

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS HUMAN-PREFERENCES CHINESE REWRITING EVALUATION: PROMPT-BASED SCORING WITH LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Sentence rewriting is a core task in natural language processing, encompassing paraphrasing, translation, and summarization. Despite its importance, existing evaluation metrics often rely on superficial similarity measures (e.g., BLEU, ROUGE), which fail to capture deep semantic fidelity. In this work, we propose a principled, multi-dimensional framework for evaluating rewriting quality based on semantic consistency, syntactic structure, lexical variation, and stylistic fidelity. We design a prompt-based scoring method with the QWQ-32B language model, achieving a Spearman correlation of  $\rho = 0.6121$  with human judgments, which is comparable to inter-human agreement ( $\rho = 0.6076$ ). We further benchmark popular rewriting strategies using this metric and introduce a multiround generation pipeline that improves rewriting quality by 9.66%. Our results show that large language models, when paired with structured evaluation and guidance, can robustly assess and generate high-quality rewrites.

## 1 INTRODUCTION

Sentence rewriting (e.g., paraphrasing, translation, or summarization) is a fundamental task in NLP that requires restating content without changing its meaning Chen & Bansal (2018); Zhang et al. (2019b); Zhang & Litman (2014). Examples include translating a sentence into another language or condensing a passage into a summary. In all cases, the semantic information must remain consistent before and after rewriting Shen et al. (2022). However, the NLP literature lacks a standard, quantifiable metric for rewriting quality Chen & Dolan (2011). Early approaches treated rewriting as a similarity task: for instance, BLEU Papineni et al. (2002) and ROUGE Lin (2004) (n-gram overlap) or Jaccard and TF-IDF Ramos et al. (2003) measures count shared words and order. Word-embedding methods (Word2Vec, GloVe) and contextual models (BERT) embed words/sentences into vector spaces, with similarity computed by cosine or Euclidean distance Devlin et al. (2019); Reimers & Gurevych (2019). Likewise, neural models such as Siamese networks have been used for semantic matching. For example, Mueller and Thyagarajan (2016) applied a Siamese LSTM Bao et al. (2018) to sentence pairs to learn semantic similarity Mueller & Thyagarajan (2016), and Shi et al. (2020) used a Siamese CNN Leal-Taixé et al. (2016) for Chinese sentence similarity Shi et al. (2020).

Despite these advances, traditional similarity metrics often fail for rewriting: they reward superficial overlap rather than true meaning preservation. Chen and Dolan (2011) noted that a paraphrase metric like BLEU would be maximized by simply copying the input Chen & Dolan (2011). For instance, “I like to eat apples” and “I do not like to eat apples” share many words, but clearly differ in meaning; simple n-gram or Jaccard scores would not catch this semantic flip. In practice, practitioners crudely filter paraphrases by a BLEU range (e.g. 0.6–0.8) based on experience. More recent large language models (LLMs) have deeper semantic understanding; models like GPT-4 can achieve human-level performance on many benchmarks Achiam et al. (2023), suggesting they could better evaluate semantic fidelity. However, using LLMs for rewriting still requires a clear definition of the task and scoring criteria. LLMs also exhibit “language inertia” (tendency to keep output similar to input), so naïve prompting often yields rewrites too close to the original.

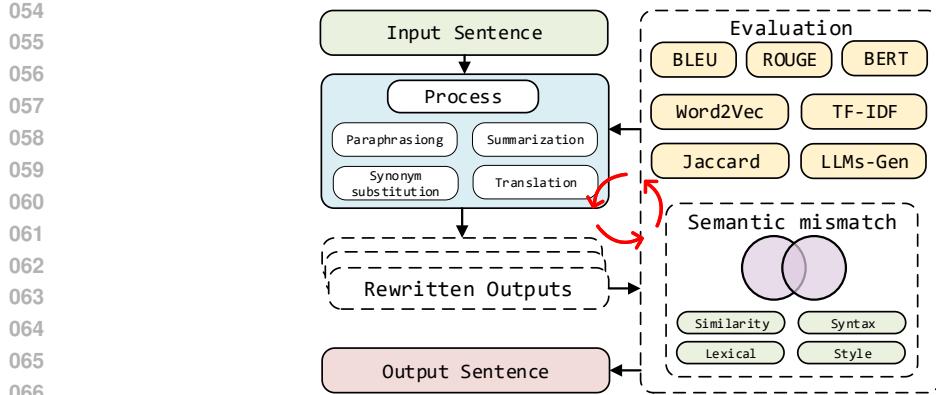


Figure 1: Overview of the main evaluation pipeline. The process begins with human-written inputs and proceeds through rewrite generation, human annotation, and metric-based evaluation.

Therefore, we introduce a clear definition and metric for high-fidelity rewriting. We propose evaluation criteria across multiple dimensions: semantic consistency, syntactic structure, lexical variation, and style length. We design prompts to elicit a “rewrite score” from LLMs that correlates with human judgments. In experiments, our QWQ-32B Yang et al. (2025) scoring prompt achieves Spearman  $\rho = 0.593$  with human ratings on rewriting. We also benchmark several state-of-the-art LMs on rewriting and fine-tune a rewriting model using data filtered by our score, yielding a 14.95% improvement in rewriting quality.

In summary, our contributions are:

- We analyze the sentence rewriting task and propose a composite evaluation metric consisting of four dimensions: semantic similarity, word order, lexical substitution, and length/style.
- Through extensive experimentation and model tuning, we design a rewriting scoring prompt with explicit evaluation standards. Using the QWQ-32B model, our scoring method achieves a Spearman correlation coefficient of  $\rho = 0.6121$  with human ratings, which is comparable to inter-human agreement ( $\rho = 0.6076$ ).
- We systematically evaluate multiple state-of-the-art models and various rewriting generation methods. Based on these evaluations, we propose a multi-step rewriting framework that stably generates high-quality rewritten texts, significantly enhancing the consistency and reliability of rewriting outcomes.

## 2 RELATED WORK

Automatic evaluation for paraphrase or rewriting has been studied only sporadically. Traditional MT-style metrics (BLEU Papineni et al. (2002), METEOR Banerjee & Lavie (2005), etc.) and text-similarity measures (TF-IDF Ramos et al. (2003), edit distance Friendly (2019), Jaccard Niwattanakul et al. (2013)) have been applied, but they inherently reward overlap rather than novel phrasing. Chen and Dolan proposed the PINC (Paraphrase In N-gram Changes) score, which measures the proportion of n-grams in the candidate not present in the source (the inverse of BLEU) to capture lexical novelty Chen & Dolan (2011); Cavnar et al. (1994). They found that combining BLEU (to assess adequacy) with PINC (to assess difference) correlates with human judgments of paraphrase quality. More recently, Shen et al. (2022) showed that good paraphrases follow two criteria: semantic similarity and lexical divergence. They proposed ParaScore, a metric that explicitly models these aspects by combining BERT-based similarity with a divergence component Shen et al. (2022). ParaScore significantly outperforms previous metrics on paraphrase-generation benchmarks.

Other work has explored embedding-based and neural metrics. For example, BERTScore Zhang et al. (2019a) computes semantic overlap using contextual embeddings, and SBERT Reimers & Gurevych (2019); Li et al. (2023) learns sentence embeddings via a BERT network. These methods

108 capture semantic relatedness beyond surface overlap. However, even strong semantic metrics like  
 109 BERTScore are not specifically designed to encourage paraphrastic diversity. Siamese neural net-  
 110 work architectures (CNNs Guo et al. (2019) or LSTMs Yu et al. (2019)) are commonly used for  
 111 sentence similarity tasks, but again they mainly quantify closeness, not rewriting fidelity.

112 With the advent of LLMs, new evaluation paradigms emerge. Models such as GPT-4 Achiam et al.  
 113 (2023), DeepSeek Liu et al. (2024), GLM-4 GLM et al. (2024) exhibit near-human understanding  
 114 and can compare sentence meanings directly. Some work has begun using LLMs as reference-  
 115 free metrics (e.g. via prompting or fine-tuning), but this area is still nascent. Overall, prior metrics  
 116 have not fully addressed the rewriting task: either they focus on n-gram matching or they fail to  
 117 balance semantic consistency with lexical novelty. Our work builds on these insights by defining a  
 118 specialized rewriting metric and prompting strategy that leverages LLMs for high-fidelity sentence  
 119 rewriting Liu & Mozafari (2024); Shu et al. (2024).

### 121 3 METHOD

#### 123 3.1 HUMAN EVALUATION AND ANNOTATION PROTOCOL

125 To establish a reliable reference for evaluating sentence rewriting quality, we first collected human  
 126 annotations. All rewriting tasks were conducted in Chinese, and all annotators were native Chinese  
 127 speakers. The English text below is a translation for readability; the complete original Chinese  
 128 instructions are provided in the appendix.

129 Two linguistic experts independently rated 200 sentence rewriting pairs based on the following basic  
 130 and intentionally underspecified criteria:

- 132 1. The rewritten sentence should be as different from the original as possible in surface form.
- 133 2. The rewritten sentence must preserve the semantic meaning of the original.
- 135 3. Each sentence pair is scored on a 0–5 integer scale.

---

#### Rewrite the quality scoring criteria

139 Requirement 1: Under the premise of maintaining the original meaning unchanged, express in different words of the original  
 text. Do not add or delete any content that would seriously affect the meaning.

140 Requirement 2: Under the premise of ensuring logical correctness and smooth word order, change the sequence and structural  
 141 relationship of the appearance of entities, phrases, and concepts. The smaller the amplitude of the sequential transformation,  
 the lower the score.

142 Requirement 3: Under the premise of ensuring that special entities, references, explanations, and specific statements remain  
 143 unchanged, use synonyms for substitution. The fewer synonyms are replaced, the lower the score will be.

144 Requirement 4: Maintain consistency with the original language style, with reasonable variations in word count and length.  
 The greater the gap in language styles, the lower the score.

145 Requirement 5: The rewriting of the comprehensive score should be very strict, taking into account the above four requirements  
 146 simultaneously. Under the premise of ensuring semantic consistency (Requirement 1), the greater the variation in (Requirement  
 147 2,3), the better, and the closer the word count, the better (Requirement 4). If there are a large number of long fields that are  
 148 completely copied, 0 points will be given.

The scoring criteria are as follows: the minimum score is 0 and the full score is 5. The scoring should be as strict as possible.

---

149 Table 1: Multidimensional quality criteria for sentence rewriting: Thresholds and scoring rules for  
 150 semantic fidelity (Req1), syntactic diversity (Req2), lexical variation (Req3), and stylistic alignment  
 151 (Req4).

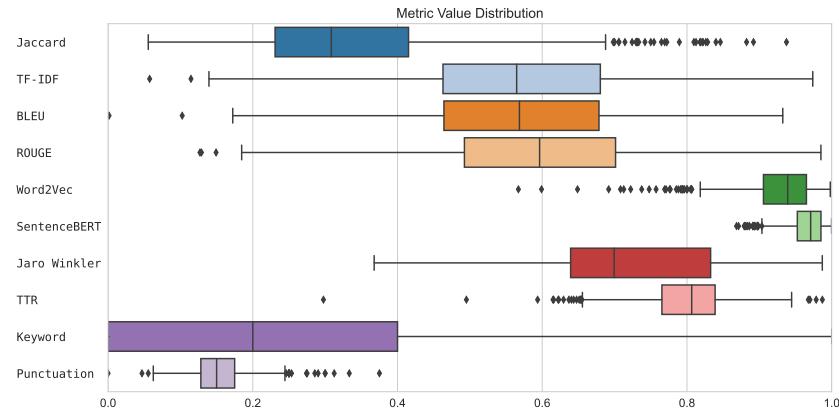
153 Inter-rater agreement analysis revealed moderate correlation: the Spearman correlation was 0.6076,  
 154 exact agreement was 34%, within  $\pm 1$  score difference was 84.5%, and within  $\pm 2$  was 96%. While  
 155 perfect agreement was limited, the high  $\pm 1$  accuracy suggests that the annotators shared a generally  
 156 consistent understanding of the task, despite some variance in fine-grained judgments.

157 To further improve annotation reliability, we designed a structured evaluation framework grounded  
 158 in four explicit dimensions: (1) semantic consistency, (2) syntactic structure, (3) synonym substitu-  
 159 tion, and (4) stylistic fidelity and sentence length. The refined guidelines are outlined in Table 1.

161 Using these criteria, we re-annotated 730 samples produced by human rewriting. These 730 samples  
 are used for further feature analysis and represent the ability of humans to rewrite.

162 3.2 TRADITIONAL EVALUATION METRICS  
163164 Traditional evaluation of rewriting quality often relies on heuristic similarity measures or rough  
165 thresholds, lacking fine-grained interpretability.  
166

| Metric        | Level     | Semantic | Advantages                  | Disadvantages            | Use Case            |
|---------------|-----------|----------|-----------------------------|--------------------------|---------------------|
| Jaccard       | Word      | ✗        | Simple, good for short text | Ignores word order       | Keyword matching    |
| TF-IDF        | Word      | ✗        | Reduces common word weight  | No synonym handling      | Document retrieval  |
| BLEU          | n-gram    | ✗        | MT industry standard        | Unfriendly to short text | Machine translation |
| ROUGE-L       | LCS       | ✗        | Focuses on coherence        | Biased to long text      | Text summarization  |
| Word2Vec      | Word vec. | ✓        | Deep word-based matching    | High complexity          | Short text matching |
| Sentence-BERT | Sentence  | ✓        | Cross-task general          | Needs GPU                | Semantic search     |
| Jaro-Winkler  | Char      | ✗        | Good for names/addresses    | Poor for long text       | Entity alignment    |
| TTR           | Word      | ✗        | Simple & effective          | Length-dependent         | Writing analysis    |
| Keyword       | Word      | ✗        | Intuitive                   | Needs good extraction    | Content moderation  |
| Punctuation   | Symbol    | ✗        | Detects fluency             | Needs other metrics      | AI text detection   |

177 Table 2: Comparison of common text similarity metrics by granularity, semantic awareness,  
178 strengths, weaknesses, and typical use cases. Traditional metrics are effective in certain contexts  
179 but often fail to capture semantic-level rewriting, motivating more context-sensitive evaluation.  
180181 Table 2 summarizes commonly used text similarity metrics adapted for sentence rewriting. These  
182 range from character-level edit distances to sentence-level embeddings, differing in their ability to  
183 capture semantic meaning.  
184185 Surface-based metrics such as BLEU, ROUGE-L, and TF-IDF emphasize n-gram or frequency over-  
186 lap but often miss deeper semantic shifts. Jaccard and TTR highlight lexical variation while ignoring  
187 context. In contrast, embedding-based metrics like Word2Vec and Sentence-BERT capture semantic  
188 similarity more effectively, though at higher computational cost.  
189204 Figure 2: Distribution of traditional text similarity and rewriting metrics. Semantic metrics (e.g.,  
205 SentenceBERT, Word2Vec) show higher values with less variance, while surface-level metrics  
206 (e.g., Jaccard, TF-IDF, Punctuation) exhibit lower medians and greater spread.  
207208 To examine their behavior in rewriting, we analyzed 10 metrics, including lexical overlap (Jaccard,  
209 TF-IDF, ROUGE-L), edit-based (Jaro-Winkler), embedding-based (Word2Vec, Sentence-BERT),  
210 and stylistic features (TTR, punctuation ratio). Distributions across our dataset (Figure 2) show that  
211 embedding-based metrics cluster at higher values, indicating stronger semantic alignment, while  
212 surface metrics display wider dispersion and lower medians.  
213214 Overall, although widely applied, these metrics were not designed for rewriting tasks that involve  
215 intertwined lexical, syntactic, and semantic changes. This motivates our further analysis in Section 4,  
where we study their correlation with human-rated rewrite quality.  
216

216  
217

## 3.3 LARGE LANGUAGE MODEL-BASED EVALUATION AND GENERATION

218  
219  
220  
221

Recent large language models (LLMs) can be broadly categorized into reasoning-intensive models (e.g., DeepSeek-R1) and non-reasoning models (e.g., GPT-4o). Although structurally similar, their output behaviors differ, as reasoning models often perform intermediate thinking before reaching a conclusion.

222  
223  
224

To explore LLM capabilities in rewriting tasks, we conduct experiments across a range of open-source models of different scales and families, including LLaMA, Qwen, DeepSeek, and GLM.

225

## 3.3.1 REWRITING EVALUATION PROMPTS

226  
227  
228

Prompt design significantly influences LLM output quality. We experimented with four levels of instruction detail for rewriting evaluation:

| Prompt Type  | Prompt      | Output Format                 |
|--------------|-------------|-------------------------------|
| None         | Appendix 11 | Free-form judgment            |
| Only         | Appendix 10 | Overall score                 |
| Only-Reason  | Appendix 10 | Overall score + justification |
| Multi-Reason | Appendix 10 | Each score + justification    |

235  
236

Table 3: Prompt formats used for LLM-based evaluation.

237  
238  
239  
240  
241  
242

Table 3 summarizes the four prompt types used in our evaluation experiments. The **None** setting provides no explicit instruction, relying on the model’s default behavior. The **Only** prompt asks for an overall score, while **Only-Reason** adds a brief justification to the score. The most detailed, **Multi-Reason**, requests separate scores for multiple criteria, each with its own explanation. These prompt types allow us to assess how varying levels of instruction influence the alignment between LLM and human evaluations.

243

## 3.3.2 REWRITING GENERATION PROMPTS

244  
245  
246

To generate diverse rewriting examples, we tested four generation strategies using different prompts:

| Prompt Type      | Description                                                   |
|------------------|---------------------------------------------------------------|
| Back Translation | Translate to another language and back to generate variation. |
| Summarize        | Summarize original, then regenerate to a target length.       |
| Rewrite          | Simply prompt “Please rewrite the following sentence.”        |
| Guided Rewrite   | Rewrite according to criteria in Table 1.                     |

253  
254

Table 4: Rewriting generation strategies used in our experiments.

255  
256

## 4 EXPERIMENTS

257  
258

## 4.1 EVALUATION OF TRADITIONAL METRICS

259  
260  
261  
262  
263  
264  
265

As described in Section 3.1, we constructed a human-labeled dataset of 730 rewritten sentence pairs, each rated on a Comprehensive Rewriting Evaluation (CRE) scale from 0 to 5 based on rewriting quality. Traditional evaluation methods for rewriting often rely on empirical thresholds, such as selecting samples with BLEU scores within a certain range, but whether this approach truly filters high-quality rewrites remains an open question. We address this issue through comprehensive quantitative analysis.

266  
267  
268  
269

As illustrated in Figure 3, we analyzed ten different traditional evaluation metrics as described in Section 3.2. Each curve represents the distribution of rewrite samples under a specific human rating. Notably, metrics such as TTR (Type-Token Ratio) and punctuation ratio exhibit minimal distributional differences across ratings, indicating their limited discriminative power. In contrast, metrics such as BLEU, ROUGE, TF-IDF, Jaccard, Jaro-Winkler, Word2Vec, and Sentence-BERT show

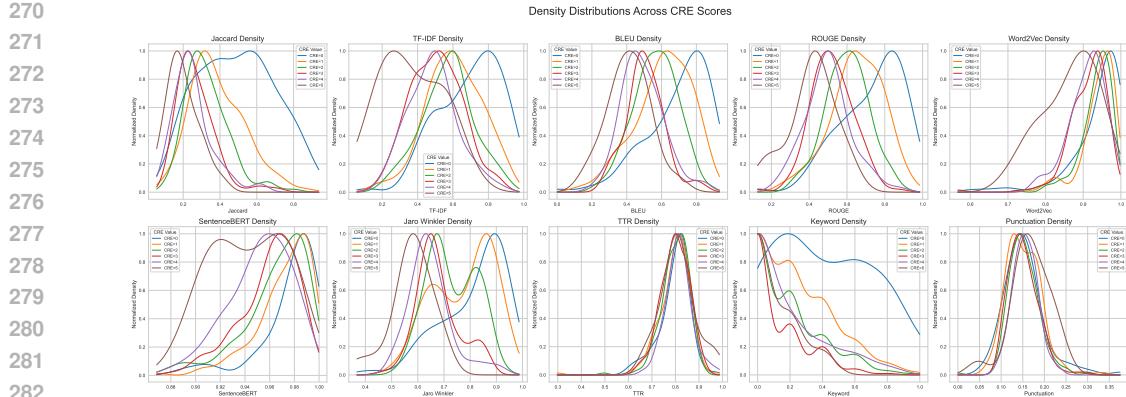


Figure 3: Score distributions across different traditional evaluation metrics. Colors represent human-assigned quality scores from 0 to 5. The x-axis denotes metric values; the y-axis indicates normalized distribution density.

more distinguishable trends, with distribution peaks shifting gradually according to human-assigned quality scores.

For example, in the BLEU score distribution, we observe that BLEU values around 0.6 tend to be associated with low-quality rewrites (CRE scores of 1–2), while scores below 0.6 are more frequently associated with higher-quality rewrites (CRE scores of 3–5). This implies that empirical thresholds like  $\text{BLEU} \in [0.2, 0.5]$  may effectively filter out poor-quality samples. However, this filtering remains coarse-grained and cannot prevent a significant number of false positives, i.e., retaining low-quality rewrites.

#### 4.1.1 METRIC SCORE TRENDS ACROSS REWRITE QUALITY LEVELS

To examine how traditional metrics align with human rewrite quality, Figure 4 shows average trends across CRE levels (0–5), with means, medians, and confidence intervals. Most metrics exhibit a downward slope as quality increases, reflecting that higher-quality rewrites deviate more from the source. However, variance grows at extreme CRE values, suggesting instability and outliers.

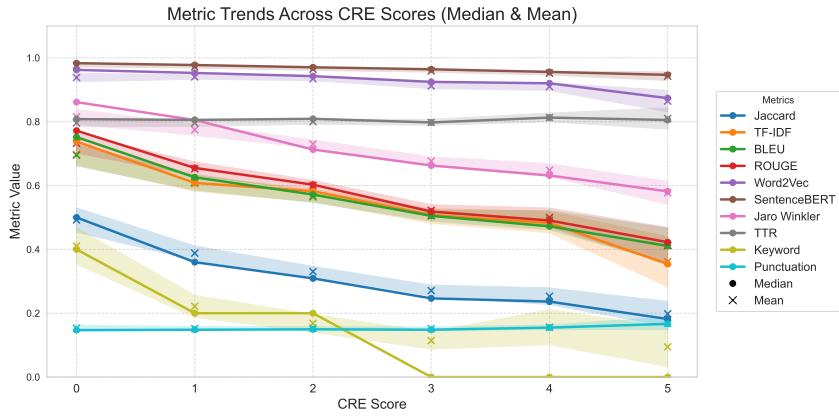


Figure 4: Trend of evaluation scores across human rewrite quality levels (CRE 0–5). Circles denote medians; X markers denote means; shaded areas represent confidence intervals.

Figure 3 further compares score distributions across CRE levels. Metrics like BLEU, ROUGE, Jaccard, and embeddings (Word2Vec, Sentence-BERT) show partial separation, indicating some discriminative ability. In contrast, TTR and Punctuation Ratio display nearly overlapping curves, confirming limited usefulness. While heuristic thresholds (e.g., BLEU ranges) can filter out some poor rewrites, they also exclude many good ones, leading to high false positives/negatives.

Overall, traditional metrics provide only coarse signals: they may distinguish extremes but fail to robustly capture semantic quality. This highlights the need for evaluation methods grounded in meaning representation, such as LLM-based scoring.

## 4.2 EVALUATION OF LLM-BASED METRICS

### 4.2.1 IMPACT OF MODEL SIZE AND INSTRUCTION METHOD ON EVALUATION PERFORMANCE

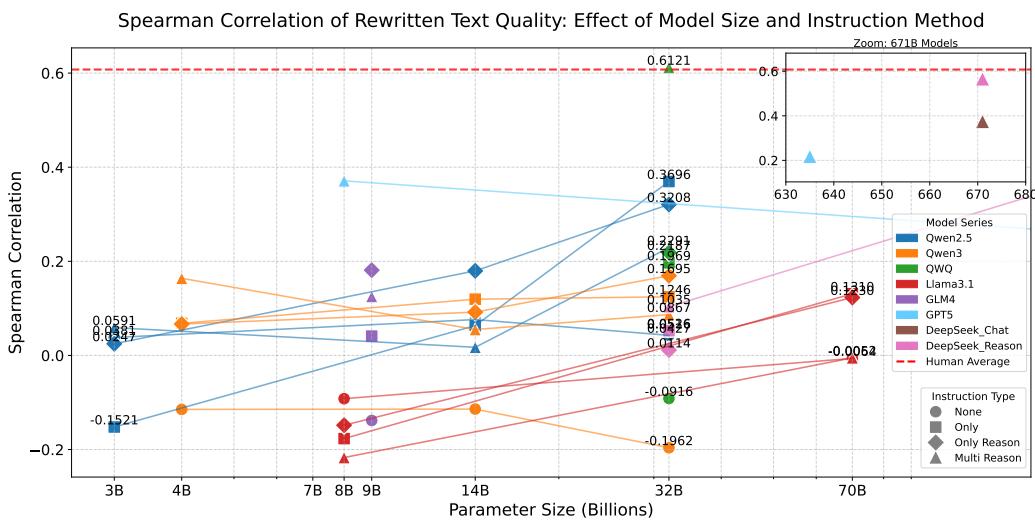


Figure 5: Spearman correlation coefficients between LLM-generated scores and human ratings. The red dashed line denotes inter-annotator agreement, serving as a human-level benchmark.

Figure 5 shows Spearman correlations between LLM-generated rewrite quality scores and human annotations. The red dashed line indicates inter-annotator agreement ( $\rho = 0.6076$ ) as a human-level benchmark. Correlation generally improves with model size: Qwen2.5 rises from  $\rho = 0.0591$  (3B) to  $\rho = 0.2291$  (32B), and QWQ-32B achieves  $\rho = 0.6121$ , slightly surpassing human agreement.

Prompting strategy also affects performance. For Qwen2.5-32B, simple prompts perform well, while complex "multi reason" prompts may reduce correlation. Qwen3 and LLaMA3.1 show weaker and inconsistent results, with some large variants even producing negative correlations. DeepSeek-Reason-671B under "multi reason" prompting reaches  $\rho = 0.5663$ , highlighting the benefit of reasoning-focused instruction tuning.

Overall, instruction tuning is critical for aligning outputs with human judgments. QWQ-32B's strong performance with "multi reason" prompts versus its non-instruct variant ( $\rho = -0.0916$ ) illustrates this effect. While reasoning prompts help, overly complex instructions can degrade performance. These findings emphasize that robust, human-aligned evaluation depends on both model scale and carefully designed prompting.

### 4.2.2 ANALYSIS OF LLM EVALUATION RESULTS

Table 5 presents key trends in model evaluation effectiveness. The inter-annotator Spearman correlation ( $\rho = 0.6076$ ) serves as a human-level benchmark. Notably, **QWQ-32B-Multi-Reason** slightly surpasses this with  $\rho = 0.6121$ , and **DeepSeek-Reason-Multi-Reason** closely follows at  $\rho = 0.5754$ , indicating that large models with well-designed prompts can match or exceed human consistency in rewrite evaluation.

Exact match rates further support this: QWQ-32B-MR achieves 47.51% exact match, outperforming both individual annotators (34.00%) and all other models. DeepSeek-Reason-MR achieves 44.86%, with the highest accuracy under tolerant criteria ( $\pm 1$ : 82.70%,  $\pm 2$ : 95.93%). Appendix 7 shows

| 378 | Model         | Size           | Spearman | MAE    | RMSE   | Kendall | Exact % | $\pm 1\%$ | $\pm 2\%$ |
|-----|---------------|----------------|----------|--------|--------|---------|---------|-----------|-----------|
| 379 | Human Average | -              | 0.6076   | 0.8550 | 1.1511 | 0.5192  | 34.00   | 84.50     | 96.00     |
| 380 | Qwen2.5_N     | 32B            | 0.0427   | 1.7525 | 2.0726 | 0.0385  | 12.75   | 46.75     | 72.00     |
| 381 | Qwen2.5_N     | 32B            | 0.0427   | 1.7525 | 2.0726 | 0.0385  | 12.75   | 46.75     | 72.00     |
| 382 | Qwen2.5_OR    | 32B            | 0.3208   | 0.9675 | 1.2339 | 0.2823  | 29.00   | 77.00     | 97.25     |
| 383 | Qwen2.5_MR    | 32B            | 0.2291   | 1.2925 | 1.6054 | 0.1969  | 22.50   | 61.25     | 88.00     |
| 384 | QWQ_N         | 32B            | -0.0916  | 2.3225 | 2.6848 | -0.0794 | 7.75    | 31.50     | 56.50     |
| 385 | QWQ_O         | 32B            | 0.1969   | 1.3625 | 1.7017 | 0.1688  | 21.75   | 58.75     | 85.50     |
| 386 | QWQ_OR        | 32B            | 0.2187   | 1.1325 | 1.5133 | 0.1880  | 30.75   | 67.75     | 90.25     |
| 387 | QWQ_MR        | 32B            | 0.6121   | 0.8203 | 1.2728 | 0.5493  | 47.51   | 79.61     | 93.51     |
| 388 | GPT-5-mini_MR | $\approx 8B$   | 0.3710   | 1.0575 | 1.3648 | 0.3105  | 28.00   | 72.75     | 93.75     |
| 389 | GPT-5_MR      | $\approx 635B$ | 0.2185   | 1.1125 | 1.4494 | 0.1827  | 27.50   | 70.25     | 92.50     |
| 390 | DSeek-C_MR    | 671B           | 0.3751   | 1.0364 | 1.4376 | 0.3277  | 34.77   | 72.78     | 90.61     |
| 391 | DSeek-R_MR    | 671B           | 0.5663   | 0.7701 | 1.1243 | 0.5021  | 44.86   | 82.70     | 95.93     |

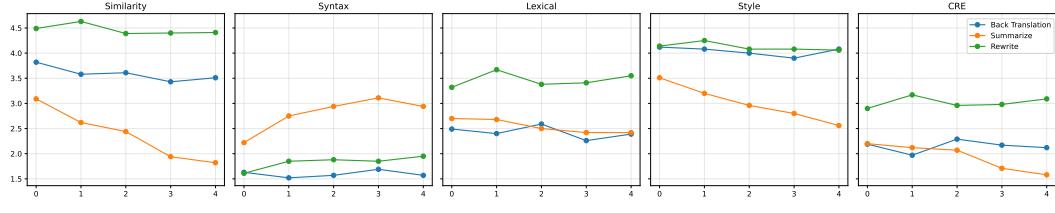
392 Table 5: Comparison of model-generated scores with human ratings (including inter-rater agree-  
 393 ment). Model name suffixes indicate: N = None, O = Only, OR = Only Reason , MR = Multi-Reason  
 394 in Table 3. DSeek-C = DeepSeek-Chat model, DSeek-R = DeepSeek-Reason model. Bold values  
 395 indicate the best performing metrics.

398 this model aligns more with Expert 1 (64.52%) than Expert 2 (30.50%), though  $\pm 1$  agreement is  
 399 comparable (86.71% vs. 72.50%), suggesting robustness to minor scoring deviations.

400 Incorporating reasoning into prompts generally improves performance. For example, Qwen2.5-32B  
 401 improves from 65.75% ( $\pm 1$ ) and 93.25% ( $\pm 2$ ) in the original setting to 77.00% and 97.25% with  
 402 reasoning. However, multi-reasoning is not always better; for Qwen2.5-32B, the single-reasoning  
 403 variant outperforms the MR version, suggesting that overly complex prompts may introduce noise.

#### 405 4.3 ANALYSIS OF LLM-BASED REWRITING METHODS

407 In the **Method** section, we proposed four approaches for text rewriting using large language models  
 408 (LLMs). Among them, *Back Translation*, *Summarize*, and *Rewrite* are commonly adopted in practical  
 409 scenarios. These three methods support self-iterative generation, where the output from the  
 410 previous round is re-used as input for the next generation. This iterative strategy aims to increase  
 411 variability and richness in the rewritten content.



420 Figure 6: Performance across five dimensions over five self-iterative rounds for three LLM rewriting  
 421 methods.

423 To evaluate their performance, we applied each method to a dataset of 100 text samples, using  
 424 the Qwen2.5-32B model as the base generator. Each method underwent five rounds of self-iteration,  
 425 and the outputs were scored using the QWQ-32B-Multi-Reason model across five evaluation dimensions: *Similarity*, *Syntax*, *Lexical Richness*, *Style*, and *CRE* . The results are illustrated in Figure 6.

427 From the figure, we observe that in the first round (iteration 0), the *Rewrite* method achieves the best  
 428 performance, particularly in *CRE* (score of 2.90), indicating superior creative rewriting capabilities.  
 429 In comparison, the scores of *Back Translation* and *Summarize* are noticeably lower, with *Summarize*  
 430 being the weakest overall. As the number of self-iteration rounds increases, the performance of  
 431 *Summarize* continues to degrade across all five metrics, suggesting that iterative summarization leads  
 to semantic erosion and decreased quality. In contrast, both *Back Translation* and *Rewrite* show

432 relatively stable behavior with minor fluctuations across iterations. Notably, *Rewrite* maintains its  
 433 high performance consistently throughout all five rounds, indicating it is less sensitive to degradation  
 434 from iterative generation. *Back Translation*, while not as strong as *Rewrite*, also preserves reasonable  
 435 quality across rounds and demonstrates better long-term stability than *Summarize*.  
 436

| 437<br>438<br>439<br>440<br>Model | Sim.        | Syntax      | Lex.        | Style       | CRE                      |                                  |                                      |                                 |
|-----------------------------------|-------------|-------------|-------------|-------------|--------------------------|----------------------------------|--------------------------------------|---------------------------------|
|                                   |             |             |             |             | 441<br>442<br>443<br>QWQ | 444<br>445<br>446<br>447<br>GPT5 | 448<br>449<br>450<br>451<br>DeepSeek | 452<br>453<br>454<br>455<br>AVG |
| Baseline                          | <b>4.63</b> | 2.37        | 4.05        | <b>4.51</b> | 3.41                     | 3.42                             | 3.72                                 | 3.52                            |
| Pipeline 3 Rounds                 | 4.61        | 3.06        | 3.97        | 4.39        | 3.57                     | <b>3.57</b>                      | 3.90                                 | 3.68                            |
| Pipeline 5 Rounds                 | 4.46        | <b>3.65</b> | <b>4.11</b> | 4.41        | <b>3.92</b>              | 3.56                             | <b>4.11</b>                          | <b>3.86</b>                     |
| Pipeline w/o Scoring              | 4.37        | 2.67        | 3.87        | 4.12        | 3.18                     | 3.35                             | 3.66                                 | 3.40                            |

445 Table 6: Evaluation results for rewrite pipelines based on QWQ\_32B. CRE is now evaluated by three  
 446 different models (QWQ-32B, GPT5-mini, DeepSeek-671B-Reason) to compare their judgments.  
 447

448 We propose a generation pipeline guided by rewrite scores, as shown in Figure 1. Each iteration  
 449 incorporates feedback from the previous rewrite, based on fine-grained scores across multiple di-  
 450 mensions, to indicate which aspects need improvement. This iterative feedback steers the model  
 451 toward higher-quality outputs.

452 A natural question is whether scoring criteria (e.g., similarity, syntax, lexicon, style) should be  
 453 explicitly weighted, since semantic consistency is often more critical than, say, lexical variation.  
 454 However, these dimensions are not combined via a fixed-weighted formula to compute CRE. In-  
 455 stead, they serve as intermediate signals to guide rewriting. Changes in syntax or style often affect  
 456 similarity, making predefined weights unreliable across cases. Thus, we use LLMs to produce holis-  
 457 tic CRE judgments, implicitly balancing trade-offs among dimensions. This ensures scoring reflects  
 458 overall quality rather than artificial sub-dimension weighting.

459 Table 6 shows the results. Starting from the strong QWQ-32B baseline, our pipeline improves CRE  
 460 (AVG) from 3.52 to 3.68 in three rounds, and to 3.86 in five rounds. This indicates that even powerful  
 461 LLMs benefit from structured, score-based feedback.

462 One may worry whether improvements in model-based scoring reflect genuine quality gains or sim-  
 463 ply better alignment with a particular scorer’s bias. To mitigate this, we used multiple independent  
 464 evaluators: besides QWQ-32B, we included GPT5-mini and DeepSeek-671B-Reason. As Table 6  
 465 shows, improvements are consistent across all judges, suggesting the pipeline genuinely enhances  
 466 quality rather than overfitting to one model. While human evaluation would be stronger, cross-model  
 467 consistency indicates gains are not due to self-judgment.

468 We also ablate the use of explicit score-based feedback. In Pipeline<sub>w/o Scoring</sub>, we provide only vague  
 469 feedback (e.g., “the previous rewrite was not good enough, please improve it”). This results in a  
 470 clear performance drop (CRE = 3.40), confirming that detailed scoring is crucial for high-fidelity  
 471 rewriting.

## 473 5 CONCLUSION

476 This paper proposes a structured and reliable method for evaluating sentence rewriting quality, mov-  
 477 ing beyond traditional surface-level metrics like BLEU and ROUGE. We define four key dimensions,  
 478 semantic consistency, syntax variation, lexical substitution, and style fidelity, and use these to build  
 479 a prompt-based evaluation framework.

480 Our experiments show that large language models, especially QWQ-32B with multi-dimensional  
 481 scoring prompts, can match human-level judgment accuracy . We also demonstrate that score-  
 482 guided rewriting improves generation quality by 9.66%, outperforming traditional methods like back  
 483 translation and summarization.

484 Overall, our framework provides a more accurate, interpretable, and scalable approach for both  
 485 evaluating and generating high-quality sentence rewrites.

486 

## 6 ETHICS STATEMENT

488 This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-  
 489 perimentation was involved. All datasets used were sourced in compliance with relevant usage  
 490 guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-  
 491 natory outcomes in our research process. No personally identifiable information was used, and no  
 492 experiments were conducted that could raise privacy or security concerns. We are committed to  
 493 maintaining transparency and integrity throughout the research process.

494 

## 495 7 REPRODUCIBILITY STATEMENT

496 We have made every effort to ensure that the results presented in this paper are reproducible. All  
 497 code and datasets have been made publicly available in an anonymous repository to facilitate repli-  
 498 cation and verification. The experimental setup, including training steps, model configurations, and  
 499 hardware details, is described in detail in the paper. We will also make the complete workflow code  
 500 available in the future to assist others in reproducing our experiments.

501 Additionally, the datasets used in this paper, including our self-constructed paraphrase scoring  
 502 dataset, are publicly available, ensuring consistent and reproducible evaluation results.

503 We believe these measures will enable other researchers to reproduce our work and further advance  
 504 the field.

505 

## 506 REFERENCES

507 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
 508 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
 509 report. *arXiv preprint arXiv:2303.08774*, 2023.

510 Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved  
 511 correlation with human judgments. In *Proceedings of the acl workshop on intrinsic and extrinsic*  
 512 *evaluation measures for machine translation and/or summarization*, pp. 65–72, 2005.

513 Wei Bao, Wugedele Bao, Jinhua Du, Yuanyuan Yang, and Xiaobing Zhao. Attentive siamese lstm  
 514 network for semantic textual similarity measure. In *2018 international conference on asian lan-*  
 515 *guage processing (ialp)*, pp. 312–317. IEEE, 2018.

516 William B Cavnar, John M Trenkle, et al. N-gram-based text categorization. In *Proceedings*  
 517 *of SDAIR-94, 3rd annual symposium on document analysis and information retrieval*, volume  
 518 161175, pp. 14. Las Vegas, NV, 1994.

519 David Chen and William B Dolan. Collecting highly parallel data for paraphrase evaluation. In  
 520 *Proceedings of the 49th annual meeting of the association for computational linguistics: human*  
 521 *language technologies*, pp. 190–200, 2011.

522 Yen-Chun Chen and Mohit Bansal. Fast abstractive summarization with reinforce-selected sentence  
 523 rewriting. In *Proceedings of the 56th Annual Meeting of the Association for Computational Lin-*  
 524 *guistics (Volume 1: Long Papers)*, pp. 675–686, 2018.

525 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 526 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*  
 527 *the North American chapter of the association for computational linguistics: human language*  
 528 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

529 F Friendly. Jaro-winkler distance improvement for approximate string search using indexing data  
 530 for multiuser application. In *Journal of Physics: Conference Series*, volume 1361, pp. 012080.  
 531 IOP Publishing, 2019.

532 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,  
 533 Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to  
 534 glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.

540 Bao Guo, Chunxia Zhang, Junmin Liu, and Xiaoyi Ma. Improving text classification with weighted  
 541 word embeddings via a multi-channel textcnn model. *Neurocomputing*, 363:366–374, 2019.  
 542

543 Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. Learning by tracking: Siamese  
 544 cnn for robust target association. In *Proceedings of the IEEE conference on computer vision and*  
 545 *pattern recognition workshops*, pp. 33–40, 2016.

546 Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards  
 547 general text embeddings with multi-stage contrastive learning. *arXiv preprint arXiv:2308.03281*,  
 548 2023.

549

550 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*  
 551 *branches out*, pp. 74–81, 2004.

552

553 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,  
 554 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*  
 555 *arXiv:2412.19437*, 2024.

556

557 Jie Liu and Barzan Mozafari. Query rewriting via large language models. *arXiv preprint*  
 558 *arXiv:2403.09060*, 2024.

559

560 Jonas Mueller and Aditya Thyagarajan. Siamese recurrent architectures for learning sentence simi-  
 561 larity. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

562

563 Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. Us-  
 564 ing of jaccard coefficient for keywords similarity. In *Proceedings of the international multicon-*  
 565 *ference of engineers and computer scientists*, volume 1, pp. 380–384, 2013.

566

567 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic  
 568 evaluation of machine translation. In *Proceedings of the 40th annual meeting of the Association*  
 569 *for Computational Linguistics*, pp. 311–318, 2002.

570

571 Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In *Proceedings of*  
 572 *the first instructional conference on machine learning*, volume 242, pp. 29–48. New Jersey, USA,  
 573 2003.

574

575 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-  
 576 networks. *arXiv preprint arXiv:1908.10084*, 2019.

577

578 Lingfeng Shen, Lemao Liu, Haiyun Jiang, and Shuming Shi. On the evaluation metrics for para-  
 579 phrase generation. In *Proceedings of the 2022 Conference on Empirical Methods in Natural*  
 580 *Language Processing*, pp. 3178–3190, 2022.

581

582 Haoxiang Shi, Cen Wang, and Tetsuya Sakai. A siamese cnn architecture for learning chinese  
 583 sentence similarity. In *Proceedings of the 1st Conference of the Asia-Pacific Chapter of the As-*  
 584 *sociation for Computational Linguistics and the 10th International Joint Conference on Natural*  
 585 *Language Processing: Student Research Workshop*, pp. 24–29, 2020.

586

587 Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu, Yinxiao Liu, Simon Tong, Jindong Chen,  
 588 and Lei Meng. Rewritelm: An instruction-tuned large language model for text rewriting. In  
 589 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18970–18980,  
 2024.

590

591 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 592 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 593 *arXiv:2505.09388*, 2025.

594

595 Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:  
 596 Lstm cells and network architectures. *Neural computation*, 31(7):1235–1270, 2019.

597

598 Fan Zhang and Diane Litman. Sentence-level rewriting detection. In *Proceedings of the Ninth*  
 599 *Workshop on Innovative Use of NLP for Building Educational Applications*, pp. 149–154, 2014.

594 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-  
595 ing text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019a.  
596  
597 Yi Zhang, Tao Ge, Furu Wei, Ming Zhou, and Xu Sun. Sequence-to-sequence pre-training with data  
598 augmentation for sentence rewriting. *arXiv e-prints*, pp. arXiv–1909, 2019b.  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647