

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LANGUAGE MODELS CAN LEARN FROM VERBAL FEEDBACK WITHOUT SCALAR REWARDS

Anonymous authors

Paper under double-blind review

ABSTRACT

LLMs are often trained with RL from human or AI feedback, yet such methods typically *compress nuanced feedback into scalar rewards*, discarding much of their richness and inducing scale imbalance. We propose treating verbal feedback as a conditioning signal. Inspired by language priors in text-to-image generation, which enable novel outputs from unseen prompts, we introduce the **feedback-conditional policy (FCP)**. FCP learns directly from response-feedback pairs, approximating the feedback-conditional posterior through maximum likelihood training on *offline* data. We further develop an *online bootstrapping* stage where the policy generates under positive conditions and receives fresh feedback to refine itself. This reframes feedback-driven learning as conditional generation rather than reward optimization, offering a more expressive way for LLMs to directly learn from verbal feedback.

1 INTRODUCTION

“*That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward).*”

— Reward Hypothesis by Richard Sutton

The *reward hypothesis* in reinforcement learning (RL) was proposed over two decades ago (Sutton, 2004), when feedback from the environment had to be reduced to **scalar rewards** for RL algorithms to operate. This view shaped much of the field’s progress and remains the prevailing standard in applying RL to *alignment* and *reasoning* for large language models (LLMs) (Ziegler et al., 2019; Bai et al., 2022; Rafailov et al., 2023; Guo et al., 2025).

Yet in practice, the feedback encountered in RL for LLMs, especially in *non-verifiable* settings, is most often **verbalized**, such as “Good start, but the code can be more efficient”. Such feedback may come from human users (Stephan et al., 2024), generative reward models (Zhang et al., 2024; Mahan et al., 2024), or tool outputs in agentic scenarios (Wang et al., 2025b; Jin et al., 2025). Reducing the verbal feedback into scalar rewards introduces several limitations:

I. Information loss. Scalar rewards capture far less information than verbal feedback/critiques and are often uninterpretable. For example, the critiques “The response is redundant but correct” and “The response is compact but has many typos” may both collapse to a reward of 0.8, despite describing very different response patterns. Furthermore, the verbalized thoughts produced by (generative) reward models are typically discarded as intermediate outputs, with only the final scalar retained for RL training.

II. Ambiguity. Verbal feedback, especially from human users, is often *mixed* (containing both pros and cons), *emotional*, or *uncertain*, such as “I’m so happy” or “I’m not sure, maybe try again?”. Such feedback is far more common than purely positive or negative signals and carries diverse cues for learning and for understanding user interaction styles. Mapping these forms of feedback to scalars could be unclear or arbitrary.

III. Imbalanced reward scales across tasks. In multi-task training (e.g., math, code, science, games), it is difficult to maintain a consistent reward scale. Positive feedback on a simple math problem is far easier to obtain than on a challenging coding or game-playing task, which induces imbalanced rewards across domains and biases the learning process.

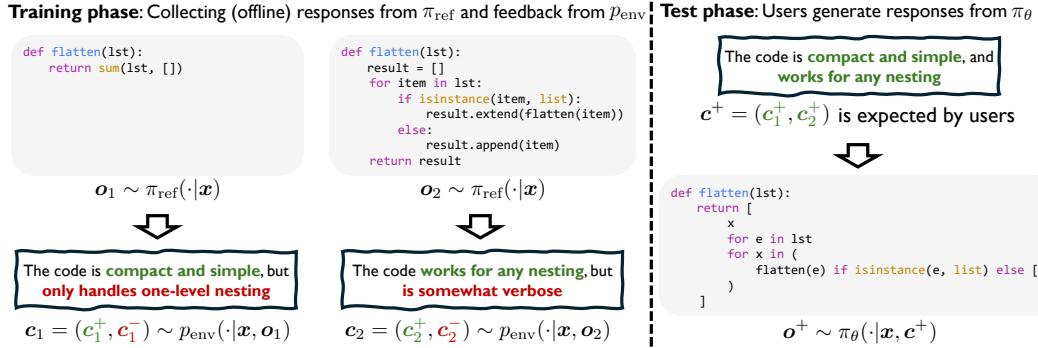


Figure 1: **Learning from mixed verbal feedback.** The instruction \mathbf{x} is “Write a Python function `flatten(lst)` that returns a flat list of integers”. The reference policy π_{ref} may assign low probability to the ideal response \mathbf{o}^+ , making purely positive response-feedback pairs $(\mathbf{o}^+, \mathbf{c}^+)$ rare in the training data collected from π_{ref} and p_{env} . This resembles the setting of text-to-image generation, where the *language prior* enables models to combine seen captions (analogous to mixed feedback \mathbf{c}_1 and \mathbf{c}_2) and generate rare images (analogous to purely positive response \mathbf{o}^+) such as “*a banana surfing on the ocean*” (Figure 4). Motivated by this, our model π_θ is trained as a feedback-conditional policy (FCP), and when conditioning on user-defined positive \mathbf{c}^+ , there is $\pi_\theta(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$.

Scalarization has long been seen as unavoidable, bridging verbal feedback and the numerical signals required by RL. With the rise of large-scale language pretraining, however, this view is being re-examined (Yao, 2025). LLMs embody strong commonsense and linguistic **priors**, suggesting a new paradigm: *treat verbal feedback as a first-class training signal*, rather than forcing it into a scalar form.

After all, LLMs already show the ability to **implicitly understand verbal feedback**. In agentic tasks, they iteratively adapt by integrating feedback prompts from human users, external critiques, or tool calls into their context and refining their responses accordingly (Wang et al., 2025b; Novikov et al., 2025). This indicates that LLMs can process verbal feedback, but only implicitly, *through a latent “mental model” that does not convert understanding into explicit scalar rewards*. The key question, then, is how to distill such feedback into training so that it directly improves model performance, rather than relying on inefficient multi-turn trial and error at test time.

To this end, we propose to learn a **feedback-conditional policy (FCP)** $\pi_\theta(\mathbf{o}|\mathbf{x}, \mathbf{c}) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, where $\pi_{\text{ref}}(\mathbf{o}|\mathbf{x})$ is a reference policy that generates a response \mathbf{o} given an instruction \mathbf{x} , and $p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$ is the distribution of environment feedback \mathbf{c} . Intuitively, the FCP reweights the reference policy by how likely each response \mathbf{o} would elicit the observed feedback \mathbf{c} . Conditioning on positive feedback \mathbf{c}^+ gives $\pi_\theta(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$, which increases the probability of generating responses that are more likely to receive favorable feedback. In this way, the FCP learns a *posterior* distribution that integrates prior knowledge from π_{ref} with verbal feedback, allowing it to handle diverse forms of feedback, including mixed ones, as illustrated in Figure 1.

After training an *offline* FCP $\pi_\theta(\mathbf{o}|\mathbf{x}, \mathbf{c}) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$ that conditions on arbitrary feedback \mathbf{c} , we further improve it through *online bootstrapping*. Concretely, we conduct online training by sampling rollouts from the behavior policy $\pi_\theta(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ (goal-conditioned on positive feedback), and re-annotating them with fresh feedback from p_{env} , thereby iteratively strengthening the policy.

Our pilot experiments show that FCP matches or surpasses strong scalar-based baselines such as offline RFT (Dong et al., 2023) and online GRPO (Shao et al., 2024), **without relying on verifiers, scalar conversion, or data filtering**. This demonstrates a simple and scalable framework that preserves the richness of verbal feedback while avoiding the scarcity of rule-based verifiers and the risk of reward hacking. While our current implementation is naive, advanced training techniques could further improve FCP’s performance.

2 LEARNING DIRECTLY FROM VERBAL FEEDBACK

Traditional RL methods train a policy by up-weighting responses that receive “good” feedback and down-weighting those that receive “bad” feedback. From a probabilistic view, RL can be seen as learning a *posterior* over responses that are expected to receive good feedback (i.e., high rewards) (Peters & Schaal, 2007; Peng et al., 2019; Rafailov et al., 2023). Distinguishing what counts as good or bad typically requires carefully designed reward functions or detailed rubrics to produce scalar signals, leading to the limitations discussed in Section 1.

Our approach is inspired by language priors in text-to-image generation, where models compose *unseen* prompts from mixed captions (Figure 4). Similarly, language priors could enable LLMs to absorb diverse verbal feedback and yield high-quality responses beyond scalar reinforcement (Figure 1). Since LLMs already show implicit feedback understanding, we train directly on it: *offline* to initialize a **feedback-conditional policy (FCP)** (Section 2.1), then *online* to bootstrap performance (Section 2.2).

2.1 OFFLINE TRAINING: INITIALIZING FEEDBACK-CONDITIONAL POLICY

We begin with a reference policy model π_{ref} that takes an input instruction \mathbf{x} and generates a response $\mathbf{o} \sim \pi_{\text{ref}}(\cdot|\mathbf{x})$. The response \mathbf{o} then undergoes a *single-turn* interaction with the environment, which provides verbal feedback $\mathbf{c} \sim p_{\text{env}}(\cdot|\mathbf{x}, \mathbf{o})$. The reference policy π_{ref} may represent a base model, an instruction-tuned model, or a reasoning model, and the response \mathbf{o} can include both thinking processes and the final answer. The environment p_{env} may consist of human users or generative reward models. In the **offline** setting, where responses are collected from π_{ref} , we define the joint distribution of response-feedback pairs as $P_{\text{off}}(\mathbf{o}, \mathbf{c}|\mathbf{x}) \triangleq \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, from which we derive the *feedback-conditional posterior* distribution:

$$P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}) = \frac{P_{\text{off}}(\mathbf{o}, \mathbf{c}|\mathbf{x})}{P_{\text{off}}(\mathbf{c}|\mathbf{x})} = \frac{\pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})}{\sum_{\mathbf{o}} \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})}. \quad (1)$$

Informally, let \mathbf{c}^+ denote purely positive feedback and \mathbf{c}^- purely negative one. Mixed feedback can be approximated as $\mathbf{c} = (\mathbf{c}^+, \mathbf{c}^-)$, while neutral or uncertain feedback may be neither. If we condition on positive feedback \mathbf{c}^+ , for instance, “The generated code is functionally correct, efficient, and compact” for a coding instruction \mathbf{x} , then $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$, which favors responses \mathbf{o} that are more likely to elicit positive feedback.¹

While $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \propto \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$ appears to be the oracle policy we are seeking, it cannot be directly sampled from, because $p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$ is defined only after the full response \mathbf{o} is generated, and thus cannot guide generation step by step. We therefore aim to learn a policy that approximates $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$. Following Rafailov et al. (2023), we show that $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ is the optimal solution to a KL-constrained reward maximization problem with reward function $\log p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$:

$$P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \in \arg \max_{\pi} \mathbb{E}_{\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)} [\log p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})] - \mathbb{D}_{\text{KL}}(\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) || \pi_{\text{ref}}(\mathbf{o}|\mathbf{x})). \quad (2)$$

In the special case where the environment provides *verifiable rewards*, that is, $p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o}^+) = 1$ for correct responses \mathbf{o}^+ and $p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o}^-) = 0$ for incorrect responses \mathbf{o}^- , we can show that $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ reduces to the optimal solution of a 0-1 binary reward maximization problem without KL regularization: $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \in \arg \max_{\pi} \mathbb{E}_{\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)} [\mathbb{1}(\mathbf{o} \text{ is } \mathbf{o}^+)]$ (proof is in Appendix A.1).

Alternative learning objective. In more general scenarios, particularly when feedback comes from human users, *solving Eq. (2) is typically intractable*. This is because we can only sample from p_{env} but cannot compute the exact log-likelihood $\log p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$. Note that the objective in Eq. (2) is equivalent to minimizing the *reverse* KL divergence between $\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ and $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$:

$$\max_{\pi} \mathbb{E}_{\pi} [\log p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})] - \mathbb{D}_{\text{KL}}(\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) || \pi_{\text{ref}}(\mathbf{o}|\mathbf{x})) \Leftrightarrow \min_{\pi} \mathbb{D}_{\text{KL}}(\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) || P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)),$$

which is derived in Eq. (7). To avoid intractability of computing $\log p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$ in the reverse KL divergence, we instead turn to minimize the *forward* KL divergence between $\pi(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ and $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$. This relaxation is standard in KL-constrained LM training, where forward-KL objectives have been used for distributional or reward-conditioned generation (Khalifa et al., 2020; Korbak et al., 2022; Pandey et al., 2024), though our setting differs in conditioning on rich verbal feedback. In practice, however, we can only obtain feedback from $p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, and it is infeasible to sample exclusively from the constrained subset of positive feedback $p_{\text{env}}(\mathbf{c}^+|\mathbf{x}, \mathbf{o})$ without carefully designed rubrics or filtering. To address this, we generalize the objective: rather than approximating only $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$, we learn to approximate $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$, conditioning directly on *any* feedback \mathbf{c} .

Specifically, we propose to learn a **feedback-conditional policy (FCP)** $\pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})$ by minimizing the expected forward KL divergence between $\pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})$ and $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$:

$$\begin{aligned} \min_{\pi_{\theta}} \mathbb{E}_{P_{\text{off}}(\mathbf{c}|\mathbf{x})} [\mathbb{D}_{\text{KL}}(P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}) || \pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c}))] &\Leftrightarrow \max_{\pi_{\theta}} \mathbb{E}_{P_{\text{off}}(\mathbf{c}|\mathbf{x})} [\mathbb{E}_{P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})} [\log \pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})]] \\ &\Leftrightarrow \max_{\pi_{\theta}} \mathbb{E}_{\pi_{\text{ref}}(\mathbf{o}|\mathbf{x})} [\mathbb{E}_{p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})} [\log \pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})]], \end{aligned} \quad (3)$$

¹Conditioning on negative feedback \mathbf{c}^- would similarly favor poor responses, though this is rarely useful.

162 **Algorithm 1** Offline training: Initializing feedback-conditional policy (Section 2.1)
163
164 **Inputs:** Reference policy $\pi_{\text{ref}}(\mathbf{o}|\mathbf{x})$, feedback environment $p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, feedback-conditional policy
165 $\pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})$, instruction corpus \mathcal{X} , batch size B , optimizer \mathcal{O}
166 **Outputs:** The offline-trained parameters θ_{off}
167 1: **Initialize** $\pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c}) = \pi_{\text{ref}}(\mathbf{o}|[\text{<EF>} \mathbf{c} \text{</EF>}, \mathbf{x}])$, where <EF> and </EF> are special to-
168 tokens used to wrap the expected feedback \mathbf{c} , which is concatenated before the instruction \mathbf{x}
169 2: **Collect** offline dataset $\mathcal{D}_{\text{off}} = \{(\mathbf{x}, \mathbf{o}, \mathbf{c})\}$ with $\mathbf{x} \sim \mathcal{X}$, $\mathbf{o} \sim \pi_{\text{ref}}(\cdot|\mathbf{x})$ then $\mathbf{c} \sim p_{\text{env}}(\cdot|\mathbf{x}, \mathbf{o})$
170 3: **Objective:** $\max_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{o}, \mathbf{c}) \sim \mathcal{D}_{\text{off}}} [\log \pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c})]$ // Taking expectation over $\mathbf{x} \sim \mathcal{X}$ in Eq. (3)
171 4: **while** not converged **do**
172 5: Sample $\{(\mathbf{x}_i, \mathbf{o}_i, \mathbf{c}_i)\}_{i=1}^B \sim \mathcal{D}_{\text{off}}$; $\theta \leftarrow \mathcal{O}.\text{step}(\theta, \nabla_{\theta} \frac{1}{B} \sum_{i=1}^B \log \pi_{\theta}(\mathbf{o}_i|\mathbf{x}_i, \mathbf{c}_i))$
173 6: **return** $\theta_{\text{off}} \leftarrow \theta$

174
175 where the second equivalence follows from the identities $P_{\text{off}}(\mathbf{c}|\mathbf{x}) \cdot P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c}) = P_{\text{off}}(\mathbf{o}, \mathbf{c}|\mathbf{x}) =$
176 $\pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$. This objective in Eq. (3) reduces to maximum likelihood training, which is
177 straightforward to implement and optimize with data collected from $\pi_{\text{ref}}(\mathbf{o}|\mathbf{x})$ and $p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, as
178 described in Algorithm 1. Its optimal solution is $\pi_{\theta}^*(\mathbf{o}|\mathbf{x}, \mathbf{c}) = P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$ on the support set of
179 $P_{\text{off}}(\mathbf{c}|\mathbf{x})$. Notably, our approach does not require explicitly distinguishing positive \mathbf{c}^+ from negative
180 \mathbf{c}^- ; the language prior embedded in LLMs can implicitly interpret and combine information from
181 diverse forms of feedback, including mixed ones as seen in Figure 1. At test time, users may specify
182 desired positive feedback \mathbf{c}^+ , and responses can be generated from $\pi_{\theta}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$.

183 **Remark I: why using $P_{\text{off}}(\mathbf{c}|\mathbf{x})$?** In Eq. (3), the expectation on \mathbf{c} is taken w.r.t. $P_{\text{off}}(\mathbf{c}|\mathbf{x})$. In principle,
184 any other distribution $p(\mathbf{c}|\mathbf{x})$ could be used, and the optimal solution $\pi_{\theta}^*(\mathbf{o}|\mathbf{x}, \mathbf{c}) = P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$
185 would remain unchanged on the support $\text{supp}(p(\cdot|\mathbf{x}))$. We adopt $P_{\text{off}}(\mathbf{c}|\mathbf{x})$ mainly for two reasons:
186 (i) its support set $\text{supp}(P_{\text{off}}(\cdot|\mathbf{x})) = \bigcup_{\mathbf{o} \in \text{supp}(\pi_{\text{ref}}(\cdot|\mathbf{x}))} \text{supp}(p_{\text{env}}(\cdot|\mathbf{x}, \mathbf{o}))$ covers all feedback that
187 may be encountered when collecting offline data; (ii) it serves as a compensating distribution
188 that converts the intractable posterior expectation $P_{\text{off}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$ into the tractable joint expectation
189 $P_{\text{off}}(\mathbf{o}, \mathbf{c}|\mathbf{x}) = \pi_{\text{ref}}(\mathbf{o}|\mathbf{x}) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$, which is convenient to sample from.

190 **Remark II: FCP as inverse dynamics.** We observe that our FCP learning in Eq. (3) aligns with
191 modeling *inverse dynamics* (Brandfonbrener et al., 2023), complementing supervised finetuning
192 (SFT) as *behavior cloning*, and critique finetuning (CFT) (Wang et al., 2025a) as *forward dynamics*.
193 A detailed discussion of this analogy is provided in Appendix A.2.

195 2.2 ONLINE TRAINING: BOOTSTRAPPING BY CONDITIONING ON POSITIVE FEEDBACK

196 We denote the model obtained by solving the offline problem in Eq. (3) as $\pi_{\theta_{\text{off}}}(\mathbf{o}|\mathbf{x}, \mathbf{c})$, which is
197 capable of generating responses conditioned on any user-defined feedback \mathbf{c} . Building on this model,
198 we further perform **online training** to bootstrap performance by *conditioning explicitly on positive*
199 *feedback \mathbf{c}^+* . Concretely, we iteratively update parameters θ_{t+1} using rollouts from $\pi_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)$ for
200 $t \in \mathbb{N}$, with $\theta_0 = \theta_{\text{off}}$ initialized from the offline solution, as described in Algorithm 2.

201 Formally, we define the joint distribution $P_{\theta_t}(\mathbf{o}, \mathbf{c}, \mathbf{c}^+|\mathbf{x}) \triangleq p_{\text{user}}(\mathbf{c}^+|\mathbf{x}) \cdot \pi_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})$,
202 where $p_{\text{user}}(\mathbf{c}^+|\mathbf{x})$ denotes the distribution (fixed or trainable) of user-specified *expected* positive
203 feedback. The corresponding feedback-conditional posterior is

$$204 P_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}) = \frac{P_{\theta_t}(\mathbf{o}, \mathbf{c}|\mathbf{x})}{P_{\theta_t}(\mathbf{c}|\mathbf{x})} = \frac{\sum_{\mathbf{c}^+} p_{\text{user}}(\mathbf{c}^+|\mathbf{x}) \cdot \pi_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})}{\sum_{\mathbf{o}} \sum_{\mathbf{c}^+} p_{\text{user}}(\mathbf{c}^+|\mathbf{x}) \cdot \pi_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+) \cdot p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})}. \quad (4)$$

205 The optimization objective for updating θ_{t+1} based on θ_t (with gradients stopped through θ_t) is

$$206 \begin{aligned} & \min_{\pi_{\theta_{t+1}}} \mathbb{E}_{P_{\theta_t}(\mathbf{c}|\mathbf{x})} [\mathbb{D}_{\text{KL}}(P_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}) || \pi_{\theta_{t+1}}(\mathbf{o}|\mathbf{x}, \mathbf{c}))] \\ & \Leftrightarrow \max_{\pi_{\theta_{t+1}}} \mathbb{E}_{P_{\theta_t}(\mathbf{c}|\mathbf{x})} \left[\mathbb{E}_{P_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c})} [\log \pi_{\theta_{t+1}}(\mathbf{o}|\mathbf{x}, \mathbf{c})] \right] \\ & \Leftrightarrow \max_{\pi_{\theta_{t+1}}} \mathbb{E}_{p_{\text{user}}(\mathbf{c}^+|\mathbf{x})} \left[\mathbb{E}_{\pi_{\theta_t}(\mathbf{o}|\mathbf{x}, \mathbf{c}^+)} \left[\mathbb{E}_{p_{\text{env}}(\mathbf{c}|\mathbf{x}, \mathbf{o})} [\log \pi_{\theta_{t+1}}(\mathbf{o}|\mathbf{x}, \mathbf{c})] \right] \right]. \end{aligned} \quad (5)$$

215 **Intuition.** In each training round t (distinct from the s -th gradient steps taken within a round), the
216 current model π_{θ_t} is conditioned on \mathbf{c}^+ to sample candidate positive responses. These responses are

216 Algorithm 2 Online training: Bootstrapping by conditioning on positive feedback (Section 2.2)

217 Inputs: Initialize $\theta_0 = \theta_{\text{off}}$ from Algorithm 1, user-desired feedback $p_{\text{user}}(c^+ | \mathbf{x})$, environment
218 $p_{\text{env}}(\mathbf{c} | \mathbf{x}, \mathbf{o})$, instruct. corpus \mathcal{X} , training rounds T , steps per round S , batch size B , optimizer \mathcal{O}
219 Outputs: The online-bootstrapped parameters θ_T

```

220 1: for  $t = 1$  to  $T$  do
221 2:    $\theta_t \leftarrow \theta_{t-1}$ 
222 3:   for all instructions  $\mathbf{x} \sim \mathcal{X}$  sampled in this round do
223 4:     Rollout  $\mathbf{c}^+ \sim p_{\text{user}}(\cdot | \mathbf{x})$ ,  $\mathbf{o} \sim \pi_{\theta_{t-1}}(\cdot | \mathbf{x}, \mathbf{c}^+)$  then obtain fresh critique  $\mathbf{c} \sim p_{\text{env}}(\cdot | \mathbf{x}, \mathbf{o})$ 
224 5:     Push  $(\mathbf{x}, \mathbf{o}, \mathbf{c})$  to buffer  $\mathcal{B}_{\text{on}}^t$  //  $\mathbf{c}$  is usually different (at least linguistically) from  $\mathbf{c}^+$ 
225 6:     Objective:  $\max_{\theta_t} \mathbb{E}_{(\mathbf{x}, \mathbf{o}, \mathbf{c}) \sim \mathcal{B}_{\text{on}}^t} [\log \pi_{\theta_t}(\mathbf{o} | \mathbf{x}, \mathbf{c})]$  // Taking expectation over  $\mathbf{x} \sim \mathcal{X}$  in Eq. (5)
226 7:     for  $s = 1$  to  $S$  do
227 8:       Sample  $\{(\mathbf{x}_i, \mathbf{o}_i, \mathbf{c}_i)\}_{i=1}^B \sim \mathcal{B}_{\text{on}}^t$ ;  $\theta_t \leftarrow \mathcal{O}.\text{step}(\theta_t, \nabla_{\theta_t} \frac{1}{B} \sum_{i=1}^B \log \pi_{\theta_t}(\mathbf{o}_i | \mathbf{x}_i, \mathbf{c}_i))$ 
228 9:   return  $\theta_T$ 

```

231 then re-annotated with fresh feedback \mathbf{c} from the environment. Over successive rounds, the model
 232 learns to identify cases where conditioning on \mathbf{c}^+ does not in fact yield positive critiques, while
 233 reinforcing those that align with the expected feedback. This iterative process bootstraps the model,
 234 progressively strengthening alignment with user-specified positive feedback. Moreover, following
 235 [Lanchantin et al. \(2025\)](#), the number of gradient steps S between rounds can be flexibly adjusted,
 236 allowing the procedure to interpolate between fully online and semi-online training.

237 **Test-time usage.** At test time, FCP does not require any environment-generated feedback. If the user
 238 wishes, they may provide a desired feedback condition \mathbf{c}_{user} . When no such condition is given, we
 239 automatically obtain a positive feedback description by prompting an LLM with instructions such
 240 as: “Provide several possible positive feedback descriptions for the
 241 following query.” This produces a suitable \mathbf{c}^+ for conditioning. The model then generates an
 242 output \mathbf{o} using the feedback conditional policy $\pi_{\theta}(\mathbf{o} | \mathbf{x}, \mathbf{c}^+)$. This is a single-pass generation process
 243 that does not require any iterative refinement. In practice, inference simply consists of prepending the
 244 selected feedback description to the input prompt.

246 3 EXPERIMENTS

247 We evaluate FCP on mathematical and general reasoning tasks, aiming for a direct comparison with
 248 scalar-based methods. We choose reasoning tasks as the testbed because scalarized RL has been
 249 especially successful in this domain ([Guo et al., 2025](#); [Ma et al., 2025](#)), making it a strong and
 250 convincing benchmark. Showing that FCP performs comparably under such demanding conditions
 251 provides a rigorous test of its effectiveness. As shown in Section 3.2, FCP indeed matches scalar
 252 pipelines, with more design choices presented in our ablation studies (Section 4).

254 3.1 SETUP

255 **Datasets and models.** For mathematical reasoning, we use Big-Math ([Albalak et al., 2025](#)),
 256 a 251k-problem dataset curated for training and evaluation. For general reasoning, we use
 257 WebInstruct ([Yue et al., 2024](#)) from GENERAL-REASONER ([Ma et al., 2025](#)). Its multi-domain,
 258 free-form answers are unsuitable for rule-based filters, so prior work relies on *generative reward*
 259 *model*—making it a natural testbed to contrast verbal conditioning with scalar-reward pipelines. As
 260 pilot experiments, our base model is Qwen2.5-7B-base ([Yang et al., 2024](#)).

261 **Feedback environment simulation.** Human feedback is costly and difficult to standardize in both
 262 quality and style. We therefore simulate the feedback environment with GPT-5-nano, which
 263 provides feedback for both offline (Algorithm 1) and online (Algorithm 2) training. Our method only
 264 requires feedback to be *non-deceptive* (following p_{env}), rather than a detailed breakdown, making
 265 lightweight models sufficient. To implement this, we design a unified prompt template (Figure 6) that
 266 first elicits a low-quality, *real-world user*-style feedback, then a high-quality, *professional reviewer*-
 267 style feedback covering multiple aspects, and finally a *scalar score* summarizing overall quality. This
 268 setup ensures that the same feedback source supplies both the *verbal conditions* for FCP and the
 269 *scalar rewards* for RL baselines, enabling a fair comparison.

Table 1: **Math (in-domain) and IFEval (out-of-distribution) results.** Here **Avg.** denotes mean accuracy (%) over five math benchmarks. CFT is critique finetuning (Wang et al., 2025a), see Section 4.2, and Critique-GRPO is adopted from Zhang et al. (2025).

Offline Algo. + Online Algo.	Scalar Reward	In-Domain						OOD IFEval
		AIME24	AIME25	MATH500	Minerva	Olympiad	Avg.	
Base	-	7.5 \pm 1.7	6.7 \pm 0.0	63.8 \pm 63.8	28.3 \pm 0.8	28.6 \pm 0.4	27.0 \pm 0.5	36.8
+ GRPO	✓	20.0 \pm 0.0	13.3 \pm 2.7	75.7 \pm 1.7	42.3 \pm 1.3	40.8 \pm 0.5	38.4 \pm 0.9	38.5
+ Critique-GRPO	✓	15.0 \pm 1.9	9.2 \pm 1.7	76.8 \pm 0.3	36.1 \pm 0.9	40.1 \pm 0.5	35.4 \pm 0.6	39.0
RFT	✓	13.3 \pm 0.0	3.3 \pm 0.0	69.2 \pm 0.6	32.4 \pm 0.6	33.8 \pm 0.9	30.4 \pm 0.0	37.5
+ GRPO	✓	25.8 \pm 1.7	9.2 \pm 1.7	75.1 \pm 0.7	36.8 \pm 0.9	38.9 \pm 0.1	37.1 \pm 0.5	38.8
+ Critique-GRPO	✓	16.7 \pm 4.7	9.2 \pm 5.0	75.2 \pm 0.4	35.8 \pm 0.7	39.6 \pm 0.5	35.3 \pm 1.2	38.6
CFT	✗	1.7 \pm 3.3	0.0 \pm 0.0	27.0 \pm 3.2	9.2 \pm 6.4	7.7 \pm 1.4	9.1 \pm 1.3	-
FCP	✗	6.7 \pm 0.0	3.3 \pm 3.8	68.9 \pm 1.0	31.2 \pm 1.1	32.4 \pm 1.1	28.5 \pm 1.1	38.6
+ Bootstrap	✗	25.0 \pm 3.3	7.5 \pm 1.7	76.5 \pm 0.7	45.8 \pm 0.7	38.8 \pm 0.6	38.7 \pm 0.7	39.0

Baselines. We compare against two strong baselines: Rejection Sampling Finetuning (RFT) and GRPO (Dong et al., 2023; Shao et al., 2024). RFT filters responses by correctness and finetunes only on the correct ones, which in the *offline* case reduces to training on a binary scalar score (correct/incorrect). While simple and effective, it depends on reliable filtering and a stable verifier. GRPO instead uses group-normalized scalar rewards to estimate advantages and has become one of the strongest *online* methods, especially in math reasoning where answers can usually be verified automatically. Both baselines rely on scalar-based filtering or scoring, making them dependent on high-quality verifiable data and an auxiliary verifier. Even rubric-based reward shaping (Zhou et al., 2025b) still loses much of the feedback richness. Our experiments thus offer a stringent comparison between scalar-reward pipelines (RFT/GRPO) and FCP learning.

Training details for FCP. In the *offline* stage (Algorithm 1), the base model generates 8 candidate responses per prompt. We discard prompts where all responses are entirely correct or incorrect, then sample one correct and one incorrect response for GPT-5-nano to provide feedback. All collected feedback is used to train FCP, while a pool of positive feedback $\{c^+\}$ is built from the scalar scores in the feedback. In the *online* stage (Algorithm 2), for each prompt x we sample a desired condition $c^+ \sim p_{\text{user}}(\cdot|x)$ by drawing from the pool $\{c^+\}$. For rollout, the prompt batch size is 2048 with 4 responses per prompt; for training, the mini-batch size is 512, giving 4 gradient updates per rollout step. Each response receives a fresh *professional reviewer*-style feedback from GPT-5-nano, which is concatenated with the prompt and response (using the Algorithm 1 wrapper `<EF>` and `</EF>`) for cross-entropy training. This bootstrapping loop improves response quality under desired conditions while grounding updates in new feedback. For fair comparison, GRPO is trained with the same scalar scores from GPT-5-nano under the identical prompt template.

Evaluation. We assess mathematical reasoning on AIME24&25, MATH500 (Hendrycks et al., 2021), Minerva-Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024), and general reasoning on GPQA-Diamond (Rein et al., 2024), MMLU-Pro (Wang et al., 2024), and TheoremQA (Chen et al., 2023). To test instruction-following beyond the training domain, we also include IFEval (Zhou et al., 2023). All benchmarks use a unified protocol: each dataset is run under four random seeds ², with mean accuracy reported. Inference uses v11m (Kwon et al., 2023) with greedy decoding and a maximum generation length of 8192 tokens. For FCP, we match the training setup by randomly sampling one feedback condition from $\{c^+\}$ for each question and prepending it to the prompt template.

3.2 MAIN RESULTS

Offline FCP is comparable to RFT. On Qwen2.5-7B-base, offline FCP attains 28.8% average accuracy on the math suite, between the base model (27.0%) and RFT (30.4%) (Table 1). General reasoning shows the same order: 38.7%, 43.5%, and 44.6% for base, FCP, and RFT (Table 2). This is expected, since FCP directly learns from all response-feedback pairs without filtering and therefore inevitably absorbs noise, whereas RFT benefits from elaborate correctness filtering. Still, FCP remains competitive under noisier supervision.

²For MMLU-Pro, the large test set size (\sim 12k questions) simultaneously leads to a high evaluation cost and an inherently small variance (typically ≤ 0.3). Consequently, we report results based on a single evaluation run for this benchmark.

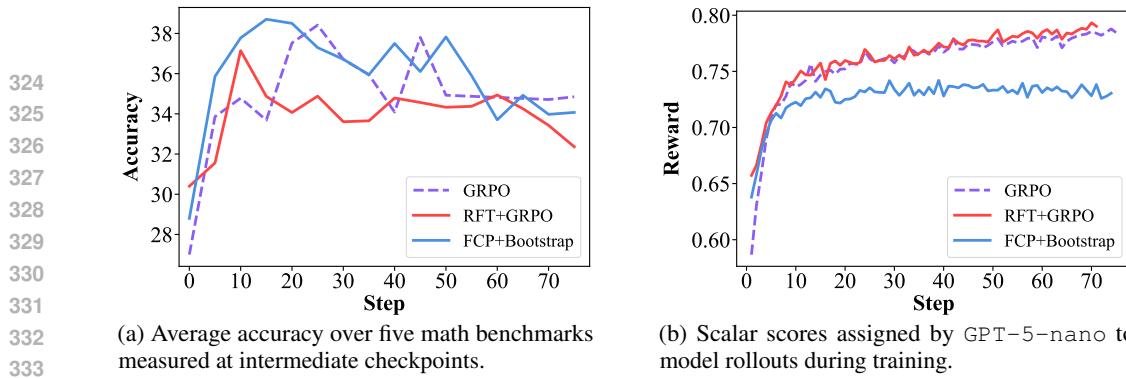


Figure 2: **Training dynamics of FCP and scalar-based baselines.** (a) FCP+Bootstrap matches GRPO and RFT+GRPO accuracy within 30 steps. (b) In contrast, its scalar reward scores lag behind, consistent with the fact that FCP does not directly optimize against reward model’s preference.

Table 2: **General reasoning results.** Accuracy (%) across three benchmarks and their average.

Offline Algo. + Online Algo.	Scalar Reward	GPQA-Diamond	MMLU-Pro	TheoremQA	Average
Base	-	27.9 ± 1.0	49.7	38.6 ± 0.2	38.7 ± 0.4
+ GRPO	✓	32.5 ± 5.3	49.7	49.4 ± 1.4	43.9 ± 1.7
RFT	✓	35.2 ± 1.3	55.0	43.7 ± 0.9	44.6 ± 0.2
+ GRPO	✓	37.2 ± 2.5	57.0	48.3 ± 0.2	47.5 ± 0.8
FCP	✗	35.0 ± 2.9	53.6	42.0 ± 1.0	43.5 ± 0.6
+ Bootstrap	✗	39.1 ± 2.9	55.3	49.1 ± 0.5	47.8 ± 0.9

Bootstrapping enables FCP to rival scalarized RL baselines. Online bootstrapping lifts FCP from 28.8% to 38.7% average accuracy on the math suite (Table 1), slightly surpassing GRPO (38.4%). A similar trend appears in out-of-distribution case: on **IFEval**, FCP+Bootstrap reaches 39.0%, comparable to GRPO (38.5%) and RFT+GRPO (38.8%). General reasoning benchmarks (Table 2) show the same pattern, with FCP+Bootstrap at 47.8%, matching the best scalar-based baseline (47.5%). These results indicate that bootstrapping gives FCP the effectiveness of scalarized RL while retaining the advantage of learning directly from richer verbal feedback.

3.3 LEARNING DYNAMICS OF FCP

FCP enables controllable behavior across diverse feedback conditions. A core question is whether the policy truly *learns* the conditioning signal c —and, if so, whether this lets us absorb negative samples into training without hurting best-case performance. We probe this by sampling representative feedback from the offline pool and evaluating under several conditions.

Table 3 shows a sharp contrast on MATH500: accuracy is 68.5% under `fully_positive` but only 17.1% under `fully_negative`, far below the base model’s 63.8% (Table 1). This indicates the model internalizes the control signal: negative conditions induce poor behavior when requested, yet positive conditions still yield strong accuracy—showing that including negative samples in training (*using the same cross-entropy loss as positives*) does not cap performance under positive ones.

Other conditions also shift behavior as intended. Under `neutral`, where the condition c asks for a correct answer and a more verbose solution, accuracy drops slightly but response length grows, reflecting a trade-off. With `has_code`, the share of responses containing code rises to 74.3%, confirming that stylistic attributes in c are also followed. Compared to Qwen2.5-7B-Instruct, which shows little variation across conditions due to training only on verified positives, FCP learns to map feedback c to distinct behaviors, enabling broad data use without manual filtering.

FCP achieves strong accuracy without over-optimizing scalar rewards. As seen in Figure 2a, both FCP and GRPO reach peak accuracy within 30 online steps, with scalar scores from GPT-5-nano rising sharply at the start. Yet Figure 2b shows FCP’s scores lagging behind GRPO’s later, since it does not directly optimize against the scalar reward model. Crucially, FCP sustains high accuracy

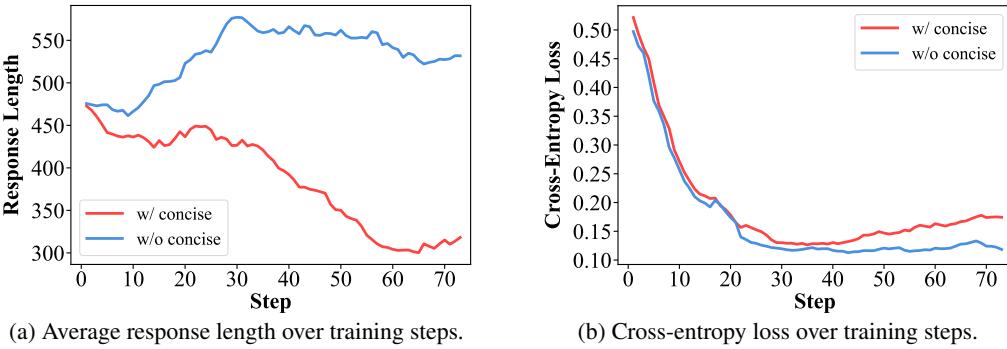


Figure 3: **Effect of length-related conditions on bootstrapping stability.** Both curves are smoothed with a 10-step moving average. (a) Without filtering, response length decreases over time, while filtering out length-related conditions leads to steady growth. (b) The corresponding loss curves show greater instability when length-related conditions are included.

Table 3: **Comparison under different feedback conditions.** Accuracy (%), code ratio (proportion of responses containing code), and average response length are all measured on MATH500.³

		Example 1	Example 2	Example 3	Example 4
Feedback type	fully_positive	fully_negative	neutral	has_code	
Content	Accurate and clear; concise and coherent reasoning; correct conclusion.	Incoherent and incomplete. Random and unfocused. Unclear and disorganized.	Correct and readable overall, but the solution is verbose and could be streamlined for tighter logical flow.	Correct and clear, though slightly verbose with superfluous code .	
Accuracy	Instruct FCP	76.2 68.5	77.4 17.1	77.5 61.1	76.6 53.9
Code Ratio	Instruct FCP	0 22.7	0 55.6	0 46.3	0 74.3
Response Length	Instruct FCP	632 605	650 1442	638 722	661 659

despite lower scores, indicating it avoids the reward-hacking behavior often seen in scalar-based methods and underscoring verbal feedback as a more robust training signal.

Length-related conditions destabilize FCP bootstrapping. We find that feedback conditions c^+ tied to output length, such as *conciseness*, can destabilize online bootstrapping. As shown in Figure 3, these conditions cause average response length to shrink over time while the loss becomes unstable. This likely reflects a feedback loop: concise rollouts receive affirming feedback, and cross-entropy updates further shorten responses, eventually collapsing output length. Filtering out length-related conditions instead yields steadily longer responses, mirroring GRPO’s training behavior (Guo et al., 2025) and supporting the view that reliable math solving benefits from extended reasoning traces.

4 ABLATION STUDIES

Unless otherwise noted, we use the following *default* configuration: For rollout, the prompt batch size is 512 with 4 responses generated per prompt. For training, the mini-batch size is 512, corresponding to a single gradient update per rollout step, which yields a fully online setting. All rollouts of the same prompt share an identical feedback condition c^+ . Training uses token-level mean loss aggregation, with fresh feedback c provided in the professional *reviewer*-style by GPT-5-nano.

4.1 REAL-WORLD USER VS. PROFESSIONAL REVIEWER STYLE

Real-world user feedback is abundant and inexpensive but often noisy and inconsistent; professional reviewer feedback is higher quality but costly and less scalable. We therefore ask: *how much feedback quality does FCP actually require?* We use a unified prompt that asks GPT-5-nano to produce both a low-quality real-world *user*-style feedback and a high-quality professional *reviewer*-style feedback in a single response. As shown in Table 4, *user*-style feedback is typically subjective and colloquial, whereas *reviewer*-style feedback is precise and structured.

³For the Instruct model, evaluation prompts are wrapped as “Your answer should be expected to get the following critique: <feedback_content>\n{question}”.

Table 4: Examples of feedback in *real-world user-style* and *professional reviewer-style*.

Role	Critique Type	Examples
Real-World User	fully_positive	That looks right to me, concise and easy to follow. I'm satisfied with the final result.
	fully_negative	I have no idea what you were trying to say—the response is nonsense and not helpful at all.
	neutral	I'm not completely sure about the logic, but the final answer matches the number I was expecting.
Professional Reviewer	fully_positive	Correct and clear; succinct and logically sound, with concise and effective reasoning.
	fully_negative	Incorrectly structured and incoherent. The reasoning is absent and the content is unusable.
	neutral	Correct final result but unclear and incomplete reasoning; concise yet insufficiently rigorous.

Table 5: Ablation results on hyperparameter choices, data sources, and feedback settings. Reported numbers are average accuracy on math benchmarks; Δ shows change relative to the default setting.

Variant	Changed Setting(s)	Avg Acc	Δ
Default	—	35.3	0.0
w/ user style feedback	critique_type=user	32.8	-2.5
w/ partial online	prompt_bsz=2048	38.7	+3.4
w/ unbiased loss	loss_agg_mode=seq-mean-token-sum	36.0	+0.7
w/ smaller batch size	train_bsz=ppo_mini_bsz=256	37.7	+2.4
w/ more diverse c^+	use random c^+ per rollout	34.1	-1.2
w/ different dataset	use MATH-Train split	34.3	-1.0

Table 5 shows that using only *user-style* feedback (offline and online) lowers math-suite accuracy by 2.5 points relative to *reviewer-style* feedback, yet still delivers a +5.8 gain over the base model (27%; Table 1). While *reviewer-style* feedback is more effective, *user-style* feedback remains surprisingly competitive after FCP training. Its lower cost and broad availability make it a practical source for scaling, with *reviewer-style* feedback reserved for targeted quality improvements.

4.2 ADDITIONAL TRAINING DESIGN CHOICES AND COMPARISON TO CFT

We further study how different design choices affect FCP training, with results summarized in Table 5.

Online update strategy. Compared to the fully online setup, using a larger prompt batch size of 2048 while keeping the mini-batch size fixed at 512 results in four gradient updates per rollout step, and yields better accuracy. This suggests that partial online updates can improve optimization efficiency.

Loss aggregation. In Algorithm 2, cross-entropy on self-sampled responses reduces to policy gradient with unit advantages, which suffers from length bias (Liu et al., 2025a). A debiased scheme averaging at the sequence level and summing at the token level gives a consistent +0.7% gain.

Other variations. We also experimented with several alternative configurations. Reducing the training batch size to 256 improves accuracy by about +2.4%. Training the online stage on a dataset different from that used for offline pretraining slightly underperforms the default baseline, yet remains +5.5% above the offline-only initialization, indicating that offline and online datasets need not be strictly aligned for FCP to be effective.

Comparison to Critique Finetuning (CFT). CFT can perform well with high-quality and detailed critiques (Wang et al., 2025a), but applying it to the same coarse and lightweight feedback used for FCP leads to severe degradation—worse than the base model (Table 1). This highlights a key strength of FCP: it effectively leverages coarse, high-level feedback without costly fine-grained annotations.

5 RELATED WORK

SFT and RL methods for reasoning. The ability to perform reasoning has become a defining strength of LLMs, enabling progress across mathematics, coding, and scientific domains (Jaech et al., 2024; Comanici et al., 2025). To enhance these skills, two approaches have proven especially influential: SFT and RL (Uesato et al., 2022; Rafailov et al., 2023; Guha et al., 2025; Hu et al.,

486 2025; Hochlehnert et al., 2025). Following the success of the DeepSeek-R1 recipe (Shao et al.,
 487 2024; Guo et al., 2025), a number of RL variants have been introduced, including Dr. GRPO (Liu
 488 et al., 2025a), DAPO (Yu et al., 2025), REINFORCE++ (Hu, 2025), and VAPO (Yue et al., 2025).
 489 Beyond algorithmic proposals, researchers have systematically investigated the RL design space
 490 for reasoning (Zeng et al., 2025; Team et al., 2025), examining factors such as staged training
 491 curricula (Wen et al., 2025; Luo et al., 2025) and reward formulation (Gao et al., 2024; Cui et al.,
 492 2025; Qi et al., 2025; Zhou et al., 2025a). While much of the initial progress focused on mathematics,
 493 these methods have more recently been extended to software engineering and code reasoning (Liu &
 494 Zhang, 2025; Xie et al., 2025; Wei et al., 2025; Yang et al., 2025; Chen et al., 2025), as well as to
 495 broader agentic applications (Wang et al., 2025b; Jin et al., 2025; Jiang et al., 2025; Xue et al., 2025).
 496

497 **Learning from verbal feedback.** Most existing approaches convert verbal feedback into scalar
 498 rewards for RL training (Kim et al., 2024; Ankner et al., 2024; Lightman et al., 2024; Stephan et al.,
 499 2024; Whitehouse et al., 2025; Liu et al., 2025b). More recent efforts explore learning directly from
 500 feedback or critiques: Lloret et al. (2024) propose conditional SFT based on toxicity categorization in
 501 alignment tasks, CFT (Wang et al., 2025a) trains models to imitate critiques, Critique-GRPO (Zhang
 502 et al., 2025) incorporates critique-guided refinements into online RL, Salemi & Zamani (2025) jointly
 503 optimize a feedback model and a policy model, and Chen et al. (2024) introduce a refinement model
 504 that corrects errors using feedback. These approaches generally assume feedback is high-quality,
 505 informative or categorized, and reliably improves self-refinement. In practice, however, human
 506 feedback is often mixed, free-form, emotional, or uncertain. Moreover, while such feedback is easy to
 507 collect, its distribution is difficult to model with generative reward models that must capture diverse
 508 user interaction styles. In contrast, our FCP framework does not require feedback to be high-quality
 509 or rubric-constrained; by treating feedback as a conditioning signal rather than a prediction target, it
 510 can flexibly exploit the full range of verbal feedback, including noisy or mixed forms, for training.
 511

510 6 DISCUSSION AND FUTURE DIRECTIONS

511 Our key insight is that the essence of RL lies in *online interaction with the environment*, not in
 512 scalar rewards or any specific algorithm. Scalarization was historically necessary for control-centric
 513 RL in robotics or strategy-centric RL in games, but it may not be intrinsic to language-centric
 514 systems like LLMs. This reopens the debate around the reward hypothesis: earlier critics could only
 515 offer counterexamples without an alternative framework (Skalse & Abate, 2022), whereas our FCP
 516 approach leverages **language priors** to provide a principled way to bypass scalar rewards. Crucially,
 517 during training, feedback c is a *dependent variable* generated from the environment $p_{\text{env}}(c|x, o)$
 518 and cannot be directly controlled, while at test time the conditioning feedback c^+ becomes an
 519 *independent variable* freely specified by users. This asymmetry enables full use of diverse feedback
 520 during training while allowing precise controllability at inference. By directly mapping feedback
 521 to responses, our FCP bypasses reward imbalance, preserves feedback richness, and improves data
 522 efficiency. Unlike RFT (Dong et al., 2023; Touvron et al., 2023), which discards many useful data
 523 pairs, FCP retains diverse feedback, including mixed and uncertain, and can merge complementary
 524 signals across examples at test time (Figure 1). This establishes verbal feedback as a first-class
 525 training signal and FCP as a natural, scalable alternative to scalarized RL.
 526

527 **Future directions.** Several extensions of FCP are promising. One is to *combine it with verifiable*
 528 *rewards*, for instance by treating the absence of feedback as a neutral condition (e.g., using the null
 529 feedback token `<EF></EF>`), so that reliable scalar supervision can complement verbal feedback
 530 when available. Another is to extend FCP to *multi-turn interactions*, where feedback is incorporated
 531 before the next turn of generation in a teacher-forcing style, enabling closer alignment with iterative
 532 human guidance. A third is *test-time adaptation*: by conditioning on a few user-provided examples,
 533 the model could rapidly adjust to individual feedback styles, similar to personalization in text-to-
 534 image generation. Finally, the feedback condition c could be made *multimodal*. Collectively, these
 535 future directions would deepen integration of natural feedback into LLM training, bridging offline
 536 and online stages while adapting to diverse user needs.
 537

538 REFERENCES

539 Alon Albalak, Duy Phung, Nathan Lile, Rafael Rafailov, Kanishk Gandhi, Louis Castricato, Anikait
 Singh, Chase Blagden, Violet Xiang, Dakota Mahan, and Nick Haber. Big-math: A large-

540 scale, high-quality math dataset for reinforcement learning in language models, 2025. URL
 541 <https://arxiv.org/abs/2502.17387>.

542

543 Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan D Chang, and Prithviraj Ammanabrolu.
 544 Critique-out-loud reward models. *arXiv preprint arXiv:2408.11791*, 2024.

545 Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
 546 learning for imitation learning via bi-level optimization. In *International Conference on Machine
 547 Learning*, pp. 367–376. PMLR, 2020.

548 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
 549 Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
 550 reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

551

552 David Brandfonbrener, Ofir Nachum, and Joan Bruna. Inverse dynamics pretraining learns good
 553 representations for multitask imitation. *Advances in Neural Information Processing Systems*, 36:
 554 66953–66978, 2023.

555 Angelica Chen, Jérémie Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
 556 Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. *Transactions
 557 on Machine Learning Research*, 2024. ISSN 2835-8856.

558 Wenhui Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
 559 and Tony Xia. Theoremqa: A theorem-driven question answering dataset. *arXiv preprint
 560 arXiv:2305.12524*, 2023.

561

562 Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro,
 563 and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through reinforcement
 564 learning. *arXiv preprint arXiv:2505.16400*, 2025.

565 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 566 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 567 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 568 *arXiv preprint arXiv:2507.06261*, 2025.

569

570 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
 571 Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint
 572 arXiv:2502.01456*, 2025.

573

574 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
 575 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
 576 foundation model alignment. *arXiv preprint arXiv:2304.06767*, 2023.

577

578 Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Prov-
 579 able rl with exogenous distractors via multistep inverse dynamics. *arXiv preprint arXiv:2110.08847*,
 580 2021.

581

582 Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
 583 and Yi Wu. On designing effective rl reward at training time for llm reasoning. *arXiv preprint
 584 arXiv:2410.15115*, 2024.

585

586 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 587 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reasoning
 588 models. *arXiv preprint arXiv:2506.04178*, 2025.

589

590 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 591 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 592 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

593

594 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2(3), 2018.

595

596 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 597 Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
 598 bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
 599 scientific problems, 2024.

594 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 595 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 596 2021.

597 Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu, and
 598 Matthias Bethge. A sober look at progress in language model reasoning: Pitfalls and paths to
 599 reproducibility. *arXiv preprint arXiv:2504.07086*, 2025.

600 601 Jian Hu. Reinforce++: A simple and efficient approach for aligning large language models. *arXiv*
 602 *preprint arXiv:2501.03262*, 2025.

603 604 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 605 Open-reasoner-zero: An open source approach to scaling reinforcement learning on the base model.
 606 <https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero>, 2025.

607 608 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 609 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
arXiv:2412.16720, 2024.

610 611 Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
 612 Zou, Chao Du, Tianyu Pang, and Wenhui Chen. Verltool: Towards holistic agentic reinforcement
 613 learning with tool use. *arXiv preprint arXiv:2509.01055*, 2025.

614 615 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 616 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 617 learning. *arXiv preprint arXiv:2503.09516*, 2025.

618 619 Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
 620 text generation. *arXiv preprint arXiv:2012.11635*, 2020.

621 622 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 623 Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained evaluation
 624 capability in language models. In *International Conference on Learning Representations (ICLR)*,
 2024.

625 626 Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
 627 learning and distribution matching for fine-tuning language models with no catastrophic forgetting.
 628 *Advances in Neural Information Processing Systems*, 35:16203–16220, 2022.

629 630 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 631 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 632 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 633 Systems Principles*, 2023.

634 635 Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping
 636 Yu, Weizhe Yuan, Jason E Weston, et al. Bridging offline and online reinforcement learning for
 637 llms. *arXiv preprint arXiv:2506.21495*, 2025.

638 639 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 640 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 641 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 642 35:3843–3857, 2022.

643 644 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 645 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *International
 646 Conference on Learning Representations (ICLR)*, 2024.

647 648 Jiawei Liu and Lingming Zhang. Code-r1: Reproducing r1 for code with reliable rewards. <https://github.com/ganler/code-r1>, 2025.

649 650 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 651 Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint arXiv:2503.20783*,
 652 2025a.

648 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 649 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025b.
 650

651 Saïc Abadal Lloret, Shehzaad Dhuliawala, Keerthiram Murugesan, and Mrinmaya Sachan. Towards
 652 aligning language models with textual feedback. *arXiv preprint arXiv:2407.16970*, 2024.

653 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
 654 Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
 655 with a 1.5b model by scaling rl, 2025. Notion Blog.
 656

657 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 658 Advancing llm reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.

659 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 660 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. *arXiv preprint
 661 arXiv:2410.12832*, 2024.

662 Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 663 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
 664 volve: A coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*,
 665 2025.

666 Gaurav Pandey, Yatin Nandwani, Tahira Naseem, Mayank Mishra, Guangxuan Xu, Dinesh Raghu,
 667 Sachindra Joshi, Asim Munawar, and Ramón Fernandez Astudillo. Brain: Bayesian reward-
 668 conditioned amortized inference for natural language generation from feedback. In *Proceedings of
 669 the 41st International Conference on Machine Learning*, pp. 39400–39415, 2024.

670 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 671 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

672 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 673 space control. In *Proceedings of the 24th international conference on Machine learning*, pp.
 674 745–750, 2007.

675 Penghui Qi, Zichen Liu, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Optimizing anytime
 676 reasoning via budget relative policy optimization. *arXiv preprint arXiv:2505.13438*, 2025.

677 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 678 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 679 in Neural Information Processing Systems*, 36:53728–53741, 2023.

680 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 681 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 682 *First Conference on Language Modeling*, 2024.

683 Alireza Salemi and Hamed Zamani. Learning from natural language feedback for personalized
 684 question answering. *arXiv preprint arXiv:2508.10695*, 2025.

685 Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin, R De-
 686 von Hjelm, Philip Bachman, and Aaron C Courville. Pretraining representations for data-efficient
 687 reinforcement learning. *Advances in Neural Information Processing Systems*, 34:12686–12699,
 688 2021.

689 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Huawei Zhang,
 690 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 691 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

692 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 693 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings
 694 of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

695 Joar Max Viktor Skalse and Alessandro Abate. The reward hypothesis is false. In *NeurIPS ML Safety
 696 Workshop*, 2022.

702 Moritz Stephan, Alexander Khazatsky, Eric Mitchell, Annie S Chen, Sheryl Hsu, Archit Sharma, and
 703 Chelsea Finn. Rlvf: Learning from verbal feedback without overgeneralization. *arXiv preprint*
 704 *arXiv:2402.10893*, 2024.

705

706 Richard Sutton. The reward hypothesis. <http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html>, 2004.

707

708 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 709 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
 710 llms. *arXiv preprint arXiv:2501.12599*, 2025.

711

712 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 713 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 714 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

715

716 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 717 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 718 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

719

720 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 721 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 722 task language understanding benchmark. In *The Thirty-eight Conference on Neural Information
 Processing Systems Datasets and Benchmarks Track*, 2024.

723

724 Yubo Wang, Xiang Yue, and Wenhui Chen. Critique fine-tuning: Learning to critique is more effective
 725 than learning to imitate. *arXiv preprint arXiv:2501.17703*, 2025a.

726

727 Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
 728 Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in llm
 729 agents via multi-turn reinforcement learning. *arXiv preprint arXiv:2504.20073*, 2025b.

730

731 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 732 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via
 733 reinforcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

734

735 Liang Wen, Yunke Cai, Fenrui Xiao, Xin He, Qi An, Zhenyu Duan, Yimin Du, Junchen Liu, Lifu
 736 Tang, Xiaowei Lv, et al. Light-rl: Curriculum sft, dpo and rl for long cot from scratch and beyond.
 737 *arXiv preprint arXiv:2503.10460*, 2025.

738

739 Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
 740 Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. *arXiv preprint*
 741 *arXiv:2505.10320*, 2025.

742

743 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 744 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
 745 learning. *arXiv preprint arXiv:2502.14768*, 2025.

746

747 Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
 748 pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. *arXiv preprint*
 749 *arXiv:2509.02479*, 2025.

750

751 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 752 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 753 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 754 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 755 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 2024.

756

757 John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
 758 Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
 759 engineering agents. *arXiv preprint arXiv:2504.21798*, 2025.

756 Shunyu Yao. The second half. <https://ysymyth.github.io/The-Second-Half/>,
 757 2025.

758

759 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 760 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 761 *arXiv preprint arXiv:2503.14476*, 2025.

762 Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhui Chen. Mammoth2: Scaling instructions from the
 763 web. *Advances in Neural Information Processing Systems*, 37:90629–90660, 2024.

764

765 Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, et al. Vapo: Efficient and
 766 reliable reinforcement learning for advanced reasoning tasks. *arXiv preprint arXiv:2504.05118*,
 767 2025.

768 Hongyu Zang, Xin Li, Jie Yu, Chen Liu, Riashat Islam, Remi Tachet Des Combes, and Romain
 769 Laroche. Behavior prior representation learning for offline reinforcement learning. *arXiv preprint*
 770 *arXiv:2211.00863*, 2022.

771

772 Weihsiao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
 773 and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
 774 <https://hkust-nlp.notion.site/simplerl-reason>, 2025. Notion Blog.

775

776 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 777 Generative verifiers: Reward modeling as next-token prediction. *arXiv preprint arXiv:2408.15240*,
 778 2024.

779

780 Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
 781 Critique-grpo: Advancing llm reasoning with natural language and numerical feedback. *arXiv*
 782 *preprint arXiv:2506.03106*, 2025.

783

784 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 785 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics.
 786 URL <http://arxiv.org/abs/2403.13372>.

787

788 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
 789 Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint*
 790 *arXiv:2311.07911*, 2023.

791

792 Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
 793 Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *arXiv preprint*
 794 *arXiv:2505.21493*, 2025a.

795

796 Yang Zhou, Sunzhu Li, Shunyu Liu, Wenkai Fang, Jiale Zhao, Jingwen Yang, Jianwei Lv, Kongcheng
 797 Zhang, Yihe Zhou, Hengtong Lu, et al. Breaking the exploration bottleneck: Rubric-scaffolded
 798 reinforcement learning for general llm reasoning. *arXiv preprint arXiv:2508.16949*, 2025b.

799

800 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 801 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv*
 802 *preprint arXiv:1909.08593*, 2019.

803

804

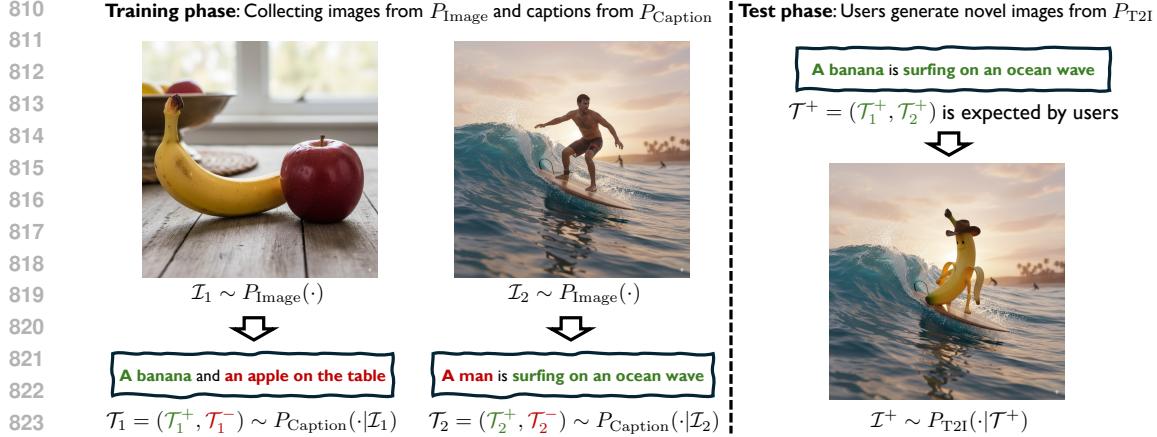
805

806

807

808

809



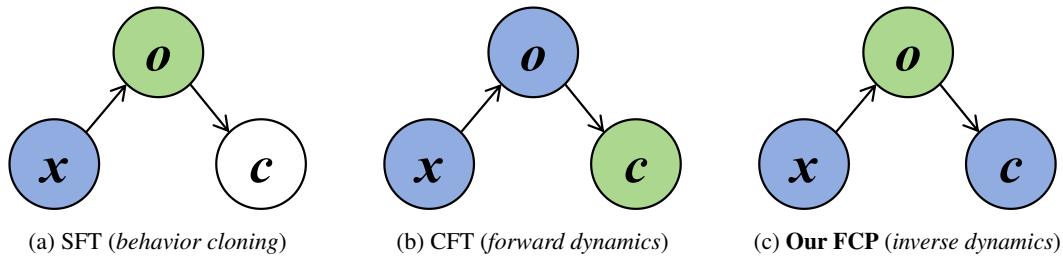


Figure 5: **Graphical models for SFT, CFT, and our FCP.** Following Brandfonbrener et al. (2023), we use blue color to indicate inputs to the algorithm and green color to indicate prediction targets.

A.2 CONNECTION TO INVERSE DYNAMICS MODELING

In traditional RL, objectives for representation learning are often grouped into three classes: **behavior cloning**, **forward dynamics**, and **inverse dynamics**. Behavior cloning is typically used for imitation learning (Arora et al., 2020; Zang et al., 2022), forward dynamics is central to world modeling (Ha & Schmidhuber, 2018; Schwarzer et al., 2021), and inverse dynamics has been explored for both pretraining (Brandfonbrener et al., 2023) and feature extraction for exploration in RL (Efroni et al., 2021).

Interestingly, analogous structures appear in the LLM literature. The objectives of supervised finetuning (SFT), critique finetuning (CFT) (Wang et al., 2025a), and our feedback-conditional policy (FCP) align naturally with behavior cloning, forward dynamics, and inverse dynamics, respectively:

$$\begin{aligned}
 \textbf{SFT (behavior cloning): } & \max_{\pi_\theta} \mathbb{E}_{\pi_{\text{ref}}(o|x)} [\log \pi_\theta(o|x)]; \\
 \textbf{CFT (forward dynamics): } & \max_{\pi_\theta} \mathbb{E}_{\pi_{\text{ref}}(o|x)} [\mathbb{E}_{p_{\text{env}}(c|x,o)} [\log \pi_\theta(c|x,o)]]; \\
 \textbf{Our FCP (inverse dynamics): } & \max_{\pi_\theta} \mathbb{E}_{\pi_{\text{ref}}(o|x)} [\mathbb{E}_{p_{\text{env}}(c|x,o)} [\log \pi_\theta(o|x,c)]].
 \end{aligned} \tag{10}$$

We further illustrate this categorization with graphical models in Figure 5. This unified perspective clarifies the conditional structure underlying each finetuning paradigm and highlights how different forms of supervision drive model learning. In particular, our FCP extends the analogy by treating verbal feedback as a first-class supervision signal, positioning it as the natural *inverse-dynamics* counterpart to existing finetuning objectives.

B DETAILED EXPERIMENTAL SETUP

All implementations are based on `llama-factory` (Zheng et al., 2024) and `ver1` (Sheng et al., 2025). Hyperparameter settings for both offline and online stages of FCP are listed in Table 6.

For the two special tokens `<EF>` and `</EF>`, embeddings are initialized by sampling from a multivariate normal distribution with mean and covariance computed over existing token embeddings. For general reasoning bootstrapping, we adopt a fully online setup with batch size of 256, differing from the math setting to illustrate that FCP remains effective under both training strategies.

Finally, Figure 6 shows the unified prompt template used to elicit feedback from GPT-5-nano. The template produces three outputs in one response: a low-quality *real-world user*-style feedback, a high-quality *professional reviewer*-style feedback, and a scalar score summarizing overall quality.

C MORE EXPERIMENT RESULTS

D LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g., column alignment, caption length, placement). The LLM did not contribute to research ideation, experimental design, implementation, data analysis, or technical content beyond surface-level edits. All outputs were reviewed and edited by the authors, who take full responsibility for the final text and visuals.

918
919 Table 6: **Hyperparameters for FCP training** used in the offline and bootstrapping (online) stages.
920

921	Hyperparameter	922 Offline	923 Online
924	learning rate	5e-6	1e-6
925	lr scheduler	cosine	constant
926	weight decay	0	0.01
927	warmup ratio	0.1	0
928	train batch size	512	2048
929	ppo mini-batch size	—	512
930	temperature	—	1.0
931	top_p	—	1.0
932	rollout_n	—	4
933	epoch	—	1
934	max response length	—	4096
935	loss type	—	cross-entropy loss
936	loss aggregation mode	—	token-mean
937	feedback environment	—	GPT-5-nano
938	feedback style	—	<i>professional reviewer</i>

939
940 Table 7: Performance comparison under verifiable (rule-based) and LLM-generated supervision
941 across multiple training methods.
942

943 Method	944 Source	945 AIME24	946 AIME25	947 MATH500	948 Minerva	949 Olympiad	950 Avg.
945 Base	946 -	947 7.5	948 6.7	949 63.8	950 28.3	951 28.6	952 27.0
946 Base + GRPO	947 rule-based verifier	948 13.3	949 14.2	950 76.3	951 36.6	952 41.7	953 36.4
947 Base + GRPO	948 LLM	949 20.0	950 13.3	951 75.7	952 42.3	953 40.8	954 38.4
948 RFT + GRPO	949 rule-based verifier	950 17.5	951 15.0	952 77.0	953 38.4	954 41.3	955 37.8
949 RFT + GRPO	950 LLM	951 25.8	952 9.2	953 75.1	954 36.8	955 38.9	956 37.1
950 FCP + Bootstrap	951 LLM	952 25.0	953 7.5	954 76.5	955 45.8	956 38.8	957 38.7

958 Table 8: Evaluation Results Under In-Distribution (ID) and Out-of-Distribution (OOD) Feedback
959 Conditions
960

961 Method	962 Feedback Style	963 ID/OOD	964 AIME24	965 AIME25	966 MATH500	967 Minerva	968 Olympiad	969 Avg.
962 Base	963 -	964 -	965 7.5	966 6.7	967 63.8	968 28.3	969 28.6	970 27.0
963 FCP + Bootstrap	964 Reviewer	965 ID	966 25.0	967 7.5	968 76.5	969 45.8	970 38.8	971 38.7
964 FCP + Bootstrap	965 User	966 OOD	967 10.8	968 7.5	969 75.1	970 35.2	971 38.0	972 33.3
965 FCP + Bootstrap	966 “Correct”	967 OOD	968 16.7	969 7.5	970 75.3	971 35.2	972 37.2	973 34.4
966 FCP + Bootstrap	967 No Feedback	968 OOD	969 15.8	970 10.0	971 74.4	972 35.6	973 37.6	974 34.7

975 Table 9: Effects of training-used feedback quality on FCP performance across reasoning benchmarks.
976

977 Method	978 Feedback Style	979 Quality	980 AIME24	981 AIME25	982 MATH500	983 Minerva	984 Olympiad	985 Avg.
978 Base	979 -	980 -	981 7.5 ± 1.7	982 6.7 ± 0.0	983 63.8 ± 63.8	984 28.3 ± 0.8	985 28.6 ± 0.4	986 27.0 ± 0.5
979 FCP + Bootstrap	980 Correctness-Only	981 very low	982 10.0 ± 2.7	983 5.0 ± 1.9	984 73.4 ± 0.7	985 34.3 ± 0.6	986 35.3 ± 0.4	987 31.6 ± 0.8
980 FCP + Bootstrap	981 User	982 low	983 16.7 ± 2.7	984 0.8 ± 1.7	985 72.2 ± 0.4	986 37.1 ± 0.4	987 37.1 ± 0.8	988 32.8 ± 0.8
981 FCP + Bootstrap	982 Reviewer-Lite	983 medium	984 14.2 ± 4.2	985 8.3 ± 1.9	986 74.0 ± 0.3	987 37.4 ± 1.5	988 37.3 ± 0.7	989 34.2 ± 1.0
982 FCP + Bootstrap	983 Reviewer	984 high	985 25.0 ± 3.3	986 7.5 ± 1.7	987 76.5 ± 0.7	988 45.8 ± 0.7	989 38.8 ± 0.6	990 38.7 ± 0.7

972

973 Table 10: Comparison of FCP performance using weak critique models.

974

975 Method / Model	976 Critique Model	977 Feedback Style	978 AIME24	979 AIME25	980 MATH500	981 Minerva	982 Olympiad	983 Avg.
Qwen2.5-1.5B-Instruct	-	-	0.0	0.0	55.0	20.5	20.3	19.2
Qwen2.5-7B-Base	-	-	7.5	6.7	63.8	28.3	28.6	27.0
w/ FCP + Bootstrap	Qwen2.5-1.5B-Instruct	User	14.2	5.8	72.9	35.5	37.4	33.1
w/ FCP + Bootstrap	GPT-5-nano	User	16.7	0.8	72.2	37.1	37.1	32.8
w/ FCP + Bootstrap	GPT-5-nano	Reviewer	25.0	7.5	76.5	45.8	38.8	38.7

980

981

982

983 You are acting as a real-world human user of an LLM.

984

985 Inputs:

986 Question:

987 \\"\\\"

988 \{question\}

989 \\"\\\"

990

991 Model Answer:

992 \\"\\\"

993 \{model_answer\}

994 \\"\\\"

995

996 Reference Final Answer (used only for correctness check):

997 \\"\\\"

998 \{reference_answer\}

999 \\"\\\"

1000

1001 Your tasks:

1002

1003 1) Simulate "user feedback" from a normal, real-world user reacting to the Model Answer only.

- Length: 1-3 sentences, colloquial tone, first person.
- Content: purely subjective sentiment (e.g., helpfulness, confidence, confusion, satisfaction).
- STRICT: Do NOT mention or allude to any symbols, formulas, variable names, or specialized concepts from the Question or the Model Answer. Do NOT quote text from the inputs.

1004

1005 For example:

1006 "I think you are right, but your solution is really long and complicated."

1007 "You are a genius! You have all my respect."

1008 "I am confused. There seems to be a mistake in your solution."

1009 "What are you talking about? You are not answering my question."

1010 etc.

1011

1012 2) Simulate a professional reviewer evaluating the Model Answer along several dimensions, including but not limited to:

- correctness — Compare the Model Answer's final result ONLY against the Reference Final Answer (if provided). Judge whether the end result matches; do not use the reference for any other purpose.
- logical_rigor — Assess the soundness and gaplessness of reasoning within the Model Answer itself. Do NOT use the Reference Final Answer here.
- completeness — Judge coverage of required parts and edge cases based on the Question and the Model Answer only. Do NOT use the Reference Final Answer here.
- clarity — Evaluate organization, readability, and ease of following in the Model Answer. Do NOT use the Reference Final Answer here.

1013

1014 Then provide a high-level summary (1-3 sentences) with overall judgment and broad observations.

1015

1016 - STRICT for the high-level summary: Only use adjectives and adverbs to describe the Model Answer and reasoning process. DO NOT mention where it goes wrong and where it can do better.

1017

1018 For example:

1019 "Your final answer is correct, but the solution is too long and complicated. There are also several logical errors in your solution."

1020 "The answer is partially correct. The reasoning is sound but not complete. Also, you are being too verbose."

1021 "The answer is totally wrong. It lacks soundness and is not complete. However, the solution is concise and clear."

1022

1023 Hard constraints:

- Keep all content in English.
- Do not mention anything like "reference" or "python snippet".

1024

1025 Output format:

```
1026     ### User-style feedback: <your 1-3 sentence feedback>
1027     ### Analysis along several dimensions: <your 1-3 sentence analysis>
1028     ### High-level summary: <your 1-3 sentence summary>
1029     ### Score (0-10): <one overall integer score>
```

1030 Figure 6: Prompt template used to elicit feedback from GPT-5-nano, including *real-world user*-style feedback, *professional reviewer*-style feedback, and a scalar score.