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ABSTRACT

Lévy-Itô denoising diffusion models relying on isotropic α-stable noise instead
of Gaussian distribution have recently been shown to improve performance of
conventional diffusion models in image generation on imbalanced datasets while
performing comparably in the standard settings. However, the stochastic algo-
rithm of sampling from such models consists in solving the stochastic differential
equation describing only an approximate inverse of the process of adding α-stable
noise to data which may lead to suboptimal performance. In this paper, we de-
rive a parametric family of stochastic differential equations whose solutions have
the same marginal densities as those of the forward diffusion and show that the
appropriate choice of the parameter values can improve quality of the generated
images when the number of reverse diffusion steps is small. Also, we demonstrate
that Lévy-Itô diffusion models are applicable to diverse domains and show that
a well-trained text-to-speech Lévy-Itô model may have advantages over standard
diffusion models on highly imbalanced datasets.

1 INTRODUCTION

Denoising diffusion probabilistic models (Ho et al., 2020) are a powerful class of generative models
capable of solving tasks related to various continuous domains such as natural images (Dhariwal &
Nichol, 2021; Gao et al., 2023), video (Luo et al., 2023), speech (Popov et al., 2021; Chen et al.,
2021) and music (Hawthorne et al., 2022) to name a few. Since they were first introduced, there
have been numerous attempts to overcome some of their drawbacks such as difficulty of applying
them to discrete domains (Lou et al., 2024) and their inefficiency coming from iterative sampling
algorithm. The latter problem has drawn much attention of researchers which has led to many
successful solutions like the frameworks of flow matching (Lipman et al., 2023), consistency models
(Song et al., 2023; Song & Dhariwal, 2024) and distribution matching distillation (Yin et al., 2024a;b).
At the same time, other weaknesses of diffusion models have received relatively little attention. For
example, conventional diffusion models having Wiener process as their driving one show substantial
quality degradation on imbalanced datasets (Qin et al., 2023), and there has been a recent attempt to
address this problem by replacing Wiener process with α-stable Lévy process (Yoon et al., 2023).
Such models called Lévy-Itô denoising diffusion models (LIMs) were shown to better train on
imbalanced datasets achieving, in particular, better performance on rare classes. The advantage of
LIMs allowing to demonstrate the superior behaviour in this scenario consists in relying on Lévy
processes with discontinuous paths and employing isotropic α-stable noise with heavier tails than
those of Gaussian distribution both at training and inference.

Yoon et al. (2023) have devised necessary techniques allowing to treat Lévy-Itô models through
continuous-time formalism based on stochastic calculus similar to Song et al. (2021c) who were
the first to make it for common diffusion models. Particularly, the authors introduced the notion of
fractional score function and developed fractional denoising score matching technique to estimate
fractional score function with a neural network. Also, they designed a forward process bearing
resemblance to Variance Preserving diffusion Song et al. (2021c) consisting in adding isotropic
α-stable noise to data until it turns to a pure noise from the prior which, in this case, is a standard
symmetric α-stable distribution. This process can be described by the forward stochastic differential
equation (SDE (Oksendal, 1992)) and has a reverse-time model described by the reverse SDE written
down in terms of the fractional score function containing information about data distribution and
some intractable data-dependent term skipped when solving the reverse SDE. Thus, the SDE used
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at inference does not lead to exact solution (i.e. marginal probabilities of the underlying process
at every diffusion time step t are different from those of the forward diffusion). Two sampling
algorithms were suggested by Yoon et al. (2023): the stochastic one by solving the mentioned SDE
and the deterministic one by solving an analogue of what is called probability flow ODE in Song et al.
(2021c). In contrast with the former differential equation, the latter one relies only on the fractional
score function and does not contain intractable terms we have to omit at inference so it provides
exact solution. At the same time, both stochastic and deterministic sampling methods of standard
diffusion models are exact (both corresponding ODE and SDE rely only on the score function) and,
moreover, there exists a parametric family of sampling algorithms including the deterministic one as
a particular case Song et al. (2021a). In this paper, we bridge the gap between conventional diffusion
models and LIMs and derive a similar family of SDEs leading to exact sampling and providing an
option to choose amount of noise at each reverse diffusion step. This new reverse dynamics makes it
possible to improve performance of Lévy-Itô models when the number of function evaluations (NFE)
is limited by a small number, and, as we show through empirical studies on image generation task,
this improvement does not come at the cost of samples diversity, thus keeping the main advantage of
LIMs intact. Figure 1 illustrates a forward Lévy diffusion and reverse denoising Lévy diffusions for
various reverse SDEs we propose.

As we mentioned, the literature on conventional diffusion models offers a wide range of possible
applications that so far remain almost unexplored for LIMs. In this work, we also investigate
applicability of Lévy-Itô diffusion models to speech domain. To demonstrate possible advantages of
LIMs over common diffusion models, we train Lévy-Itô-based text-to-speech models on imbalanced
dataset with the amount of data representing different speakers varying significantly and study
capability of different models to produce speech of “rare” and “frequent” speakers.

Our main contributions are threefold:

• We derive a parametric family of reverse SDEs relying only on the fractional score function
whose solutions have the same marginal densities as those of the forward SDE unlike the
reverse SDE proposed in the original paper.

• We demonstrate the benefits of using these SDEs at inference in terms of generated samples
quality on image generation task and verify that samples diversity does not suffer if we
generate data with the proposed SDEs.

• We train a Lévy-Itô text-to-speech model on a highly imbalanced dataset and evaluate its
performance for speakers with different amount of training data.

Figure 1: 1-dimensional Lévy processes with α = 1.5. Horizontal axis stands for diffusion time
t, vertical axis – for values of a process. Left part of each plot (time t increasing from 0 to 1) is
the forward diffusion. Right part (time t decreasing from 1 to 0) is reverse diffusion with different
amount of noise: (left) the same as in the forward diffusion (ηt ≡ 1.0); (middle) less than in the
forward diffusion (ηt ≡ 0.2); (right) no noise (ηt ≡ 0.0) meaning that trajectories are continuous.

2 RELATED WORK

Denoising diffusion probabilistic models belong to a class of energy-based generative models (Song
& Kingma, 2021). Diffusion models were first introduced as discrete-time models (Ho et al., 2020),
but a more flexible continuous-time approach was proposed later (Song et al., 2021c; Song & Ermon,
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2020) allowing to develop a theoretical basis under diffusion training procedure via denoising score
matching (Song et al., 2021b; Hyvärinen, 2005) thanks to the fact that the forward diffusion admits
reverse-time model (Anderson, 1982). Diffusion models and closely related flow matching models
(Lipman et al., 2023) are very popular due to their remarkable performance in common generative
tasks Dhariwal & Nichol (2021); Gao et al. (2023) as well as rich capabilities of controllable
generation, e.g. editing an image based on various conditions (Meng et al., 2022), generating speech
with the desired pitch (Sadekova et al., 2024), or putting more emphasis on input condition via
classifier-free guidance (Rombach et al., 2022).

Lévy-Itô diffusion models (Yoon et al., 2023) are perhaps the most successful attempt to replace
Gaussian noise in energy-based models with alternative distributions, e.g. Gamma distribution in
common diffusion models (Nachmani et al., 2021), or heavy-tailed distributions in annealed Langevin
dynamics (Deasy et al., 2022). Despite Lévy processes (Applebaum, 2004) have lots of applications,
e.g. in finance (Eberlein, 2001) where they help to better capture dynamics of asset prices due to
flexibility in choosing jump distribution (Geman, 2002), their application in score-based generative
modeling is still very limited. Apart from the original paper on these models, one can mention
Paquet et al. (2024) applying LIMs to protein generation, Shariatian et al. (2024) developing a
discrete-time version of LIMs, and Hu et al. (2024) employing Physics-Informed Neural Networks to
solve fractional partial differential equations in a more general setting than the one studied by (Yoon
et al., 2023).

Increasing efficiency of diffusion models based on Gaussian noise is a well-studied topic. Like the
algorithm we propose in this paper for LIMs, some of these methods do not involve model fine-tuning
and utilize various numerical methods of solving SDEs (Kloeden & Platen, 1992). For example,
Lu et al. (2022) and Zhang & Chen (2023) make use of specific structure of reverse SDEs typically
appearing in diffusion modeling to derive solvers with smaller numerical errors. Some researchers
take into account both reverse and forward diffusions and design their solvers accordingly (Bao
et al., 2022; Popov et al., 2022). There are solvers tailored specifically for inference with classifier
guidance (Wizadwongsa & Suwajanakorn, 2023). Although methods of such kind lead to significant
quality improvement for small NFE, even better efficiency can be achieved with methods requiring
fine-tuning. One of the first attempts was progressive distillation (Salimans & Ho, 2022) followed
by consistency modeling (Song et al., 2023; Song & Dhariwal, 2024) whose main idea is that a
diffusion model performing well with a few steps should give consistent predictions of clean data on
the same ODE trajectories used at inference. Distribution distillation (Yin et al., 2024a;b) involving
Generative Adversarial Networks (Goodfellow et al., 2014) in model fine-tuning is a recent alternative
to consistency models.

3 LÉVY-ITÔ MODELS

We begin this section with a quick recap of isotropic α-stable random variables and Lévy processes
as well as some basic notions from the fractional calculus. Then, a general framework of Lévy-Itô
diffusion models is described.

3.1 ISOTROPIC α-STABLE DISTRIBUTION

A real-valued d-dimensional random variable ξ comes from the distribution SαSd(γ), i.e. isotropic α-
stable distribution with scale parameter γ and zero mean, if its characteristic function is Eei<u,ξ> =
e−γα∥u∥α

. Parameter α must belong to (0, 2] and in general case distribution SαSd(γ) does not have
explicit form for its probability density function. A notable exception is α = 2 in which case we
have Gaussian distribution N (0,

√
2γ I) where I is d-dimensional identity matrix. Isotropic α-stable

distribution is a heavy-tailed one except for the case α = 2, and, moreover, has infinite variance for
α < 2 (Paulson et al., 1975). An important property of SαSd(γ) is that it is infinitely divisible which
makes it a proper candidate to build a Lévy process upon as we discuss next.

3.2 LÉVY PROCESSES

A real-valued d-dimensional stochastic process Lt defined for t ≥ 0 starting at zero almost surely
(L0 = 0 a.s.) is said to be a Lévy process (Applebaum, 2004) if
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Figure 2: 1-dimensional Brownian motion (left) and Lévy processes Lα
t with α = 1.5 (middle) and

α = 1.2 (right). Horizontal axis stands for time t, vertical axis – for values of a process. Brownian
motion trajectories are almost surely continuous while trajectories of α-stable Lévy processes are
discontinuous with large jumps more probable for smaller values of α.

• Lt has stationary increments, i.e. Law(Lt+h − Lh) = Law(Lt) for all h > 0;
• Lt has independent increments, i.e. Lt − Ls and Lv − Lu are independent for all
0 ≤ s < t ≤ u < v;

• Lt has càdlàg (i.e. right continuous with left limits) paths.

This definition implies that the increments of Lévy processes must be infinitely divisible, so we can
choose isotropic α-stable distribution defined above as the one Lévy process increments belong to.
In what follows we consider α-stable Lévy processes Lα

t such that Law(Lα
t ) = SαSd(t1/α) for

α ∈ (1, 2). It can be shown that, in contrast to standard Brownian motion, α-stable Lévy processes Lα
t

have discontinuous paths, and as α decreases, large jumps become more probable. These properties
are illustrated in Figure 2.

Probability density functions of diffusion processes based on Lα
t satisfy Fokker-Planck equations, but

unlike standard diffusions based on Wiener process they are not usual partial differential equations
(PDEs) as Laplace operator is replaced with the fractional Laplacian (Lischke et al., 2020) when
α < 2. To be more precise, if diffusion Xt satisfies the following SDE:

dXt = µ(Xt−, t)dt+ σtdL
α
t , (1)

where Xt− = limh→0− Xt+h, then under certain assumptions on drift and diffusion coefficients
µ(x, t) and σt (Schertzer et al., 2001) probability density function p(x, t) of the process Xt satisfies
the fractional Fokker-Planck PDE

∂

∂t
p(x, t) = −∇ · (µ(x, t)p(x, t))− σα

t (−∆)α/2p(x, t) (2)

with the proper initial conditions (Yoon et al., 2023). As one can see by comparing this fractional PDE
with the common Focker-Planck PDE, the fractional Laplacian of order α/2 denoted by (−∆)α/2

plays the role of (negative) Laplacian when we change diffusion driving process from standard Wiener
process to α-stable Lévy process with α < 2.

The fractional Laplacian is a pseudo-differential operator defined through a generalization of Fourier
multiplier property of the negative Laplace operator:

(−∆)
α/2

f(x) = F−1{∥u∥αF{f(x)}(u)} , (3)
where F and F−1 denote Fourier and inverse Fourier transforms correspondingly. For the cases
−d < α < 0 and 0 < α < 2 there are alternative expressions without Fourier transforms through
just a singular integral over Rd (Lischke et al., 2020).

3.3 LÉVY-ITÔ DIFFUSION MODELS

Consider adding α-stable noise to data X0 according to the forward SDE (1) on the time interval
[0, T ] for any reasonable drift and diffusion coefficients such that for the final time T we have
Law(XT ) ≈ SαSd(1), i.e. the prior is standard α-stable distribution with the unit scale parameter.
Yoon et al. (2023) provided a reverse-time model of a process satisfying the forward SDE (1). It is
given by the SDE solved backwards in time from t = T to t = 0 starting from Law(XT ):

dX̄t = (µ(X̄t+, t)− ασα
t S

(α)
t (X̄t+))dt+ σtdL̄

α
t + dZ̄t , (4)
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where X̄t+ = limh→0+ X̄t+h, L̄α
t is α-stable Lévy process in reverse time (meaning that its in-

crements L̄α
s − L̄α

t are independent of L̄α
t for s < t) and Z̄t is a reverse-time model of some

data-dependent process Zt with zero mean and finite variation. The process Zt is intractable since
it can be defined only through its characteristic exponent (see Theorem B.1 in Yoon et al. (2023),
formula (39)) depending on data density ratios. The reverse SDE (4) is expressed in terms of the
fractional score function S

(α)
t (x) defined as

S
(α)
t (x) =

(−∆)
α−2
2 ∇p(x, t)

p(x, t)
, (5)

where p(x, t) is the probability density function of the forward diffusion (1) at time t.

During training the goal is to approximate this fractional score function by a neural network. Yoon
et al. (2023) proposed to train score-matching neural network sθ(x, t) with parameters θ by optimizing
the fractional denoising score matching objective:

L(θ, t) = EX0,Xt
∥sθ(Xt, t)− S

(α)
t (Xt|X0)∥22 , (6)

where conditional fractional score function is calculated using density p(x|x0, t) of conditional
distribution Law(Xt|X0):

S
(α)
t (x|x0) =

(−∆)
α−2
2 ∇p(x|x0, t)

p(x|x0, t)
. (7)

If drift coefficient µ(x, t) is linear in x, then it can be shown that for some functions at and γt
conditional distribution Xt|X0 is the same as atX0 + SαSd(γt) which allows to compute training
target explicitly:

S
(α)
t (x|x0) = −x− atx0

αγα
t

. (8)

There are two ways of sampling from the trained Lévy-Itô diffusion model: either by solving the SDE

dX̄t = (µ(X̄t+, t)− ασα
t S

(α)
t (X̄t+))dt+ σtdL̄

α
t , (9)

or by solving the probability ODE

dXt = (µ(Xt, t)− σα
t S

(α)
t (Xt))dt (10)

with the fractional score function replaced with its neural network approximation. Both differential
equations should be solved backwards in time starting from the prior SαSd(1). As for the SDE (9),
it is an approximate version of the exact reverse SDE (4). Yoon et al. (2023) justified omitting dZ̄t

term by the fact that Zt is a random process with zero mean and finite variation while L̄α
t has infinite

variation. As far as the ODE (10) is concerned, it leads to exact sampling procedure since marginal
probabilities of the solutions of (10) and (1) are the same as proven in Yoon et al. (2023).

4 PARAMETRIC REVERSE-TIME SDE

Conventional diffusion models allow for a parametric family of sampling algorithms (Song et al.,
2021a; Kong & Ping, 2021). The parameter in these algorithms stands for amount of noise added at
each inference step, and both the probability flow ODE and the reverse-time SDE are particular cases
obtained for specific parameter values. The following theorem provides similar result for Lévy-Itô
diffusion models:
Theorem 1. Consider a stochastic process Xt with marginal probability densities p(x, t) driven
by α-stable Lévy process Lα

t and described by the forward SDE (1). Under certain regularity
assumptions on drift and diffusion coefficients µ(x, t) and σt, non-negative time-dependent function
ηt and the fractional score function S

(α)
t (x) given by the formula (5) the following reverse SDE

driven by reverse-time α-stable Lévy process L̄α
t

dX̄t = (µ(X̄t+, t)− (1 + ηt)σ
α
t S

(α)
t (X̄t+))dt+ σtη

1/α
t dL̄α

t (11)

has the solution with the same marginal probability densities p(x, t) as the forward process Xt given
that its starting point X̄T has the same distribution as XT .
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The proof of this theorem essentially relies on inspecting fractional Fokker-Planck PDEs for the
SDEs (1) and (11) and can be found in Appendix A as well as a brief discussion on the necessary
assumptions on µ(x, t), σt, ηt and Sα

t (x). Note that these assumptions are basically the necessary
conditions for the Fokker-Planck equations associated with the SDEs (1) and (11) to have unique
solutions (Schertzer et al., 2001; Albeverio et al., 2010; Zhang et al., 2020), and it is quite common
to make such kind of assumptions not only when studying diffusion generative models (Song et al.,
2021b; Yoon et al., 2023), but also when studying reverse-time models of stochastic processes in
general (Anderson, 1982).

Once we have trained the fractional score-matching network sθ(x, t), we can generate samples by
solving the SDE (11) backwards in time starting from the prior. The parameter ηt controls amount
of α-stable noise added at each reverse diffusion time step t and η

1/α
t can be thought of as the ratio

between the amounts of noise in the forward and reverse diffusions given by (1) and (11): when
ηt ≡ 1, then we add exactly the same amount of noise as in the forward diffusion, for ηt < 1 we
add less noise which in some cases may be useful, and when ηt ≡ 0 we do not add any noise, in
which case the SDE (11) coincides with the ODE (10) and its trajectories become continuous (since
all jumps come solely from α-stable noise). Figure 1 illustrates this argument.

It is worth noting that, in contrast to the SDE (4), the reverse SDEs (11) do not provide a reverse-time
model of the forward process Xt because distributions of the trajectories of (1) and (11) are different
in general as seen from Figure 1. The main advantage of these SDEs is that they do not rely on
intractable terms and can be used readily at inference providing exact marginal densities for each
time t given that the fractional score-matching network is trained till optimality. As for the SDE (4),
we cannot use it directly and have to use the approximate SDE (9) instead.

Figure 3: Variation of Lα
t for α = 1.5

and Γ̄γ
t for γ = 1, 5 and 20 on [0, 1]

depending on number of solver steps n.

The approximation (9) of the SDE (4) is supposed to work
well since it differs by a term dZ̄t where Z̄t is the inverse
of the process Zt with zero mean and finite variation which
is negligible since α-stable Lévy process has infinite vari-
ation. However, this argument may not work well when
we use small NFE to sample from a Lévy-Itô model.

Finite or infinite variation is a property of the
paths of a random process Yt defined by whether
supΠ

∑
k |Ytk+1

− Ytk | over all partitions Π of the inter-
val [0, T ] (i.e. 0 = t0 < t1 < ... < tn−1 < tn = T ) is
finite or infinite almost surely. In practice, when we solve
SDEs on a partition with relatively large step sizes, the
variation of a trajectory may be far less than its supremum
which may possibly be reached on partitions with smaller
step sizes. In this case, the process with finite variation
may have comparable contribution to the overall variation
of paths as the one with infinite variation. It can be illustrated by a simple example. Let us consider
two processes: a process of infinite variation Lα

t and compensated Gamma process Γ̄γ
t = Γγ

t − γt
with shape parameter γ known to have finite variation. A linear term is subtracted from standard
Gamma process Γγ

t because we are interested in processes with zero mean. For each process Yt we
can simulate its variation

∑
k |Ytk+1

− Ytk | on the interval [0, 1] divided by n+ 1 points tk = k/n
into n equal parts and average this value over a number of Monte-Carlo simulations. The results of
this experiment are demonstrated in Figure 3. As n increases, variation of Lα

t rapidly grows larger
since it is the process of infinite variation while variation of Γ̄γ

t tends to some constant. But as for
small values of the number of solver steps n, variation of these processes are of the same order, and
variation of Γ̄γ

t can be even bigger. Therefore, if we want to simulate a sum of a process with finite
variation and the one with infinite variation on some interval with a small number of steps, we cannot
neglect increments of the process of finite variation.

To sum up, the exact reverse dynamics (11) we propose can outperform the stochastic sampling
algorithm (9) when employing solvers with a small NFE because in this case the error coming from
dropping dZ̄t term may start to dominate. As for advantages over the deterministic sampling algorithm
(10), the dynamics we propose allows to control amount of noise at inference thus potentially leading
to more diverse samples for appropriate choices of ηt. We will experimentally demonstrate these
advantages in the next section.
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Table 1: Evaluation of models trained on CIFAR10 with α = 1.8, 1.5 and 1.2 in terms of FID.
Euler-Maruyama and Exponential Integrator solvers with N steps are used.

Euler-Maruyama Exponential Integrator
N=20 N=50 N=20 N=50 N=500

SDE-A (LIM with α = 1.8) 144.7 61.57 10.42 6.58 2.64
SDE-E (LIM with α = 1.8) 8.79 4.14 6.86 4.87 3.36
ODE (LIM with α = 1.8) 11.68 5.23 10.31 4.88 3.38

SDE-A (LIM with α = 1.5) 109.5 22.68 9.05 4.25 2.72
SDE-E (LIM with α = 1.5) 7.86 4.37 6.27 4.09 3.26
ODE (LIM with α = 1.5) 9.95 5.94 10.50 5.14 3.35

SDE-A (LIM with α = 1.2) 49.87 4.54 7.70 4.49 3.28
SDE-E (LIM with α = 1.2) 7.08 4.22 7.08 4.26 3.74
ODE (LIM with α = 1.2) 8.43 5.25 9.14 5.12 3.74

Table 2: Evaluation of models trained on CIFAR10 with α = 1.8, 1.5 and 1.2 in terms of coverage.
Euler-Maruyama and Exponential Integrator solvers with N steps are used.

Euler-Maruyama Exponential Integrator
N=20 N=50 N=20 N=50 N=500

SDE-A (LIM with α = 1.8) 2.26% 25.08% 82.56% 89.55% 93.27%
SDE-E (LIM with α = 1.8) 84.73% 90.85% 86.26% 91.26% 91.46%
ODE (LIM with α = 1.8) 82.36% 89.29% 80.35% 89.16% 91.05%

SDE-A (LIM with α = 1.5) 6.53% 68.67% 85.11% 90.82% 92.63%
SDE-E (LIM with α = 1.5) 85.39% 90.00% 87.88% 90.24% 91.50%
ODE (LIM with α = 1.5) 82.72% 88.68% 80.93% 88.32% 90.73%

SDE-A (LIM with α = 1.2) 40.99% 89.33% 85.92% 90.13% 90.74%
SDE-E (LIM with α = 1.2) 86.01% 89.77% 86.63% 89.78% 89.92%
ODE (LIM with α = 1.2) 84.07% 88.71% 81.26% 87.72% 89.95%

5 EXPERIMENTS

In this section we present the results of our experiments on image and speech modalities.

5.1 IMAGE GENERATION

We experiment with unconditional image generation precisely following the setting in (Yoon et al.,
2023). We train 3 Lévy-Itô models with α = 1.8, 1.5 and 1.2 on CIFAR10 with the same architecture
as in the mentioned paper and evaluate different sampling schemes in terms of Fréchet Inception
Distance (FID) and diversity as measured by the metric called “coverage” (Naeem et al., 2020).
Loosely speaking, this metric is a probability that among k nearest neighbours (as measured by the
same features used to calculate FID) of a real image there exists at least one generated image. We
generate 50k images with each model and compare them with 50k CIFAR10 images from the training
set. We use k = 5 to calculate coverage. The results are shown in Tables 1 and 2. Training details
can be found in Appendix B.

Two solvers with different number of steps are used to generate samples: standard Euler-Maruyama
(Kloeden & Platen, 1992) (it becomes a fixed-step Euler method when we test deterministic sam-
pling (10)) and Exponential Integrator (Zhang & Chen, 2023) (reducing to DDIM scheme (Song
et al., 2021a) in a deterministic case). The latter one leads to smaller numerical errors by employing
the fact that diffusions are always designed such that the term µ(x, t)dt in corresponding differential
equations is linear in x. We test the deterministic mode according to the ODE (10) which we refer to
just as ODE, the approximate stochastic dynamics following the SDE (9) denoted by SDE-A, and the
exact SDE we propose (11) referred to as SDE-E with the parameters ηt chosen as showing the best
performance in terms of FID on CIFAR10 test set containing 10k images. Table 1 demonstrates that

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: FID on CIFAR10 test set as a function of η for LIMs with α = 1.8 (left), α = 1.5 (middle)
and α = 1.2 (right).

our SDE-E is the best in terms of FID for small number N of solver steps, and for configurations
with rather large numerical errors (i.e. Euler-Maruyama with N = 20 and 50 and Exponential
Integrator with N = 20) performance improvement is quite significant (up to 3.5 FID) with the
results being consistent for all values of α. At the same time, the improvement becomes negligible
or disappears for configurations with relatively small numerical errors. As far as generated images
diversity is concerned, we observe from Table 2 that the scheme we propose is always better than
the deterministic sampling (except for the case α = 1.2 and Exponential Integrator with N = 500
where the difference is less than 0.05%) and also better than sampling from the approximate SDE
for schemes with large numerical errors. These observations are consistent with the argument in
Section 4.

As for tuning hyperparameters ηt, we use the following heuristics: in general, we should add very
little or no noise at later stages of inference which is aligned with common practice for conventional
diffusion models (Karras et al., 2022) while at earlier stages amount of noise should be considerable
enough to allow for samples diversity. Therefore, we test functions ηt that most of the time (except
for some neighbourhood of 0 and T ) equal some constant η, decrease as t → 0 and increase as
t → T . Explicit expression for functions ηt used for every model can be found in Appendix B.
Figure 4 shows performance of different models and different solvers depending on η. One can note
that typical optimal values of η are smaller for small values of α, i.e. the optimal overall amount of
α-stable noise added at inference should be less for noise with heavier tails.

Table 3: Performance on imbalanced CIFAR10.

Metric SDE-A SDE-E ODE

FID 18.44 18.10 23.68
Coverage 80.33% 81.83% 71.73%

We also conducted an experiment of training
LIM with α = 1.8 on imbalanced CIFAR10 to
verify that the sampling method we propose is
applicable in this scenario as well. We generated
images with 20 steps of Exponential Integrator
in 5 different experiment runs, and the average
results are presented in Table 3. Based on these
results we conclude that the sampling algorithm we propose still outperforms baseline methods
both in terms of FID and diversity when training dataset is extremely imbalanced (the largest class
contains 5000 images while the smallest – only 50; refer to Appendix B for more details), although
performance gain is less than for models trained on common CIFAR10 dataset. It is also worth
mentioning that all of the considered sampling methods corresponding to Lévy-Itô diffusion models
achieve significantly better results than common diffusion models with only 60 FID in the described
imbalanced setting as reported in Yoon et al. (2023).

Table 4: Evaluation of the model trained on imbalanced CIFAR10 in terms of coverage measured for
each class. The model generated samples with Exponential Integrator with 20 steps. Classes with
larger id have less training data.

Class id 0 1 2 3 4 5 6 7 8 9

SDE-A 82% 88% 77% 82% 89% 68% 81% 65% 80% 74%
SDE-E 84% 87% 82% 81% 92% 65% 84% 69% 91% 70%
ODE 73% 83% 63% 73% 80% 58% 87% 55% 86% 71%
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Table 5: Evaluation of text-to-speech models trained with Gaussian noise and α-stable noise for
α = 1.8 and 1.5 in terms of speaker similarity. Euler method of solving ODE with N steps is used.

Female speaker (1000 min.) N = 30 N = 50 N = 100
Gaussian noise 0.815± 0.011 0.834± 0.010 0.850± 0.010

α-stable noise (α = 1.8) 0.822± 0.010 0.843± 0.009 0.853± 0.010
α-stable noise (α = 1.5) 0.841± 0.009 0.859± 0.009 0.867± 0.009

Male speaker (10 min.) N = 30 N = 50 N = 100
Gaussian noise 0.738± 0.009 0.762± 0.010 0.773± 0.010

α-stable noise (α = 1.8) 0.761± 0.009 0.780± 0.010 0.794± 0.010
α-stable noise (α = 1.5) 0.782± 0.009 0.792± 0.008 0.800± 0.009

In Table 4 we additionally report coverage for each particular class. Since Table 3 reports percentage
of all real images from the training set having generated ones among their nearest neighbours, its
results are strongly biased towards more represented classes, and, in principle, it could have happened
so that the coverage gain of 1.5% achieved by our method SDE-E holds mostly for such classes
while its coverage for less represented classes is poor. Table 4 shows that this is not the case: one
cannot observe dramatic quality drop in terms of coverage of SDE-E compared to SDE-A for classes
containing small number of images.

5.2 SPEECH SYNTHESIS

In experiments with LIMs on text-to-speech task we closely follow Popov et al. (2021) and train
models with the text encoder, duration predictor and diffusion-based decoder for three kinds of
driving noise: Gaussian as in the original paper and α-stable with α = 1.8 and 1.5. To demonstrate
benefits of utilizing heavy-tailed noise distribution, we train text-to-speech models on extremely
imbalanced dataset consisting of 16.6 hours (1000 minutes) of an English female speaker (Ito, 2017)
and 10 minutes of an English male speaker with id 9017 from Bakhturina et al. (2021). Appendix C
contains training details.

We synthesized 100 sentences for each speaker using 30, 50 and 100 ODE solver steps. CAM++
speaker verification model (Wang et al., 2023) was chosen to evaluate speaker similarity to ground-
truth recordings. Table 5 shows the results of this evaluation. It is clear that the models with α-stable
noise consistently outperform the one based on Gaussian noise for both speakers in terms of speaker
similarity, and the difference is more distinct when a small number of steps is used for generation.
Furthermore, the model with α = 1.5 shows better results than the one with α = 1.8. However,
for all models average speaker similarity values are lower for the less represented speaker. We
also have to note that training on such imbalanced dataset was a challenging task for all models
under comparison: we observed that speech generated with male speaker’s voice had quite a lot of
inaccuracies in pronunciation irrespective of the model.

6 LIMITATION

One of the main limitations of the reverse dynamics we derive in the paper is that we have to
tune parameters ηt corresponding to amount of noise added at inference which may be quite time-
consuming. There are papers on estimating optimal reverse variance in common diffusion models
(Bao et al., 2022), but in case of α-stable Lévy processes we have infinite variance, therefore we
cannot apply such methods directly. So, finding an optimal amount of α-stable noise at inference is
an interesting open question. Estimating increments dZ̄t of a process of finite variation skipped in
the original reverse dynamics may also be of interest and lead to alternative sampling algorithms. As
far text-to-speech experiments are concerned, it could be useful to focus on more realistic scenarios
when we have several “rare” speakers rather than only one.
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7 CONCLUSION

In this paper we propose a parametric family of algorithms of sampling from Lévy-Itô diffusion
models relying on the reverse-time SDE. This SDE is derived to have solutions with the same marginal
probabilities as those of the forward diffusion which makes the proposed sampling algorithms valid
from theoretical point of view. Our approach is tested on image generation task where it is shown to
significantly improve the results of unconditional image generation when using a small number of
generation steps without sacrificing samples diversity. Besides, we study applicability of Lévy-Itô
diffusion models to speech domain and demonstrate the potential of text-to-speech Lévy-Itô models
in the scenario when multi-speaker training data is highly imbalanced.
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A PROOF OF THEOREM 1

We consider the following forward SDE

dXt = µ(Xt−, t)dt+ σtdL
α
t (12)

and reverse SDE

dX̄t = (µ(X̄t+, t)− (1 + ηt)σ
α
t S

(α)
t (X̄t+))dt+ σtη

1/α
t dL̄α

t (13)

on the time interval [0, T ]. Lα
t and L̄α

t are forward and reverse-time α-stable Lévy processes
correspondingly, and the fractional score function S

(α)
t (x) is defined as

S
(α)
t (x) =

(−∆)
α−2
2 ∇p(x, t)

p(x, t)
, (14)

where p(x, t) is the marginal density of the forward diffusion Xt. We assume that both (12) and (13)
have solutions and p(x, t) is the unique solution of the fractional Fokker-Planck equation associated
with the forward diffusion (12)

∂

∂t
p(x, t) = −∇ · (µ(x, t)p(x, t))− σα

t (−∆)α/2p(x, t) (15)

with the proper initial conditions. We also assume that the fractional Fokker-Planck equation
associated with the reverse diffusion (13) has unique solution. The necessary conditions include
measurability of µ(·, t) and S

(α)
t (·) and certain Lipschitz-type constraints on drift and diffusion

coefficients of the SDEs (12) and (13). More details can be found e.g. in Albeverio et al. (2010);
Schertzer et al. (2001); Zhang et al. (2020).

Proof. Definition of the fractional Laplacian (3) and Fourier multiplier property of negative Laplace
operator ∆ imply that

(−∆)
α−2
2 (−∆f(x)) = F−1

{
∥u∥α−2F

{
F−1

{
∥u∥2F{f(x)}

}}}
= F−1{∥u∥αF{f(x)}} = (−∆)

α
2 f(x) ,

(16)

which makes definition of the fractional Laplacian consistent with the standard Laplace operator.

Now we want to make a reverse-time process X̄t a forward-time one and write down the fractional
Fokker-Planck equation associated with it. Consider a change of time variable τ = T − t. Put
Yτ = X̄t and rewrite (13) using dt = −dτ :

dYτ = −(µ(Yτ−, T − τ)− (1 + ηT−τ )σ
α
T−τS

(α)
T−τ (Yτ−))dτ + σT−τη

1/α
T−τdL

α
τ . (17)

The SDE (17) is now a forward one (time τ flows forward from 0 to T ), and its fractional Fokker-
Planck equation is

∂

∂τ
q(x, τ) = ∇·

((
µ(x, T − τ)− (1 + ηT−τ )σ

α
T−τS

(α)
T−τ (x)

)
q(x, τ)

)
−ηT−τσ

α
T−τ (−∆)

α
2 q(x, τ)

(18)
where q(x, τ) is the probability density function of the process Yτ .

Let us also rewrite the equation (15) in terms of τ using ∂
∂t = − ∂

∂τ :

∂

∂τ
p(x, T − τ) = ∇ · (µ(x, T − τ)p(x, T − τ)) + σα

T−τ (−∆)α/2p(x, T − τ) . (19)

We aim to prove that Yτ and Xt have the same marginal densities, i.e. that q(x, τ) = p(x, t) =
p(x, T − τ). By our assumption equation (18) has unique solution, so it is sufficient to check that
p(x, T − τ) satisfies this equation.

The fractional Laplacian property (16) implies that

−∇ ·
(
p(x, T − τ)S

(α)
T−τ (x)

)
= −∇ ·

(
p(x, T − τ)

(−∆)
α−2
2 ∇p(x, T − τ)

p(x, T − τ)

)
= −∇ ·

(
(−∆)

α−2
2 ∇p(x, T − τ)

)
= (−∆)

α−2
2 (−∆p(x, T − τ)) = (−∆)

α
2 p(x, T − τ) .

(20)
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Substituting q(x, τ) with p(x, T − τ) in (18) and employing (20) we have

∂

∂τ
p(x, T − τ) = ∇ · (µ(x, T − τ)p(x, T − τ))− (1 + ηT−τ )σ

α
T−τ∇ ·

(
S
(α)
T−τ (x)p(x, T − τ)

)
− ηT−τσ

α
T−τ (−∆)

α
2 p(x, T − τ) = ∇ · (µ(x, T − τ)p(x, T − τ))

+ (1 + ηT−τ )σ
α
T−τ (−∆)

α
2 p(x, T − τ)− ηT−τσ

α
T−τ (−∆)

α
2 p(x, T − τ)

= ∇ · (µ(x, T − τ)p(x, T − τ)) + σα
T−τ (−∆)

α
2 p(x, T − τ)

(21)

which is satisfied by p(x, t) due to (19).

B ADDITIONAL DETAILS OF EXPERIMENTS IN IMAGE GENERATION

The model we use for CIFAR10 experiments is NCSN++(deep) (Yoon et al., 2023; Song et al., 2021c)
with 8 residual blocks. We train 3 models for α = 1.8, 1.5 and 1.2 with batch size 128 and learning
rate 0.0001 for 250k iterations. Diffusion models tend to overfit on CIFAR10 so we choose the best
checkpoint in terms of FID on the test set (100k, 150k and 180k iterations for α = 1.8, 1.5 and 1.2
respectively).

As for tuning hyperparameters ηt, we choose the following expression

ηt = η + (δ − η)

[
t− t0
T − t0

]+
+ 2η(σ(ct)− 1) , (22)

where [x]+ = max{0, x} and δ ≥ η. Diffusion models we train are designed to have T = 1. The
function (22) decays fast towards zero as t → 0 because of the last sigmoid term and linearly increases
from η at time step t = t0 to δ at time step t = T . We choose c = 20 in all experiments to ensure
fast decay in the neighbourhood of t = 0. We take t0 = 0.7, 0.85 and 0.95 for α = 1.8, 1.5 and 1.2
correspondingly. δ is always chosen to be either 1 or η (meaning no increase in the neighbourhood of
t = T ). Optimal values (η, δ) we choose to calculate FID on CIFAR10 train set are given in Table 6.

Table 6: Hyperparameters for Euler-Maruyama (EM) and Exponential Integrator (EI) with different
number of steps (20, 50 or 500).

(η, δ) EM-20 EM-50 EI-20 EI-50 EI-500

α = 1.8 (0.10, 0.10) (0.25, 0.25) (0.60, 1.00) (0.70, 1.00) (0.10, 0.10)
α = 1.5 (0.10, 0.10) (0.15, 1.00) (0.10, 1.00) (0.05, 1.00) (0.10, 0.10)
α = 1.2 (0.15, 0.15) (0.10, 1.00) (0.01, 1.00) (0.10, 1.00) (0.10, 0.10)

Typical shapes of the function ηt as well images generated by the LIM with α = 1.8 and Exponential
Integrator solver with 20 steps are given in Figure 5.

Imbalanced CIFAR10 contained 5000, 2997, 1796, 1077, 645, 387, 232, 139, 83 and 50 images
belonging to classes “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”, “ship”
and “truck” correspondingly. It is the same setting as that used in Yoon et al. (2023). For the model
trained on this dataset we chose ηt = t1/5.

C ADDITIONAL DETAILS OF EXPERIMENTS IN SPEECH SYNTHESIS

In speech synthesis experiments we worked with the model closely following Popov et al. (2021)
except for several modifications. First, the forward diffusion transforms data distribution into N (0, I)
instead of N (µ, I) in the baseline model and into SαSd(1) in case of Lévy-Itô model. Second, early
experiments revealed the fact that training on imbalanced dateset introduces a bias in the text encoder
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Figure 5: Typical shapes of ηt (left) and images generated with the approximate SDE (9) (middle)
and the exact one (11) we propose (right) with 20 iterations of Exponential Integrator.

towards the voice with the highest ratio. To avoid this issue we replaced this block with the separately
trained text encoder which predicts “average voice” mel-spectrograms as in Sadekova et al. (2022).
These features are speaker-independent and preserve only linguistic content, so speaker information
is encoded by the diffusion decoder.

The encoder consists of a stack of three convolutional layers with kernel size 5 and 512 channels
followed by a bidirectional LSTM with 256 units and the duration predictor with an upsampling
module. Duration predictor is a two-layer bidirectional LSTM with 256 units. The whole block is
pre-trained on LibriTTS dataset, fixed and works in the teacher-forcing mode during the decoder
training which took 2800 epochs. Ground truth phoneme durations are obtained with Montreal Forced
Aligner. The pre-trained universal HiFi-GAN Kong et al. (2020) is used as a vocoder.
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