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Abstract

Many prompt engineering techniques have been successful in practice, even when
optimizing over a large prompt space with with a small amount of task-specific
data. Recent work [Akinwande et al., 2023] has partially explained this success
by showing generalization bounds which apply PAC-Bayes theory to the discrete
prompt space, but they are non-vacuous only in data-rich scenarios. We argue
that such widespread success can be more fully explained through more carefully
considering data- or distribution-dependent perplexity, which acts as an effective
prior and steers the optimization towards prompts that are more “natural” for the
task at hand. We derive novel generalization bounds that are non-vacuous for
data-scarce prompt optimization via more useful priors, formally analyzing how
perplexity regularization tightens these bounds by limiting exploration. Empirically,
we explore both the bounds’ effectiveness and the practical benefits of perplexity
regularization in improving prompt generalization.

1 Introduction

Large Language Models (LLMs) gave rise to a paradigm shift in artificial intelligence, demonstrating
remarkable capabilities across a wide spectrum of natural language understanding and generation
tasks [Brown et al., 2020]. Rather than relying solely on extensive fine-tuning for specific applications,
interaction with these powerful models is increasingly mediated through prompts – carefully crafted
inputs designed to elicit desired outputs [Liu et al., 2023, Shin et al., 2020]. This has given rise to
the field of prompt engineering, optimizing prompts to effectively guide LLMs towards generating
specific, high-quality responses [Pryzant et al., 2023, Zhou et al., 2022].

These techniques span a range of approaches, from manual or greedy iterative refinement [He
et al., 2024, Zou et al., 2023] and automated LLM-based search over discrete prompt spaces using
evolutionary algorithms [Pryzant et al., 2023, Yang et al., 2023, Shin et al., 2020] to gradient-based
optimization of continuous "soft" prompts in the embedding space [Li and Liang, 2021, Lester et al.,
2021].

While these optimization methods can yield prompts that perform exceptionally well on the train
data, a fundamental question remains: how do these optimized prompts generalize, especially since
the space of all prompts is large? This question of generalization is paramount for the reliable
deployment of LLMs guided by optimized prompts as we move towards notions of AGI Morris
et al. [2023]. The rapid proliferation of diverse prompt optimization strategies for deployment in
multi-agent, multi-modal systems has significantly outpaced our theoretical understanding of the
conditions under which these methods yield generalizable solutions Chen et al. [2022], Li and Liang
[2021], Zhou et al. [2025], Gao et al. [2020]. This gap motivates the need for rigorous theoretical

First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025).



analysis, particularly through the lens of generalization bounds, specifically tailored to the unique
setting of prompt optimization. Our main contributions are:

1. Data-Dependent Generalization Bounds: We derive novel generalization bounds for
prompt optimization algorithms operating under data scarcity. These bounds are designed to
be non-vacuous, providing meaningful theoretical guarantees even for low-data settings and
rely on a PAC-Bayes mechanism based on data-dependent prompt perplexity.

2. Empirical Bound-Regularized Prompt Optimization: We utilize these generalization
bounds as optimization objective for a prompt optimization algorithm and choose regu-
larization priors that are informative and/or optimized on available task data. We present
empirical results that validate the non-vacuous nature of our derived bounds and demonstrate
the practical effectiveness of more informative perplexity regularization in improving the
generalization of optimized prompts.

2 Background and Related Work

2.1 Prompt Optimization and Generalization

Large Language Models (LLMs) are increasingly guided via prompts—input sequences engineered
to elicit specific behaviors [Liu et al., 2023, Brown et al., 2020]. Prompt optimization refers to the
search for a discrete token sequence (a "hard prompt") p∗ from a vast space of possible prompts
P , such that p∗ minimizes some task-specific loss when processed by a given LLM. Optimization
methods range from manual tuning [Reynolds and McDonell, 2021] to automated techniques like
greedy or evolutionary search over P [Shin et al., 2020, Pryzant et al., 2023], and selection of optimal
few-shot exemplars [Liu et al., 2021]. A central challenge is ensuring that a prompt ptrain, optimized
on a finite training set S, generalizes well to unseen data, i.e., its population risk R(ptrain) is close to
its empirical risk R̂S(ptrain). This is particularly acute in data-poor settings where R̂S(ptrain) may
be an unreliable estimate and overfitting is prevalent [Akinwande et al., 2023].

2.2 Existing Generalization Bounds

Generalization bounds provide mathematically rigorous guarantees on the expected performance
of a learned model on unseen data, typically by relating the observable empirical performance
on the training set to the unobservable true population performance Vapnik [1998]. However,
deriving meaningful generalization bounds for modern deep neural networks, especially LLMs, has
proven notoriously difficult. Classical bounds based on complexity measures like VC-dimension
or Rademacher complexity, as well as many standard applications of PAC-Bayes theory to model
weights, often yield vacuous results given the dataset size Zhang et al. [2016], Jiang et al. [2019],
Dziugaite and Roy [2017]. A vacuous bound is one that provides an upper limit on the true error that
is trivial (e.g., greater than 100% error for a classification task) and thus offers no practical insight.
This vacuousness is largely attributed to the immense number of parameters in these models, i.e.
overparameterization, and the nature of the loss functions employed during training, such as the
unbounded negative log-likelihood (NLL) Zhang et al. [2016], Lotfi et al. [2023].

Deriving meaningful, i.e., non-vacuous (non-trivial, offering actual predictive power), generalization
bounds for LLMs is challenging. When considering LLM weights, extreme overparameterization
often renders classical complexity measures vacuous [Zhang et al., 2016, Jiang et al., 2019]. In
addition to its billions of model parameters, modern LLMs also have huge vocabulary sizes (> 106)
and large context lengths (> 108), which together means that the space of all possible prompts
is also incredibly large and optimizing over this space can lead to overfitting. If we consider the
prompt space P , while discrete, its sheer size (|V|L for vocabulary V and length L) can make uniform
convergence bounds or PAC-Bayes bounds with uninformative priors vacuous, especially for small
m. The question is whether more structured priors can mitigate this. Unbounded loss functions (e.g.,
NLL) also complicate standard analyses [Lotfi et al., 2023], although for many downstream tasks
(e.g., classification), 0-1 loss is bounded, simplifying this aspect for prompt evaluation.

PAC-Bayes Bounds The PAC-Bayes framework provides a robust methodology for deriving
generalization bounds [McAllester, 1999, Alquier, 2024].
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For a hypothesis space H (here, this is equal to the prompt space P), a prior distribution P over H,
and a posterior distribution Q (often concentrated on the learned hypothesis), a typical PAC-Bayes
bound states that for any δ > 0, with probability at least 1− δ over the random draw of m training
samples S:

R(Q) ≤ R̂S(Q) +

√
KL(Q||P ) + L(δ,m)

2m

where R(Q) is the expected population risk under Q, R̂S(Q) is its empirical counterpart,
KL(Q||P ) =

∫
Q(h) log Q(h)

P (h)dh is the Kullback-Leibler divergence, and L(δ,m) is a term like

log m
δ or log |H|

δ for finite spaces. The KL term penalizes posteriors distant from the prior, acting
as a regularizer; a low KL implies the posterior is "compressible" relative to the prior. While P
is traditionally data-independent, PAC-Bayes also accommodates data-dependent priors [Parrado-
Hernández et al., 2012], where P is chosen based on some data Sprior (e.g., a subset of S or auxiliary
unlabeled data), provided Sprior is handled appropriately to avoid invalidating the bound (e.g., Sprior

is distinct from the data Sval used for R̂S(Q), or its influence is accounted for in L) [Negrea et al.,
2019, Catoni, 2007]. Such priors can yield tighter bounds if they effectively capture data-specific
structures.

2.3 Prior Work on Prompt Performance Guarantees

A significant advancement in understanding generalization for prompt optimization methods was
made by Akinwande et al. [2023]. They demonstrated that by applying PAC-Bayes bounds not
to the LLM’s weights, but rather to the discrete hypothesis space of prompts, and by utilizing
another LLM to define a prior distribution over these prompts, it is possible to obtain non-vacuous
generalization bounds. Their approach yielded bounds that were remarkably tight (often within a few
percentage points of the true test error) for tasks performed in data-rich settings, such as zero-shot
classification on ImageNet using CLIP prompts. However, this leaves open the critical question of
why prompts generalize even when optimized in data-poor scenarios, a common situation in practice
where users might only have a handful of examples to tune a prompt for a specific task Chen et al.
[2022], Wang et al. [2023]. Akinwande et al. [2023] applied PAC-Bayes to discrete prompts, using a
data-independent prior P (prompt) derived from another LLM’s likelihood for that prompt sequence.
For a chosen prompt popt (a Dirac delta posterior Q), KL(Q||P ) becomes − logP (popt). They
achieved non-vacuous bounds in data-rich settings, where R̂S(popt) is reliable. However, the reliance
on a strong empirical risk estimate and a fixed, data-independent LLM prior limits applicability in
data-scarce regimes where P (popt) might be low for an overfit, atypical prompt.

Empirical work by Gonen et al. [2022] demonstrated a negative correlation between a prompt’s
task-contextualized perplexity (average negative log-likelihood given unlabeled task inputs) and its
downstream performance. Lower perplexity prompts (more "natural" or probable to the LLM in
context) tended to perform better. While this suggests perplexity as a valuable heuristic, it doesn’t
provide formal generalization guarantees.

Prompt Risk Control (PRC) [Zollo et al., 2024] offers an alternative data-dependent guarantee. Using
a validation set Sval, PRC applies Distribution-Free Uncertainty Quantification (DFUQ) to provide
high-probability upper bounds on pre-specified risk measures (e.g., mean loss, Value-at-Risk). For
instance, PRC might guarantee that P (RV aR@0.95(metric) ≤ α) ≥ 1 − δ. Its data-dependency
stems from Sval used to calibrate the risk bound α. This contrasts with PAC-Bayes, which typically
bounds the expected population loss R(Q) or its deviation from R̂S(Q). While both PRC and our
proposed approach leverage validation data, PRC focuses on controlling specific statistics of the loss
distribution observed on Sval, whereas our aim is to bound the generalization error by incorporating
data-derived information into the PAC-Bayes prior itself.

2.4 Motivation for Data-Dependent, Perplexity-Informed PAC-Bayes Bounds

The challenges inherent in data-poor regimes necessitate analysis that exploit prior information that
lies within the pre-trained LLM itself, reflecting the vast amounts of knowledge implicitly encoded
during its initial training phase. One way to access this information is through perplexity, a standard
metric in language modeling that measures how well a model predicts a given text sequence [Meister
and Cotterell, 2021, Shannon, 1948]. Gonen et al. provided empirical evidence that prompts which
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the model found less perplexing tended to yield generally better results, suggesting that perplexity
captures an intrinsic quality of the prompt related to the model’s ability to process and execute the
instruction effectively, independent of task-specific labels Gonen et al. [2022]. Recently, similar
ideas involving perplexity-based regularization have shown promise in related areas, such as prompt
learning for vision-language models [Liu et al., 2024]. Perplexity is also a widely-used metric that
has a wide range of applications, such as detecting adversarial attacks [Alon and Kamfonas, 2023],
pruning Ankner et al. [2024], and uncertainty estimation [Cooper and Scholak, 2024].

The limitations of existing approaches in data-poor settings motivate our work. If, as Gonen et al.
[2022] suggest, low perplexity is indicative of good prompts, then a PAC-Bayes prior P that assigns
higher probability to low-perplexity prompts could yield tighter bounds. If this prior P is itself
shaped or selected based on data (e.g., unlabeled task data, or a held-out portion of labeled data
to estimate perplexities), it becomes a data-dependent prior. The core hypothesis is that such a
perplexity-informed, data-dependent prior can more effectively constrain the KL(Q||P ) term for
prompts that generalize well, even when m is small, leading to non-vacuous bounds where data-
independent or uninformative priors might fail. This paper aims to formalize this intuition and derive
such bounds.

3 Data-Dependent Prompt Generalization Bounds

To address the limitations of existing generalization bounds in the context of data-poor prompt
optimization, we can draw inspiration from previous work on data-dependent generalization bounds.
Again, the standard PAC-Bayes bound is as follows: Let H be a hypothesis space, P a prior
distribution over H, and S a sample of size m drawn from a data distribution D. For any δ > 0, with
probability at least 1 − δ over the random choice of S, the following holds for in expectation for
h ∼ Q and draws of S:

R(Q) ≤ R̂S(Q) +

√
KL(Q||P ) + log m

δ

2m

where for some loss function l, R(h) = E
W∼D

[l(h,W )] is the population risk , R̂S(h) =
1
m

∑
w∈S

l(h,w)

is the empirical risk, and KL(Q||P ) is the Kullback-Leibler divergence between the posterior
distribution Q and the prior distribution P . Note that this expected bound can be derandomized at a
cost of a mild increase in generalization bound to hold for all h ∈ H.

There are many forms of PAC-Bayes bounds available [Alquier et al., 2024]. Another noteworthy one
is the Tolstikhin and Seldin bound [Tolstikhin and Seldin, 2013], which we use in our experimental
section later on. This bound has the desirable property of depending only on 1/m if the estimator has
training error equal to 0. This bound is as follows:

R(Q) ≤ R̂S(Q) +

√
2R̂S(Q)

KL(Q||P ) + log 2
√
m

δ

m
+ 2

KL(Q||P ) + log 2
√
m

δ

m

In the context of prompt optimization, we can consider the hypothesis space H to be the set of all
possible prompts and even when we define our prior to be given by an LLM’s loglikelihood, this still
results in vacuous bounds for mild regimes of m < 1000 as the divergence is large when applying
the previous approaches of Akinwande et al. [2023]. The key idea for tighter bounds is to use a
non-empty prompt prior but rather to allow for an optimized data-dependent prior, exploiting the
compressive power of an LLM to significantly reduce the size of our hypothesis search space.

We adapt the approach of Negrea et al. [2019] to our hypothesis space H as the set of all discrete
prompts. Let P (h|p) = PLLM (h|p) be a prior distribution over prompts h ∈ H given by a conditional
distribution, conditioned on some prior prompt p, produced by an LLM. A data-dependent prior can
be constructed by optimizing p(J) given by a sample of the data J ⊂ S ∼ Dn, such that p(J) ideally
minimizes KL(Q||P (h|p(J))), where Q is the posterior distribution over task-optimized prompts.
Using the data-dependent prior defined above, we can derive a PAC-Bayes generalization bound for
prompt optimization. We defer the proof details to the appendix.
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Theorem 1 (Data-Dependent PAC-Bayes Prompt Bound). Let S ∼ Dn be an i.i.d. data sample of
size n and J ⊂ S be a uniform subset of S of size m < n. Suppose the underlying loss l(h,W )
is σ-subgaussian for W ∼ D, and any prompt h. Then, for any σ(J)-measurable prior P and
σ(S)-measurable posterior distribution Q if h ∼ Q, then

ES

[∣∣∣R(h)− R̂S(h)
∣∣∣] ≤ √

2
σ2

n−m
ES [KL(Q||P )]

Specifically, given some prior prompt p(J) ∈ H that is LLM-optimized on J and Q =
{(q1, q2, ..., qk)} a discrete set of σ(S)-measurable optimized task prompts, then with high con-
stant probability,

∣∣∣R(qj)− R̂S(qj)
∣∣∣ ≤ O


√√√√ σ2

n−m

[
− log(k)− 1

k

k∑
i=1

logPLLM (qi|p)

]
for at least some qj ∈ Q and PLLM (q|p) measures perplexity of prompt q conditioned on p using
any LLM.

In the theorem stated, the KL divergence term now measures how close the posterior distribution
over prompts is to the data-dependent prior, which still has a relatively wide spread across the prompt
space. Therefore, it is not surprising that by using an stochastic posterior (i.e. a uniform posterior
over k prompts), we can get a − log(k) dependency in the generalization bound, with posteriors that
give similar log probabilities. In practice, we can improve the PAC-Bayes bounds significantly by
choosing k precisely, although in our later sections, we set k = 1 and even with this naive setting of
k, surprisingly we are able to derive non-vacuous bounds by only exploiting data dependence.

4 Results

In this section, we assess the practical utility of using a more useful prior prompt for a PAC-Bayes
generalization bound and demonstrate that it gives non-vacuous bounds for a simple classification
task. We explore two potential improvements to specify the prior distribution:

1. Using an informative prompt, created manually

2. Using a data-dependent prompt, learned from previous successful prompts

Using a real text classification dataset, we attempt to optimize the previously proposed PAC-Bayes
generalization bounds (from [Tolstikhin and Seldin, 2013]) and observe how tight it can become. The
dataset we use is the ETHOS Hate Speech dataset, from [Mollas et al., 2022]. This dataset, which is
publicly available, uses comments collected from various online sources, and annotates them with a
binary “Yes/No” label as to whether or not they qualify as hate speech. We use the Gemini models,
specifically 2.0 Flash, for our LLM experiments [Team et al., 2023]. This is the type of task one
might apply hand-tuned prompt engineering to in order to develop a performative prompt. However,
in order to more systematically search the prompt space, we use the automated prompt optimization
(APO) algorithm from [Pryzant et al., 2023], which optimizes a prompt for a given dataset through
iteratively applying edits based on past rounds of prediction.

Importantly, we specify that the APO should optimize on the generalization bound described previ-
ously - at every step, we calculate the bound outlined in Theorem 1 with k = 1, and aim to minimize
the loss upper bound. Specifically, for this task, we maximize the empirical accuracy loss with the
generalization upper bound. We run this procedure for 200 steps, using a 90% error bound. Due to
the bandit-style structure of APO, the more accurate prompts are usually tested on more examples -
this can result in better bounds for the more accurate prompts purely due to larger n being tested by
the APO algorithm. In order to level the playing field, we also show below “n-adjusted” versions of
the error bounds, where we re-calculate the bound with the maximum value of n across the 4 prompts
(n = 160). This is not necessarily the “correct” value since, had each prompt actually been tested on
160 examples, the training error may have changed - but it does provide a more level playing field to
compare the bounds in an optimization-algorithm-independent manner.

5



Prompting Method Prior Train Error Log-lik. Test Error Bound Bound (n-adj)
handcrafted empty 0.2 -39.569 0.145 1.977 0.818
handcrafted informative 0.175 -26.936 0.145 1.497 0.644

optimized (acc) informative 0.087 -83.258 0.141 1.63 0.953
optimized empty 0.133 -44.504 0.149 0.882 0.734
optimized informative 0.131 -17.414 0.112 0.468 0.468
optimized optimized 0.133 -28.885 0.104 0.695 0.587

Table 1: Results from automated prior optimization to minimize 90% error bounds on Hate Speech
dataset. See text for values of prompts and priors. “optimized (acc)” means that prompt was optimized
for accuracy; “optimized” means that the prompt was optimized for the generalization bound. n-
adjusted bound is for easier comparison only — the “true” bound outputted by the optimization is in
the “Bound” column.

In order to calculate the bound with an LLM, we need a prior - this is defined by
some text that the LLM can condition on when determining what the log-likelihood of a
prompt is. We can think of this prior prompt as a “meta-prompt”: helping us to define
the distribution of task prompts we will consider, exploiting powerful priors that are en-
coded within the LLM. We test three prompts: the first is the empty string and the sec-
ond is “We are trying to find classification labels for hate speech detection.
<empty line> The text of the prompt is as follows: <empty line>”. This second
prompt is the “informative” prior in Table 1, below. The third prompt is listed as “optimized” in the
Prior column of the table below — this prompt is data-dependent, and is found by optimizing the
log-likelihood of several prompts discovered on a previous, accuracy-based run of APO. This prompt
is longer and can be found in the Appendix.

The prompts themselves are:

• Handcrafted: “Does this input contain hate speech?”

• Optimized (for bound, using empty prior): “ Is this message hateful or
discriminatory?”

• Optimized (for bound, using meta-prompt prior): “Is this hate speech?”

• Optimized (for accuracy, using meta-prompt prior): “Does this statement
express hatred or prejudice towards a specific group based
on characteristics such as race, religion, ethnicity, sexual
orientation, etc., with the intent to cause harm or marginalize?”

• Optimized (for bound, using optimized data-dependent prior): “Does this statement
contain hate speech? (Yes/No)”

In Table 1, we observe that the optimized prompts with non-empty priors result in the tightest bounds,
around 0.46. While this is not necessarily low enough to be useful (real test error was 0.11), we note
that frequently generalization bounds in the domain of deep learning are totally trivial (i.e. > 1), and
that a bound < 0.5 represents a promising step in the right direction. Additionally, we note that the
tighter bounds in Akinwande et al. [2023] are obtained using a much larger set of data (CIFAR-10,
≈ 10k examples), whereas we obtained our non-trivial results using only 150-300 examples. This
demonstrates the value of using handcrafted priors in the prompt optimization process.

Additionally, we notice that the optimization of the generalization bound with both non-empty meta-
prompts improves the test error over all other methods; in particular, it achieves better test error than
just optimizing for accuracy (the “optimized (acc)” row). The data-dependent prior achieves the
best test error, and the hand-engineered meta-prompt achieves the second best test error in the table
above. We note that all test errors have overlapping 95% confidence intervals, so we should be careful
about drawing too-strong conclusions. However, we believe this is a promising result, suggesting
that the perplexity regularization inherent in the form of the generalization bound may yield practical
improvements in robustness and overfitting, even if the bound itself is not low enough to be useful
independently.

Finally, we highlight how the results in Table 1 should be interpreted in light of Akinwande et al.
[2023]. The rows corresponding most closely to their proposed methods are (handcrafted, empty) and
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(optimized, empty). We note several key distinctions as to why the bounds in our table are empirically
looser than theirs:

• We use an order of magnitude less data — O(100) vs O(1000)
• We use a less precise optimization algorithm (APO), which treats the LLM as a black box at

the prompt level, whereas Akinwande et al. [2023] uses greedy token-by-token sampling on
the bound itself

With this context, we note there is a favorable comparison to the “empty prior” approach from
Akinwande et al. [2023], and that further gains may yet be realized by using an informative or
data-dependent prior alongside more advanced optimization methods.

5 Conclusion

This research demonstrates the value of informative perplexity regularization in achieving non-
vacuous generalization bounds for prompt optimization, particularly in data-scarce environments. By
leveraging priors conditioned on task information or data, the proposed PAC-Bayes bounds offer
meaningful guarantees where traditional methods often fail for LLMs. The empirical results, though
modest, show that these bounds can be tightened significantly compared to uninformative priors and
that optimizing for these bounds can lead to improved test error. We believe that experimentation on
other datasets will lead to similar results and in addition to extending the breadth of our research, we
generally hope also extend the depth of in future work, such as:

1. Complex Prior Optimization: This includes exploring hierarchical priors, embedded priors,
or prior optimization techniques that adapt more dynamically to the nuances of the task
data. The current work showed that even a simple "meta-prompt" can improve bounds; more
sophisticated, learnable prior-generation mechanisms could further enhance performance.

2. Custom Algorithms for Regularized Prompt Optimization: Developing custom opti-
mization algorithms specifically designed for the proposed regularized objective is a key
next step. Current methods, like APO, were adapted for this research. New algorithms could
more directly incorporate the perplexity regularization and the structure of the generalization
bound into the search process, potentially leading to more efficient and effective optimiza-
tion, especially when aiming to minimize the bound itself. This would also involve a more
systematic exploration of the parameter k in the generalization bound, which was naively
set to 1 in the current experiments.

3. Stochastic Posterior Prompts: The theoretical framework already suggests benefits for
using an stochastic posterior (a uniform posterior over k prompts) through a − log(k)
dependency in the generalization bound. Future work will investigate practical methods
for creating and utilizing ensembles of prompts, guided by classical techniques such as
boosting.
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A Proofs

Proof of 1. Our first statement follows from applying the data-dependent mutual information bound
Negrea et al. [2019] to the prompt space with any prior. Now, note that if we define p(J) as a specific
LLM-optimized prompt, then it is measurable with respect to J as long as each iteration of the
optimization procedure is measurable. This is indeed the case since applying LLM optimization is a
measurable function, modeled by a transformer model.

Now, let S be our data sample and if our prior is simply one prompt p(J) and the posterior is simply
some discrete set of σ(S)-measurable task optimized prompts given by Q = {(q1, q2, ..., qk)}. Then,
let Q̃ be the uniform distribution over Q and consider the prior P̃ as the conditional distribution of
any LLM considitioned on p(J), the σ(J)-measurable prior prompt. We can now express our bound
as that for h ∼ Q̃, our first statement gives us that

ES

[∣∣∣R(h)− R̂S(h)
∣∣∣] ≤

√
2

σ2

n−m
ES [KL(Q̃||P̃ )]

By definition, we can rewrite the last term in the expression as KL(Q̃||PLLM (h|p(J))), where p(J)

is the σ(J)-measurable prior prompt. Finally, by substituting in Q̃,

KL(Q̃||P (h|p(S))) = − log(k)− 1

k

k∑
i=1

log(PLLM (qi|p(S)))

where PLLM (xi|p) is the probability assigned by the LLM to the input xi given the prompt p.
Therefore, for some qi, it must hold that in expectation

∣∣∣R(qj)− R̂S(qj)
∣∣∣ ≤ O


√√√√ σ2

n−m

[
− log(k)− 1

k

k∑
i=1

logPLLM (qi|p)

]
Finally, our second statement follows by Markov’s inequality.

B Optimized Prior Prompt

Here we give the data-dependent prompt used in Table 1, listed as the “optimized” prior. This
prompt was found by running APO to maximize the log-likelihood of four prompts discovered
from a previous run on this task. The prompt is: Create a hate speech classification
rubric utilizing a decision tree approach. The rubric will begin with
a primary question determining the presence of hate speech (yes/no).
If yes, subsequent questions will assess severity (low, medium, high)
based on linguistic features (slurs, dehumanizing language), contextual
factors (platform, audience, intent), and target specificity (clearly
identified group). Each question will have clearly defined criteria and
branching pathways leading to a final severity classification. The rubric
will include multiple examples illustrating the decision-making process,
differentiating hate speech from strong criticism and addressing potential
biases.
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