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ABSTRACT

Long-form video understanding has been a challenging task due to the high redun-
dancy in video data and the abundance of query-irrelevant information. To tackle
this challenge, we propose VIDEOTREE, a training-free framework which builds
a query-adaptive and hierarchical video representation for LLM reasoning over
long-form videos. First, VIDEOTREE extracts query-relevant information from
the input video through an iterative process, progressively refining the selection
of keyframes based on their relevance to the query. Furthermore, VIDEOTREE
leverages the inherent hierarchical structure of long video data, which is often
overlooked by existing LLM-based methods. Specifically, we incorporate multi-
granularity information into a tree-based representation, allowing VIDEOTREE to
extract query-relevant details from long videos in a coarse-to-fine manner. This
enables the model to effectively handle a wide range of video queries with varying
levels of detail. Finally, VIDEOTREE aggregates the hierarchical query-relevant
information within the tree structure and feeds it into an LLM reasoning model to
answer the query. Our experiments show that our training-free method improves
both reasoning accuracy and efficiency compared to existing methods. Specifically,
VIDEOTREE outperforms the existing training-free approaches on the popular
EgoSchema and NExT-QA benchmarks with less inference time, achieving 61.1%
and 75.6% accuracy on the test set without additional video-specific training.
Moreover, on the long split of Video-MME benchmark (average 44 minutes), the
training-free VIDEOTREE framework achieves better performance than the strong
proprietary GPT-4V model and other MLLMs that were extensively trained on
video data. Our code is provided in the supplementary and will be made public.

1 INTRODUCTION

With the surge in accessible long video content and the growing importance of applications such as
long-form human behavior analysis and movie analysis, developing models capable of reasoning over
and answering questions about long-form videos has become increasingly crucial. Recently, several
approaches (Zhang et al., 2023a; Wang et al., 2024g; Kahatapitiya et al., 2024) have emerged that
leverage the long-sequence reasoning capabilities of Large Language Models (LLMs) to tackle the
challenge in long-form video understanding in a training-free manner. . Typically, these approaches
leverage vision-language models (VLM) to caption densely sampled frames, thus representing the
video in text format. This text representation is then subsequently fed into an LLM, which reasons
over the video and responds to the provided query. Although this strategy has demonstrated great
potentials on long-form video understanding benchmarks, it still faces two major limitations:

1) Informational Overload: Long videos inherently contain high levels of information redundancy,
and current approaches (Zhang et al., 2023a; Chung & Yu, 2023) lack a principled method to
effectively address this challenge. A deluge of redundant and irrelevant information can overwhelm
the LLM, leading to mistakes in long-form video reasoning and reduced efficiency.

2) Inability to Capture the Coarse-to-Fine Video Structure: Existing approaches (Zhang et al.,
2023a; Wang et al., 2024c) often simplify video content into a list of captions without any structure,
failing to account for the hierarchical nature of video information. Especially in long videos, some
video regions are information-dense – requiring fine-grained temporal understanding – while others
are irrelevant to the query, or information-sparse. Because of this, existing approaches not only suffer
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Figure 1: Overview of VIDEOTREE for LLM reasoning on long videos. Given the long video input,
we first apply adaptive breadth expansion to identify the first-level keyframes for VIDEOTREE. Next,
we use relevance-guided depth expansion to explore the inherent hierarchical structure of the video,
forming a tree-based representation. Finally, the coarse-to-fine information extracted by VIDEOTREE
is fed into the LLM reasoner to answer the query.

from the information overload problem mentioned above, but also omit key detailed information
from the captions.

These limitations underscore the pressing need for a new long-form video understanding method. To
this end, we introduce VIDEOTREE, a training-free framework for long-form video understanding.
VIDEOTREE dynamically extracts query-relevant keyframes from the video input in a coarse-to-fine
manner and organizes them within a tree structure, with child nodes representing more fine-grained
information. VIDEOTREE is adaptive, meaning that our method allocates more frames to relevant
video regions and fewer frames to irrelevant ones based on the given query. VIDEOTREE is also
hierarchical. Unlike existing approaches (Zhang et al., 2023a; Wang et al., 2024c), which treat video
as a list of frames, our method explores the inherent structure within the video data (e.g., events,
scenes) to extract fine-grained information relevant to the video query.

VIDEOTREE relies on three crucial steps: adaptive breadth expansion (Fig. 1a), relevance-guided
depth expansion (Fig. 1b), and LLM-based reasoning (Fig. 1c). To address redundancy in long
videos, VIDEOTREE first leverages an adaptive breadth expansion module to extract query-relevant
information, forming the initial level of representation. We utilize an iterative process of visual
clustering, keyframe captioning, and relevance scoring until sufficient query-relevant information is
gathered. Compared to existing approaches (Kahatapitiya et al., 2024; Zhang et al., 2023a) that rely on
dense frame captions, VIDEOTREE selects only sparse keyframes for captioning, which significantly
improves inference efficiency and helps avoid irrelevant information that could interfere with accurate
video reasoning. To capture more fine-grained information, we introduce a relevance-guided depth
expansion step that adds finer, query-specific details in a hierarchical structure, forming a tree-based
representation. Finally, we generate video descriptions from the structured representation using a
captioner and provide them, along with the query, to the LLM for long video reasoning.

We demonstrate the effectiveness and efficiency of VIDEOTREE by evaluating it on two mainstream
long video question answering (LVQA) datasets, EgoSchema (Mangalam et al., 2024)and NExT-QA
(Xiao et al., 2021). Compared existing training-free approaches, VIDEOTREE achieves 2.1% and
4.3% improvements on EgoSchema(subset) and NExT-QA validation set with less inference time or
LLM calls. To further validate VIDEOTREE effectiveness on very long videos, we test our method on
the long split of the recent Video-MME benchmark (Fu et al., 2024a) and VIDEOTREE achieves better
performance than the strong proprietary GPT-4V model. Our ablation studies show that VIDEOTREE
outperforms the the same category methods (VideoAgent (Wang et al., 2024c) and LLoVi (Zhang
et al., 2023a)) under all number of captions and observes better efficiency-effectiveness trade-off. We
further provide addition results on open-source LLM, where VIDEOTREE shows strong generalization
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ability across different language backbone models and achieves 4.8% improvements against the
LangRepo approach (Kahatapitiya et al., 2024).

2 RELATED WORK

Structural Video Representation. Video understanding (Lin et al., 2019; Wang et al., 2023b; Li
et al., 2024b; Lin et al., 2023d; Xu et al., 2023; Lin et al., 2023a; Ma et al., 2023; Wang et al.,
2023d;a; Wu et al., 2022; Ren et al., 2024; Song et al., 2024; Liu et al., 2022) has shown impressive
advancement in both views of comprehension and efficiency. Recently, several video-language
methods (Ashutosh et al., 2023; Li et al., 2020; Islam et al., 2024; Wang et al., 2023e; Zhang et al.,
2018; Zala et al., 2023; Qing et al., 2022; Sanders et al., 2024; Yang et al., 2024; Xiao et al., 2022a;
Lu et al., 2022) have further introduced a structured understanding of video frames to allow compact
and efficient recognition of scene contexts. For example, HierVL (Ashutosh et al., 2023) proposes a
bottom-up hierarchical video-language embedding that capture video representations across short
and long time periods. VideoReCap (Islam et al., 2024) introduces a progressive video captioning
approach that generates short clip-level captions and summarizes them into longer segments. These
methods process long videos by progressively building high-level knowledge from local temporal
information, i.e. in a bottom-up fashion that first captures all low-level details and then aggregates.
This results in significant computational and time overhead. In contrast, VIDEOTREE employs a
top-down approach with dynamic depth, enabling efficient and effective long video understanding by
dynamically extracting query-relevant keyframes in a coarse-to-fine manner for LLM reasoning .

Video Understanding with LLMs. Inspired by the powerful reasoning capabilities of LLMs, recent
works have explored using LLMs to address complex video-related tasks. Since LLMs primarily
process text, various methods (Munasinghe et al., 2023; Lin et al., 2023b; Korbar et al., 2024; Weng
et al., 2024; Maaz et al., 2024; Zhang et al., 2023b; Tan et al., 2024; Chen et al., 2023a; Li et al.,
2024a; Jin et al., 2024; He et al., 2024; Li et al., 2024d; Wang et al., 2024h; Li et al., 2024c; Yu et al.,
2024b) have been developed to efficiently train multimodal projectors to connect the visual encoder
and LLMs or leverage caption-centric information. Past works (Wang et al., 2022a; Kahatapitiya
et al., 2024; Fan et al., 2024; Wang et al., 2024c; Surís et al., 2023; Choudhury et al., 2023; Wang
et al., 2023c; Ko et al., 2023; Wang et al., 2024g) has investigated training-free combinations of
captioners and LLMs for video understanding. Specifically, LLoVi (Zhang et al., 2023a) proposes a
simple language-guided video understanding method. First, it extracts short-term video descriptions
with a captioning model, and then an LLM summarizes these dense captions and responds to the
given prompt. VideoAgent (Wang et al., 2024c) introduces a multi-round frame search strategy using
an LLM agent. Different from VideoAgent’s non-hierarchical keyframe searching, we propose to
extract the key information long videos in an adaptive and coarse-to-fine manner, which improves the
efficiency and generalize better to more frames and getting better performance.

3 VIDEOTREE: ADAPTIVE TREE-BASED REPRESENTATION FOR LONG
VIDEO-LANGUAGE UNDERSTANDING WITH LLMS

We present VIDEOTREE, a framework for constructing a query-adaptive, hierarchical video repre-
sentation for efficient LLM reasoning over long videos. As illustrated in Fig. 2, the VIDEOTREE
framework consists of three main steps: adaptive breadth expansion, relevance-guided depth expan-
sion, and LLM video reasoning. Given the highly redundant nature of long videos, VIDEOTREE first
leverages an adaptive breadth expansion module to extract query-relevant information from the video,
forming the initial level of representation (Sec. 3.1). To capture finer-grained details, we propose a
relevance-guided depth expansion module that progressively adds finer-grained, query-specific details
to in a hierarchical manner, forming a tree-based representation (Sec. 3.2). Finally, we extract the
video description from the constructed representation using a captioner and feed it, along with the
query, into the LLM for long video reasoning (Sec. 3.3).

3.1 ADAPTIVE BREADTH EXPANSION

Video data is often highly redundant, and long videos can contain substantial amounts of irrelevant
information relative to the given video query. Addressing this redundancy and filtering out irrelevant
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Figure 2: A detailed view of VIDEOTREE. To construct the tree structure, we begin with Adaptive
Breadth Expansion (Step 1), which dynamically extracts query-relevant key information by consider-
ing both video and question inputs. Then, starting from the highly relevant root nodes, we explore
deeper into the tree branches with Relevance-guided Depth Expansion (Step 2), re-clustering at each
level to capture finer visual information. Finally, we gather the selected nodes (keyframes), caption
them, and arrange them in temporal order for LLM reasoning (Step 3).

content is crucial for efficient and effective long video understanding. Existing approaches (Yu
et al., 2024a; Wang et al., 2024d) select a fixed number of keyframes as the key information.
However, as discussed in Sec. 1, this fixed keyframe selection is sub-optimal for a general long
video-language understanding framework, since the information density varies across videos—some
contain numerous scene changes, while others remain largely static. To address this, we propose
an adaptive breadth expansion module that constructs the first level of the tree representation by
dynamically identifying keyframes that are relevant to the given query. Specifically, as shown in
the left of Fig. 2 (Step 1), given the video and a query about it, we build the first level of the tree
by iterating three operations: visual clustering, cluster captioning, and relevance scoring. These
operations first group similar frames together, then generate captions for each cluster, and use the
LLM to determine how relevant each cluster is to the query. VIDEOTREE iterate these operations
until getting enough query-relevant information from long videos in an adaptive manner. In the
following paragraphs, we motivate and introduce each operation in detail.

Visual Clustering. To reduce the redundancy, we first propose a visual clustering operation that
groups the video frames based on semantic similarity, allowing the model to focus on representative
frames from each cluster while discarding repetitive or irrelevant content. Specifically, given a video
sequence V = (F1, F2..., Fn), where Fi is the frame at the time step i and n is the length of the
video, we extract visual features for each frame with the pre-trained visual encoder (Sun et al., 2024)
E, such that fi = E(Fi), where fi ∈ Rd is the visual features extracted by the frame Fi. These
features serve as a compact representation of each frame’s visual content, capturing diverse semantics
of each frame, such as scenes and objects. Then we use K-Means clustering (MacQueen et al., 1967),
to group frame features into k distinct clusters, which we denote as:

(C1, C2, ...Ck), (c1, c2, ...ck) = K-Means((f1, f2, ..., fn), k) (1)

where, Ci is the ith cluster that groups multiple frames, ci is the centroid vector for the ith cluster
and k is the number of clusters. This clustering process reduces the redundancy within the video
by converting the input from n frames into k clusters of similar frames (where n≫ k), effectively
summarizing the video into k keyframes (cluster center frame) that capture the essential semantics.

Cluster Captioning. To better extract the key semantics from each cluster, we leverage a captioner
to convert the keyframe from each cluster to a textual description. Specifically, for the cluster Ci, we
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find the keyframe Fi that is closest to the centroid vector ci and consider it as the keyframe of the
ith cluster. We then feed the extracted keyframe into the VLM-based captioner Cap(·) (Zhao et al.,
2023; Liu et al., 2024) and obtain a text caption ti = Cap(Fi) for each cluster. These text captions
serve as detailed descriptions of the key semantics from the corresponding clusters.

Relevance Scoring. To encourage the model to extract query-relevant information, after obtaining
the cluster captions t, we leverage the reasoning capability of the LLM to assess whether the extracted
information are sufficient for answering the given query. To this end, we first feed all cluster captions
{ti ∀i ∈ [1, . . . , k]} from the last operation and the video query Q into the LLM and output a set
of relevance scores {ri ∀i ∈ [1, . . . , k]} for each cluster, where ri is the relevance of the ith cluster.
Specifically, to obtain each ri, we prompt the LLM with the captions and the query, asking it to assign
a relevance score to each caption, with three levels: 1 (not relevant), 2 (somewhat relevant), and 3
(highly relevant). See Tab. 14 for all detailed prompts.

Then, we adaptively extract the query-relevant information within the video by iterating the clustering,
captioning, and relevance scoring operation. Specifically, given the list of relevance scores for each
cluster, we set a threshold of the number of highly relevant clusters rele_num_thresh to decide the
stop of the adaptive process. We also set a maximum value for the number of clusters (max_breadth)
to avoid infinite loops. If the number of highly relevant clusters is below the requirement, that
indicates the information extracted from the current cluster assignment is insufficient for the LLM
to answer the video query. In that case, we increase the number of clusters k by double the original
number and repeat the clustering, captioning, and relevance scoring operations. If the number of
high-relevance clusters meets the threshold rele_num_thresh or the number of clusters reaches
max_breadth, we append the extracted clusters with their keyframes to the first layer of the tree and
continue to the next step (see more details in lines 2-11 in Algorithm 1).

3.2 RELEVANCE-GUIDED DEPTH EXPANSION

After obtaining the first-level clusters and their keyframes, VIDEOTREE captures high-level query-
relevant information from the video input. However, some video regions are information-dense and
critical for answering the query, requiring a more detailed selection of keyframes.

Existing approaches, such as SeViLA (Yu et al., 2024a) and VideoAgent (Wang et al., 2024c),
typically treat the selected frames as an unstructured list, overlooking the potential internal structure
within the video data. To address this, as shown in Step 2 of Fig. 2, we construct a hierarchical
video representation on top of the clusters from the previous breadth expansion step, allowing us to
efficiently extract query-relevant details by leveraging the semantic relationships within the video
data. Specifically, we expand the depth of the tree by sub-clustering the clusters with higher relevance
scores from the first step. The intuition is that for high-relevance clusters, the LLM requires more
detailed, granular information, while for low-relevance clusters, more information could actually lead
to irrelevant details and could overwhelm the LLM, leading to incorrect reasoning.

To build the hierarchical structure, we use the relevance of a top-level cluster to determine how many
levels of more granular information will be extracted from it. Since the relevance score r falls into
one of three levels, we handle each first-level cluster differently based on its assigned relevance level.
For "somewhat relevant" clusters, we re-cluster the first-level cluster into w sub-clusters, where w
represents the tree’s branch width, ensuring that more keyframes are allocated to these moderately
relevant clusters. For "highly relevant" clusters, we re-cluster into a two-level tree with a branch width
of w using hierarchical clustering. This coarse-to-fine exploration strategy allows for the detailed
extraction of relevant information, supporting comprehensive video analysis for complex queries. We
repeat this process for all first-level clusters and build the hierarchical structure of VIDEOTREE (lines
12-15 in Algorithm 1). After the breadth and depth expansion steps, we obtain the tree-based video
representation for LLM reasoning over the long video.

3.3 LLM VIDEO REASONING

Finally, in order to use the LLM’s ability on video reasoning, we need to present the LLM with a
text-based video description. To this end, we traverse the nodes of the tree starting at the roots and
expanding to the leaves, extracting keyframes from the tree’s clusters at all levels and passing them
into the captioner to obtain keyframe captions. We then sort these keyframe captions in temporal
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order and concatenate them into a textual description of the video. Finally, we pass this description
and the input query to the LLM and output the final answer (see line 16-18 in Algorithm 1). Our full
prompt is in Tab. 15.

4 EXPERIMENTAL SETUP

Tasks & Datasets. We test VIDEOTREE on three diverse long-form video question-answering
benchmarks: (1) EgoSchema (Mangalam et al., 2024), a long-range video question-answering
benchmark consisting of 5K multiple choice question-answer pairs spanning 250 hours of video
and covering a wide range of human activities. Our ablation studies are conducted on the official
validation set of EgoSchema which contains 500 questions (referred to as the EgoSchema Subset).
The videos are 180 seconds long on average. (2) NExT-QA (Xiao et al., 2021), a video question-
answering benchmark for causal and temporal reasoning. It contains 5440 videos with an average
length of 44s and approximately 52K questions. NExT-QA contains 3 different question types:
Temporal (Tem.), Causal (Cau.), and Descriptive (Des.). (3) Video-MME (Fu et al., 2024a) is a
recent-proposed comprehensive evaluation benchmark for video analysis. We test VIDEOTREE on
the “long-term videos” split of the dataset (long split), whose average video length is 44 minutes,
ranging from 30-60 minutes.

Implementation Details. We adopt GPT-41 (OpenAI, 2023b) as our LLM for all the main results.
We also provide the results with open-source LLM (Sec. 5.2) and other proprietary LLMs (Sec. C).
Following VideoAgent (Wang et al., 2024c), we leverage EVA-CLIP-8B (Sun et al., 2024) as our
visual encoder and also provide experimental analysis with smaller visual encoder in Sec. 5.2.
Following VideoAgent (Wang et al., 2024c), we leverage CogAgent (Hong et al., 2023) as the
captioner for NExT-QA benchmark and use LaViLa (Zhao et al., 2023) as our captioner for the
EgoSchema benchmark due to its ego-centric video pretraining (we also show results in Tab. 12
using a unified captioner (LLaVA1.6-7B (Liu et al., 2024)) for all benchmarks). For Video-MME, we
directly use the default unified LLaVA1.6-7B captioner. We preprocess videos by simply sampling the
original frames at 1FPS for EgoSchema and NExT-QA benchmark and 0.125 FPS for Video-MME.
The best-performing average number of captions for EgoSchema subset, Next-QA and Video-MME
is 62.4, 12.6 and 128, respectively. We ablate the hyper-parameter choices in detail in Sec. C.

Evaluation Metrics. We evaluate VIDEOTREE on all datasets under the multiple-choice QA setting.
We utilize standard accuracy metrics for all experiments.

5 EXPERIMENTS

5.1 COMPARISON WITH EXISTING APPROACHES

Comparison with training-free methods. Tab. 1 shows a comparison of the existing training-free
works and VIDEOTREE on EgoSchema and NExT-QA benchmarks. We compare our methods with
three types of systems: those using all open-source LLMs (Ranasinghe et al., 2024; Kahatapitiya
et al., 2024; Shang et al., 2024), those with proprietary MLLMs (Kim et al., 2024; Park et al.,
2024), and the most similar class to ours, which consists of methods with open-source captioners
and proprietary LLMs (Choudhury et al., 2023; Zhang et al., 2023a; Min et al., 2024; Wang et al.,
2023c; Fan et al., 2024; Wang et al., 2024c;g). Specifically, compared with the methods that leverage
the same VLM (captioner) and LLM (Zhang et al., 2023a; Wang et al., 2024c;g), VIDEOTREE
significantly outperforms these methods on both EgoSchema and NExT-QA benchmarks. Comparing
with VideoAgent (Fan et al., 2024) which also uses video-specific models (Video-LLaVA (Lin et al.,
2023a), ViCLIP from InternVid (Wang et al., 2024e)) which were trained on extensive video data,
VIDEOTREE still performs better on EgoSchema. Moreover, comparing with the methods that utilize
strong multimodal LLMs, VIDEOTREE significantly outperforms IG-VLM (Kim et al., 2024) (based
on GPT-4V(OpenAI, 2023a)) on both EgoSchema and NExT-QA benchmarks and obtains comparable
results on the EgoSchema full test set compared to the recent LVNet (Park et al., 2024) (which uses
the more powerful GPT-4o for both captioner and LLM) while outperforming LVNet on NExT-QA
benchmarks. Additionally, we observe a significant gap between VIDEOTREE and the open-source
LLM-based approaches, highlighting the need of strong LLM reasoning module in our method. For

1version 1106

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with other training-free methods on EgoSchema and NExT-QA. We compare
VIDEOTREE framework with three different types of existing methods (all open-source, all proprietary,
mixed) and show the effectiveness of VIDEOTREE against all three types.

Model (M)LLM EgoSchema NExT-QA

Sub. Full Tem. Cau. Des. Avg.

Based on Open-source Captioners and LLMs
MVU (Ranasinghe et al., 2024) Mistral-13B 60.3 37.6 55.4 48.1 64.1 55.2
LangRepo (Kahatapitiya et al., 2024) Mixtral-8×7B 66.21 41.2 51.4 64.4 69.1 60.9
Video-LLaVA+INTP (Shang et al., 2024) Vicuna-7B v1.5 - 38.6 58.6 61.9 72.2 62.7

Based on Proprietary MLLMs
IG-VLM (Kim et al., 2024) GPT-4V 59.8 - 63.6 69.8 74.7 68.6
LVNet (Park et al., 2024) 2 GPT-4o 68.2 61.1 65.5 75.0 81.5 72.9

Based on Open-source Captioners and Proprietary LLMs
ProViQ (Choudhury et al., 2023) GPT-3.5 57.1 - - - - 64.6
LLoVi (Zhang et al., 2023a) GPT-3.5 57.6 50.3 - - - -
MoReVQA (Min et al., 2024) PaLM-2 - 51.7 64.6 70.2 - 69.2
Vamos (Wang et al., 2023c) GPT-4 51.2 48.3 - - - -
LLoVi (Zhang et al., 2023a) GPT-4 61.2 - 61.0 69.5 75.6 67.7
VideoAgent (Wang et al., 2024c) GPT-4 60.2 54.1 64.5 72.7 81.1 71.3
VideoAgent (Fan et al., 2024) GPT-4 62.8 60.2 - - - -
LifelongMemory (Wang et al., 2024g) 3 GPT-4 64.1 58.6 - - - -

VIDEOTREE (Ours) GPT-4 66.2 61.1 70.6 76.5 83.9 75.6

the sake of making a fair comparison, we also show VIDEOTREE’s ability using open-source LLM in
Tab. 4, where we obtain an 4.8% improvement on the EgoSchema subset. These results showcase the
effectiveness of VIDEOTREE compared with existing training-free methods. Moreover, VIDEOTREE
is also more efficient: we show analyses measuring the number of captions in Fig. 3 and inference
time in Tab. 3, where VIDEOTREE is more efficient than relevant baselines.

Evaluating on Very Long Videos. To further highlight the strength of our approach on longer videos,
we have included results on Video-MME (Fu et al., 2024a)’s long split, which contains a diverse set
of very long videos (up to 1 hour, with an average of 44 minutes). We compare our training-free
method with two types of models, including proprietary MLLMs (OpenAI, 2023a; 2024; et al., 2024)
and open-source MLLM (Zhang et al., 2024a; Fu et al., 2024b; Chen et al., 2023b; 2024; Wang
et al., 2024d; Zhang et al., 2024b; Wang et al., 2024b), both of which are trained on large-scale
video(image) data. As shown in Tab. 2, compared to proprietary MLLMs, VIDEOTREE outperforms
the strong GPT-4V (OpenAI, 2023a) model by 0.7% but still has a gap with the powerful long-context
proprietary MLLMs (GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (et al., 2024)). When comparing
to open-source MLLMs that were extensively trained on video data, our training-free VIDEOTREE
method outperforms a number of strong MLLMs VIDEOTREE including ViLA-1.5-40B (Lin et al.,
2023c), Intern-VL2 (Chen et al., 2024). In summary, on very long videos, VIDEOTREE achieves
strong performance without any additional training on video data.

5.2 ANALYSIS

Below, we provide a detailed analysis of VIDEOTREE framework. All quantitative analyses are
conducted on the validation subset of the EgoSchema dataset. First, we analyze the trade-off between
efficiency and effectiveness, showing that our method has better efficiency and performance across
all settings compared to existing methods. We then provide an comprehensive ablation study for
different design choice of VIDEOTREE (additional ablation study in Appendix Sec. C). Finally, we

1We de-emphasize the EgoSchema results of LangRepo since it predicts the answers via a log-likelihood
classifier rather than generation, making it different from all other methods (including VIDEOTREE). We provide
a comparison using the same classifier and LLM in Tab. 4 and show 4.8% improvements under same settings.

2For fair comparison, we de-emphasize methods that use a much stronger MLLM (GPT-4o) as both the
captioner and the LLM.

3Reproduced results, implementation details in Sec. E
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Figure 3: Ablating the number of captions.
Given approximately the same number of frames,
VIDEOTREE substantially outperforms LLoVi and
VideoAgent. VIDEOTREE’s hierarchical nature
also allows it to generalize better to more frames
and obtain better overall performance.

Table 2: Video-MME long split results. Our
training-free VIDEOTREE method outper-
forms a strong proprietary MLLM (GPT-4V)
and open-source MLLMs (e.g. ViLA-1.5-
40B) which are extensively trained on videos.

Method Accuracy
Proprietary MLLM
GPT-4V 53.5
GPT-4o 65.3
Gemini 1.5 Pro 67.4

Open-Source MLLM
LongVA 46.2
VITA 48.6
InternVL2 52.6
VILA-1.5-40B 53.8
LLaVA-NeXT-Video-72B 61.5
Qwen2-VL-72B 62.2

Training-free Approach
VIDEOTREE (Ours) 54.2

Table 3: Efficiency-Effectiveness comparison between LLoVi and our approach. We benchmark
the time cost of VIDEOTREE and LLoVi (Zhang et al., 2023a), split into seconds spend in frame
captioning, extracting keyframes, performing QA, and also report overall time. Using only 33%
inference time, VIDEOTREE(fast) already achieves both better performance compared to LLoVi(best).

Method Captions Captioner (s) Keyfr. (s) QA (s) Overall (s) Acc.
LLoVi-fast 16 2.0 0 1.9 3.9 57.8
LLoVi-best 180 22.4 0 2.4 24.8 61.2

VIDEOTREE-fast 13.6 1.6 4.4 1.8 7.8 63.6
VIDEOTREE-best 62.4 7.8 10.2 2.1 20.1 66.2

visualize the tree representation from VIDEOTREE and show the clusters VIDEOTREE chooses to
expand, qualitatively supporting its quantitative gains.

5.2.1 EFFICIENCY-EFFECTIVENESS ANALYSIS

In Tab. 3, we show the efficiency-effectiveness trade-off of our approach compared to existing methods.
Specifically, we compare VIDEOTREE with LLoVi (Zhang et al., 2023a) using the same GPT-4 model
as LLM (and same captioner). Comparing to the best model, LLoVi, VIDEOTREE-fast (which uses
fewer frames by changing the hyper-parameters) achieves a 2.4% improvement on the EgoSchema
subset with only 33% the time cost. Moreover, our best model obtains a 5.0% improvement with
less overall inference time compared to both LLoVi models. Profiling the inference time spent
in different modules (including frame captioning, extracting keyframes/caption summarization,
performing QA), we find that our hierarchical keyframe selection consumes a reasonable amount
of time while significantly reducing the time cost in the captioning stage and boosting long video
understanding performance. We also provide an ablation of average LLM calls and compared with
VideoAgent (Wang et al., 2024c) in Tab. 8 showing that VIDEOTREE requires fewer LLM calls
while having better performance. These results show that VIDEOTREE has better effectiveness and
efficiency compared to the existing method.

5.2.2 ABLATION STUDY

In this section, we conduct ablate different parts of VIDEOTREE on the EgoSchema subset. We ablate
four features: Number of captions, visual encoder choice, applying open-source LLM and different

8
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Table 4: Accuracy on the EgoSchema subset when using open-source LLM Reasoners and log-
likelihood classifier. VIDEOTREE obtains better performance with less inference time on both 7B
and 12B LLMs comparing to the LangRepo baseline (Kahatapitiya et al., 2024).

Method LLM # Caption Acc. Inf Time (s)
LLoVi Mistral-7B 180 50.8 -
LangRepo Mistral-7B 180 60.8 87.2
VIDEOTREE (ours) Mistral-7B 32 63.0 24.3
LangRepo Mixtral-8×7B (12B) 180 66.2 162.1
VIDEOTREE (ours) Mixtral-8×7B (12B) 32 71.0 50.3

VIDEOTREE components. We include more extensive ablations (including hyper-parameter analysis
and the design choices of captioner/LLM) in Appendix Sec. C.

Number of Captions. In Fig. 3, we compare VIDEOTREE with existing methods under different cap-
tion settings. Under similar frame caption settings (7, 9, 11), VIDEOTREE outperforms LLoVi (Zhang
et al., 2023a) and VideoAgent (Wang et al., 2024c) by 6.5% and 2.0% on average accuracy across
all three settings. Moreover, unlike the non-hierarchical VideoAgent baseline, which suffers from
performance degradation after 11 frames, our method continues improving, generalizing to 62.4
frames and achieving 6% better accuracy in terms of best performance. This result highlight the
importance of VIDEOTREE’s hierarchical nature.

Open-source LLM Reasoner. To validate the effectiveness of VIDEOTREE with open-source LLM
reasoners (rather than GPT4), in Tab. 4, we report the performance of VIDEOTREE using 7B and
12B versions of the Mistral model (Jiang et al., 2023; 2024) as the LLM reasoner. We compare
with LLoVi (Zhang et al., 2023a) and LangRepo (Kahatapitiya et al., 2024). For a maximally
fair comparison, we follow LangRepo’s evaluation pipeline, using a log-likelihood classifier that
scores all options and takes the highest-scoring one. VIDEOTREE substantially outperforms the
baseline approaches on both 7B and 12B Mistral models while only requiring 20% of the frame
captions. Specifically, compared to LangRepo, which uses complex textual summarization modules,
VIDEOTREE achieves 2.2% and 4.8% better EgoSchema subset performance while using about
72.5% and 69.0% less inference time on Mistral 7B and 12B LLM, respectively. These results
confirm that VIDEOTREE’s effectiveness and efficiency translates to open-source reasoners as well.

Table 5: Ablation studies of VIDEOTREE on visual encoder and different components.

(a) Visual encoder ablation.

Visual Encoder Params Method Acc.

OpenCLIP-ViT-B 88M VideoAgent –
VIDEOTREE 66.0

OpenCLIP-ViT-G 1B VideoAgent 59.2
VIDEOTREE 66.2

EVA-CLIP-8B 8B VideoAgent 59.4
VIDEOTREE 66.2

(b) Effect of different VIDEOTREE compo-
nents. Both Adaptive Breadth Expansion and
Depth Expansion modules contribute signifi-
cantly to the effectiveness of VIDEOTREE.

Module ES Acc.
VIDEOTREE 66.2
- Depth Expansion 64.4
- Adaptive Breadth Expansion 61.2

Visual Encoder. In Tab. 5a, we study the effect of the visual encoder used in the visual clustering oper-
ation. We report the results of VIDEOTREE on three different scales of visual encoder: OpenCLIP-B,
OpenCLIP-G (Ilharco et al., 2021) and EVA-CLIP-8B (Sun et al., 2024) and compare to VideoAgent
(Wang et al., 2024c) 2. VIDEOTREE outperforms VideoAgent by an average of 6.9% across both
encoders. Comparing different visual encoders ranging from 88M to 8B parameters, we see only a
marginal drop in performance for VIDEOTREE as the visual encoders decrease in size, indicating that
our approach generalizes well to much smaller vision encoders (i.e. only a 0.2% drop when going
from 8B to 88M), making the model more efficient while maintaining strong performance.

VIDEOTREE Components. In Tab. 5b, we report the effectiveness of the different components in
VIDEOTREE. Specifically, removing the depth expansion module brings a 1.8% drop in performance,

2Note that VideoAgent only report results on OpenCLIP-ViT-G (1B) and EVA-CLIP-8B.
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showing the importance of the hierarchical design of VIDEOTREE. Furthermore, removing the adap-
tive breadth expansion module brings another 3.2% performance decrease, verifying the effectiveness
of the adaptive nature of VIDEOTREE.

5.2.3 QUALITATIVE ANALYSIS

2 3 211 1 12

#C C moves 
around

#C C puts the 
laundry basket on 
the floor

#C C walks around 
the room

#C C drops the 
chopping board

#C C picks a hand- 
bag

#C C picks a cloth 
from the bed

#C C picks a bowl #C C looks around#C C picks the 
dustbin

#C C removes dish 
washer in the 
fridge

#C C walks into the 
bedroom

#C C opens a 
washing machine

#C C picks a plate 
from the table

#C C throws the 
cloth

#C C throws the 
cloth

#C C picks the 
dustbin

#C C removes dish 
washer in the 
fridge

#C C puts the 
chopping board in 
the drawer

#C C closes the 
washing machine

#C C pulls the 
machine

[Question]: What is the overall sequence of tasks c performs in the 
video, and how do they relate to each other?
Option A: C efficiently makes the bed, diligently does the laundry, 
and then goes for a refreshing walk.
Option B: C makes the bed, does the laundry, and watches tv.
Option C: In the morning, c makes the bed, adeptly does the laundry, 
and diligently goes to their work.
Option D: C diligently makes the bed, thoroughly does the laundry, 
and finally goes to rest in bed.
Option E: C makes the bed, does the laundry, and makes a cup of tea.

Scores

Figure 4: Qualitative examples of VIDEOTREE. Red options are answered wrongly with uniformly
sampled 32 frames. Green options are answered correctly with VIDEOTREE. Best viewed in color.

In Figure 4, we visualize qualitative results from VIDEOTREE. Specifically, we show the keyframes
and their captions extracted by our adaptive tree representation given a video query. This example is
drawn from EgoSchema, and shows the query format, which consists of a query and multiple-choice
answers. With the proposed VIDEOTREE strategy, we split a complex multi-scene video (e.g.cleaning
house across rooms) into several key scenes via visual clustering and determine the most query-
relevant scene via the relevance score. We then obtain more fine-grained visual cues by descending
into each relevant cluster (Levels 2 and 3 in Figure 4). For example “C opens a washing machine”
is deemed highly relevant to the question, which asks about the sequence of events. At the same
time, frames like “C moves around” are deemed irrelevant to the query and not expanded. In the
end, VIDEOTREE shows a dynamic ability to select relevant segments and answer the given question
correctly with only 50% of the baseline’s 32 input captions. The LLoVi (fixed uniformly sampling)
fails to correctly answer the question, sampling a large number of redundant and irrelevant frames.
We also provide additional qualitative results and failure case visualizations in Appendix Sec. F.

6 CONCLUSION

In this work, we proposed VIDEOTREE, an adaptive and hierarchical framework for LLM reasoning
over long-form videos. VIDEOTREE adaptively extracts query-relevant keyframes from the video
input in a coarse-to-fine manner and organizes them into a hierarchical representation, enabling the
LLM to effectively handle complex queries. VIDEOTREE resulted in strong performance on three
popular datasets (EgoSchema, NExT-QA, and Video-MME), while also improving efficiency by
reducing the inference time and LLM calls. We analyzed the role of the adaptive cluster selection
we implement in VIDEOTREE, finding that it is crucial to strong performance. In our qualitative
analysis, we showed that given a complex multi-scene video and its query, VIDEOTREE is capable of
extracting key scenes and zooming into more detailed information that is highly related to the query.
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ETHICS STATEMENT

The intended use of VIDEOTREE is to answer questions about long-form videos. This does not have
any particular potential for misuse beyond the general potential for AI technology to be used in
harmful ways. Because it is based on VLM captioning and LLMs answering questions from captions,
VIDEOTREE has the potential to hallucinate (both in the captioning stage and the QA stage). Note
that potential is shared both with other caption-then-LLM approaches (Zhang et al., 2023a; Wang
et al., 2024c; Kahatapitiya et al., 2024) and end-to-end VLM-based approaches(Zhang et al., 2024b;
Lin et al., 2023c), which are also prone to hallucination (Ji et al., 2023). The fact that VIDEOTREE
answers questions based on coarse-to-fine captions that are tied to particular frames in a video makes
it more interpretable than black-box methods, mitigating the potential for hallucinations that mislead
users, since users could potentially examine the sampled frames as we have done in Fig. 4.

REPRODUCIBILITY STATEMENT

To maximize reproducibility, we have included our code in the supplementary material. Proprietary
LLMs present reproducibility concerns, since models are updated and taken offline over time. To
counteract this, in addition to our results on proprietary LLMs, we have included results using only
open-source LLMs and captioners in Tab. 4. Finally, we report all of our hyperparameter settings and
model details in Sec. E.

REFERENCES

Kumar Ashutosh, Rohit Girdhar, Lorenzo Torresani, and Kristen Grauman. Hiervl: Learning hierar-
chical video-language embeddings. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 23066–23078, 2023.

Jun Chen, Deyao Zhu, Kilichbek Haydarov, Xiang Li, and Mohamed Elhoseiny. Video ChatCaptioner:
Towards enriched spatiotemporal descriptions, 2023a.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023b.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
modeling and audio understanding in video-llms. arXiv preprint arXiv:2406.07476, 2024. URL
https://arxiv.org/abs/2406.07476.

Rohan Choudhury, Koichiro Niinuma, Kris M. Kitani, and Laszlo A. Jeni. Zero-shot video question
answering with procedural programs. arXiv preprint arXiv:2312.00937, 2023.

Jiwan Chung and Youngjae Yu. Long Story Short: a summarize-then-search method for long video
question answering, 2023.

Machel Reid et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. ArXiv, abs/2403.05530, 2024. URL https://api.semanticscholar.org/
CorpusID:268297180.

Yue Fan, Xiaojian Ma, Rujie Wu, Yuntao Du, Jiaqi Li, Zhi Gao, and Qing Li. Videoagent: A
memory-augmented multimodal agent for video understanding. arXiv preprint arXiv:2403.11481,
2024.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024a.

11

https://arxiv.org/abs/2406.07476
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen, Meng Zhao, Yifan Zhang, Shaoqi Dong,
Xiong Wang, Di Yin, Long Ma, Xiawu Zheng, Ran He, Rongrong Ji, Yunsheng Wu, Caifeng
Shan, and Xing Sun. Vita: Towards open-source interactive omni multimodal llm, 2024b. URL
https://arxiv.org/abs/2408.05211.

Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava,
and Ser-Nam Lim. Ma-lmm: Memory-augmented large multimodal model for long-term video
understanding, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. CogAgent: A
visual language model for GUI agents, 2023.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL https://doi.org/10.5281/
zenodo.5143773. If you use this software, please cite it as below.

Md Mohaiminul Islam, Ngan Ho, Xitong Yang, Tushar Nagarajan, Lorenzo Torresani, and
Gedas Bertasius. Video ReCap: Recursive captioning of hour-long videos. arXiv preprint
arXiv:2402.13250, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1–38, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-UniVi: Unified visual
representation empowers large language models with image and video understanding, 2024.

Kumara Kahatapitiya, Kanchana Ranasinghe, Jongwoo Park, and Michael S Ryoo. Language
repository for long video understanding. arXiv preprint arXiv:2403.14622, 2024.

Wonkyun Kim, Changin Choi, Wonseok Lee, and Wonjong Rhee. An image grid can be worth a
video: Zero-shot video question answering using a vlm. arXiv preprint arXiv:2403.18406, 2024.

Dohwan Ko, Ji Soo Lee, Wooyoung Kang, Byungseok Roh, and Hyunwoo J. Kim. Large language
models are temporal and causal reasoners for video question answering, 2023.

Bruno Korbar, Yongqin Xian, Alessio Tonioni, Andrew Zisserman, and Federico Tombari. Text-
conditioned resampler for long form video understanding, 2024.

Jiapeng Li, Ping Wei, Wenjuan Han, and Lifeng Fan. Intentqa: Context-aware video intent reasoning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11963–11974,
2023.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. VideoChat: Chat-centric video understanding, 2024a.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024b.

12

https://arxiv.org/abs/2408.05211
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping
Luo, Limin Wang, and Yu Qiao. MVBench: A comprehensive multi-modal video understanding
benchmark, 2024c.

Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu, and Jingjing Liu. HERO: Hierarchical
encoder for video+language omni-representation pre-training, 2020.

Yunxin Li, Xinyu Chen, Baotain Hu, and Min Zhang. LLMs meet long video: Advancing long video
comprehension with an interactive visual adapter in LLMs, 2024d.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection, 2023a.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023b.

Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 7083–7093, 2019.

Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz,
Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023c.

Kevin Lin, Faisal Ahmed, Linjie Li, Chung-Ching Lin, Ehsan Azarnasab, Zhengyuan Yang, Jianfeng
Wang, Lin Liang, Zicheng Liu, Yumao Lu, Ce Liu, and Lijuan Wang. MM-VID: Advancing video
understanding with GPT-4V(ision), 2023d.

Daizong Liu, Xiaoye Qu, Yinzhen Wang, Xing Di, Kai Zou, Yu Cheng, Zichuan Xu, and Pan
Zhou. Unsupervised temporal video grounding with deep semantic clustering, 2022. URL
https://arxiv.org/abs/2201.05307.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Haoyu Lu, Mingyu Ding, Nanyi Fei, Yuqi Huo, and Zhiwu Lu. Lgdn: Language-guided denoising net-
work for video-language modeling, 2022. URL https://arxiv.org/abs/2209.11388.

Fan Ma, Xiaojie Jin, Heng Wang, Yuchen Xian, Jiashi Feng, and Yi Yang. Vista-LLaMA: Reliable
video narrator via equal distance to visual tokens, 2023.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-ChatGPT:
Towards detailed video understanding via large vision and language models. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), 2024.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1,
pp. 281–297. Oakland, CA, USA, 1967.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. Advances in Neural Information
Processing Systems, 36, 2024.

Juhong Min, Shyamal Buch, Arsha Nagrani, Minsu Cho, and Cordelia Schmid. MoReVQA: Exploring
modular reasoning models for video question answering. arXiv preprint arXiv:2404.06511, 2024.

Shehan Munasinghe, Rusiru Thushara, Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan,
Mubarak Shah, and Fahad Khan. Pg-video-llava: Pixel grounding large video-language models.
arXiv preprint arXiv:2311.13435, 2023.

OpenAI. Gpt-4v(ision) system card, 2023a. URL https://api.semanticscholar.org/
CorpusID:263218031.

OpenAI. GPT-4 technical report, 2023b.

OpenAI. GPT-4o blog, 2024. URL https://openai.com/index/hello-gpt-4o/.

13

https://arxiv.org/abs/2201.05307
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2209.11388
https://api.semanticscholar.org/CorpusID:263218031
https://api.semanticscholar.org/CorpusID:263218031
https://openai.com/index/hello-gpt-4o/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jongwoo Park, Kanchana Ranasinghe, Kumara Kahatapitiya, Wonjeong Ryoo, Donghyun Kim, and
Michael S. Ryoo. Too many frames, not all useful:efficient strategies for long-form video qa, 2024.
URL https://arxiv.org/abs/2406.09396.

Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yi Xu, Xiang Wang, Mingqian Tang, Changxin Gao,
Rong Jin, and Nong Sang. Learning from untrimmed videos: Self-supervised video representation
learning with hierarchical consistency, 2022.

Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and Michael S. Ryoo. Understanding long
videos in one multimodal language model pass, 2024.

Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. TimeChat: A time-sensitive multimodal
large language model for long video understanding, 2024.

Kate Sanders, Nathaniel Weir, and Benjamin Van Durme. TV-TREES: Multimodal entailment trees
for neuro-symbolic video reasoning, 2024.

Yuzhang Shang, Bingxin Xu, Weitai Kang, Mu Cai, Yuheng Li, Zehao Wen, Zhen Dong, Kurt
Keutzer, Yong Jae Lee, and Yan Yan. Interpolating video-llms: Toward longer-sequence lmms in a
training-free manner, 2024. URL https://arxiv.org/abs/2409.12963.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, Yan Lu, Jenq-Neng Hwang, and Gaoang Wang. Moviechat:
From dense token to sparse memory for long video understanding, 2024.

Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong Wang.
EVA-CLIP-18B: Scaling clip to 18 billion parameters. arXiv preprint arXiv:2402.04252, 2024.

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11888–11898, 2023.

Reuben Tan, Ximeng Sun, Ping Hu, Jui hsien Wang, Hanieh Deilamsalehy, Bryan A. Plummer, Bryan
Russell, and Kate Saenko. Koala: Key frame-conditioned long video-LLM, 2024.

Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models, 2024a. URL https://arxiv.org/abs/2407.
00634.

Jue Wang, Gedas Bertasius, Du Tran, and Lorenzo Torresani. Long-short temporal contrastive
learning of video transformers, 2022a.

Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu Yuan, Zuxuan Wu, and Yu-Gang Jiang.
ChatVideo: A tracklet-centric multimodal and versatile video understanding system, 2023a.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024b.

Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, and
Yu-Gang Jiang. Masked video distillation: Rethinking masked feature modeling for self-supervised
video representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6312–6322, 2023b.

Shijie Wang, Qi Zhao, Minh Quan Do, Nakul Agarwal, Kwonjoon Lee, and Chen Sun. Vamos:
Versatile action models for video understanding, 2023c.

Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. VideoAgent: Long-form video
understanding with large language model as agent. arXiv preprint arXiv:2403.10517, 2024c.

Xijun Wang, Junbang Liang, Chun-Kai Wang, Kenan Deng, Yu Lou, Ming Lin, and Shan Yang. Vila:
Efficient video-language alignment for video question answering, 2024d.

14

https://arxiv.org/abs/2406.09396
https://arxiv.org/abs/2409.12963
https://arxiv.org/abs/2407.00634
https://arxiv.org/abs/2407.00634


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
discriminative learning. arXiv preprint arXiv:2212.03191, 2022b.

Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
Chen, Yaohui Wang, Conghui He, Ping Luo, Ziwei Liu, Yali Wang, Limin Wang, and Yu Qiao.
Internvid: A large-scale video-text dataset for multimodal understanding and generation, 2024e.
URL https://arxiv.org/abs/2307.06942.

Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video
understanding. arXiv preprint arXiv:2403.15377, 2024f.

Ying Wang, Yanlai Yang, and Mengye Ren. LifelongMemory: Leveraging LLMs for answering
queries in long-form egocentric videos, 2024g.

Yuxuan Wang, Yueqian Wang, Pengfei Wu, Jianxin Liang, Dongyan Zhao, and Zilong Zheng. LSTP:
Language-guided spatial-temporal prompt learning for long-form video-text understanding, 2024h.

Zhanyu Wang, Longyue Wang, Zhen Zhao, Minghao Wu, Chenyang Lyu, Huayang Li, Deng Cai,
Luping Zhou, Shuming Shi, and Zhaopeng Tu. Gpt4Video: A unified multimodal large language
model for lnstruction-followed understanding and safety-aware generation, 2023d.

Ziyang Wang, Yi-Lin Sung, Feng Cheng, Gedas Bertasius, and Mohit Bansal. Unified coarse-to-fine
alignment for video-text retrieval. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 2816–2827, October 2023e.

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models, 2024.

Chao-Yuan Wu, Yanghao Li, Karttikeya Mangalam, Haoqi Fan, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. MeMViT: Memory-augmented multiscale vision transformer for efficient
long-term video recognition, 2022.

Fanyi Xiao, Kaustav Kundu, Joseph Tighe, and Davide Modolo. Hierarchical self-supervised
representation learning for movie understanding, 2022a.

Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
answering to explaining temporal actions. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9777–9786, 2021.

Junbin Xiao, Pan Zhou, Tat-Seng Chua, and Shuicheng Yan. Video graph transformer for video
question answering, 2022b. URL https://arxiv.org/abs/2207.05342.

Jiaqi Xu, Cuiling Lan, Wenxuan Xie, Xuejin Chen, and Yan Lu. Retrieval-based video language
model for efficient long video question answering. arXiv preprint arXiv:2312.04931, 2023.

Zongxin Yang, Guikun Chen, Xiaodi Li, Wenguan Wang, and Yi Yang. DoraemonGPT: Toward
understanding dynamic scenes with large language models (exemplified as a video agent), 2024.

Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for
video localization and question answering. Advances in Neural Information Processing Systems,
36, 2024a.

Shoubin Yu, Jaehong Yoon, and Mohit Bansal. CREMA: Multimodal compositional video reasoning
via efficient modular adaptation and fusion. arXiv preprint arXiv:2402.05889, 2024b.

Abhay Zala, Jaemin Cho, Satwik Kottur, Xilun Chen, Barlas Oguz, Yashar Mehdad, and Mohit
Bansal. Hierarchical video-moment retrieval and step-captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23056–23065, June 2023.

Bowen Zhang, Hexiang Hu, and Fei Sha. Cross-modal and hierarchical modeling of video and text.
In Proceedings of the european conference on computer vision (ECCV), pp. 374–390, 2018.

15

https://arxiv.org/abs/2307.06942
https://arxiv.org/abs/2207.05342


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang Wang, Shoubin Yu, Mohit Bansal, and Gedas
Bertasius. A simple LLM framework for long-range video question-answering. arXiv preprint
arXiv:2312.17235, 2023a.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding, 2023b.

Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
arXiv preprint arXiv:2406.16852, 2024a. URL https://arxiv.org/abs/2406.16852.

Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/.

Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video representations from
large language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6586–6597, 2023.

16

https://arxiv.org/abs/2406.16852
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDIX

In this Appendix, we present the following:

• Limitations and Broader Impact (Sec. A).

• Additional quantitative results (Sec. B).

• Additional ablation study for VIDEOTREE framework (Sec. C).

• The detailed algorithm for VIDEOTREE (Sec. D).

• Additional implementation details (Sec. E).

• Additional qualitative analysis (Sec. F).

• License information (Sec. G).

A LIMITATIONS AND BROADER IMPACT

Limitations. Like all LLM-based video-reasoning systems (including dense sampling) our method
is limited by the ability of the captioner to accurately capture the contents of sampled frames. However,
our method’s modular nature means that as captioners improve, we can easily include them into the
VIDEOTREE framework; similarly, we can use increasingly strong LLMs as the reasoning backbone
of VIDEOTREE. While VIDEOTREE is training-free, it includes a small number of hyperparameters.
In Sec. C, we ablate these hyperparameters, showing that VIDEOTREE outperforms the uniform-
sampling baseline regardless of the choice of max depth and branch width. Thus, while better
hyperparameters can benefit the method, even with sub-optimal settings VIDEOTREE outperforms
the uniform baseline.

Broader Impact. Our results indicate that we have the best of both worlds: improved accuracy
and improved efficiency. Given the importance of long video reasoning tasks, improving accuracy
has obvious broader implications for building more usable video reasoning systems, which could
contribute to a wide variety of positive applications. Efficiency improvements also contribute to the
applicability of long video systems, as reducing latency and computational cost can speed up adoption.
Furthermore, since both VLM captioners and LLM reasoners generally improve with increased scale,
reducing the number of calls to them will become increasingly important; we expect the efficiency
benefits coming from our method to play an even larger role in the future. Our work does not have
any particularly relevant potential for negative applications or misuse beyond the standard caveats
that apply to all machine learning systems.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 COMPARISON WITH ADVANCED VIDEOLLMS ON EGOSCHEMA AND NEXT-QA.

In Tab. 6, we compare VIDEOTREE with advanced VideoLLMs (Wang et al., 2022b; 2024f; Cheng
et al., 2024; Wang et al., 2024a) on EgoSchema and NExT-QA benchmarks. Without any video-
specific training, VIDEOTREE gets comparable performance on EgoSchema fullset and slightly worse
results on Next-QA results, comparison with the methods was trained on large-scale video data and
massive GPU hours.

B.2 INTENTQA RESULTS

In this section, we report the IntentQA (Li et al., 2023) results of VIDEOTREE and compare with
existing methods.

We first introduce IntentQA (Li et al., 2023), which contains 4,303 videos and 16K multiple-choice
question-answer pairs focused on reasoning about people’s intent in the video. We perform a zero-shot
evaluation on the test set containing 2K questions. The videos are more than 44s in average length.
We compare our methods with both training-free (Kahatapitiya et al., 2024; Zhang et al., 2023a; Yu
et al., 2024a; Kim et al., 2024) and fine-tuned baseline (Wang et al., 2023c; Xiao et al., 2022b).
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As shown in Tab. 7, our training-free VIDEOTREE approach achieves 66.9% zero-shot accuracy on
the test set, surpassing the existing training-free approaches LLoVi (Zhang et al., 2023a) with 2.7%
improvements and even closing the gap with finetuned method Vamos (Wang et al., 2023c). This
result shows that VIDEOTREE improves performance in answering questions about intent, which is
challenging since intent understanding (Li et al., 2023) requires the model to understand the various
video contexts, including the immediate communicative context, the shared experience, and the
commonsense.

Table 6: Comparision with advanced
VideoLLMs on EgoSchema and NExT-
QA.

Method ES NExT-QA
InternVideo 32.1 -
Tarsier 61.7 79.2
VideoChat2 60.2 61.7
VideoLLaMA 2 63.9 -

Traning-free Methods
VIDEOTREE (ours) 61.1 75.6

Table 7: IntentQA Results

Method Accuracy
Fine-tuned Method
VGT 51.3
Vamos 68.5

Traning-free Methods
LangRepo 59.1
SeViLA 60.9
LLoVi 64.0
IG-VLM 64.2

VIDEOTREE (ours) 66.9

C ADDITIONAL ABLATION STUDY

In this section, we report additional ablation studies for VIDEOTREE framework. First, we ablate
the LLM calls for our method. Then, we show the effect of the different hyperparameter settings for
VIDEOTREE. Finally, we analyze the effect of different VLM/LLM designs for VIDEOTREE.

LLM Calls. In Tab. 8, we report the number of average LLM calls of VIDEOTREE and compare with
VideoAgent (Wang et al., 2024c).VIDEOTREE achieves better results on much less LLM calls under
similar caption numbers (only about 30% LLM calls are needed). This is due to the adaptive and
hierarchical structure of VIDEOTREE which could extracts more keyframes faster instead of searching
one frame a time. This results highlight the advantage of the hierarchical nature of VIDEOTREE in
both efficiency and effectiveness, comparing to the non-hierarchical approaches.

Hyperparameter Analysis.

In Tab. 9, we study the effect of the branch width of the tree-based representation for the VIDEOTREE.
The best performance is obtained when the branch width is set to 4. As with depth, excessive branch
width reduces the VIDEOTREE performance due to the information overwhelming to the LLM;
however, even with the worst branch width setting, VIDEOTREE still outperforms the baseline.

Table 8: The comparison of average LLM calls for VIDEOTREE and VideoAgent (Wang et al., 2024c)
(estimated) under similar frame settings on EgoSchema subset. Results show that VIDEOTREE
achieves better results on much less LLM calls.

Caption Number Avg LLM Calls ES Subset Acc
VideoAgent

6.4 10.2 58.4
8.4 10.2 60.2
11.0 9 57.4

VIDEOTREE (ours)
7.1 2.3 61.0
9.7 2.5 61.6
11.3 2.8 62.2
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Table 9: The effect of different settings for branch width of VIDEOTREE. When the branch width
is set to 4, VIDEOTREE achieves the best performance on the EgoSchema subset. Reducing the
branch width makes the model more efficient while retaining performance, outperforming all existing
approaches.

Branch Width ES Acc↑ #Frame↓
2 64.4 43.5
3 65.0 54.6
4 66.2 62.4
5 64.2 72.5

Uniform Baseline 61.2 180

In Tab. 10, we study the effect of the max breadth of the adaptive tree-based representation. The
results indicate that even with a smaller max tree breadth, VIDEOTREE achieves good performance
while using much fewer frames. Increasing the breadth generally increases performance, with the
best performance when the max breadth is set to 32. However, having an excessive max breadth
leads to worse results, suggesting that incorporating too much information in the adaptive tree-based
representation limits the LLM reasoning ability. This links back to the intuition of having an efficient
representation for the LLM reasoning over long videos.

In Tab. 11, we study the effect of the threshold on the number of highly relevant clusters, which
controls the iterative process of the adaptive breadth expansion process. The best performance is
obtained when the branch threshold is set to 4. Reducing the threshold improves the efficiency while
retaining strong performance compared to the baseline results.

Table 10: The effect of different settings for
the max breadth of the first level of the tree.
Results show that when the max breadth is
set to 32, VIDEOTREE obtains the best perfor-
mance. Reducing the max breadth improves
efficiency while retaining performance.

Max Breadth ES Acc #Frame
8 63.0 26.9
16 64.0 49.0
32 66.2 62.4
64 63.2 94.6

Uniform Baseline 61.2 180

Table 11: The effect of different settings for
the threshold on the number of highly relevant
clusters. Results show that when the threshold
is set to 4, VIDEOTREE obtains the best per-
formance. Reducing the threshold improves
efficiency while retaining performance.

Max Breadth ES Acc #Frame
2 63.6 13.9
3 64.4 32.2
4 66.2 62.4
5 64.8 79.2

Uniform Baseline 61.2 180

VLM Captioner. In Tab. 12, we compares the performance of the best captioner (LaViLA for
EgoSchema and CogAgent for NExT-QA) with using a LLaVA-1.6-7B (Liu et al., 2024) captioner
everywhere. We observe a comparable performance on NExT-QA compared with the best captioner,
while still outperforming all other existing methods in Tab. 1. We also observe a drop in performance
on the EgoSchema subset while using LLaVA-1.6 captioner, this is likely due to a lack of egocentric
data during LLaVA training, which is needed for strong performance on EgoSchema. In the future, we
would like to see strong unified captioner that operate well across datasets; these would fit seamlessly
into the VIDEOTREE framework, further boosting the performance.

LLM Reasoner. We ablate the design choice of captioner and LLM for the VIDEOTREE framework in
Tab. 13. With a better LLM, VIDEOTREE can achieve better performance on long video understanding
tasks, indicating the potential VIDEOTREE to improve as its modules become more advanced. Notably,
our GPT-3.5 variant substantially outperforms existing methods with the same LLM and standard QA
prompts (VideoAgent (Wang et al., 2024c) 48.8%, LLoVi (Zhang et al., 2023a) 51.8%), achieving
57.6% accuracy on EgoSchema subset.
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Table 12: Comparing accuracy with VIDEOTREE using the same captioner throughout (LLaVA1.6-
7B) and best captioner for each benchmarks.

Captioner EgoSchema Sub NExT-QA
LLaVA-1.6-7B 59.2 73.6
Best Model 66.2 75.6

Table 13: The effect of different design choices of the LLM Reasoner for VIDEOTREE.

Method LLM ES Acc
LLoVi GPT-3.5 51.2
VideoAgent GPT-3.5 48.8
VIDEOTREE (Ours) GPT-3.5 57.6
LLoVi GPT-4 61.2
VideoAgent GPT-4 60.2
VIDEOTREE (Ours) GPT-4 66.2

D DETAILED ALGORITHM

In Algorithm 1, we present the algorithm behind VIDEOTREE.

Algorithm 1 VIDEOTREE

Require: Video frames V , query Q, number of clusters k, threshold for the number of high-relevance
cluster rele_num_thresh, maximum number of clusters allowed max_breadth, branch width
w, visual encoder E, LLM Fllm, captioner Fvlm, cluster information C, relevance score R,
tree-based video representation Tree

1: k ← k_init
2: while k ≤ max_breadth do ▷ Adaptive breadth expansion
3: C ← VisualClustering(E, V, k)
4: Cap← ClusterCaptioning(Fvlm, V, C)
5: R← RelevanceScoring(Fllm, C,Q,Cap)
6: if count(r ∈ R | r = high) ≥ rele_num_thresh then
7: Tree← Tree.append(C) ▷ First level of VIDEOTREE
8: break
9: end if

10: k ← k ∗ 2
11: end while
12: for Ci ∈ C do ▷ Relevance-guided depth expansion
13: Ĉi ← DepthExpansion(E,Ci, Ri, w)

14: Tree← Tree.append(Ĉi) ▷ Adding hierarchy of VIDEOTREE
15: end for
16: Cap← GetCaptions(Fvlm, V, T ree) ▷ LLM Reasoning
17: pred_answer ← LLMReasoning(Fllm, Cap,Q)
18: return pred_answer

E ADDITIONAL IMPLEMENTATION DETAILS

Additional VIDEOTREE Implementation Details. For clustering, we use the kmeans_pytorch
library. The hyper-parameter setting for max_breadth, max_depth, branch_width and
rele_num_thresh on the EgoSchema and Video-MME benchmark is 32, 3, 4 and 4 and for NExT-
QA, we set the hyper-parameter as 8, 3, 2, and 3.

Lifelong Memory Reproduce Details. In Tab. 1, we report the main results of LifelongMemory
(Wang et al., 2024g) which is lower than the number than they reported in their paper. Here, we
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Table 14: VIDEOTREE with relevance scoring prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of about
caption_number frame captions sparsely sampled from the video (#C means the first
person view, and #O indicates another). The ultimate goal is to answer a question related to
this video, choosing the correct option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy of
your response. After selecting your answer, rate your confidence level in this choice on a scale
from 1 to 100, where 1 indicates low confidence and 100 signifies high confidence. Please
provide a concise one-sentence explanation for your chosen answer. If you are uncertain
about the correct option, select the one that seems closest to being correct. Meanwhile,
could you provide a relevance score for each frame caption to evaluate their relevance with
the query-answering process. The score is between 1,2,3, where 1 indicates low relevance
and 3 signifies high relevance. Please return the relevance score in the format of a list of
caption_number scores.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, confidence and frame relevance are (please response in the
format of ’prediction:, explanation:, confidence:, frame relevance:’)

Assistant
prediction, explanation, confidence, frame relevance

introduce our reproduce process in detail. For captions, since LifelongMemory authors do not provide
the exact caption data/path, we directly utilize the same captioner from VIDEOTREE method and all
other existing works (LaViLA) and extract the captions by 0.5FPS according to LifelongMemory
paper. We then use their code to run the experiments on EgoSchema, however, the results are low
and we observed a low success rate of the QA process (only about 80% success samples). We then
update their output format/process code, which boost performance by about 10% and get the results
in Tab. 1, but still lower than their paper results. Thus, for fair comparison, we directly reported the
reproduced results.

Prompt Details. We provide detailed prompts for the relevance scoring prompt in Tab. 14 and LLM
reasoning prompt in Tab. 15 on the EgoSchema benchmark.

Experiments Compute Resources. All experiments are conducted on 4 (or less) NVIDIA-A6000
GPU and Azure Cloud APIs (for OpenAI models). The minimal GPU memory requirement is 24GB.

F ADDITIONAL QUALITATIVE ANALYSIS

Additional Visualization. In Fig. 5 we show another visualization from VIDEOTREE. Here,
VIDEOTREE localizes a single key activity (embroidering a cloth) taking place in the video and
dynamically expands its constituent frames to answer the question correctly using a minimal number
of frames.

Failure Case. We provide the qualitative visualization in Fig. 6. We find the failure was due to the
following factors: a. The video had little scene change and multiple similar repeated actions (washing
dishes). b. As a result, when VIDEOTREE explores to more fine-grained details, the captioners give
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Table 15: VIDEOTREE with LLM reasoning prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of frame
captions sparsely sampled from the video (#C means the first person view, and #O indicates
another). The ultimate goal is to answer a question related to this video, choosing the correct
option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy
of your response. After selecting your answer, rate your confidence level in this choice on
a scale from 1 to 100, where 1 indicates low confidence and 100 signifies high confidence.
Please provide a concise one-sentence explanation for your chosen answer. If you are
uncertain about the correct option, select the one that seems closest to being correct.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, and confidence is (please response in the format of ’prediction:,
explanation: ,confidence:’)

Assistant
prediction, explanation, confidence

detailed (with a bit of a hallucination) description, which misses the correct keyword (dish) in its
selected captions. c. With stronger captioners, this failure case could be resolved by our framework.

G LICENSE

We will make our code and models publicly accessible. We use standard licenses from the community
and provide the following links to the licenses for the datasets, codes, and models that we used in this
paper.

LLoVi: MIT

LifelongMemory: MIT

NExT-QA: MIT

IntentQA: IntentQA

EgoSchema: Ego4D license

Kmeans-pytorch: MIT

PyTorch: BSD-style

Huggingface Transformers: Apache

Torchvision: BSD 3-Clause

SKLearn: BSD 3-Clause
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https://github.com/CeeZh/LLoVi/blob/main/LICENSE
https://github.com/Agentic-Learning-AI-Lab/lifelong-memory/blob/main/LICENSE
https://github.com/doc-doc/NExT-QA/blob/main/LICENSE
https://github.com/JoseponLee/IntentQA?tab=readme-ov-file
https://ego4ddataset.com/ego4d-license/
https://github.com/subhadarship/kmeans_pytorch/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE
https://github.com/pytorch/vision/blob/master/LICENSE
https://github.com/scikit-learn/scikit-learn/blob/main/COPYING
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1

#C C crochets 
the garment

#C C Adjusts a 
piece of knitted 
fabric on a lap

#C C folds the 
fabric

#C C picks up 
the scissors 
from the table

#C C picks a 
needle from the 
fabric

1 1 1 1 1 31

#C C removes 
the crochet hook 
from the fabric

#C C aligns the 
fabric

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C picks the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C stretches 
the crochet fabric

[Question]: What was the primary activity taking place in the 
video, and how did it lead to secondary activities related to it?

A: Currently, c is skillfully knitting a beautiful cloth by hand.
B: Currently, person c is diligently sewing a piece of cloth.
C: C is embroidering a cloth.
D: C is crocheting a cloth.
E: Currently, c is skillfully weaving a beautiful cloth fabric.

Scores

Figure 5: Qualitative examples of VIDEOTREE keyframes and captions selection. Red options
are answered wrongly with uniformly sampled frames. Green options are answered correctly by
VIDEOTREE. Best viewed in color.

[Question]: Taking into account all the actions performed by c, 
what can you deduce about the primary objective and focus 
within the video content?
Option A: C is cooking. 
Option B: C is doing laundry.
Option C: C is cleaning the kitchen.🌲
Option D: C is cleaning dishes.
Option E: C is cleaning the bathroom.

Scores 2 1 111 2 13

#C C  washes 
food

#C C picks up a 
sponge

#C C cleans the 
tray with the 
sponge

#C C cleans the 
chopping board 
with the sponge

#C C moves the 
sponge on the sink

#C C picks the 
cloth

#C C moves the 
sponge on the sink

#C C washes the 
glass

#C C  washes 
food

#C C picks the 
dish lid

#C C picks up a 
sponge

#C C puts the sink 
down

#C C moves the 
sponge on the 
sink

#C C moves the 
sponge on the sink

#C C washes the 
plate

#C C scrubs the 
plate with the sponge

#C C cleans the 
small bowl.

#C C washes the 
hand

Figure 6: Failure Case of VIDEOTREE.
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