
Optimal Compressive Covariance Sketching via
Rank-One Sampling

Wenbin Wang
School of Information and Science Technology

ShanghaiTech University
Shanghai, China

wangwb2023@shanghaitech.edu.cn

Ziping Zhao
School of Information and Science Technology

ShanghaiTech University
Shanghai, China

zipingzhao@shanghaitech.edu.cn

Abstract—In this paper, we study the problem of compressive
covariance sketching, where the goal is to compress a high-
dimensional data stream and recover its covariance matrix from
a limited number of compressed measurements. This problem
is particularly relevant in scenarios where the data evolves
rapidly or where sensing devices are constrained by limited
computational and storage resources. We consider the rank-one
sampling model under the assumption that the underlying co-
variance matrix is sparse. To estimate the covariance matrix, we
propose a regularized least-squares estimator that incorporates
nonconvex sparsity-inducing penalties. To compute the estimator
efficiently, we develop a multi-stage convex relaxation algorithm
based on the majorization-minimization (MM) framework. Each
subproblem in the MM scheme is approximately solved via
a proximal Newton method, which enjoys a locally quadratic
convergence rate. We establish that the proposed estimator
achieves the oracle statistical convergence rate after a sufficient
number of iterations. Numerical experiments corroborate our
theoretical findings and demonstrate the effectiveness of the
proposed approach.

Index Terms—Compressive sensing, rank-one measure-
ments, quadratic sampling, nonconvex penalty, majorization-
minimization, sparsity, positive definite.

I. INTRODUCTION

With the rapid advancement of communication technolo-
gies, there is a growing demand for processing ultra-wideband
signals, which poses new challenges in signal sampling and
processing [1]–[4]. Digital signal processing typically requires
the conversion of analog signals into discrete samples via
sampling and quantization, a process commonly implemented
using analog-to-digital converters (ADCs) [5]–[8]. To accom-
modate signals with higher bandwidths, increasingly high
sampling rates are necessary. However, this demand leads to
substantial power consumption in ADCs, which remains a fun-
damental bottleneck in modern systems [9], [10]. To mitigate
this challenge, compressive sampling (CS) has emerged as a
powerful framework that enables signal recovery from sub-
Nyquist rate samples by exploiting signal sparsity [11]–[15].
While conventional CS techniques primarily aim to reconstruct
the signal itself, there are many applications where the objec-
tive shifts toward estimating second-order statistics, such as the
covariance matrix, from sub-Nyquist samples [16]–[19]. In this
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paper, we investigate the problem of estimating a covariance
matrix from compressed rank-one measurements, a setting
commonly referred to as compressive covariance sketching
[20]. More specifically, we focus on the recovery of a sparse
covariance matrix from a limited number of compressed ob-
servations. Our study is guided by two fundamental questions:
1) Can we design sketching vectors such that the resulting
compressive sketches exhibit favorable statistical properties,
enabling accurate estimation of the covariance matrix from a
small number of measurements? 2) How can we develop an
efficient algorithm for compressive covariance sketching, and
what statistical guarantees can be established for the resulting
estimator?

To address the first question, we adopt the sparse eigen-
value condition, which, to the best of our knowledge, is
among the weakest known conditions sufficient to guarantee
accurate recovery of a sparse covariance matrix. Our theo-
retical analysis shows that exact recovery is possible under
this condition for a broad class of sub-Gaussian sketching
vectors. For the second question, we propose a regularized
least-squares framework that incorporates nonconvex sparsity-
inducing penalties to promote structured recovery. To solve the
resulting optimization problem efficiently, we develop a multi-
stage convex relaxation algorithm based on the majorization-
minimization (MM) framework [21], [22]. We further establish
that, after sufficient iterations, the proposed estimator achieves
the optimal estimation rate as if the true support were known
a priori. This result highlights the statistical efficiency of the
proposed method under mild regularity conditions.

II. RANK-ONE SAMPLING

Consider a sequence of T samples {xt}Tt=1 drawn from a
zero-mean distribution in Rd with covariance matrix Σ⋆. Let
{ai}mi=1 be a set of m random sketching vectors. Each vector
ai is applied to all samples, yielding a collection of projected
measurements

{
a⊤
i xt

}T

t=1
. For each sketching vector ai, the

squared projections are averaged across time to produce the
corresponding compressed measurement:

yi =
1

T

T∑
t=1

∣∣a⊤
i xt

∣∣2 + ηi =
〈
aia

⊤
i ,S

〉
+ ηi,



where S = 1
T

∑T
t=1 xtx

⊤
t denotes the sample covariance

matrix1, and ηi represents a noise term. The quantity yi thus
serves as a compressed sketch of the true covariance matrix
Σ⋆. Each inner product

〈
aia

⊤
i ,S

〉
is referred to as a rank-one

measurement or a quadratic measurement. By leveraging the
Kronecker product, each measurement yi can be equivalently
written as

yi = (ai ⊗ ai)
⊤ vec (S) + ηi,

where vec(S) denotes the vectorization of the sample covari-
ance matrix S, obtained by stacking its columns into a single
vector.

For notational convenience, let y = [y1, . . . , ym]
⊤ denote

the vector of measurements, and η = [η1, . . . , ηm]
⊤ the corre-

sponding noise vector. Define the equivalent sketching matrix
A =

[
(a1 ⊗ a1) · · · (am ⊗ am)

]⊤
. The measurement

model can then be compactly expressed as

y = Avec (S) + η = A (S) + η,

where A : Rd×d → Rm is the linear operator defined by
A(S) = Avec (S).

III. RECOVERY VIA NONCONVEX OPTIMIZATION

A. Proposed Nonconvex Estimator

In general, recovering the covariance matrix Σ⋆ from
m < d(d+1)

2 measurements is inherently ill-posed unless addi-
tional low-dimensional structure is imposed. A common and
effective assumption is sparsity, which reduces the parameter
space by encouraging most entries of Σ⋆ to be zero. In this
work, we adopt the sparsity assumption and propose to recover
Σ⋆ by solving the following optimization problem:

min
Σ≻0

1

2m
∥y −A (Σ)∥22 − τ log detΣ +

∑
i,j

pλ (|Σij |) , (1)

where the first term penalizes the empirical error, the second
term imposes strict positive definiteness via a log-determinant
barrier with parameter τ > 0, and the third term introduces
a sparsity-promoting regularization based on a nonconvex
penalty function pλ with tuning parameter λ > 0. We impose
the following conditions on pλ.

Assumption 1. The function pλ defined on [0,+∞) satisfies:
(a) pλ(t) is non-decreasing with pλ(0) = 0, and is differ-

entiable almost everywhere on (0,∞);
(b) For all t1 ≥ t2 ≥ 0, it holds that 0 ≤ p′λ(t1) ≤ p′λ(t2) ≤

λ and limt→0 p
′
λ(t) = λ;

(c) There exists an α > 0 such that p′λ(t) = 0 for t ≥ αλ.

These conditions, which ensure sparsity and unbiasedness,
are consistent with those considered in [23]–[26] and are sat-
isfied by several nonconvex regularizers, including smoothly
clipped absolute deviation (SCAD) penalty [23], minimax
concave penalty (MCP) [27], and capped ℓ1 regularizer [28].

1As the number of samples increases, the sample covariance matrix S
rapidly converges to the true covariance matrix Σ⋆.

Algorithm 1: The MM Algorithm for Problem (1).
Input: {yi,ai}mi=1, τ , λ;

1 Initialize Σ0 = I
2 for k = 1, 2, . . . ,K do
3 Λk

ij = p′λ(|Σ
k−1
ij |);

4 obtain Σk via solving (2);
5 k = k + 1;
6 end

Output: ΣK

B. Optimization Algorithm

We propose a multi-stage convex relaxation algorithm based
on the MM framework [21], [22] to solve problem (1). In each
stage of the MM algorithm, a convex subproblem is solved
using a proximal Newton method [29]–[31].

1) The Multi-Stage Convex Relaxation Algorithm: Define
f (Σ) = 1

2m ∥y −A (Σ)∥22 − τ log detΣ. At each iter-
ation of the MM algorithm, the nonconvex penalty term∑

i,j pλ (|Σij |) is approximated by a weighted ℓ1-norm, which
serves as a convex surrogate. Specifically, at the k-th stage, we
solve the following convex optimization problem:

min
Σ≻0

f(Σ) +
∥∥∥Λk ⊙Σ

∥∥∥
1
, (2)

where Λk is a weight matrix whose entries are given by Λk
ij =

p′λ(|Σ
k−1
ij |), with Σk−1 denoting the solution obtained from

the (k − 1)-th stage, and ⊙ denotes the Hadamard (element-
wise) product. According to the Karush-Kuhn-Tucker condi-
tions, the optimal solution, denoted by Σ̂

k
, to the convex

subproblem in (2) satisfies

∇f(Σ̂
k
) +Λk ⊙ Ξ̂

k
= 0, for some Ξ̂

k
∈ ∂∥Σ̂

k
∥1,

where ∂ ∥·∥1 denotes the subdifferential of the ℓ1-norm. Since

a closed-form solution for Σ̂
k

is not available, we instead
compute an approximate solution Σk that is ε-optimal.

Definition 2. For a pre-specified tolerance level ε, we say Σk

is an ε-optimal solution if

min
Ξk∈∂∥Σk∥

1

max
i,j

∣∣∣∣(∇f(Σk) +Λk ⊙Ξk
)
ij

∣∣∣∣ ≤ ε.

The overall optimization algorithm is summarized in Algo-
rithm 1, where we adopt a simple initialization, specifically
setting Σ0 = I .

2) Proximal Newton Algorithm: In this work, we employ
the proximal Newton algorithm to solve the convex subprob-
lem in (2). Specifically, the algorithm computes a Newton
direction that serves as a descent direction, followed by a
line search to determine a suitable step size that guarantees
a sufficient decrease in the objective function.



Algorithm 2: Proximal Newton Algorithm With Back-
tracking Line Search.

Input: Σk−1, Λk, ε;
1 Initialize t = 0, Σt = Σk−1, µ = 0.8, α = 0.3;
2 repeat
3 Σt+ 1

2
∈ arg min

Σ≻0
f̃t (Σ) + ∥Λ⊙Σ∥1;

4 ∆t = Σt+ 1
2
−Σt;

5 δt =

⟨∇f(Σt),∆t⟩−∥Λk⊙Σt∥1+∥Λk⊙(Σt+∆t)∥1;
6 β = 1, q = 0;
7 repeat
8 β = µq , q = q + 1;
9 if Σt + β∆t ⪯ 0 then

10 continue;
11 end
12 until F̄ (Σt + β∆t) ≤ F̄ (Σt) + αβδt;
13 Σt+1 = Σt + β∆t;
14 t = t+ 1;

15 until maxi,j

∣∣∣∣(∇f(Σt+1) +Λk ⊙Ξk
)
ij

∣∣∣∣ ≤ ε;

Output: ΣK = Σt+1

We denote the iteration index within the k-th stage by t.
For brevity, we omit the index k. Consider the second-order
Taylor expansion of f (Σ) around Σt:

f̃t (Σ)

=f (Σt) + ⟨∇f (Σt) ,Σ −Σt⟩+
1

2
∥Σ −Σt∥2∇2f(Σt)

,

where ∥X∥M =

√
vec(X)

⊤
M vec(X). The proximal

Newton update is derived as

Σt+ 1
2
∈ argmin

Σ≻0
f̃t (Σ) + ∥Λ⊙Σ∥1 .

We define F̄ (Σ) = f(Σ)+∥Λ⊙Σ∥1. The Newton direction
for F̄ (Σ) is computed as ∆t = Σt+ 1

2
−Σt.

Then, we perform a backtracking line search to select a step
size β ∈ (0, 1] that ensures a sufficient decrease in F̄ (Σ).
Starting with a fixed constant µ ∈ (0.5, 1) and updating β =
µq from q = 0 with a constant decrease rate, we find the
smallest non-negative integer q for which the Armijo condition
[32] holds:

F̄ (Σt + β∆t) ≤ F̄ (Σt) + αβδt,

where α ∈ (0, 0.5) and δt = ⟨∇f (Σt) ,∆t⟩ − ∥Λ⊙Σt∥1 +
∥Λ⊙ (Σt +∆t)∥1. Finally, we update Σt+1 = Σt + β∆t.
The overall proximal Newton algorithm is summarized in
Algorithm 2.

IV. THEORETICAL ANALYSIS

In this section, we present the theoretical results. Define the
support of Σ⋆ as S = {(i, j) | Σ⋆

ij ̸= 0}, with s representing
its cardinality, i.e., s = |S|.

A. Assumptions

We begin by introducing some preliminaries, including key
definitions and assumptions that will be used throughout the
analysis.

Assumption 3. There exist universal constants κ, α, and ξ
such that 0 < 1

κ ≤ λmin(Σ
⋆) ≤ λmax(Σ

⋆) ≤ κ < ∞.

Assumption 4. The true covariance matrix Σ⋆ satisfies
∥Σ⋆

S∥min = min
(i,j)∈S

∣∣Σ⋆
ij

∣∣ ≥ (α+ ξ)λ, where κ ≥ 1, α is

from Assumption 1, and ξ ∈ (0, α) satisfies p′λ(ξλ) ≥ λ
2 .

Definition 5. Define a local cone around Σ⋆:

B(Σ⋆, r) = {Σ ≻ 0 | ∥Σ −Σ⋆∥F ≤ r} .

Assumption 6. The sketching vectors {ai}mi=1 are indepen-
dent and identically distributed (i.i.d.) sub-Gaussian random
variables with zero mean and identity covariance; and the
noise {ηi}mi=1 are i.i.d. sub-exponential random variables with
mean 0 and variance proxy σ2.

Assumption 6 implies that each row of the design matrix A
consists of i.i.d. sub-exponential random variables. For m =

O(s log2(d/s)), within B(Σ⋆, ρ−

4τκ ), there exist constants ρ−

and ρ+ such that 0 < ρ− ≤ ρ+ < ∞ with probability at least
1− c1 exp (−c2

√
m) for c1, c2 > 0 [33].

B. Statistical and Computational Analysis

Theorem 7 (Contraction Property). Suppose Assumptions 1
to 6 hold. Then the ε-optimal solution ΣK from Algorithm 1
is bounded by:

∥∥∥ΣK −Σ⋆
∥∥∥
F
≤ 1

ρ−

∥(∇f (Σ⋆))S∥F︸ ︷︷ ︸
oracle rate

+ ε
√
s︸︷︷︸

optimization error


+ δ

∥∥∥Σk−1 −Σ⋆
∥∥∥
F︸ ︷︷ ︸

contraction

,

for 1 ≤ k ≤ K, where δ ∈ (0, 1) is the contraction factor.
If x be a sub-Gaussian random vector with mean zero and
covariance Σ⋆, {xi}ni=1 be a collection of i.i.d. samples

drawn from x, λ ≍
√

log d
mn , τ ≲

√
1

mn

∥∥∥(Σ⋆)
−1

∥∥∥−1

max
, ε ≲√

1
mn , and K ≳ log (λ

√
mn) ≳ log log d, then the ε-optimal

solution ΣK satisfies ∥ΣK −Σ⋆∥F = Op

(√
s

mn

)
with high

probability.

Theorem 7 elaborates the estimation error between the ε-
optimal solution Σk and the ground truth Σ⋆ is constrained by
three primary factors: the oracle rate2, the optimization error,
and a contraction term.

2The oracle estimator Σ̂
O

is defined as Σ̂
O

= arg min
ΣS=0

f (Σ).
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Fig. 1. The rate of successful covariance reconstruction when d = 100.
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Fig. 2. The FRE of the estimated covariance matrices for different sparsity
levels with γ = 10−1.

V. SIMULATION RESULTS

We use the MCP penalty, defined as

pλ(t) = sign(t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz,

with b = 2 across all trials. The regularization parameters τ
and λ are selected via five-fold cross-validation. The ground-
truth covariance matrix Σ⋆ is generated using the built-in
sprandsym function in MATLAB with s nonzero entries.
We draw n = 50 independent samples from the multivariate
normal distribution N (0,Σ⋆), and the noise variables ηi
are sampled from a sub-exponential distribution with scale
parameter γ, i.e., ηi ∼ γ · N (0, 1). To evaluate recovery
performance, we measure the success probability as visualized
in the color-coded matrix in Fig. 1. To reduce the impact of
limited sample size, we directly apply sketching to the true
covariance matrix Σ⋆. A recovery is considered successful if
the relative Frobenius error satisfies

∥Σ −Σ⋆∥F
∥Σ⋆∥F

≤ 10−3.

Fig. 2 compares the proposed estimator with the ℓ1-norm-
based method from [18] under a consistent noise level γ =
10−1. As the number of measurements increases, the recovery
error decreases, and our method consistently outperforms the
ℓ1-based estimator.

VI. CONCLUSIONS

In this paper, we have investigated the compressive co-
variance sketching problem. We have proposed a nonconvex-
based estimator based on a quadratic measurement model and
developed an MM-based algorithm for efficient estimation.
We have shown that, for a broad class of sub-Gaussian
sketching vectors, exact covariance recovery is achievable with
theoretical performance guarantees.
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