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ABSTRACT

Sentence rewriting is a core task in natural language processing, encompass-
ing paraphrasing, translation, and summarization. Despite its importance, exist-
ing evaluation metrics often rely on superficial similarity measures (e.g., BLEU,
ROUGE), which fail to capture deep semantic fidelity. In this work, we propose
a principled, multi-dimensional framework for evaluating rewriting quality based
on semantic consistency, syntactic structure, lexical variation, and stylistic fidelity.
We design a prompt-based scoring method with the QWQ-32B language model,
achieving a Spearman correlation of ρ = 0.6121 with human judgments, which
is comparable to inter-human agreement (ρ = 0.6076). We further benchmark
popular rewriting strategies using this metric and introduce a multiround gener-
ation pipeline that improves rewriting quality by 9.66%. Our results show that
large language models, when paired with structured evaluation and guidance, can
robustly assess and generate high-quality rewrites.

1 INTRODUCTION

Sentence rewriting (e.g., paraphrasing, translation, or summarization) is a fundamental task in NLP
that requires restating content without changing its meaning Chen & Bansal (2018); Zhang et al.
(2019b); Zhang & Litman (2014). Examples include translating a sentence into another language
or condensing a passage into a summary. In all cases, the semantic information must remain con-
sistent before and after rewriting Shen et al. (2022). However, the NLP literature lacks a standard,
quantifiable metric for rewriting quality Chen & Dolan (2011). Early approaches treated rewriting
as a similarity task: for instance, BLEU Papineni et al. (2002) and ROUGE Lin (2004) (n-gram
overlap) or Jaccard and TF–IDF Ramos et al. (2003) measures count shared words and order. Word-
embedding methods (Word2Vec, GloVe) and contextual models (BERT) embed words/sentences
into vector spaces, with similarity computed by cosine or Euclidean distance Devlin et al. (2019);
Reimers & Gurevych (2019). Likewise, neural models such as Siamese networks have been used for
semantic matching. For example, Mueller and Thyagarajan (2016) applied a Siamese LSTM Bao
et al. (2018) to sentence pairs to learn semantic similarity Mueller & Thyagarajan (2016), and Shi
et al. (2020) used a Siamese CNN Leal-Taixé et al. (2016) for Chinese sentence similarity Shi et al.
(2020).

Despite these advances, traditional similarity metrics often fail for rewriting: they reward superficial
overlap rather than true meaning preservation. Chen and Dolan (2011) noted that a paraphrase metric
like BLEU would be maximized by simply copying the input Chen & Dolan (2011). For instance, “I
like to eat apples” and “I do not like to eat apples” share many words, but clearly differ in meaning;
simple n-gram or Jaccard scores would not catch this semantic flip. In practice, practitioners crudely
filter paraphrases by a BLEU range (e.g. 0.6–0.8) based on experience. More recent large language
models (LLMs) have deeper semantic understanding; models like GPT-4 can achieve human-level
performance on many benchmarks Achiam et al. (2023), suggesting they could better evaluate
semantic fidelity. However, using LLMs for rewriting still requires a clear definition of the task and
scoring criteria. LLMs also exhibit “language inertia” (tendency to keep output similar to input), so
naı̈ve prompting often yields rewrites too close to the original.
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Figure 1: Overview of the main evaluation pipeline. The process begins with human-written inputs
and proceeds through rewrite generation, human annotation, and metric-based evaluation.

Therefore, we introduce a clear definition and metric for high-fidelity rewriting. We propose evalua-
tion criteria across multiple dimensions: semantic consistency, syntactic structure, lexical variation,
and style length. We design prompts to elicit a “rewrite score” from LLMs that correlates with
human judgments. In experiments, our QWQ-32B Yang et al. (2025) scoring prompt achieves
Spearman ρ = 0.593 with human ratings on rewriting. We also benchmark several state-of-the-art
LMs on rewriting and fine-tune a rewriting model using data filtered by our score, yielding a 14.95%
improvement in rewriting quality.

In summary, our contributions are:

• We analyze the sentence rewriting task and propose a composite evaluation metric con-
sisting of four dimensions: semantic similarity, word order, lexical substitution, and
length/style.

• Through extensive experimentation and model tuning, we design a rewriting scoring
prompt with explicit evaluation standards. Using the QWQ-32B model, our scoring method
achieves a Spearman correlation coefficient of ρ = 0.6121 with human ratings, which is
comparable to inter-human agreement (ρ = 0.6076).

• We systematically evaluate multiple state-of-the-art models and various rewriting genera-
tion methods. Based on these evaluations, we propose a multi-step rewriting framework
that stably generates high-quality rewritten texts, significantly enhancing the consistency
and reliability of rewriting outcomes.

2 RELATED WORK

Automatic evaluation for paraphrase or rewriting has been studied only sporadically. Traditional
MT-style metrics (BLEU Papineni et al. (2002), METEOR Banerjee & Lavie (2005), etc.) and
text-similarity measures (TF–IDF Ramos et al. (2003), edit distance Friendly (2019), Jaccard Ni-
wattanakul et al. (2013)) have been applied, but they inherently reward overlap rather than novel
phrasing. Chen and Dolan proposed the PINC (Paraphrase In N-gram Changes) score, which mea-
sures the proportion of n-grams in the candidate not present in the source (the inverse of BLEU)
to capture lexical novelty Chen & Dolan (2011); Cavnar et al. (1994). They found that combining
BLEU (to assess adequacy) with PINC (to assess difference) correlates with human judgments of
paraphrase quality. More recently, Shen et al. (2022) showed that good paraphrases follow two cri-
teria: semantic similarity and lexical divergence. They proposed ParaScore, a metric that explicitly
models these aspects by combining BERT-based similarity with a divergence component Shen et al.
(2022). ParaScore significantly outperforms previous metrics on paraphrase-generation benchmarks.

Other work has explored embedding-based and neural metrics. For example, BERTScore Zhang
et al. (2019a) computes semantic overlap using contextual embeddings, and SBERT Reimers &
Gurevych (2019); Li et al. (2023) learns sentence embeddings via a BERT network. These methods
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capture semantic relatedness beyond surface overlap. However, even strong semantic metrics like
BERTScore are not specifically designed to encourage paraphrastic diversity. Siamese neural net-
work architectures (CNNs Guo et al. (2019) or LSTMs Yu et al. (2019)) are commonly used for
sentence similarity tasks, but again they mainly quantify closeness, not rewriting fidelity.

With the advent of LLMs, new evaluation paradigms emerge. Models such as GPT-4 Achiam et al.
(2023), DeepSeek Liu et al. (2024), GLM-4 GLM et al. (2024) exhibit near-human understanding
and can compare sentence meanings directly. Some work has begun using LLMs as reference-
free metrics (e.g. via prompting or fine-tuning), but this area is still nascent. Overall, prior metrics
have not fully addressed the rewriting task: either they focus on n-gram matching or they fail to
balance semantic consistency with lexical novelty. Our work builds on these insights by defining a
specialized rewriting metric and prompting strategy that leverages LLMs for high-fidelity sentence
rewriting Liu & Mozafari (2024); Shu et al. (2024).

3 METHOD

3.1 HUMAN EVALUATION AND ANNOTATION PROTOCOL

To establish a reliable reference for evaluating sentence rewriting quality, we first collected human
annotations. All rewriting tasks were conducted in Chinese, and all annotators were native Chinese
speakers. The English text below is a translation for readability; the complete original Chinese
instructions are provided in the appendix.

Two linguistic experts independently rated 200 sentence rewriting pairs based on the following basic
and intentionally underspecified criteria:

1. The rewritten sentence should be as different from the original as possible in surface form.

2. The rewritten sentence must preserve the semantic meaning of the original.

3. Each sentence pair is scored on a 0–5 integer scale.

Rewrite the quality scoring criteria

Requirement 1: Under the premise of maintaining the original meaning unchanged, express in different words of the original
text. Do not add or delete any content that would seriously affect the meaning.
Requirement 2: Under the premise of ensuring logical correctness and smooth word order, change the sequence and structural
relationship of the appearance of entities, phrases, and concepts. The smaller the amplitude of the sequential transformation,
the lower the score.
Requirement 3: Under the premise of ensuring that special entities, references, explanations, and specific statements remain
unchanged, use synonyms for substitution. The fewer synonyms are replaced, the lower the score will be.
Requirement 4: Maintain consistency with the original language style, with reasonable variations in word count and length.
The greater the gap in language styles, the lower the score.
Requirement 5: The rewriting of the comprehensive score should be very strict, taking into account the above four requirements
simultaneously. Under the premise of ensuring semantic consistency (Requirement 1), the greater the variation in (Requirement
2,3), the better, and the closer the word count, the better (Requirement 4). If there are a large number of long fields that are
completely copied, 0 points will be given.
The scoring criteria are as follows: the minimum score is 0 and the full score is 5. The scoring should be as strict as possible.

Table 1: Multidimensional quality criteria for sentence rewriting: Thresholds and scoring rules for
semantic fidelity (Req1), syntactic diversity (Req2), lexical variation (Req3), and stylistic alignment
(Req4).

Inter-rater agreement analysis revealed moderate correlation: the Spearman correlation was 0.6076,
exact agreement was 34%, within ±1 score difference was 84.5%, and within ±2 was 96%. While
perfect agreement was limited, the high ±1 accuracy suggests that the annotators shared a generally
consistent understanding of the task, despite some variance in fine-grained judgments.

To further improve annotation reliability, we designed a structured evaluation framework grounded
in four explicit dimensions: (1) semantic consistency, (2) syntactic structure, (3) synonym substitu-
tion, and (4) stylistic fidelity and sentence length. The refined guidelines are outlined in Table 1.

Using these criteria, we re-annotated 730 samples produced by human rewriting. These 730 samples
are used for further feature analysis and represent the ability of humans to rewrite.
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3.2 TRADITIONAL EVALUATION METRICS

Traditional evaluation of rewriting quality often relies on heuristic similarity measures or rough
thresholds, lacking fine-grained interpretability.

Metric Level Semantic Advantages Disadvantages Use Case

Jaccard Word × Simple, good for short text Ignores word order Keyword matching
TF-IDF Word × Reduces common word weight No synonym handling Document retrieval
BLEU n-gram × MT industry standard Unfriendly to short text Machine translation
ROUGE-L LCS × Focuses on coherence Biased to long text Text summarization
Word2Vec Word vec. ✓ Deep word-based matching High complexity Short text matching
Sentence-BERT Sentence ✓ Cross-task general Needs GPU Semantic search
Jaro-Winkler Char × Good for names/addresses Poor for long text Entity alignment
TTR Word × Simple & effective Length-dependent Writing analysis
Keyword Word × Intuitive Needs good extraction Content moderation
Punctuation Symbol × Detects fluency Needs other metrics AI text detection

Table 2: Comparison of common text similarity metrics by granularity, semantic awareness,
strengths, weaknesses, and typical use cases. Traditional metrics are effective in certain contexts
but often fail to capture semantic-level rewriting, motivating more context-sensitive evaluation.

Table 2 summarizes commonly used text similarity metrics adapted for sentence rewriting. These
range from character-level edit distances to sentence-level embeddings, differing in their ability to
capture semantic meaning.

Surface-based metrics such as BLEU, ROUGE-L, and TF-IDF emphasize n-gram or frequency over-
lap but often miss deeper semantic shifts. Jaccard and TTR highlight lexical variation while ignoring
context. In contrast, embedding-based metrics like Word2Vec and Sentence-BERT capture semantic
similarity more effectively, though at higher computational cost.

0.0 0.2 0.4 0.6 0.8 1.0

Jaccard     

TF-IDF      

BLEU        

ROUGE       

Word2Vec    

SentenceBERT

Jaro Winkler

TTR         

Keyword     

Punctuation 

Metric Value Distribution

Figure 2: Distribution of traditional text similarity and rewriting metrics. Semantic metrics (e.g.,
SentenceBERT, Word2Vec) show higher values with less variance, while surface-level metrics
(e.g., Jaccard, TF-IDF, Punctuation) exhibit lower medians and greater spread.

To examine their behavior in rewriting, we analyzed 10 metrics, including lexical overlap (Jaccard,
TF-IDF, ROUGE-L), edit-based (Jaro-Winkler), embedding-based (Word2Vec, Sentence-BERT),
and stylistic features (TTR, punctuation ratio). Distributions across our dataset (Figure 2) show that
embedding-based metrics cluster at higher values, indicating stronger semantic alignment, while
surface metrics display wider dispersion and lower medians.

Overall, although widely applied, these metrics were not designed for rewriting tasks that involve
intertwined lexical, syntactic, and semantic changes. This motivates our further analysis in Section 4,
where we study their correlation with human-rated rewrite quality.
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3.3 LARGE LANGUAGE MODEL-BASED EVALUATION AND GENERATION

Recent large language models (LLMs) can be broadly categorized into reasoning-intensive models
(e.g., DeepSeek-R1) and non-reasoning models (e.g., GPT-4o). Although structurally similar, their
output behaviors differ, as reasoning models often perform intermediate thinking before reaching a
conclusion.

To explore LLM capabilities in rewriting tasks, we conduct experiments across a range of open-
source models of different scales and families, including LLaMA, Qwen, DeepSeek, and GLM.

3.3.1 REWRITING EVALUATION PROMPTS

Prompt design significantly influences LLM output quality. We experimented with four levels of
instruction detail for rewriting evaluation:

Prompt Type Prompt Output Format

None Appendix 11 Free-form judgment
Only Appendix 10 Overall score
Only-Reason Appendix 10 Overall score + justification
Multi-Reason Appendix 10 Each score + justification

Table 3: Prompt formats used for LLM-based evaluation.

Table 3 summarizes the four prompt types used in our evaluation experiments. The None setting
provides no explicit instruction, relying on the model’s default behavior. The Only prompt asks
for an overall score, while Only-Reason adds a brief justification to the score. The most detailed,
Multi-Reason, requests separate scores for multiple criteria, each with its own explanation. These
prompt types allow us to assess how varying levels of instruction influence the alignment between
LLM and human evaluations.

3.3.2 REWRITING GENERATION PROMPTS

To generate diverse rewriting examples, we tested four generation strategies using different prompts:

Prompt Type Description

Back Translation Translate to another language and back to generate variation.
Summarize Summarize original, then regenerate to a target length.
Rewrite Simply prompt “Please rewrite the following sentence.”
Guided Rewrite Rewrite according to criteria in Table 1.

Table 4: Rewriting generation strategies used in our experiments.

4 EXPERIMENTS

4.1 EVALUATION OF TRADITIONAL METRICS

As described in Section 3.1, we constructed a human-labeled dataset of 730 rewritten sentence pairs,
each rated on a Comprehensive Rewriting Evaluation (CRE) scale from 0 to 5 based on rewriting
quality. Traditional evaluation methods for rewriting often rely on empirical thresholds, such as
selecting samples with BLEU scores within a certain range, but whether this approach truly fil-
ters high-quality rewrites remains an open question. We address this issue through comprehensive
quantitative analysis.

As illustrated in Figure 3, we analyzed ten different traditional evaluation metrics as described in
Section 3.2. Each curve represents the distribution of rewrite samples under a specific human rating.
Notably, metrics such as TTR (Type-Token Ratio) and punctuation ratio exhibit minimal distribu-
tional differences across ratings, indicating their limited discriminative power. In contrast, met-
rics such as BLEU, ROUGE, TF-IDF, Jaccard, Jaro-Winkler, Word2Vec, and Sentence-BERT show
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Figure 3: Score distributions across different traditional evaluation metrics. Colors represent human-
assigned quality scores from 0 to 5. The x-axis denotes metric values; the y-axis indicates normal-
ized distribution density.

more distinguishable trends, with distribution peaks shifting gradually according to human-assigned
quality scores.

For example, in the BLEU score distribution, we observe that BLEU values around 0.6 tend to be as-
sociated with low-quality rewrites (CRE scores of 1–2), while scores below 0.6 are more frequently
associated with higher-quality rewrites (CRE scores of 3–5). This implies that empirical thresh-
olds like BLEU ∈ [0.2, 0.5] may effectively filter out poor-quality samples. However, this filtering
remains coarse-grained and cannot prevent a significant number of false positives, i.e., retaining
low-quality rewrites.

4.1.1 METRIC SCORE TRENDS ACROSS REWRITE QUALITY LEVELS

To examine how traditional metrics align with human rewrite quality, Figure 4 shows average trends
across CRE levels (0-5), with means, medians, and confidence intervals. Most metrics exhibit a
downward slope as quality increases, reflecting that higher-quality rewrites deviate more from the
source. However, variance grows at extreme CRE values, suggesting instability and outliers.
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Figure 4: Trend of evaluation scores across human rewrite quality levels (CRE 0–5). Circles denote
medians; X markers denote means; shaded areas represent confidence intervals.

Figure 3 further compares score distributions across CRE levels. Metrics like BLEU, ROUGE,
Jaccard, and embeddings (Word2Vec, Sentence-BERT) show partial separation, indicating some
discriminative ability. In contrast, TTR and Punctuation Ratio display nearly overlapping curves,
confirming limited usefulness. While heuristic thresholds (e.g., BLEU ranges) can filter out some
poor rewrites, they also exclude many good ones, leading to high false positives/negatives.
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Overall, traditional metrics provide only coarse signals: they may distinguish extremes but fail to
robustly capture semantic quality. This highlights the need for evaluation methods grounded in
meaning representation, such as LLM-based scoring.

4.2 EVALUATION OF LLM-BASED METRICS

4.2.1 IMPACT OF MODEL SIZE AND INSTRUCTION METHOD ON EVALUATION
PERFORMANCE
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Figure 5: Spearman correlation coefficients between LLM-generated scores and human ratings. The
red dashed line denotes inter-annotator agreement, serving as a human-level benchmark.

Figure 5 shows Spearman correlations between LLM-generated rewrite quality scores and human
annotations. The red dashed line indicates inter-annotator agreement (ρ = 0.6076) as a human-level
benchmark. Correlation generally improves with model size: Qwen2.5 rises from ρ = 0.0591 (3B)
to ρ = 0.2291 (32B), and QWQ-32B achieves ρ = 0.6121, slightly surpassing human agreement.

Prompting strategy also affects performance. For Qwen2.5-32B, simple prompts perform well,
while complex ”multi reason” prompts may reduce correlation. Qwen3 and LLaMA3.1 show weaker
and inconsistent results, with some large variants even producing negative correlations. DeepSeek-
Reason-671B under ”multi reason” prompting reaches ρ = 0.5663, highlighting the benefit of
reasoning-focused instruction tuning.

Overall, instruction tuning is critical for aligning outputs with human judgments. QWQ-32B’s
strong performance with ”multi reason” prompts versus its non-instruct variant (ρ = −0.0916)
illustrates this effect. While reasoning prompts help, overly complex instructions can degrade per-
formance. These findings emphasize that robust, human-aligned evaluation depends on both model
scale and carefully designed prompting.

4.2.2 ANALYSIS OF LLM EVALUATION RESULTS

Table 5 presents key trends in model evaluation effectiveness. The inter-annotator Spearman cor-
relation (ρ = 0.6076) serves as a human-level benchmark. Notably, QWQ-32B-Multi-Reason
slightly surpasses this with ρ = 0.6121, and DeepSeek-Reason-Multi-Reason closely follows at
ρ = 0.5754, indicating that large models with well-designed prompts can match or exceed human
consistency in rewrite evaluation.

Exact match rates further support this: QWQ-32B-MR achieves 47.51% exact match, outperforming
both individual annotators (34.00%) and all other models. DeepSeek-Reason-MR achieves 44.86%,
with the highest accuracy under tolerant criteria (±1: 82.70%, ±2: 95.93%). Appendix 7 shows
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Model Size Spearman MAE RMSE Kendall Exact % ±1 % ±2 %

Human Average - 0.6076 0.8550 1.1511 0.5192 34.00 84.50 96.00

Qwen2.5 N 32B 0.0427 1.7525 2.0726 0.0385 12.75 46.75 72.00
Qwen2.5 N 32B 0.0427 1.7525 2.0726 0.0385 12.75 46.75 72.00
Qwen2.5 OR 32B 0.3208 0.9675 1.2339 0.2823 29.00 77.00 97.25
Qwen2.5 MR 32B 0.2291 1.2925 1.6054 0.1969 22.50 61.25 88.00
QWQ N 32B -0.0916 2.3225 2.6848 -0.0794 7.75 31.50 56.50
QWQ O 32B 0.1969 1.3625 1.7017 0.1688 21.75 58.75 85.50
QWQ OR 32B 0.2187 1.1325 1.5133 0.1880 30.75 67.75 90.25
QWQ MR 32B 0.6121 0.8203 1.2728 0.5493 47.51 79.61 93.51

GPT-5-mini MR ≈ 8B 0.3710 1.0575 1.3648 0.3105 28.00 72.75 93.75
GPT-5 MR ≈ 635B 0.2185 1.1125 1.4494 0.1827 27.50 70.25 92.50
DSeek-C MR 671B 0.3751 1.0364 1.4376 0.3277 34.77 72.78 90.61
DSeek-R MR 671B 0.5663 0.7701 1.1243 0.5021 44.86 82.70 95.93

Table 5: Comparison of model-generated scores with human ratings (including inter-rater agree-
ment). Model name suffixes indicate: N = None, O = Only, OR = Only Reason , MR = Multi-Reason
in Table 3. DSeek-C = DeepSeek-Chat model, DSeek-R = DeepSeek-Reason model. Bold values
indicate the best performing metrics.

this model aligns more with Expert 1 (64.52%) than Expert 2 (30.50%), though ±1 agreement is
comparable (86.71% vs. 72.50%), suggesting robustness to minor scoring deviations.

Incorporating reasoning into prompts generally improves performance. For example, Qwen2.5-32B
improves from 65.75% (±1) and 93.25% (±2) in the original setting to 77.00% and 97.25% with
reasoning. However, multi-reasoning is not always better; for Qwen2.5-32B, the single-reasoning
variant outperforms the MR version, suggesting that overly complex prompts may introduce noise.

4.3 ANALYSIS OF LLM-BASED REWRITING METHODS

In the Method section, we proposed four approaches for text rewriting using large language models
(LLMs). Among them, Back Translation, Summarize, and Rewrite are commonly adopted in prac-
tical scenarios. These three methods support self-iterative generation, where the output from the
previous round is re-used as input for the next generation. This iterative strategy aims to increase
variability and richness in the rewritten content.

0 1 2 3 4
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Similarity

0 1 2 3 4

Syntax

0 1 2 3 4

Lexical

0 1 2 3 4

Style

0 1 2 3 4

CRE
Back Translation
Summarize
Rewrite

Figure 6: Performance across five dimensions over five self-iterative rounds for three LLM rewriting
methods.

To evaluate their performance, we applied each method to a dataset of 100 text samples, using
the Qwen2.5-32B model as the base generator. Each method underwent five rounds of self-iteration,
and the outputs were scored using the QWQ-32B-Multi-Reason model across five evaluation dimen-
sions: Similarity, Syntax, Lexical Richness, Style, and CRE . The results are illustrated in Figure 6.

From the figure, we observe that in the first round (iteration 0), the Rewrite method achieves the best
performance, particularly in CRE (score of 2.90), indicating superior creative rewriting capabilities.
In comparison, the scores of Back Translation and Summarize are noticeably lower, with Summarize
being the weakest overall. As the number of self-iteration rounds increases, the performance of
Summarize continues to degrade across all five metrics, suggesting that iterative summarization leads
to semantic erosion and decreased quality. In contrast, both Back Translation and Rewrite show
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relatively stable behavior with minor fluctuations across iterations. Notably, Rewrite maintains its
high performance consistently throughout all five rounds, indicating it is less sensitive to degradation
from iterative generation. Back Translation, while not as strong as Rewrite, also preserves reasonable
quality across rounds and demonstrates better long-term stability than Summarize.

Model Sim. Syntax Lex. Style CRE
QWQ GPT5 DeepSeek AVG

Baseline 4.63 2.37 4.05 4.51 3.41 3.42 3.72 3.52
Pipeline 3 Rounds 4.61 3.06 3.97 4.39 3.57 3.57 3.90 3.68
Pipeline 5 Rounds 4.46 3.65 4.11 4.41 3.92 3.56 4.11 3.86
Pipeline w/o Scoring 4.37 2.67 3.87 4.12 3.18 3.35 3.66 3.40

Table 6: Evaluation results for rewrite pipelines based on QWQ 32B. CRE is now evaluated by three
different models (QWQ-32B, GPT5-mini, DeepSeek-671B-Reason) to compare their judgments.

We propose a generation pipeline guided by rewrite scores, as shown in Figure 1. Each iteration
incorporates feedback from the previous rewrite, based on fine-grained scores across multiple di-
mensions, to indicate which aspects need improvement. This iterative feedback steers the model
toward higher-quality outputs.

A natural question is whether scoring criteria (e.g., similarity, syntax, lexicon, style) should be
explicitly weighted, since semantic consistency is often more critical than, say, lexical variation.
However, these dimensions are not combined via a fixed-weighted formula to compute CRE. In-
stead, they serve as intermediate signals to guide rewriting. Changes in syntax or style often affect
similarity, making predefined weights unreliable across cases. Thus, we use LLMs to produce holis-
tic CRE judgments, implicitly balancing trade-offs among dimensions. This ensures scoring reflects
overall quality rather than artificial sub-dimension weighting.

Table 6 shows the results. Starting from the strong QWQ-32B baseline, our pipeline improves CRE
(AVG) from 3.52 to 3.68 in three rounds, and to 3.86 in five rounds. This indicates that even powerful
LLMs benefit from structured, score-based feedback.

One may worry whether improvements in model-based scoring reflect genuine quality gains or sim-
ply better alignment with a particular scorer’s bias. To mitigate this, we used multiple independent
evaluators: besides QWQ-32B, we included GPT5-mini and DeepSeek-671B-Reason. As Table 6
shows, improvements are consistent across all judges, suggesting the pipeline genuinely enhances
quality rather than overfitting to one model. While human evaluation would be stronger, cross-model
consistency indicates gains are not due to self-judgment.

We also ablate the use of explicit score-based feedback. In Pipelinew/o Scoring, we provide only vague
feedback (e.g., “the previous rewrite was not good enough, please improve it”). This results in a
clear performance drop (CRE = 3.40), confirming that detailed scoring is crucial for high-fidelity
rewriting.

5 CONCLUSION

This paper proposes a structured and reliable method for evaluating sentence rewriting quality, mov-
ing beyond traditional surface-level metrics like BLEU and ROUGE. We define four key dimensions,
semantic consistency, syntax variation, lexical substitution, and style fidelity, and use these to build
a prompt-based evaluation framework.

Our experiments show that large language models, especially QWQ-32B with multi-dimensional
scoring prompts, can match human-level judgment accuracy . We also demonstrate that score-
guided rewriting improves generation quality by 9.66%, outperforming traditional methods like back
translation and summarization.

Overall, our framework provides a more accurate, interpretable, and scalable approach for both
evaluating and generating high-quality sentence rewrites.
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6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We will also make the complete workflow code
available in the future to assist others in reproducing our experiments.

Additionally, the datasets used in this paper, including our self-constructed paraphrase scoring
dataset, are publicly available, ensuring consistent and reproducible evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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