carefully
designed rubrics or filtering. To address this, we generalize the objective: rather than approximating
only Py(o|x, 1), we learn to approximate Py(0|x, ¢), conditioning directly on any feedback c.

Specifically, we propose to learn a feedback-conditional policy (FCP) 7y (0|, ¢) by minimizing
the expected forward KL divergence between 7y (o|x, ¢) and Pug(o|x, ¢):

minEpyela) [Pk (For(o]a, ¢)||7o(ola, ¢))] & maxEp,(cjz) [Epy(ofa.c) [log mo(0lz, )]

3

S max B (ofe) [Ep (cfe.0) 08 mo(0l2, )],

! Conditioning on negative feedback ¢~ would similarly favor poor responses, though this is rarely useful.
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Algorithm 1 Offline training: Initializing feedback-conditional policy (Section 2.1)

Inputs: Reference policy met(o|x), feedback environment peny (c|, 0), feedback-conditional policy
mg(o|x, ), instruction corpus X, batch size B, optimizer O
Outputs: The offline-trained parameters
1: Initialize 7 (o|x, ¢) = met (0| [<EF>c</EF>, x|) , where <EF> and </EF> are special to-
kens used to wrap the expected feedback ¢, which is concatenated before the instruction x
Collect offline dataset Do = {(, 0, ¢)} with & ~ X, 0~ Tef(-|2) then ¢~ peny (|, 0)
Objective: maxy E (5 o c)~p,, [10g To (0|2, )] /l Taking expectation over  ~ X in Eq. (3)
while not converged do
Sample {(x;, 0;,¢;)} 2, ~Dosr; 0 < O.step (9, V(;% Zfil log mg(0;|x;, ci))
return Oy < 0

AN A

where the second equivalence follows from the identities Pog(c|x) - Por(0], €) = Poge(0, c|x) =
Tref(O| ) + Penv (€|, 0). This objective in Eq. (3) reduces to maximum likelihood training, which is
straightforward to implement and optimize with data collected from 7..¢(0|x) and pey (c|x, 0), as
described in Algorithm 1. Its optimal solution is 7 (o|x, ¢) = Py(0|z, ¢) on the support set of
Pyir(c|x). Notably, our approach does not require explicitly distinguishing positive ¢ from negative
¢~ ; the language prior embedded in LLMs can implicitly interpret and combine information from
diverse forms of feedback, including mixed ones as seen in Figure 1. At test time, users may specify
desired positive feedback ¢*, and responses can be generated from 7y (o|x, c™).

Remark I: why using Pys(c|x)? In Eq. (3), the expectation on ¢ is taken w.r.t. Poge(c|x). In principle,
any other distribution p(c|a) could be used, and the optimal solution 7;(o|x,c) = Pu(o|x, c)
would remain unchanged on the support supp(p(-|x)). We adopt Py (c|x) mainly for two reasons:
(i) its support set Supp(Lote(+|%)) = Uopesupp(re(-|a)) SUPP(Penv (|, 0)) covers all feedback that
may be encountered when collecting offline data; (ii) it serves as a compensating distribution
that converts the intractable posterior expectation Py(0|x, ¢) into the tractable joint expectation
Pyii(0, c|x) = mrer(0|X) - penv(clx, 0), which is convenient to sample from.

Remark II: FCP as inverse dynamics. We observe that our FCP learning in Eq. (3) aligns with
modeling inverse dynamics (Brandfonbrener et al., 2023), complementing supervised finetuning
(SFT) as behavior cloning, and critique finetuning (CFT) (Wang et al., 2025a) as forward dynamics.
A detailed discussion of this analogy is provided in Appendix A.2.

2.2  ONLINE TRAINING: BOOTSTRAPPING BY CONDITIONING ON POSITIVE FEEDBACK

We denote the model obtained by solving the offline problem in Eq. (3) as my,_,(o|x, ¢), which is
capable of generating responses conditioned on any user-defined feedback c. Building on this model,
we further perform online training to bootstrap performance by conditioning explicitly on positive
feedback c*. Concretely, we iteratively update parameters 6,1 using rollouts from 7y, (0|, c™) for
t € N, with 6y = O initialized from the offline solution, as described in Algorithm 2.

Formally, we define the joint distribution P, (0, ¢, cT|x) £ puser(ct|) - 79, (0|, ) - penv(c|z, 0),
where puser(cﬂL |) denotes the distribution (fixed or trainable) of user-specified expected positive
feedback. The corresponding feedback-conditional posterior is
_ Py, (0, c|x) _ Zc+ puser(cﬂm) ‘7"91,(0|mvc+) * Penv(c|T, 0)
Py, (o|z,c) = = - - . 4
Py, (clz) Zo Zc+ Puser (€T |x) - T, (0], €T) - Peny (|, 0)

The optimization objective for updating 6,1 based on 0; (with gradients stopped through 6;) is

min Ep,, eja) [P (Po, (0], o) |m,., (o], )]
t+1

< max EPet (c|z) [Epst(d%c) [log L (O|.’13, C)H (5)

TOr41

e max B, (c+|a) {Eﬂet (olz,ct) [Epenv(CIw,O) [log 7T9f,+1(0|mvc)]ﬂ .

Mot 41

Intuition. In each training round ¢ (distinct from the s-th gradient steps taken within a round), the
current model 7y, is conditioned on ¢* to sample candidate positive responses. These responses are
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Algorithm 2 Online training: Bootstrapping by conditioning on positive feedback (Section 2.2)

Inputs: Initialize 0y = 0, from Algorithm 1, user-desired feedback pyse:(c™|x), environment
Penv(€|, 0), instruct. corpus X, training rounds 7, steps per round .S, batch size B, optimizer O
Outputs: The online-bootstrapped parameters 6
1: fort =1to T do
Ht — 91571
for all instructions & ~ X sampled in this round do
Rollout ¢ ~ pyser(:|x) , © ~ 7y, _, (-|&,c™) then obtain fresh critique ¢ ~ peny (|, 0)
Push (z, 0, ¢) to buffer B!, // ¢ is usually different (at least linguistically) from ¢™
Objective: maxg, E(y o.c)~5t [10g 7o, (0|2, €)] // Taking expectation over z ~ X in Eq. (5)
for s =1to .S do
Sample {(zi,0;,¢:)} 2, ~ Bl 0, + O.step(8;, Vo, 5 S8 logmo, (0ilzi, ;)
9: return O

A A

then re-annotated with fresh feedback ¢ from the environment. Over successive rounds, the model
learns to identify cases where conditioning on ¢ does not in fact yield positive critiques, while
reinforcing those that align with the expected feedback. This iterative process bootstraps the model,
progressively strengthening alignment with user-specified positive feedback. Moreover, following
Lanchantin et al. (2025), the number of gradient steps .S between rounds can be flexibly adjusted,
allowing the procedure to interpolate between fully online and semi-online training.

Test-time usage. At test time, FCP does not require any environment-generated feedback. If the user
wishes, they may provide a desired feedback condition ¢,s;. When no such condition is given, we
automatically obtain a positive feedback description by prompting an LLM with instructions such
as: “Provide several possible positive feedback descriptions for the
following query.” This produces a suitable ¢t for conditioning. The model then generates an
output o using the feedback conditional policy 7y(o|x, c¢T). This is a single-pass generation process
that does not require any iterative refinement. In practice, inference simply consists of prepending the
selected feedback description to the input prompt.

3 EXPERIMENTS

We evaluate FCP on mathematical and general reasoning tasks, aiming for a direct comparison with
scalar-based methods. We choose reasoning tasks as the testbed because scalarized RL has been
especially successful in this domain (Guo et al., 2025; Ma et al., 2025), making it a strong and
convincing benchmark. Showing that FCP performs comparably under such demanding conditions
provides a rigorous test of its effectiveness. As shown in Section 3.2, FCP indeed matches scalar
pipelines, with more design choices presented in our ablation studies (Section 4).

3.1 SETUP

Datasets and models. For mathematical reasoning, we use Big—-Math (Albalak et al., 2025),
a 251k-problem dataset curated for training and evaluation. For general reasoning, we use
WebInstruct (Yue et al., 2024) from GENERAL-REASONER (Ma et al., 2025). Its multi-domain,
free-form answers are unsuitable for rule-based filters, so prior work relies on generative reward
model—making it a natural testbed to contrast verbal conditioning with scalar-reward pipelines. As
pilot experiments, our base model is Qwen?2 . 5-7B-base (Yang et al., 2024).

Feedback environment simulation. Human feedback is costly and difficult to standardize in both
quality and style. We therefore simulate the feedback environment with GPT-5-nano, which
provides feedback for both offline (Algorithm 1) and online (Algorithm 2) training. Our method only
requires feedback to be non-deceptive (following peny), rather than a detailed breakdown, making
lightweight models sufficient. To implement this, we design a unified prompt template (Figure 6) that
first elicits a low-quality, real-world user-style feedback, then a high-quality, professional reviewer-
style feedback covering multiple aspects, and finally a scalar score summarizing overall quality. This
setup ensures that the same feedback source supplies both the verbal conditions for FCP and the
scalar rewards for RL baselines, enabling a fair comparison.
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Table 1: Math (in-domain) and IFEval (out-of-distribution) results. Here Avg. denotes mean
accuracy (%) over five math benchmarks. CFT is critique finetuning (Wang et al., 2025a), see
Section 4.2, and Critique-GRPO is adopted from Zhang et al. (2025).

Offline Algo. Scalar In-Domain (0]0))]
+ Online Algo. |Reward | AIME24 AIME25 MATH500 Minerva Olympiad Avg. |IFEval
Base - 7.5 +1.7 6.7 00 63.8 1638 28.3 +o.s 28.6 ro.a 27.0 05| 36.8
+ GRPO v 20.0 +0.0 13.3 £2.7 757 1.7 423 113 40.8 +05 38.4 to9| 38.5
+ Critique-GRPO v 15.0 1.9 92 +1.7  76.8 +0.3 36.1 +0.0 40.1 +05 354 +oe6| 39.0
RFT v 133 too0 3.3 +too0 692106 324 106 33.8+t09 30.4 +oo| 37.5
+ GRPO v 258 117 9.2 +17  75.1 o7 36.8 0.9 38.9 01 37.1 +o5| 38.8
+ Critique-GRPO v 16.7 47 9.2 450 752 +04 35.8 +0.7 39.6 +0.5 353 +1.2| 38.6
CFT ‘ X ‘ 1.7 +33 0.0 00 27.0+32 92464 7.7+14 9.1 113 ‘ -
FCP X 6.7 00 33 +3s8 689110 31.2+11 324111 285z+11| 38.6
+ Bootstrap X 25.0 +33 7.5 +17 765 +07 45.8 +0.7 38.8 +0.6 38.7 +0.7| 39.0

Baselines. We compare against two strong baselines: Rejection Sampling Finetuning (RFT) and
GRPO (Dong et al., 2023; Shao et al., 2024). RFT filters responses by correctness and finetunes
only on the correct ones, which in the offline case reduces to training on a binary scalar score
(correct/incorrect). While simple and effective, it depends on reliable filtering and a stable verifier.
GRPO instead uses group-normalized scalar rewards to estimate advantages and has become one of
the strongest online methods, especially in math reasoning where answers can usually be verified
automatically. Both baselines rely on scalar-based filtering or scoring, making them dependent on
high-quality verifiable data and an auxiliary verifier. Even rubric-based reward shaping (Zhou et al.,
2025Db) still loses much of the feedback richness. Our experiments thus offer a stringent comparison
between scalar-reward pipelines (RFT/GRPO) and FCP learning.

Training details for FCP. In the offline stage (Algorithm 1), the base model generates 8 candidate
responses per prompt. We discard prompts where all responses are entirely correct or incorrect, then
sample one correct and one incorrect response for GPT-5-nano to provide feedback. All collected
feedback is used to train FCP, while a pool of positive feedback {c ™} is built from the scalar scores
in the feedback. In the online stage (Algorithm 2), for each prompt & we sample a desired condition
¢ ~ puser(*|) by drawing from the pool {c*}. For rollout, the prompt batch size is 2048 with 4
responses per prompt; for training, the mini-batch size is 512, giving 4 gradient updates per rollout
step. Each response receives a fresh professional reviewer-style feedback from GPT-5-nano, which
is concatenated with the prompt and response (using the Algorithm 1 wrapper <EF> and </EF>) for
cross-entropy training. This bootstrapping loop improves response quality under desired conditions
while grounding updates in new feedback. For fair comparison, GRPO is trained with the same scalar
scores from GPT—-5-nano under the identical prompt template.

Evaluation. We assess mathematical reasoning on AIME24&25, MATHS500 (Hendrycks et al., 2021),
Minerva-Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), and general reasoning
on GPQA-Diamond (Rein et al., 2024), MMLU-Pro (Wang et al., 2024), and TheoremQA (Chen et al.,
2023). To test instruction-following beyond the training domain, we also include IFEval (Zhou et al.,
2023). All benchmarks use a unified protocol: each dataset is run under four random seeds 2 with
mean accuracy reported. Inference uses v11m (Kwon et al., 2023) with greedy decoding and a max-
imum generation length of 8192 tokens. For FCP, we match the training setup by randomly sampling
one feedback condition from {c™} for each question and prepending it to the prompt template.

3.2 MAIN RESULTS

Offline FCP is comparable to RFT. On Qwen?2 . 5-7B-base, offline FCP attains 28.8% average
accuracy on the math suite, between the base model (27.0%) and RFT (30.4%) (Table 1). General
reasoning shows the same order: 38.7%, 43.5%, and 44.6% for base, FCP, and RFT (Table 2).
This is expected, since FCP directly learns from all response-feedback pairs without filtering and
therefore inevitably absorbs noise, whereas RFT benefits from elaborate correctness filtering. Still,
FCP remains competitive under noisier supervision.

For MMLU-Pro, the large test set size (~12k questions) simultaneously leads to a high evaluation cost and
an inherently small variance (typically < 0.3). Consequently, we report results based on a single evaluation run
for this benchmark.
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Figure 2: Training dynamics of FCP and scalar-based baselines. (a) FCP+Bootstrap matches
GRPO and RFT+GRPO accuracy within 30 steps. (b) In contrast, its scalar reward scores lag behind,
consistent with the fact that FCP does not directly optimize against reward model’s preference.

Table 2: General reasoning results. Accuracy (%) across three benchmarks and their average.

Offline Algo. Scalar .
+ Online Algo. | Reward GPQA-Diamond MMLU-Pro TheoremQA Average
Base - 27.9 +1.0 49.7 38.6 +0.2 38.7 +0.4
+ GRPO v 32.5 153 49.7 494 1.4 439 117
RFT v 352 +1.3 55.0 43.7 +0.9 44.6 +o0.2
+ GRPO v 37.2 +25 57.0 48.3 02 47.5 tos
FCP X 35.0 +2.9 53.6 42.0 1.0  43.5 +os6
+ Bootstrap X 39.1 +2.9 55.3 49.1 05 47.8 +o0.9

Bootstrapping enables FCP to rival scalarized RL baselines. Online bootstrapping lifts FCP
from 28.8% to 38.7% average accuracy on the math suite (Table 1), slightly surpassing GRPO
(38.4%). A similar trend appears in out-of-distribution case: on IFEval, FCP+Bootstrap reaches
39.0%, comparable to GRPO (38.5%) and RFT+GRPO (38.8%). General reasoning benchmarks
(Table 2) show the same pattern, with FCP+Bootstrap at 47.8%, matching the best scalar-based
baseline (47.5%). These results indicate that bootstrapping gives FCP the effectiveness of scalarized
RL while retaining the advantage of learning directly from richer verbal feedback.

3.3 LEARNING DYNAMICS OF FCP

FCP enables controllable behavior across diverse feedback conditions. A core question is
whether the policy truly learns the conditioning signal c—and, if so, whether this lets us absorb
negative samples into training without hurting best-case performance. We probe this by sampling
representative feedback from the offline pool and evaluating under several conditions.

Table 3 shows a sharp contrast on MATHS500: accuracy is 68.5% under fully_positive butonly
17.1% under fully_negative, far below the base model’s 63.8% (Table 1). This indicates the
model internalizes the control signal: negative conditions induce poor behavior when requested, yet
positive conditions still yield strong accuracy—showing that including negative samples in training
(using the same cross-entropy loss as positives) does not cap performance under positive ones.

Other conditions also shift behavior as intended. Under neut ral, where the condition ¢ asks for
a correct answer and a more verbose solution, accuracy drops slightly but response length grows,
reflecting a trade-off. With has_code, the share of responses containing code rises to 74.3%,
confirming that stylistic attributes in ¢ are also followed. Compared to Qwen?2.5-7B-Instruct,
which shows little variation across conditions due to training only on verified positives, FCP learns to
map feedback c to distinct behaviors, enabling broad data use without manual filtering.

FCP achieves strong accuracy without over-optimizing scalar rewards. As seen in Figure 2a, both
FCP and GRPO reach peak accuracy within 30 online steps, with scalar scores from GPT-5-nano
rising sharply at the start. Yet Figure 2b shows FCP’s scores lagging behind GRPO’s later, since it
does not directly optimize against the scalar reward model. Crucially, FCP sustains high accuracy
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Figure 3: Effect of length-related conditions on bootstrapping stability. Both curves are smoothed
with a 10-step moving average. (a) Without filtering, response length decreases over time, while
filtering out length-related conditions leads to steady growth. (b) The corresponding loss curves show
greater instability when length-related conditions are included.

Table 3: Comparison under different feedback conditions. Accuracy (%), code ratio (proportion
of responses containing code), and average response length are all measured on MATHS500."

\ Example 1 \ Example 2 \ Example 3 \ Example 4
Feedback type | fully_positive | fully_negative | neutral ‘ has_code
Content Accurate and clear; Incoherent and Correct and readable Correct and clear,
concise and coherent incomplete. Random overall, but the solution | though slightly verbose
reasoning; correct and unfocused. Unclear | is verbose and could be | with superfluous code.
conclusion. and disorganized. streamlined for tighter
logical flow.
Aceurac Instruct 76.2 774 71.5 76.6
¥ FCP 68.5 171 61.1 53.9
. Instruct 0 0 0 0
Code Ratio FCP 27 ‘ 55.6 ‘ 46.3 ‘ 74.3
Response Lensth Instruct 632 650 638 661
P g FCP 605 1442 722 659

despite lower scores, indicating it avoids the reward-hacking behavior often seen in scalar-based
methods and underscoring verbal feedback as a more robust training signal.

Length-related conditions destabilize FCP bootstrapping. We find that feedback conditions c™
tied to output length, such as conciseness, can destabilize online bootstrapping. As shown in Figure 3,
these conditions cause average response length to shrink over time while the loss becomes unstable.
This likely reflects a feedback loop: concise rollouts receive affirming feedback, and cross-entropy
updates further shorten responses, eventually collapsing output length. Filtering out length-related
conditions instead yields steadily longer responses, mirroring GRPO’s training behavior (Guo et al.,
2025) and supporting the view that reliable math solving benefits from extended reasoning traces.

4 ABLATION STUDIES

Unless otherwise noted, we use the following default configuration: For rollout, the prompt batch size
is 512 with 4 responses generated per prompt. For training, the mini-batch size is 512, corresponding
to a single gradient update per rollout step, which yields a fully online setting. All rollouts of the same
prompt share an identical feedback condition ¢™. Training uses token-level mean loss aggregation,
with fresh feedback ¢ provided in the professional reviewer-style by GPT-5-nano.

4.1 REAL-WORLD USER VS. PROFESSIONAL REVIEWER STYLE

Real-world user feedback is abundant and inexpensive but often noisy and inconsistent; professional
reviewer feedback is higher quality but costly and less scalable. We therefore ask: how much feedback
quality does FCP actually require? We use a unified prompt that asks GPT-5-nano to produce both
a low-quality real-world user-style feedback and a high-quality professional reviewer-style feedback
in a single response. As shown in Table 4, user-style feedback is typically subjective and colloquial,
whereas reviewer-style feedback is precise and structured.

3For the Instruct model, evaluation prompts are wrapped as “Your answer should be expected
to get the following critique: <feedback_content>\n{question}”.
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Table 4: Examples of feedback in real-world user-style and professional reviewer-style.

Role Critique Type Examples

full ositive That looks right to me, concise and easy to follow. I'm satisfied
y-p with the final result.

Real-World =~~~ =~~~ =~ =" Thave o idea what you were trying to say—the response is
User fully_negative

nonsense and not helpful at all.

I’m not completely sure about the logic, but the final answer

neutral matches the number I was expecting.

Correct and clear; succinct and logically sound, with concise
and effective reasoning.

Professional =~ = 7 =7~~~ 7 . Incorrectly structured and incoherent. The reasoning is absent
Reviewer fully_negative

and the content is unusable.

Correct final result but unclear and incomplete reasoning; con-
cise yet insufficiently rigorous.

fully_positive

neutral

Table 5: Ablation results on hyperparameter choices, data sources, and feedback settings. Reported
numbers are average accuracy on math benchmarks; A shows change relative to the default setting.

Variant Changed Setting(s) Avg Acc A

Default —_— 353 0.0
w/ user style feedback critique_type=user 32.8 2.5
w/ partial online prompt_bsz=2048 38.7 +3.4
w/ unbiased loss loss_agg_mode=seq-mean-token-sum 36.0 +0.7
w/ smaller batch size train_bsz=ppo_mini_bsz=256 37.7 +2.4
w/ more diverse ¢ use random ¢ per rollout 34.1 -1.2
w/ different dataset use MATH-Train split 343 -1.0

Table 5 shows that using only user-style feedback (offline and online) lowers math-suite accuracy by
2.5 points relative to reviewer-style feedback, yet still delivers a +5.8 gain over the base model (27%;
Table 1). While reviewer-style feedback is more effective, user-style feedback remains surprisingly
competitive after FCP training. Its lower cost and broad availability make it a practical source for
scaling, with reviewer-style feedback reserved for targeted quality improvements.

4.2 ADDITIONAL TRAINING DESIGN CHOICES AND COMPARISON TO CFT
We further study how different design choices affect FCP training, with results summarized in Table 5.

Online update strategy. Compared to the fully online setup, using a larger prompt batch size of 2048
while keeping the mini-batch size fixed at 512 results in four gradient updates per rollout step, and
yields better accuracy. This suggests that partial online updates can improve optimization efficiency.

Loss aggregation. In Algorithm 2, cross-entropy on self-sampled responses reduces to policy
gradient with unit advantages, which suffers from length bias (Liu et al., 2025a). A debiased scheme
averaging at the sequence level and summing at the token level gives a consistent +0.7% gain.

Other variations. We also experimented with several alternative configurations. Reducing the
training batch size to 256 improves accuracy by about +2.4%. Training the online stage on a dataset
different from that used for offline pretraining slightly underperforms the default baseline, yet remains
+5.5% above the offline-only initialization, indicating that offline and online datasets need not be
strictly aligned for FCP to be effective.

Comparison to Critique Finetuning (CFT). CFT can perform well with high-quality and detailed
critiques (Wang et al., 2025a), but applying it to the same coarse and lightweight feedback used for
FCP leads to severe degradation—worse than the base model (Table 1). This highlights a key strength
of FCP: it effectively leverages coarse, high-level feedback without costly fine-grained annotations.

5 RELATED WORK

SFT and RL methods for reasoning. The ability to perform reasoning has become a defining
strength of LLMs, enabling progress across mathematics, coding, and scientific domains (Jaech
et al., 2024; Comanici et al., 2025). To enhance these skills, two approaches have proven especially
influential: SFT and RL (Uesato et al., 2022; Rafailov et al., 2023; Guha et al., 2025; Hu et al.,



Under review as a conference paper at ICLR 2026

2025; Hochlehnert et al., 2025). Following the success of the DeepSeek-R1 recipe (Shao et al.,
2024; Guo et al., 2025), a number of RL variants have been introduced, including Dr. GRPO (Liu
et al., 2025a), DAPO (Yu et al., 2025), REINFORCE++ (Hu, 2025), and VAPO (Yue et al., 2025).
Beyond algorithmic proposals, researchers have systematically investigated the RL design space
for reasoning (Zeng et al., 2025; Team et al., 2025), examining factors such as staged training
curricula (Wen et al., 2025; Luo et al., 2025) and reward formulation (Gao et al., 2024; Cui et al.,
2025; Qi et al., 2025; Zhou et al., 2025a). While much of the initial progress focused on mathematics,
these methods have more recently been extended to software engineering and code reasoning (Liu &
Zhang, 2025; Xie et al., 2025; Wei et al., 2025; Yang et al., 2025; Chen et al., 2025), as well as to
broader agentic applications (Wang et al., 2025b; Jin et al., 2025; Jiang et al., 2025; Xue et al., 2025).

Learning from verbal feedback. Most existing approaches convert verbal feedback into scalar
rewards for RL training (Kim et al., 2024; Ankner et al., 2024; Lightman et al., 2024; Stephan et al.,
2024; Whitehouse et al., 2025; Liu et al., 2025b). More recent efforts explore learning directly from
feedback or critiques: Lloret et al. (2024) propose conditional SFT based on toxicity categorization in
alignment tasks, CFT (Wang et al., 2025a) trains models to imitate critiques, Critique-GRPO (Zhang
et al., 2025) incorporates critique-guided refinements into online RL, Salemi & Zamani (2025) jointly
optimize a feedback model and a policy model, and Chen et al. (2024) introduce a refinement model
that corrects errors using feedback. These approaches generally assume feedback is high-quality,
informative or categorized, and reliably improves self-refinement. In practice, however, human
feedback is often mixed, free-form, emotional, or uncertain. Moreover, while such feedback is easy to
collect, its distribution is difficult to model with generative reward models that must capture diverse
user interaction styles. In contrast, our FCP framework does not require feedback to be high-quality
or rubric-constrained; by treating feedback as a conditioning signal rather than a prediction target, it
can flexibly exploit the full range of verbal feedback, including noisy or mixed forms, for training.

6 DISCUSSION AND FUTURE DIRECTIONS

Our key insight is that the essence of RL lies in online interaction with the environment, not in
scalar rewards or any specific algorithm. Scalarization was historically necessary for control-centric
RL in robotics or strategy-centric RL in games, but it may not be intrinsic to language-centric
systems like LLMs. This reopens the debate around the reward hypothesis: earlier critics could only
offer counterexamples without an alternative framework (Skalse & Abate, 2022), whereas our FCP
approach leverages language priors to provide a principled way to bypass scalar rewards. Crucially,
during training, feedback c is a dependent variable generated from the environment pey, (|, 0)
and cannot be directly controlled, while at test time the conditioning feedback ¢ becomes an
independent variable freely specified by users. This asymmetry enables full use of diverse feedback
during training while allowing precise controllability at inference. By directly mapping feedback
to responses, our FCP bypasses reward imbalance, preserves feedback richness, and improves data
efficiency. Unlike RFT (Dong et al., 2023; Touvron et al., 2023), which discards many useful data
pairs, FCP retains diverse feedback, including mixed and uncertain, and can merge complementary
signals across examples at test time (Figure 1). This establishes verbal feedback as a first-class
training signal and FCP as a natural, scalable alternative to scalarized RL.

Future directions. Several extensions of FCP are promising. One is to combine it with verifiable
rewards, for instance by treating the absence of feedback as a neutral condition (e.g., using the null
feedback token <EF></EF>), so that reliable scalar supervision can complement verbal feedback
when available. Another is to extend FCP to multi-turn interactions, where feedback is incorporated
before the next turn of generation in a teacher-forcing style, enabling closer alignment with iterative
human guidance. A third is test-time adaptation: by conditioning on a few user-provided examples,
the model could rapidly adjust to individual feedback styles, similar to personalization in text-to-
image generation. Finally, the feedback condition ¢ could be made multimodal. Collectively, these
future directions would deepen integration of natural feedback into LLM training, bridging offline
and online stages while adapting to diverse user needs.
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Figure 4: Learning from mixed captions in text-to-image generation. During training, models
learn from realistic image-caption pairs such as “a banana and an apple on the table” or “a man
surfing on an ocean wave”. They can leverage language priors to recombine these captions and
generate novel concepts, such as “a banana surfing on the ocean” (images shown are generated with
Gemini 2.5 Flash Image). By analogy to Figure 1, this illustrates how diverse verbal feedback can be
treated as a conditioning signal, motivating our feedback-conditional learning paradigm.

A ADDITIONAL DERIVATIONS AND DISCUSSIONS

A.1 PROOF OF EQ. (2) AND ITS SPECIAL CASE

Following Rafailov et al. (2023), the optimal solution to a KL-constrained reward maximization
problem B (o|z,c+) [10g Penv (€™ |2, 0)] — Dki (7(0|2, ct)||met(0|)) can be written as
Tret(0|@) - exp (10g peny (€T |, 0))
>0 Tret(0]) - exp (10g penv (€T |, 0))
_ Twe(0]) - peny(c* |, 0) )
> o Tref (0| T) * Penv(cT |z, 0)
_ Py(o, clx)
Poff(cJr |CD)

Note that the objective in Eq. (2) is equivalent to minimizing the reverse KL divergence between
w(o|x, c) and Pyg(o|x, cT):

Ex (ofa.c+)[108 Peny (¢ [, 0)] — Dicr.(m(0|, €7)||mer(0]2))

= — D (m(ofz. )| [ Par(ole, c*)) + log P(c* ).

In the special case where the environment provides verifiable rewards, that is, peny(c™ |z, 07) =1
for correct responses ot and peyy (¢t|x,07) = 0 for incorrect responses o™, we can show that

Py(o|x, 1) reduces to the optimal solution of a 0-1 reward maximization problem without KL
regularization: Pyg(olx,c’) € argmaxy Er(o|q,c+) [1(0is 0T)]. Specially, we have

7*(olxz,c) =

= Poff(o|ma c+)'

N

7Tref(0+|w) 'Penv(0+|fﬂ; O+) _ 7Tref(0+|w)
Zo 7Tref(0|w) : penv(c+ |113, O) Zo isot 7Tref(0|33) '
_ Wref(o_|m) 'penv(c+|wa0_)
Pye(o m,c"' = =0
? ( | ) Zo 7Tref(0|m) : penv(c+|ma O)
Thus, taking 7(o|x, c™) = Pyg(o|x, ¢™) into the formula of ]Eﬂ(o|:c o) [L(ois oT)], we have

. Tet(0|x) - 1(0is o)
E pyy(ofz,ct) [L(ois oF E rez (o) - 1. 9
oiso I

Pyi(0™ |, c+) =
(3

oisot
Since there is max; Ex(o[a,c+) [L(0is 07)] = 1, we know that w(o|x, c) = Pu(o|x, c™) is one
of the optimal solutions (not unique), i.e., Pyt(o|z, ct) € argmax; Ex(o[a,c+) [L(0is 07)]. [
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(a) SFT (behavior cloning) (b) CFT (forward dynamics) (¢) Our FCP (inverse dynamics)

Figure 5: Graphical models for SFT, CFT, and our FCP. Following Brandfonbrener et al. (2023),
we use blue color to indicate inputs to the algorithm and green color to indicate prediction targets.

A.2 CONNECTION TO INVERSE DYNAMICS MODELING

In traditional RL, objectives for representation learning are often grouped into three classes: behavior
cloning, forward dynamics, and inverse dynamics. Behavior cloning is typically used for imitation
learning (Arora et al., 2020; Zang et al., 2022), forward dynamics is central to world modeling (Ha &
Schmidhuber, 2018; Schwarzer et al., 2021), and inverse dynamics has been explored for both pretrain-
ing (Brandfonbrener et al., 2023) and feature extraction for exploration in RL (Efroni et al., 2021).

Interestingly, analogous structures appear in the LLM literature. The objectives of supervised
finetuning (SFT), critique finetuning (CFT) (Wang et al., 2025a), and our feedback-conditional policy
(FCP) align naturally with behavior cloning, forward dynamics, and inverse dynamics, respectively:

SFT (behavior cloning): maxE, _ (oz) [logme(o|x)];
o
CFT (forward dynamics): max Er(olz) [Epa (cla,0) (108 To(clx, 0)]] ; (10)
Our FCP (inverse dynamics): maxE._ (o|z) [Epe (cla.0) [l0g To(0]T, )] .
o

We further illustrate this categorization with graphical models in Figure 5. This unified perspective
clarifies the conditional structure underlying each finetuning paradigm and highlights how different
forms of supervision drive model learning. In particular, our FCP extends the analogy by treating
verbal feedback as a first-class supervision signal, positioning it as the natural inverse-dynamics
counterpart to existing finetuning objectives.

B DETAILED EXPERIMENTAL SETUP

All implementations are based on 11ama—-factory (Zheng et al., 2024) and verl (Sheng et al.,
2025). Hyperparameter settings for both offline and online stages of FCP are listed in Table 6.

For the two special tokens <EF> and </EF>, embeddings are initialized by sampling from a
multivariate normal distribution with mean and covariance computed over existing token embeddings.
For general reasoning bootstrapping, we adopt a fully online setup with batch size of 256, differing
from the math setting to illustrate that FCP remains effective under both training strategies.

Finally, Figure 6 shows the unified prompt template used to elicit feedback from GPT-5-nano. The
template produces three outputs in one response: a low-quality real-world user-style feedback, a
high-quality professional reviewer-style feedback, and a scalar score summarizing overall quality.

C MORE EXPERIMENT RESULTS

D LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
column alignment, caption length, placement). The LLM did not contribute to research ideation, exper-
imental design, implementation, data analysis, or technical content beyond surface-level edits. All out-
puts were reviewed and edited by the authors, who take full responsibility for the final text and visuals.
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Table 6: Hyperparameters for FCP training used in the offline and bootstrapping (online) stages.

Hyperparameter

learning rate

Ir scheduler

weight decay

warmup ratio

train batch size

ppo mini-batch size
temperature

top_p

rollout_n

epoch

max response length
loss type

loss aggregation mode
feedback environment
feedback style

Offline Online
S5e-6 le-6
cosine constant
0 0.01

0.1 0
512 2048
— 512
— 1.0
— 1.0
— 4
1
4096

cross-entropy loss
token-mean
GPT-5-nano
professional reviewer

Table 7: Performance comparison under verifiable (rule-based) and LLM-generated supervision

across multiple training methods.

Method \ Source | AIME24 AIME25 MATH500 Minerva Olympiad | Avg.
Base - 7.5 6.7 63.8 28.3 28.6 27.0
Base + GRPO rule-based verifier 13.3 14.2 76.3 36.6 41.7 36.4
Base + GRPO LLM 20.0 13.3 75.7 42.3 40.8 384
RFT + GRPO rule-based verifier| 17.5 15.0 77.0 38.4 41.3 37.8
RFT + GRPO LLM 25.8 9.2 75.1 36.8 38.9 37.1
FCP + Bootstrap LLM 25.0 7.5 76.5 45.8 38.8 38.7

Table 8: Evaluation Results Under In-Distribution (ID) and Out-of-Distribution (OOD) Feedback

Conditions
Method | Feedback Style | ID/OOD | AIME24 AIME25 MATH500 Minerva Olympiad |Avg.
Base - - 7.5 6.7 63.8 28.3 28.6 [27.0
FCP + Bootstrap Reviewer ID 25.0 7.5 76.5 45.8 38.8 38.7
FCP + Bootstrap User 00D 10.8 7.5 75.1 35.2 38.0 33.3
FCP + Bootstrap “Correct” OOD 16.7 7.5 75.3 35.2 37.2 344
FCP + Bootstrap| No Feedback 00D 15.8 10.0 74.4 35.6 37.6 34.7

Table 9: Effects of training-used feedback quality on FCP performance across reasoning benchmarks.

Method | Feedback Style | Quality | AIME24 AIME25 MATHS500 Minerva Olympiad| Avg.

Base - - 7.5 +1.7 6.7 0.0 63.8 +638 28.3 +0.8 28.6 +0.4 [27.0 05
FCP + Bootstrap | Correctness-Only | very low | 10.0 +2.7 5.0 +1.9  73.4 0.7 34.3 +06 35.3 +0.4 |31.6 +o0s
FCP + Bootstrap User low 16.7 +2.7 0.8 +1.7  72.2 04 37.1 +04 37.1 o8 |32.8 +0.8
FCP + Bootstrap| Reviewer-Lite |medium | 14.2 +42 8.3 +1.9  74.0 +0.3 37.4 +15 37.3 +o0.7 |34.2 +1.0
FCP + Bootstrap Reviewer high [25.0+33 7.5+17 765 +07 45.8 0.7 38.8 +0.6 |38.7 +o.7
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Table 10: Comparison of FCP performance using weak critique models.

Method / Model | Critique Model |Feedback Style| AIME24 AIME25 MATHS500 Minerva Olympiad | Avg.
Qwen2.5-1.5B-Instruct - - 0.0 0.0 55.0 20.5 20.3 19.2
Qwen2.5-7B-Base - - 7.5 6.7 63.8 28.3 28.6 27.0
w/ FCP + Bootstrap |Qwen2.5-1.5B-Instruct User 14.2 5.8 72.9 35.5 374 33.1
w/ FCP + Bootstrap GPT-5-nano User 16.7 0.8 722 37.1 37.1 32.8
w/ FCP + Bootstrap GPT-5-nano Reviewer 25.0 7.5 76.5 45.8 38.8 38.7

(v

Inputs:
Question:
e
{question}
e

~

ou are acting as a real-world human user of an LLM.

Model Answer:
e
{model_answer}

e

Reference Final Answer (used only for correctness check):
e

{reference_answer}

e

Your tasks:

1) Simulate "user feedback" from a normal, real-world user reacting to the Model Answer only.

- Length: 1-3 sentences, colloquial tone, first person.

- Content: purely subjective sentiment (e.g., helpfulness, confidence, confusion, satisfaction).

- STRICT: Do NOT mention or allude to any symbols, formulas, variable names, or specialized concepts from the Question or the Model
Answer. Do NOT quote text from the inputs.

For example:

"I think you are right, but your solution is really long and complicated."
"You are a genius! You have all my respect."

"I am confused. There seems to be a mistake in your solution."

"What are you talking about? You are not answering my question."

etc.

2) Simulate a professional reviewer evaluating the Model Answer along several dimensions, including but not limited to:

« correctness — Compare the Model Answer's final result ONLY against the Reference Final Answer (if provided). Judge whether the end
result matches; do not use the reference for any other purpose.

« logical rigor — Assess the soundness and gaplessness of reasoning within the Model Answer itself. Do NOT use the Reference Final
Answer here.

« completeness — Judge coverage of required parts and edge cases based on the Question and the Model Answer only. Do NOT use the
Reference Final Answer here.

« clarity — Evaluate organization, readability, and ease of following in the Model Answer. Do NOT use the Reference Final Answer here.

Then provide a high-level summary (1-3 sentences) with overall judgment and broad observations.
- STRICT for the high-level summary: Only use adjectives and adverbs to describe the Model Answer and reasoning process. DO NOT
mention where it goes wrong and where it can do better.

For example:

"Your final answer is correct, but the solution is too long and complicated. There are also several logical errors in your solution."
"The answer is partially correct. The reasoning is sound but not complete. Also, you are being too verbose."

"The answer is totally wrong. It lacks soundness and is not complete. However, the solution is concise and clear."

Hard constraints:
- Keep all content in English.
- Do not mention anything like "reference” or "python snippet".

Output format:

#it# User-style feedback: <your 1-3 sentence feedback>

#### Analysis along several dimensions: <your 1-3 sentence analysis>
## High-level summary: <your 1-3 sentence summary>

#t## Score (0-10): <one overall integer score>

- J

Figure 6: Prompt template used to elicit feedback from GPT-5-nano, including real-world user-
style feedback, professional reviewer-style feedback, and a scalar score.
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