Deep implicit surface reconstruction of 3D plant geometry from point cloud
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Abstract

Reconstructing the geometry of crops from 3D point cloud
data is useful for a variety of plant phenotyping applications.
Due to very thin and slender segments, obtaining accurate
surface geometry representations from the 3D point cloud
data is challenging. Further, defects (noise) and holes (spar-
sity or occlusion) in the point cloud data might be errors in
the reconstructed plant structures. While the reconstruction
of a surface from an input point cloud has been studied for
decades, recent work on deep learning frameworks that learn
neural implicit representations have shown significant promise
in accurately reconstructing 3D data, especially under noisy
and sparse sampling conditions. However, these approaches
have not yet been deployed for slender members. In this work,
we explore neural implicit representations to reconstruct the
surfaces of fully developed maize plants using data acquired
from Terrestrial Laser Scanners (TLS). We compare several
neural implicit approaches with more traditional methods of
surface reconstruction. We also analyze the robustness of these
neural implicit methods for 3D plant data reconstruction. We
finally utilize the predicted surface to infer structural features
from the data. This approach paves the way for detailed flow/-
transport simulations of agricultural domains from 3D point
cloud data.

Introduction

Plant phenomics has garnered significant interest in recent
years due to increasing demand for understanding and unrav-
eling the relationships between phenotype, genotype, man-
agement, and the environment, particularly using machine
learning approaches (Singh et al. 2016; Guo et al. 2021). Such
quantitative relationships can be used in a variety of ways—
genome-wide association studies, ideotype design, precision
management, climate-resilient breeding—to provide insight
into the agricultural decision-making process (Zhou et al.
2021; Singh et al. 2021). Extracting 3D plant traits is particu-
larly useful as they provide additional nuanced information
about growth/phyllotaxy, light interception, and information
that can be directly incorporated into detailed crop models
and agricultural simulations. However, extracting 3D traits is
significantly challenging due to the data size (from 3D point
cloud data) or computational complexity (from structure from
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Figure 1: A neural implicit architecture for point cloud recon-
struction. It takes in the input points (x,y,z) and predicts the
implicit function value, representing the signed distance field
for a given geometry.

motion approaches). Here, we explore a generalized approach
to construct surface representations of full plants from noisy
and sparse 3D point cloud measurements. The availability of
such an approach will significantly simplify the workflow of
pipelining 3D data to detailed agricultural simulators.

A recent surge in 3D imaging devices has ushered in an
abundance of point cloud data allowing for improved tracking
of plant growth and plant traits. A point cloud is a common
form of 3D data obtained using LIDAR, laser scanners, or
multi-view images of an object. It represents several points
(sampled over the surface of the object) in the 3D Euclidean
space. Depending on the method of point cloud acquisition,
additional attributes such as surface normals, point area, and
point color are also acquired along with the point coordinates.
In this paper, we use the raw point cloud for our analysis.
Using the 3D point cloud data gives us a better understanding
of plants than traditional 2D imaging techniques because of
the natural availability of more information about their ge-
ometry. Particularly, reconstructing plant surfaces from point
cloud data provides information such as leaf area, phyllotaxy,
and volume of the plant (Pound et al. 2014). Further, we can
directly incorporate such data structures into agricultural sim-
ulators that can model light interception (Bailey 2019), water
transport (Kempthorne et al. 2014), as well as plant scale
gas transport. Since most of these computational approaches
require the 3D geometry to be represented using a watertight,
2-manifold surface representation, we propose to use implicit
surface reconstruction approaches.



This paper focuses on the deep learning-based implicit
surface reconstruction of very slender, complex, and flexible
structures observed in plant shoots or crops such as maize
and wheat. This problem (although a subset of the generic
problem of surface reconstruction) brings in several natural
challenges. First, the stem is often made of slender members
in a plant, and the leaves are made of thin and (possibly non-
manifold) surfaces, which makes the geometrical features of
the plant very complicated and difficult to reconstruct. Sec-
ond, plants are topologically complex, and to represent them
using a manifold, watertight geometry is challenging and may
require many surfaces stitched together carefully. Finally, de-
pending on the method of point cloud acquisition, there may
be only partial information and several imperfections such as
noisy or misoriented normals.

While several traditional methods have tackled the prob-
lem of surface reconstruction for decades (Berger et al. 2017;
Jacobson, Kavan, and Sorkine-Hornung 2013), most recent
works use deep learning-based approaches to reconstruct dif-
ferent surface representations from input point clouds. These
approaches can be broadly grouped into the following cate-
gories: (i) Representing shapes as volumetric functions (Choy
et al. 2016; Hine, Tulsiani, and Malik 2017); (ii) Fitting a
collection of geometric primitives such that the union of these
shapes captures the underlying geometry (Gao et al. 2019;
Sharma et al. 2019, 2020); (iii) Attempting to infer a mesh
representation directly from the input point cloud (Sinha et al.
2017; Groueix et al. 2018); and (iv) Using deep learning to
predict an implicit functional representation (called neural
implicit representation) whose O-level set represents the de-
sired surface (Atzmon and Lipman 2020; Gropp et al. 2020;
Williams et al. 2021; Sitzmann et al. 2020). Recently, there
has been a surge in the use of neural implicit methods for
point cloud reconstruction. Traditional representations such
as voxels, meshes, and point cloud representations are not
storage efficient because the resolution of the output is di-
rectly dependent on the complexity of the input. The quality
of reconstructions obtained is also dependent on the output
size constraints introduced by the feed-forward network. On
the other hand, implicit representations are not coupled to
the spatial resolution and are ideal for real-world data where
the inputs are higher-dimensional signals that are memory
intensive and can represent highly complex geometries.

In this work, we explore the application of implicit meth-
ods for surface reconstruction on 3D plant data. We focus
specifically on recent network architectures for learning neu-
ral implicit representations. Our key contributions are:

1. Exploring several surface reconstruction approaches (tra-
ditional and neural representation-based) from 3D point
cloud data of single plants.

2. Comparison of the reconstructed shape of a synthetically
generated point cloud from a non-manifold triangular
mesh of a plant to the base mesh, in the context of surface
reconstruction of slender structures.

3. Surface reconstruction of real-life point cloud data of
plants obtained using terrestrial laser scanners using the
best reconstruction approach.

Methods

Classical methods for surface reconstruction fit a surface
over dense input point clouds by extracting the information
from oriented points clouds using Poisson’s reconstruction or
approximating implicit surface functions using radial basis
functions (RBF) (Kazhdan, Bolitho, and Hoppe 2006; Carr
etal. 2001). These methods work on a single shape and do not
rely on an entire dataset for modeling. Deep learning-based
approaches that learn explicit representations adopt various
data-driven techniques for inferring surfaces from the input
geometry (Sharma et al. 2019; Groueix et al. 2018). These
methods rely on graph neural networks, or encoder-decoder
architectures, to reduce point clouds into latent vectors that
generate a complete shape from the priors learned by the deep
learning framework (Mescheder et al. 2019). While such
explicit representations have achieved significant success,
they are still heavily coupled to the resolution and complexity
of the input. We focus on more recent network architectures
that learn implicit representations for every input. An neural
implicit representation takes in the input coordinates in the
euclidean space (z,y, z) and predicts an implicit functional
representation of the object NN (z,y, z) as shown in Fig. 1.
One of the most common implicit representations used is the
distance fields. Distance fields refer to the minimum distance
value to the object boundary at a given point (x, y, z). While
most of the neural implicit architectures use signed distance
field as the implicit function, the strategies and loss functions
used are different.

SAL: Sign Agnostic Learning

In Sign Agnostic Learning (Atzmon and Lipman 2020), the
input is the coordinates, and the output is the signed distance
field. For training the network, they sample a lot of points in
the domain and compute the unsigned distance fields. Using
a sign-agnostic loss function, they can obtain the signed dis-
tance fields. The sign-agnostic loss function optimizes the
network’s weights such that the zero-level set of the function
is a surface approximating the input geometric data. Addition-
ally, the authors make use of an unsigned distance measure
and an unsigned similarity function. The former encourages
the function learned by the network to resemble the unsigned
distance, and the latter generates a local minimum of the loss
where the function learned by the network is considered to be
a signed function, such that its absolute value approximates
the unsigned distance. The neural architecture consists of an
8-layer MLP (multi-layer perceptron) with 512 wide hidden
layers and a single skip connection to the middle layer.

IGR : Implicit Geometric Regularization

Finding implicit surface representations directly from raw
data is challenging. In prior methods, the learning stages of
the network are heavily decoupled from the reconstruction
stage, and as a result, the information learned about one kind
of shape is not used to improve the reconstruction of other
similar shapes. In addition to this, despite having an unsu-
pervised isosurface reconstruction process, even in methods
like Sign Agnostic Learning, the proposed loss functions use
iterative sampling on the zero-level sets.



In Implicit Geometric Regularization, the surface is pre-
dicted without any loss term on the level set(Gropp et al.
2020). The reconstructed surface is generated using stochas-
tic gradient optimization of a simple loss function modeled
after the Eikonal equation to fit a multi-layer perceptron to
the input point cloud.

NS : Neural Splines

In this method, the authors seek to bridge the gap between
traditional reconstruction methods that use kernels and neural
network-based methods by leveraging the deep connections
between kernels and neural networks (Williams et al. 2021).
They propose using random feature kernels that arise from
infinitely wide shallow ReL.U networks. They claim that
kernels instead of neural networks circumvent the slow con-
vergence times introduced by methods like SAL and IGR,
which use ReLU activation functions, and SIREN, which
uses sinusoidal activations for learning surface from the input
point cloud.

SIREN: Sinusoidal Representation Network

In this method, the proposed network architectures learn im-
plicit functions that capture the finer details hidden under
natural inputs (Sitzmann et al. 2020). Sinusoidal Represen-
tation Networks (or SIRENS) use sine activation functions
and learn a set of priors on the inputs and their derivatives
for each input data point. SIRENs can also work on diverse
input formats like images, audio, video, and even solving par-
tial differential equations such as the Poisson’s and Eikonal
equation.

Mathematically, SIRENs explore a class of problems that
can be represented as

F(z,6,V:6,V20,..) = 0,6 : x — ¢(x) ey

SIREN attempts to find an implicit function ¢ that satisfies
a group of M constraints that correlate the function and its
derivatives to quantities a(x). This can be expressed as:
Compute ¢(x) subject to constraints  C,(a(z), o(z),
Vo(z),...) =0,V € Qp,,m=1,...M.

The network then tries to minimize a loss function that
penalizes any deviation from the original constraints on the
input domain €2,,,:

L= /Q ;19,”(X)||Cﬁ(a(x)7(b(x),Vqﬁ(x)...)de. 2)

The network architecture for SIREN uses the sine function
as a periodic activation function to generate neural implicit
representations:

¢(X) = Wn(¢n—l-¢n—2---¢0)(x) + bn (3)

where the input x; maps to the output ¢;(x;) as sin(W;x; +
b;). ¢; represents each layer in the network and it comprises
an affine transformation computed using a weight matrix W;
and biases b;, after which a non-linear sine activation function
is applied to each component of the resulting vector.

For our experiments, we leverage the potential of SIREN
to represent shapes using learned signed distance functions
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Q

Figure 2: The input to SIREN is a collection of on-surface
points from the input point cloud and local and global off-
surface points. The black points represent the on-surface
points. The green and violet points denote the local and global
off-surface points, respectively.

(SDF). An SDF measures the distance of a point €2 of the
point cloud sample space from the boundary points €2,,,. We
train a network that maps the input point coordinates (x, y, z)
to signed distance values. In addition to the input point cloud
(on-surface points), we provide samples of local and global
off-surface points as input to the network (see Fig. 2). For
the local off-surface points, we use a distribution defined as
the average of a uniform distribution and a sum of Gaussians
centered at the point cloud, with a standard deviation equal
to the distance of the k™ nearest neighbor (k set to 50, by
default). For the global off-surface points, we use a random
uniform distribution. We used the same number of on-surface
points, local and global off-surface points.

SIRENS offer the unique distinction of learning from com-
plicated signals since the derivative of the sine activation
function used is also a phase-shifted sine. This allows us
to impose multiple constraints that amount to solving the
Eikonal equation. The main constraint of the Eikonal bound-
ary value equation is that the norm of spatial gradients is 1
everywhere. For training our network, the model ¢(z) learns
using points sampled from the surface of the point cloud
where ¢(x) = 0. The loss function for our network is defined
as follows:
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The second term indicates that for points on the surface,
the SDF should be zero. It also makes sure the gradient of the
SDF and the normal vector align. The third term in the loss
function penalizes off-surface points to ensure SDF values
are close to zero.

Dataset

In this paper, we perform two tasks: (i) a comparison of all
the above-mentioned neural implicit representations along
with some traditional surface reconstruction approaches. (ii)
we then use the best surface reconstruction approach for
obtaining neural implicit representations for real-life point
clouds of the plant. To this end, we use two different datasets.
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Figure 3: Results of different surface reconstruction methods. From left to right: Ground truth (GT), Poisson Surface reconstruc-
tion (PSR), Winding number (WN), Sign agnostic learning (SAL), Implicit geometric representation (IGR), Neural splines (NS),

Sinusoidal representation network (SIREN).

First, using a non-manifold triangulated mesh of a slender
3D plant, we randomly sample points of arbitrary size to
obtain the point cloud to compare different approaches. Next,
we acquire real-life 3D point cloud data using the Faro Fo-
cus S350 Scanner. The scanner’s angular resolution is 0.011
degrees, corresponding to a 1.5 mm point spacing over a 10
m scanning range. The scanner can acquire point clouds of
up 700 million points (MP) at 1 million points per second.
The plants were cultivated in the field and were harvested
when they reached vegetative maturity and transported to
an indoor room for scanning. The plants were oriented so
that most of their surface was within the scanner’s line of
sight, and there were no overlaps between plants. Individual
plants were cropped out from the scanned point clouds and
stored in separate files using the distance filter and connected
components algorithm.

Results

We explored several implicit surface reconstruction ap-
proaches, both traditional and neural representation-based on
a single plant mesh generated synthetically. Fig. 3 shows the
comparison of different methods to the ground truth. Here,
the ground truth refers to the original non-manifold triangu-
lated mesh used for sampling the point cloud. For the sake of
comparison, we use 300,000 points in the point cloud and use
the raw point coordinates only. Using jet fitting, we compute
the normals and orient them consistently. Using these points
and normals together, we perform surface reconstruction us-
ing several methods as shown in Fig. 3. PSR and WN refer to
Poisson Surface Reconstruction and Winding number-based
reconstruction. Both the approaches are not based on ma-
chine learning, whereas all the other methods use machine
learning. We observe that among all the methods explored,
SIREN provides the best reconstruction of the point cloud.

We make use of the one-sided Chamfer distance and the
Hausdorff distance to quantitatively assess the surface recon-
struction.
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Table 1: Performance of the different reconstruction ap-
proaches: Poisson Surface reconstruction (PSR), Winding
number (WN), Sign agnostic learning (SAL), Implicit geo-
metric representation (IGR), Neural splines (NS), Sinusoidal
representation network (SIREN).

Accuracy CD HD
PSR 54.07  206.27
WN 97.14 81.17
NS 13.43 59.47
SAL 89.09 167.43
IGR 88.98 166.89
SIREN 4.65 14.89

Table 2: Reconstruction time, including training and infer-
ence time for neural approaches.

Speed Time (s)

PSR 54.07
WN 93449.40
NS 184.47
SAL 5635.44
IGR 3586.71

SIREN 444.26

P,eP QJ'EQ
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Here, || P, — Q; || refers to the Ly norm of the difference or

the distance between the two points 15; and Qi. In Table 1,
we compare the accuracy of each method to the original
triangulated mesh. We found that among all the approaches,
SIREN was able to capture the stem and leaf geometries in
the plant most accurately, thus having the least reconstruction
error. Given the maximum bounding box length of 320, the
one-sided HD of 14.89 is less than 5% of the bounding box.



Figure 4: Point cloud reconstruction for three different plants with the input data (left) in green, and the SIREN reconstruction

(right) in cyan.

Figure 5: An Anecdotal example of the reconstructed mesh
using SIREN. Note that, the surface obtained here is water-
tight, 2-manifold and closed.

Further, the time taken for complete reconstruction (includ-
ing the training time and the inference time for obtaining the
surface mesh) is also low for SIREN compared to other meth-
ods such as SAL or WN as shown in Table 2. While there are
methods such as PR and NS that are faster, the accuracy of
the reconstructed surface is much better with SIREN. Further,
PR and NS have additional surfaces outside the central plant
geometry, making the predicted surfaces non-manifold and
not watertight. On the other hand, SIREN obtains a closed
and watertight surface as shown in Fig. 5.

We also performed an ablation study with a different num-
ber of points sampled from the same non-manifold triangular
mesh to understand the number of points required for good
reconstruction. We observe that both the CD and HD reach
low values with around 50,000 points. The CD does not im-
prove much with more points, while the HD, being a more
conservative metric, fluctuates with an increase in points.

—— (CD-os
HD-os
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Reconstruction error
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Figure 6: Reconstruction error (quantified using CD, one-
sided and HD, one-sided) trends with increasing number of
points.

Finally, we show the ability of our method to be able to
reconstruct the shapes well for real-life point cloud of maize
plants using SIREN in Fig. 4. We can obtain an accurate
watertight reconstruction of the plant shapes.

Conclusions

We explored several approaches for surface reconstruction of
slender plant structures from a 3D point cloud. We observed
that SIREN accurately captured the details of a slender 3D
plant. We also used SIREN to reconstruct the geometry of
real-world plants obtained from a terrestrial laser scanner.
While SIREN did provide good reconstructions of the input,
it still does not reconstruct the thin geometry of the plant
leaves. We believe we can resolve this issue by adding an
extra term to the loss function that enforces the thinness of the
leaves. We also plan to use the reconstructed plant surfaces
to perform radiosity calculations and construct the skeleton
of the plants to analyze different plant traits.
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