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Abstract

Large Language Models (LLMs), despite being trained on text alone, surprisingly
develop rich visual priors. These priors allow latent visual capabilities to be
unlocked for vision tasks with a relatively small amount of multimodal data, and
in some cases, to perform visual tasks without ever having seen an image. This
paper aims to demystify this phenomenon. Through systematic analysis, we
reveal that these priors are not uniform but are composed of separable ’perception’
and ’reasoning’ priors with unique scaling trends and origins. We show that an
LLM’s latent visual reasoning ability is predominantly cultivated by pre-training on
reasoning-centric data (e.g., code, math, academia) and scales progressively. This
reasoning prior acquired from language pre-training is transferable and universally
applicable to visual reasoning. In contrast, the perception prior emerges more
diffusely from broad corpora, and perception ability is more sensitive to the vision
encoder and visual instruction tuning data. In parallel, text describing the visual
world proves crucial, though its performance impact saturates rapidly. Leveraging
these insights, we propose a data-centric recipe for pre-training vision-aware LLMs.
The resulting 7B model trained on this recipe for 1T tokens, demonstrates stronger
vision capabilities without compromising language proficiency. Our findings are
grounded in over 100 controlled experiments consuming 500,000 GPU-hours,
spanning the full MLLM construction pipeline—from LLM pre-training to visual
alignment and supervised multimodal fine-tuning—across five model scales, a wide
range of data categories and mixtures, and multiple adaptation setups. Together,
this work provides a new way of deliberately cultivating visual priors from language
pre-training, paving the way for the next generation of multimodal LLMs.

1 Introduction

A compelling phenomenon has emerged at the forefront of Al research: Large Language Models
(LLMs), despite being trained exclusively on vast corpora of text, appear to develop profound priors
about the visual world. This latent capability is paradoxical, suggesting that the statistical patterns
within language might be rich enough to encode fundamental principles of vision, from object
properties to spatial relationships, without ever observing a single image. This emergent visual prior
presents in several surprising and powerful ways:

* Programmatic visual knowledge. LLMs possess a rich visual knowledge, enabling them
to generate executable code that renders complex 2D and 3D scenes, from objects to spatial
layouts (Sharma et al., 2024; Sun et al., 2025; |Ge et al.| 2025} |Ashutosh et al., [2025)). This
demonstrates a grasp of visual concepts without ever seeing a single image. The resulting
synthetic data is of sufficient quality to pre-train standard vision models for successful
generalization to real-world images (Sharma et al., [2024)).
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» Data-efficient visual adaptation. LLMs are highly efficient for visual adaptation. With a
vision encoder, high-level reasoning emerges from instruction tuning on a small scale of
image-text pairs, bypassing the need for massive multimodal pretraining (Alayrac et al.|
2022; |Liu et al., 2023a; |L1 et al., |2023}; (Grattafiori et al., 2024} Tong et al., |2024a; Bai
et al.,2025b)). This data-efficient instruction tuning extends to unified models, where visual
generation are unlocked with minimal data (Tong et al.,[2024b)). Furthermore, this efficiency
enables adaptation to low-level visual tasks using vision-only data (Zheng et al., 2024} |Du
et al.,[2025)), proving that an LLM’s reasoning framework can function independently of
cross-modal alignment.

* LLMs as strong vision encoders. The learned representations of LLMs can directly benefit
pure vision tasks without languages (Kumar et al.|[2024; Pang et al., [2024; |Lai et al., [ 2024;
Bai et al.,|2025a). When repurposed as visual encoders, the transformer layers of LLMs offer
competitive performance on image classification, segmentation, and video understanding,
even surpassing vision-specific backbones (Pang et al.,2024)). These findings suggest that
the hierarchical abstraction and long-range dependency modeling intrinsic to LLMs are
not modality-specific, but rather capture general-purpose computational motifs that are
well-suited to processing visual signals. This is also shown in neuron-level studies, which
have identified multimodal neurons within LLMs that respond to the same abstract concept
regardless of whether it is presented through text or vision (Schwettmann et al., 2023} [Pan
et al., 2023} |Verma et al., |[2024)).

Collectively, these phenomena are not isolated curiosities; they point toward a deeper principle
of representation learning. They lend strong empirical support to the Platonic Representation
Hypothesis (Huh et al.| [2024b; Jha et al.| 2025)), which posits that as models scale across diverse data
and tasks, their latent representations—whether trained on text or images—converge toward a shared,
underlying statistical model of reality. In this view, text and images are different "projections” or
"shadows" of the world, and a powerful enough model can learn the structure of the world itself from
any single projection. The visual priors in LLMs, therefore, may be a direct consequence of them
recovering this unified internal world model from text alone.

These observations motivate a systematic investigation into the visual priors that LLMs acquire
from text-only pre-training. We frame visual priors not as direct perceptual faculties, but as implicit
knowledge or prior vision capabilities encoded in LLMs, whose primary effect is to grant both
enhanced capability for vision tasks and greater ease of transfer to vision. We seek to determine
their origins, dissect whether they form a uniform block of knowledge or are composed of distinct,
separable abilities, and explore how they can be leveraged to build more capable MLLMs. Our
methodology is centered on controlled ablation studies (Allen-Zhul 2024), where we deconstruct
the sources of different visual capabilities. By carefully manipulating pre-training model scale, data
scale, data categories, data mixing ratios, vision-encoders components, and visual instruction tuning
data, we reveal the underlying laws that govern them.

Our work presents the first systematic investigation into the nature and origins of visual priors in the
pre-training of LLMs and shows three key contributions:

* Structure of visual priors. We establish that visual priors can be decomposed into percep-
tual and reasoning components.

* Source of visual priors. We identify that the model’s latent visual reasoning is predom-
inantly cultivated by and scales progressively with reasoning-centric data, whereas its
perception ability emerges more diffusely from broad, diverse data.

* Vision-aware language pre-training. We propose a pre-training data-mixing strategy that
strategically balances reasoning-centric and visually descriptive text to deliberately cultivate
powerful visual priors for training LLMs that can result in stronger multimodal performance.

Beyond our primary findings, our work also introduces two resources valuable for the MLLM
community: (1): Blind visual instruction tuning: A tric that serves as both a practical tool for
improving visual adaptation and a probe to reveal how models can "hack" visual tasks with language.
(2): The Multi-Level Existence Bench (MLE-Bench): A new benchmark specifically designed for
the fine-grained evaluation of a model’s perceptual abilities.
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Ultimately, by demystifying the textual origins of these visual priors, this work contributes to a
more fundamental understanding of how complex, seemingly modality-specific capabilities are
encoded within language, thereby offering a clearer picture of the internal "world models" that foun-
dation models learn from text alone and providing empirical support for the Platonic Representation
Hypothesis.

2 Problem Formulation
In this section, we introduce our default training and evaluation settings.
2.1 Training protocol.

LLM pre-training setup. We follow standard practices and pre-train a suite of decoder-only
Transformer models that closely adhere to the Llama-3 architecture (Grattafiori et al.,[2024), spanning
five model scales: 340M, 1B, 3B, 7B, and 13B parameters. These models are trained for varying
numbers of tokens at 0B, 5B, 10B, 20B, 30B, 50B, 70B, 100B, and up to 1T tokens. We use a
tokenizer with a vocabulary size of approximately 32000. Training is performed using the AdamW
optimizer (Loshchilov and Hutter, 2017) with a peak learning rate of 3 x 10~*, following a cosine
decay schedule and a warm-up over the first 1024 steps. All models are trained with a context length
of 2048 tokens and an effective global batch size of 1024. We fix the model size to 3B parameters
and the total training data volume to 30B tokens as our default setting.

LLM pre-training data. Our training data is composed of a diverse mixture of 16 sources, including
academic, arts, biology, code, computer science, economics, encyclopedia, food, law,
literature, mathematics, medicine, philosophy, politics, q-a forum, and web-crawl.
Each source contains at least 50B tokens.

MLLM adaptation setting. We adopt a two-stage adaptation strategy following Cambrian-1 (Tong
et al.} 2024a) and Web-SSL (Fan et al., [2025)), consisting of visual alignment and supervised fine-
tuning. In the first stage, we train an MLP-based projector on top of a frozen vision encoder and
language model to align visual features with the LLM. Unless otherwise specified, we use MetaCLIP-
B/16 (Xu et al.} [2023) as the default vision encoder. Extracted visual features are uniformly resized
to a fixed length of 576 tokens. In the second stage, we perform supervised fine-tuning on a mixture
of vision-language and language-only instruction data to enhance the model’s multimodal instruction-
following ability. Both the alignment and instruction tuning stages use the AdamW optimizer with a
cosine learning rate schedule and linear warm-up, and models are trained for a single epoch. During
alignment, we use a learning rate of 1 x 10~ with a warm-up ratio of 6%. For instruction tuning, the
learning rate is set to 4 x 10~° with a 3% warm-up. Training is conducted with an effective global
batch size of 512.

MLLM adaptation data. We adopt the Cambrian-1 and Web-SSL data pipeline, but with strategic
data reductions to highlight the effect of vision priors. The initial alignment stage utilizes a 1M
image-caption dataset, which is roughly 40% of the original dataset’s size. This is followed by
supervised fine-tuning on a curated 3.5M subset of the Cambrian-7M data. This subset is balanced
with approximately 1.5M language-only and 2M vision-language paired instructions, resulting in a
higher percentage of language-only instruction data than the original curation, as our models learn to
follow language instructions during this phase.

For all experiments, we fix the random seed as 42. For MLLM adapatation, we use the same order
for data loading in both alignment and instruction tuning stage to get stable results.

2.2 Evaluation protocol.

LLM evaluation. We conduct a comprehensive evaluation of our pre-trained models’ language
understanding and reasoning abilities. Following the benchmark suite used in Mamba (Gu and
Dao| 2023) and GLA (Yang et al., |2023), we assess performance on two main fronts. For raw
language modeling quality, we report the averaged perplexity (ppl) across Wikitext (Merity et al.,
2016) and LAMBADA (Paperno et al.|[2016). For reasoning, we evaluate zero-shot performance on
a diverse suite of commonsense and question-answering tasks, including PIQA (Bisk et al., [2020),
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HellaSwag (Zellers et al., [2019), WinoGrande (Sakaguchi et al.,[2021)), ARC (Clark et al., [2018]),
Copa (Reddy et al.,[2019), SciQA (Auer et al.,|2023), OpenbookQA (Mihaylov et al., 2018)), and
BoolQA (Clark et al.,[2019). For a concise comparison, we report the unweighted averaged accuracy
over all these benchmarks.

MLLM evaluation. To comprehensively assess the multimodal capabilities of our models, we follow
Cambrian-1 and established a diverse evaluation suite comprising 16 public benchmarks. We group
these benchmarks into four key categories to to isolate and probe the distinct components of the
learned visual prior, ranging from fine-grained perception to abstract reasoning, and provide a holistic
view of model performance:

* General: This category probes the model’s ability to perform visual perception and connect
it with commonsense knowledge, rather than complex, multi-step reasoning. It includes
GQA (Hudson and Manning, 2019), MME (Fu et al., [2023)), MMBench (Liu et al.,2024c),
and SEED (Ge et al.| |[2023)).

* Knowledge: This category evaluates the model’s capacity to connect visual information with
world and perform multi-step reasoning to solve complex scientific or mathematical prob-
lems. It covers ScienceQA (Lu et al.,|2022b), MMMU (Yue et al.| 2024), AI2D (Hiippala
et al.,[2021)), and MathVista (Lu et al., 2023)).

* OCR & Chart VQA: This category focuses on fine-grained perception, specifically the ability
to accurately read and interpret dense textual and structured data within images. It comprises
TextVQA (Sidorov et al.,2020), ChartQA (Masry et al.| 2022), and OCRBench (Liu et al.}
2023b).

* Vision-Centric: This category mainly probes abstract visual reasoning and rough perception
skills, requiring the model to perform tasks such as spatial and 3D understanding, object
counting, and IQ tests. It uses benchmarks including RealWorldQA (xAl, 2024), Blink (Fu
et al., 2024), COCO, ADE, and Omni3D. COCO (Lin et al.,[2014), ADE (Zhou et al., 2019),
and Omni3D (Brazil et al., [2023)) are proposed as CV-Bench from Cambrian-1 (Tong et al.,
2024al).

The overall average result is based on all benchmarks. We also report the averaged multimodal
evaluation accuracy for each category. To fairly assess a model’s core vision ability, independent
of its instruction-following capabilities, we address a challenge: models, especially smaller ones,
often embed correct answers within conversational text rather than providing a direct response. Our
evaluation uses a robust parsing strategy to extract the intended answer from this free-form text. This
approach ensures a reliable assessment of all models, including those without language pre-training
but only visual instruction tuning, making our results resilient to variations in response formatting.
More details about this parsing strategy is presented in Appendix [I|

LLM-vision alignment. To quantify the representational convergence and similarity between
language and vision modalities, we measure the alignment between the feature spaces of LLMs and
pretrained vision models, following the methodology of the Platonic Representation Hypothesis (Huh
et al.}2024a). For this analysis, we use image-caption pairs from the Wikipedia-based Image Text
(WIT) dataset (Srinivasan et al.,|2021). Given an image z; and its caption y;, we compute vision and
language kernels, Kyision and Kiang, from their respective model representations, fyision and fiang:

Kvision(imj) = <fvision(zi)a fvision(xj»
Klang(ivj) = <flang(yi)7flang(yj)>

We then assess the alignment between these kernels using the mutual nearest-neighbor (m y ) metric,
which calculates the average overlap of the k-nearest neighbor sets (with k£ = 20) for each pair. The
final alignment score for a given LLM is reported as the average of its my scores against three
strong vision backbones: ViT-Large (Dosovitskiy et al.|[2021)) (trained on ImageNet-21K (Deng et al.|
2009)), DINOv2-Giant (Oquab et al.,2023), and CLIP-Huge (Radford et al., [2021}).

For all evaluations, we fix the random seed as 42 and use temperature O for testing to get consistent
results.

The rest of results are presented in Appendix.
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Figure 1: Impact of model and data sizes. The plots illustrate the performance of MLLMs, built
upon LLMs of five different sizes (340M to 13B parameters), as a function of the amount of web
pre-training data (OB to 100B tokens). The general trend shows that performance improves with both
increasing model size and data volume, but the scaling behavior differs across task categories.

A Demystifying LLLM Visual Priors: Studies and Findings

This section presents our main results and findings. We first conduct a series of controlled experiments
to systematically deconstruct the origins of LLM visual priors. These studies investigate the impact
of fundamental variables like model and data scale (Section[A.T), data sources (Section[A.2)), and
conceptual data mixtures (Section [A.3), culminating in the derivation of a data mixture for more
vision-aware LLMs (Section[A.4). Building upon the rich data generated from these experiments,
we then pivot to a broader analysis to uncover the internal structure and origin of the learned priors
(Section[A.3)), and the ultimate source of these abilities within a multimodal system (Section [A.6).
Each subsection details its specific experimental setup or analytical approach, followed by the results
and key findings.

A.1 Impact of model and data sizes.

Finding 1: VQA performance scale positively with model and data size. However, this
scaling is not uniform across all visual abilities.

We begin our analysis by investigating the fundamental impact of scale. To study how model size
and pre-training data volume influence downstream multimodal capabilities, we perform a set of
experiments to pre-train five LLMs of varying sizes (340M, 1B, 3B, 7B, and 13B parameters). Each
model size was trained on eight different scales of data, ranging from 0B to 100B tokens. The training
dataset is web-crawl for all experiments.

As illustrated in Figure[l] a clear and consistent trend emerges: larger models and more pre-training
data generally lead to stronger downstream multimodal performance. This holds true for the overall
average VQA. However, a closer look at the different VQA categories reveals significant nuances.
Performance on General VQA and Knowledge VQA demonstrates a similar scaling trend, consistently
improving with both model and data size. In sharp contrast, OCR & Chart VQA is far more sensitive
to model size than data volume; the performance gap between models is significantly wider, and
gains from additional data saturate very quickly. Meanwhile, Vision-Centric VQA also presents a
unique pattern where the largest models benefit disproportionately from more data, while smaller
models plateau much earlier. These divergent scaling patterns across different abilities demonstrate
different visual abilities do not scale uniformly, but instead possess different properties that govern
how they benefit from increased model and data size.

A.2 Impact of pre-training data sources.

Finding 2: Different visual abilities are decoupled. Specific categories of text pre-training
data can enhance certain visual capabilities in the resulting MLLM; in particular, data related
to reasoning and the visual world significantly improves performance on vision-centric tasks.
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Figure 2: Impact of pre-training data sources. The bar charts illustrate the downstream VQA
performance of MLLMs built upon a 3B parameter LLM, where each LLM was pre-trained on 30B
tokens from a single, specific data source. The plots show that performance varies significantly
depending on the pre-training sources.

To study the impact of different pre-training data sources, we conduct a set of controlled experiments.
We fix the model size to 3B parameters and the total training data volume to 30B tokens. We then
pre-train 16 distinct models, each trained exclusively on data from one of the 16 sources outlined
in our pre-training sources (e.g., academia, biology, code, etc.). This setup allows us to attribute
performance variations directly to the specific data source used for pre-training.

As illustrated in Figure 2] the results reveal a significant variance in downstream multimodal perfor-
mance depending on the pre-training data source. This divergence suggests that different categories
of text data contribute to distinct and non-uniform visual priors. Notably, strong performance on
Vision-Centric VQA tasks is highly correlated with two types of data: reasoning-centric (e.g., code,
mathematics, academia) and corpora rich in visual-world descriptions (e.g., arts, food). The
top-performing models in Vision-Centric VQA, all scoring above 42%, are trained on these specific
sources.

The key takeaway from this is that the visual prior acquired from text-only pre-training is likely not
a single entity. Rather, the variance in performance across data categories indicates that it may be
composed of separable components or abilities. We hypothesize that this occurs because different
pre-training data sources emphasize distinct underlying principles, thereby cultivating different facets
of the overall visual prior. This also raises the possibility that these abilities can be selectively
nurtured by curating the pre-training data, which will be studied in Section [A4]

A.3 Impact of conceptual data categories and proportions.

Finding 3: A small amount of data about the visual world is crucial, but its contribution
saturates quickly; in contrast, increasing the proportion of reasoning data in the pre-training
mix progressively enhances visual abilities, with performance gains observed up to a 75%
ratio.

To move beyond the broad, pre-defined data sources analyzed in Section[A.2] we investigate the
impact of more fundamental conceptual categories within the text. Our findings in the previous
section show that reasoning-centric categories and categories related to the visual world were the
most potent drivers of downstream visual capabilities. To dissect this phenomenon further, we focus
our next set of experiments specifically on these high-impact domains.
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Figure 3: Impact of conceptual data categories and proportions. The plots illustrate how varying
the proportion of specific conceptual data categories in the pre-training mix affects downstream
MLLM performance across VQA benchmarks. Top Plots (Reasoning-Centric Data): The upper set of
lines shows that increasing the share of reasoning-centric data leads to progressive and significant
performance gains, with benefits scaling up to a 75% proportion before plateauing. This indicates that
a strong reasoning foundation is critical for enhancing visual abilities. Bottom Plots (Visual World
Data): In contrast, the lower set of lines, representing data that explicitly describes the visual world
demonstrates rapidly diminishing returns. While a small amount of this data is crucial to establish a
baseline,

We begin by creating a data pool of approximately 300B tokens, comprising all sources used in
Section[A2] To partition this corpus conceptually, we employ a 32-B LLM (Yang et all [2025a) to
classify the text into finer-grained categories. The classification is performed on 1024-token segments,
and is treated as a multi-label task, allowing each segment to be assigned to multiple conceptual
categories. Detailed classification settings and results for each data source are presented in the

Appendix [H]

The reasoning-centric data was partitioned into code reasoning, math reasoning, science
reasoning, and a reasoning combination category, which aggregates the three aforementioned
categories. Concurrently, we define four categories for data related to the visual world:

* visual concept: Text naming visual entities like objects, people, places, and scenes.

* visual
style.

attribute: Descriptions of visual properties such as color, shape, texture, and

* visual
tions.

relationship: Language detailing spatial arrangements or part-whole connec-

* visual combination: A combination of all three visual categories.

With this conceptually partitioned dataset, we conduct a series of controlled mixing experiments
to study how varying the proportion (mixing ratio) of these data types affects the final MLLM’s
performance. For each conceptual category, we train five separate models, systematically varying its
proportion in the data mixture to 0%, 25%, 50%, 75%, and 100%. The remainder of the data for each
run is sampled proportionally from the other categories within the 300B token pool to maintain a
constant total training volume.

As shown in Figure 3] the results reveal a critical divergence in how different conceptual data cate-
gories contribute to visual priors. The impact of reasoning-centric data is profound and progressive,
with performance scaling steadily up to a 75% proportion, especially obvious with vision-centric
abilities. The contribution from data explicitly describing the visual world saturates quickly; a small
initial amount seems to be crucial, but further increases yield diminishing returns.
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A.4 Deriving a data mixture for more vision-aware LL.Ms.

Finding 4: Maximizing MLLM VQA performance is best achieved by pre-training on a data
mixture heavily skewed towards reasoning-centric content but with necessary vision world
knowledge. The balance point between language and vision proficiency is reached via a
calibrated data mixture between language-favorable and vision-favorable pre-training data
mixture.

Building on our findings, our goal is to derive a single, practical data mixture that excels not just
in language tasks but also serves as a powerful foundation for MLLMs. We narrow our focus for
this analysis to six primary data categories: web-crawl, encyclopedia, academia, literature,
math, and code. Our approach proceeds in three stages: first, we determine a vision-favorable
conceptual blend; second, we identify a language-favorable mixture; and finally, we try to derive a
balanced mixture by interpolating between these two optima.

Vision-favorable mixture. To define a target for strong MLLM visual performance, we conduct a
search at the conceptual category level. Specifically, we perform a grid search across 24 data blends
constructed by sampling from a space where the reasoning combination ranges from 50% to
85% and the visual combination ranges from 5% to 30%, following the conclusions drawn from
Section[A.3] The comprehensive results of this search are presented in Table [I]

Data Ratio Avg VQA Data Ratio Avg VQA
reasoning visual reasoning visual

5 30.7 5 30.9
50 10 31.3 55 10 31.7
15 31.8 15 32.2
5 31.9 5 32.0
10 32.4 10 32.2
15 32.7 15 32.5
60 20 32.5 65 20 32.1
25 32.4 25 31.9
30 31.6 30 31.4
5 31.9 5 31.6
70 10 32.3 75 10 31.5
15 32.6 15 32.4
5 31.5 5 31.2
80 10 32.4 85 10 31.6
15 32.2 15 31.8

Table 1: Grid Search for an optimal-vision data mixture. Results from pre-training a 3B parameter
LLM on 30 distinct data blends, each totaling 30B tokens. The table explores how varying the
proportions of reasoning-centric and visual-world text affects various capabilities, measured by Avg
VQA. The data highlights a performance peak for vision tasks at a mixture of approximately 60%
reasoning and 15% visual content.

From this search, we find that the best-performing models for downstream MLLM tasks emerge
from a mixture containing approximately 60% reasoning and 15% visual content. This result show a
powerful visual foundation is not built by simply maximizing exposure to visual descriptions, but by
establishing a strong reasoning faculty, which is then grounded by a smaller amount of visual-world
knowledge.

Language-favorable mixture. We begin by establishing a language-favorable mixture that achieves
the best performance on our language task suite. Guided by recent literature and empirical testing, we
identify this as a mix of 50% web-crawl, 2.5% encyclopedia, 2.5% academia, 20% literature,
5% math, and 20% code. This blend, designated as mix0 in Table serves as our baseline for strong
language proficiency, achieving the highest text accuracy (53.0%) and the best perplexity (13.46) in
our experiments.
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Balanced mixture. To reconcile these two objectives, we seek a single, balanced mixture that offers
strong performance across both modalities. We achieve this by performing a series of interpolation
experiments, detailed as mix0 through mix10. We shift the data composition from our language-
favorable baseline (mix0) towards a conceptual endpoint representing the vision-favorable blend
(approximated by mix9 and mix10). To ensure stabilized results, each model in this series is trained
for 50B tokens.

The performance metrics in Table [2| reveal the expected trade-off: as the mixture becomes more
reasoning-centric, vision accuracy (v-acc) generally improve, while language proficiency (t-acc and
ppl) shows a slight decline. Our analysis identifies mix6 as the balanced mixture, achieving the
highest overall rank. Mixtures in its vicinity (e.g., mix5, mix7, mix8) also achieve high rankings.
This demonstrates that a carefully calibrated data mixture can cultivate powerful visual priors without
substantially compromising core language abilities.

Data Source Mixture (%) Performance Metrics

Recipe Overall Rank
web-crawl encyclopedia academic literature math code reasoning visual t-acc (%) ppl(]) v-acc (%)
mix0 50.0 25 2.5 20.0 50 20.0 33.1 21.7 53.0 13.46 324 5
mix1 483 34 29 17.0 58 225 36.2 20.6 52.8 13.48 324 4
mix2 46.7 43 33 14.0 6.7 25.0 39.4 194 52.6 13.51 32.6 8
mix3 45.0 52 3.8 11.0 75 275 42.6 18.2 52.5 13.56 329 9
mix4 433 6.1 42 8.0 8.3 300 45.7 17.1 524 13.62 32.7 10
mix5 41.7 7.1 4.6 5.0 9.2 325 48.9 16.0 52.6 13.57 33.0 6
mix6 40.0 8.0 5.0 2.0 10.0 35.0 52.0 14.8 52.7 13.52 333 1
mix7 36.5 7.0 7.5 2.0 115 355 55.5 14.4 52.5 13.56 33.1 3
mix8 33.0 6.5 9.5 2.0 12.0 37.0 57.2 14.0 52.7 13.52 332 2
mix9 29.5 6.0 11.5 2.0 125 385 59.0 13.6 523 13.71 332 7
mix10 26.0 55 12,5 2.0 13.0 41.0 61.3 133 52.1 13.88 334 11

Table 2: Deriving a data mixture for more vision-aware LLMs. This table details a series of 11
data mixtures, from mix0 (language-favorable blend) to mix10 (approximating the vision-favorable
blend), all trained on a 3B-parameter LLM with 50B tokens. The experiment systematically shifts the
data composition towards a higher proportion of reasoning-centric content (math, code, academia).
The results highlight a trade-off, with mix6 emerging as the most balanced mixture, achieving top-
ranked overall performance by improving visual capabilities without a significant drop in language
proficiency.

A.5 The structure and origin of learned visual priors.

Finding 5: The learned visual prior is not a single entity but decomposes into at least two
priors with different origins. We reveals a perception prior (linking General and OCR) and
a reasoning prior (linking Knowledge and Vision-Centric tasks). These priors also scale
independently.

We now synthesize our previous results to investigate the internal structure of the visual prior. Is
it a single, uniform ability, or a composite of different, separable visual skills? To answer this, we
conceptualize the visual prior as a collection of distinct abilities, each measured by one of our four
VQA categories.

Internal structure of visual priors. We aggregate the performance data across all 105 3B models
from our previous experiments, encompassing variations in data sources, mixing ratios, and training
scales. We then compute the Spearman correlation matrix across the four VQA performance categories
to identify which abilities scale together and which diverge.

The results in Figure [] suggest a potential internal structure within the visual prior, hinting at a
separation into at least two distinct types of abilities. We observe a moderate correlation (0.37)
between General and OCR performance. This connection seems to point towards a perception prior,
as success in both categories relies heavily on the model’s perceptual acuity—the ability to accurately
process raw visual input—rather than complex, multi-step reasoning.

In contrast, we find another moderate correlation (0.33) between the Knowledge and Vision-Centric
tasks. This link appears to emerge because both categories often require abstract inference that goes
beyond simple perception. For instance, the Knowledge category demands multi-step reasoning to
solve complex scientific or mathematical problems, while Vision-Centric tasks include challenges like
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visual IQ puzzles, object counting, and correspondence matching, necessitate a blend of perception
and reasoning, often with a heavier reliance on the latter.

The correlation matrix also reveals very weak,

Correlation matrix for VQA performances o or even Shghtly negative, correlations be-
tween these two groups (perception-heavy vs.

o«  reasoning-heavy)|'| This lack of a strong posi-

-0.10
., tive correlation raises the possibility that these
are largely independent abilities, potentially
**  stemming from loosely-coupled priors within
0.07 |

oo the LLM’s representation. Our observations on
the separability of these visual priors in MLLMs
align with and extend the findings of recent re-

General - -0.03 0.37
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Figure 4: Correlation matrix for VQA per-
formances. The matrix reveals two loosely- S L11E S
coupled skill clusters: one axis for percep- dependence of these two priors implies they are
tion (General/OCR) and another for reasoning cultivated through different mechanisms. As our

(Knowledge/Vision-Centric). analysis in Section[A.2]and Section [A.3]demon-
strated, the reasoning prior is from reasoning-

centric data and can be predictably enhanced by
increasing the proportion of reasoning-centric

Different origins of priors. The statistical in-

data.

In contrast, the origins of the perception prior appear more diffuse. A signal comes from our single-
source experiments (Section[A.2), where web-crawl data yields the best performance on General
and OCR tasks. However, web-crawl is an extremely general category, and no other, more specific
data category consistently boosts perceptual abilities. This *mixed effect’ suggests the perception
prior may be a general byproduct of large-scale language modeling, emerging from the sheer diversity
of language rather than a specific category. To further investigate this emergent prior and characterize
its properties more directly, we introduce a multi-level existence benchmark (MLE-Bench) designed
to assess a more pure perception abilities (with less reasoning required) across multiple levels. The
detailed study using this benchmark is presented in Section[B.1]

This may also suggest that perception ability aligns more with the platonic representation hypothesis;
that is, it requires greater data diversity for effective multi-modality alignment. We find that the
Spearman correlation (from our 105 experiments) between the LLM-vision alignment score and
OCR is 0.42, while being only 0.22 for reasoning tasks. The stronger correlation for OCR suggests
that the perception prior is more intricately linked to cross-modal alignment, which thrives on the
rich and diverse language found in broad corpora. In contrast, the weaker correlation for reasoning
tasks shows that reasoning is thus less dependent on the specific signals used for vision-language
alignment. We present a more detailed study of this phenomenon in Section[B.3]

A.6 Deconstructing multimodal abilities: vision or language.

Finding 6: Visual reasoning ability is primarily shaped by reasoning prior acquired from
language pre-training; perception is more dependent on vision encoders and on downstream
visual instruction tuning data.

Here, we conduct further analysis to first verify the universality of learned visual priors and then
deconstruct the source of different multimodal abilities, distinguishing between those inherited more
from the LLM and those acquired more from the visual instruction tuning.

Universality of the learned visual priors. To test the general influence of the visual prior, we apply
two more vision encoders (DINOv2-L (Oquab et al 2023) and MAE-H (He et al., [2022)) other than

'Note that this categorization into perception-heavy and reasoning-heavy tasks is a conceptual simplification
intended to facilitate our analysis. In practice, the boundary between perception and reasoning is not always
clear.
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Figure 5: Universality of the learned visual priors. The plots show the VQA performance of
MLLM:s built using three distinct vision encoders based on the proportion of reasoning-centric data
used in the LLM’s pre-training mix. Despite differences in their absolute performance, all three
configurations show a consistent improvement on reasoning-heavy tasks as the LLM’s reasoning
pre-training proportion increases, similar to trends observed before, demonstrating the universality of
the reasoning prior.

our default MetaCLIP-B/16. We pair these with LLMs pre-trained on varying proportions of our
reasoning combination conceptual data category, from 0% to 100%.

As illustrated in Figure[5] the results reveal a dual-faceted pattern. Firstly, they confirm the universality
of the reasoning prior. For reasoning-heavy tasks, all three vision encoder configurations exhibit a
nearly identical, strong upward trend in performance as the proportion of reasoning data in the LLM’s
pre-training increases. This demonstrates that the visual reasoning prior cultivated in the LLM is a
foundational, modality-agnostic prior that benefits the multimodal system regardless of the specific
vision encoder used.

In contrast, the perception prior lacks this universality. The performance trends for perception-
oriented tasks are inconsistent across the different vision encoders. Instead of following a unified
pattern, the performance curves for different vision encoders vary significantly from one another.
This suggests that perceptual abilities are more sensitive to the specific characteristics of the vision
encoder (Liang et al.,[2025; Tong et al., [2024c) and are not systematically influenced by the LLM’s
perception prior, further showing the decoupling of the two priors.

Source of abilities from visual priors and visual instruction tuning. Second, we conduct targeted
studies to determine whether key skills—namely, perception and reasoning—originate primarily
from the LLM’s visual priors or the subsequent visual instruction tuning. stage. We use an MLLM
to classify our Cambrian-7M dataset that contains SM text-image pairs into these two categories,
resulting in 1.8M perception and 0.6M reasoning data, and the remaining 2.6M data as others.

We partition our instruction-tuning data into perception, reasoning, and other categories and trained
five tuning configurations that ablate perception and reasoning data in stages (100% — 50% —
0%) while leaving other data unchanged. Our model with full perception and reasoning data
achieves a baseline performance of 37.98% on General VQA, 25.75% on Knowledge VQ, 17.74%
on OCR & Chart VQA, and 43.48% on Vision-Centric VQA. The results, presented in Figure [6]
show two observations: (1) reducing perception-targeted tuning produces the largest performance
drops on perception-heavy benchmarks (OCR & Chart and General) and modest drops on reasoning
tasks (Vision-Centric and Knowledge); (2) removing reasoning-targeted tuning causes only small
incremental drops on perception tasks and modest drops on reasoning tasks.

Together, results in this section show two mechanisms. First, the LLM encodes a robust, transferable
visual reasoning prior primarily via language pre-training; this prior benefits reasoning-centered VQA
across different vision encoders. Second, perception performance depends more on vision-encoder
characteristics and on subsequent supervised visual instruction tuning: perception performance gains
require more encoder- and vision-supervision-specific interventions.

B Discussion and Hypotheses

This section transitions from empirical findings to a more speculative exploration of the underlying
mechanisms of visual priors. The following subsections present three key hypotheses about the
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Figure 6: Step-wise effects of perception and reasoning visual-instruction tuning data removal.
Relative incremental performance drop (%) on AVG VQA and per-category VQA (x-axis). Each
bar shows the step-wise change when ablating perception or reasoning instruction data in stages
(100% — 50% — 0%); each reported percent is computed relative to the immediately preceding
configuration. Removing perception-tuning data produces the largest incremental decline on OCR &
Chart VQA and General VQA (showing perception’s stronger dependence on supervised vision-side
tuning), while removing reasoning-tuning data yields only small incremental declines on perception
tasks and modest declines on Vision-Centric and Knowledge VQA.

structure of the perception prior, the universal nature of reasoning, and the role of data structure
in cross-modal alignment. These hypotheses are not presented as definitive conclusions but as
frameworks for interpreting the results and for future research.

B.1 Is the perception prior multi-level? An evaluation using the MLE-Bench

Hypothesis 1: The perception prior derived from diverse data exhibits scale-dependency, with
its benefits being most pronounced for the perception of small and medium-sized objects.

Our previous analyses show that the perception prior is diffuse in origin, emerging most strongly
from diverse data. This leads to a question about its internal structure: is this prior a uniform ability,
or does it possess finer-grained characteristics?

To study this question, we introduce the Multi-Level Existence Bench (MLE-Bench), a benchmark
designed to probe perception with greater precision. MLE-Bench consists of 4-choice questions
about the existence of objects or scenes within an image. We categorize questions based on the
target object’s relative size, measured by the percentage of pixels it occupies. In total, MLE-Bench
comprises 1,861 images, with a distribution of 732 questions for small objects (0-30%), 698 for
medium objects (30-60%), 397 for large objects (60-90%), and 34 for very large objects/scenes
(90-100%). This structure allows us to deconstruct "perception"” into distinct, scale-dependent
components. Further details on the benchmark’s construction are presented in Appendix [J]] We also
present a holistic evaluation of common MLLMs on MLE-Bench, with detailed results available in
Appendix

We evaluate our 16 single-source pre-trained models (from Section[A.2) on MLE-Bench, with the
results presented in Figure[/| The 3B LLM model trained on web-crawl remains the top performer
overall, confirming that data diversity is key for perception prior. Its advantage is most pronounced for
small-to-medium objects (0-60% pixel range), where it establishes a clear lead over models trained
on other data sources. In contrast, for large objects that dominate the visual scene, this performance
gap diminishes significantly.

12
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Figure 7: Performance of MLLMs on the Multi-Level Existence Bench (MLE-Bench). The left
plot shows the overall accuracy for models pre-trained on 16 different single-source data types. The
four smaller plots (right) detail performance on objects of varying relative sizes, from small (0-30%
of image pixels) to very large (90-100%). The results demonstrate that pre-training on the broad and
diverse web-crawl corpus is most effective in gaining perception prior, with its advantage being
particularly pronounced for perceiving smaller objects.

These results indicate that the perception prior is indeed scale-dependent. A possible explanation is
that diverse, unstructured text like web-crawl contains a vast vocabulary describing a wide array of
entities, including smaller, often overlooked details within a larger scene. This textual richness forces
the model to learn representations sensitive to fine-grained visual concepts, a capability less critical
when identifying large, obvious objects. This finding refines our understanding of the perception
prior, revealing that it is not a uniform faculty.

B.2 Is reasoning a universal, cross-modal skill already acquired during pre-training?

Hypothesis 2: The reasoning capabilities an LLM acquires from text are fundamentally
modality-agnostic. Language reasoning skill can be directly transferred to solve visual
problems.

Our findings suggest a hypothesis: the reasoning capabilities an LLM acquires from text are not
bound to the linguistic domain. We posit that by pre-training on reasoning-centric data, a model
learns abstract, generalizable principles of logic, structure, and compositionality. This foundation
is largely modality-agnostic, allowing the model to apply this faculty to other domains, including
vision, since the reasoning process likely occurs within the language domain.

To verify this, we propose an experiment that directly probes the quality of the models’ visual
reasoning processes. For reasoning-focused VQA tasks (Knowledge and Vision-Centric), we switch
the evaluation from prompting for a direct answer to answer with detailed explanations. This will
require each model to produce a detailed explanation of its reasoning. We then use a separate LLM
as a judge to evaluate the quality of these reasoning traces based on a clear rubric, assessing criteria
such as: (1) Logical Soundness: The percentage of reasoning traces that are coherent and reasonable;
and (2) Reasoning Depth: the average length of the reasoning trace measured by text count taken to
reach the conclusion.

The results, presented in Figure [8](a), strongly support our hypothesis that the reasoning capabilities
an LLM acquires from text are transferable to vision. We observe a clear trend: as the proportion of
reasoning-centric data increases, the models generate visual reasoning that is both more logically
sound and significantly longer. For instance, increasing the proportion of code reasoning data from
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Figure 8: Qualitative impact of reasoning-centric data on visual reasoning (a) and representation
alignment (b). The plots show how varying the proportion of different reasoning-centric data
categories in the pre-training mix impacts metrics of visual reasoning quality and cross-modal
alignment. The left two plots indicate that more reasoning data leads to more coherent and detailed
visual reasoning. The right two plots reveal a more complex relationship, with the LLM-vision
alignment score showing a generally positive but non-monotonic trend and the alignment loss
exhibiting more noisy but generally reverse behavior.

Question: A bounding box is an annotated rectangle surrounding an object. The
edges of bounding boxes should touch the outermost pixels of the object that is
being labeled.

Given the two bounding boxes on the image, labeled by A and B, which bounding
box more accurately localizes and encloses the fork?

Select from the following options.

(A) Box A (B) BoxB

Answer the question with a detailed thinking process and explanations.

Answers

The correct answer is
(B) Box. The box is a
container that holds
the fork.

The correct answer to
the question is (A) Box
A. The image shows a
box with the label A
enclosing the object.

X

The correct answer is
(B) Box. The image
clearly shows the fork
resting on the surface
of the fork, which is
the only object that is
clearly visible.

The correct answer is
(B) Box B. The
bounding box
encompasses the
outermost pixels of
the object being
labeled. v

The correct answer is
(B) Box. The bounding
box encloses the fork,
as itis the only
rectangle
encompassing the
entire objectin. v

0% code reasoning

25% code reasoning

50% code reasoning

75% code reasoning

100% code reasoning

Figure 9: Qualitative impact of reasoning-centric data on visual reasoning. The figure displays
the answers from five models—pre-trained with 0% to 100% code reasoning data—to a visual
question requiring the application of a specific rule. Answers show a clear improvement in reasoning
quality: the model with 0% code reasoning provides a simplistic justification, while the models
with 75% and 100% code reasoning produce more detailed reasoning that correctly applies the
definition from the prompt.

0% to 100% boosts Logical Soundness from 4.52% to 9.52% and more than sextuples the Reasoning
Depth from 8.31 to 53.25. This demonstrates that the model is is applying a general, abstract
reasoning framework, learned from text, to solve visual problems. The particularly dramatic increase
in Reasoning Depth for code-trained models may also reflect a stylistic transfer; pre-training on code
reasoning, which is often structured in long, logically coherent sequences, likely predisposes the
model to generate longer, more structured step-by-step explanations.

Figure[9] provides a qualitative example of this phenomenon. It showcases how models trained with
more code reasoning data produce increasingly sophisticated and reasonable reasoning for a visual
task. While the model with 0% code reasoning offers a simplistic justification, the model trained
on 100% code reasoning provides a detailed, step-by-step explanation that correctly applies the
abstract rule given in the prompt. This demonstrates that the model is applying a general, abstract
reasoning framework, learned from text, to solve visual problems. Our conclusions here also reflect
the results shown in very recent studies that reasoning abilities can transfer between languages at
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test time (Yong et al.| [2025)), and that post-training such as language reinforcement learning can
enhance or transfer to multi-modal reasoning (Rastogi et al., 2025} Wei et al., [2025} |Yang et al.,
2025b; |Liu et al., [2025} |Chen et al.||2025)). We further demonstrate that reasoning abilities are highly
modality-agnostic, to the extent that training solely on code can yield strong multimodal reasoning.
Moreover, we show this transferability is not confined to post-training phases, but originates from
pre-training itself.

B.3 Does language data structure drive representational alignment with vision?

Hpypothesis 3: The structural properties of language data do not exclusively drive representa-
tional alignment with vision.

An alternative, or perhaps complementary, hypothesis centers on the structural similarities between
the data modalities themselves. Data from domains like code and mathematics is inherently highly
structured. It is governed by strict syntax, logical dependencies, and hierarchical compositions.
Similarly, visual data is far from being a random collection of pixels. It is rich with its own structure:
spatial relationships between objects, part-whole hierarchies, and the implicit rules of physics and
geometry. We thus hypothesize that this shared structural foundation means that representations
learned from structured text are intrinsically more similar to, and thus more readily transferable to,
the visual domain.

To test this hypothesis, we analyze two metrics across models trained with varying proportions of
structured reasoning data: the LLM-vision alignment score and the average alignment loss during
the MLLM alignment stage. Our analysis, presented in Figure [8| (b), yields mixed results. The
LLM-vision alignment score partially supports our hypothesis. As we increase the proportion of
structured reasoning data, the alignment score generally improves, indicating a more congruent latent
space. However, this trend is not monotonic; the score often peaks at a 75% ratio and then decreases
at a 100% proportion. This might be due to a model trained purely on reasoning data learning abstract
structure but lacking the necessary vocabulary from other text types to effectively map it onto diverse
visual concepts, thus hindering the final alignment.

The alignment loss metric provides a less clear picture, generally exhibiting a decrease from 0% to
25% reasoning data and a noticeable increase from 75% to 100%, despite showing more inconsistent
fluctuations between 25% and 75%. This suggests a nuanced relationship. Qualitatively, we observe
a general inverse trend between the LLM-vision alignment score and the alignment loss. This
relationship may indicate that both metrics are capturing related aspects of cross-modal alignment,
potentially lending partial support to the structural similarity hypothesis. However, given these mixed
signals and the lack of a clear, consistent trend, this analysis does not provide definitive evidence
to confirm the hypothesis. It thus remains a compelling direction for future research to untangle
the precise interplay between abstract structure and semantic grounding in forming cross-modal
representations.

C Scaling Up and Training a Vision-Aware LLM

Building on the principles identified in the controlled, smaller-scale studies, this section details the
process of scaling up the approach to validate the findings.

C.1 Settings and models

Building upon our findings, we scale up our approach to validate our findings and develop a vision-
aware LLM in a larger-scale. The goal is to test whether the principles identified in our controlled,
smaller-scale studies hold true when applied to a large-scale training run. To this end, we pre-train
two 7B parameter LL.Ms, each on 1T tokens, based on the two data mixtures identified previously:

* Language-favorable model: Following the mix0Q mixture, which is the best-performing
blend for pure language tasks.

* Balanced model: Based on the mix6 recipe, our proposed balanced mixture is designed to
deliberately cultivate strong visual priors without compromising language proficiency.
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We conduct the pre-training for each model on 128 A100 GPUs for approximately 32 days. We use an
processing approximately 4.2M tokens per step and the model is trained for 250000 steps. Following
pre-training, we adapt both 7B LLMs into MLLMs. For this stage, we utilize the complete Cambrian
data suites. Specifically, we use the full 2.5M image-caption dataset for the visual alignment stage,
followed by visual supervised fine-tuning on the full 7M vision-language instruction dataset.

C.2 Blind visual instruction tuning

We also introduce a "blind visual instruction tuning" trick that provides a more effective starting point
for visual adaptation. This trick involves an initial instruction tuning phase using only the textual
data while withholding the corresponding images. This initial "blind" stage allows the model to first
focus on learning the instruction-following format of the task. Consequently, the subsequent standard
tuning phase with images can be more dedicated to learning the core vision capabilities, rather than
simultaneously learning how to follow instructions. Furthermore, this process enables the model to
effectively leverage its pre-existing language priors to solve VQA questions that may not strictly
require visual input, a known phenomenon and potential "short-cut" on some benchmarks (Tong
et al.| 20244). This trick can lead to broad performance improvements in most of the tasks.

Note that this trick should not be a standard in practice, since when no images are provided, models
should identify their absence E] rather than encouraging more hallucination. We leave this as an
optional trick and introduce this phenomenon to the community for future investigation. This also
shows that "vision" can be “learned” from the language side through an unconventional, shortcut-
based mechanism.

Model | Language | Vision

| ppl avgacc | General Knowledge OCR&Chart QA Vision-Centric Overall
Lang-Favorable 8.72  0.647 46.92 28.35 21.49 46.31 37.32
Lang-Favorable (+Blind) 48.16 30.30 20.77 47.01 38.20
Balanced 749  0.655 49.59 29.02 23.63 46.59 38.64
Balanced (+Blind) 50.90 31.25 22.60 47.32 39.56

Table 3: Performance comparisons of the Lang-Favorable and Balanced models across both
language and vision-language benchmarks. The table summarizes key language metrics (perplexity
and accuracy) and provides average scores for a suite of vision tasks, categorized as General,
Knowledge, OCR & Chart QA, and Vision-Centric. It also shows the impact of applying our blind
visual instruction tuning trick (+Blind). The results demonstrate that the Balanced model, pre-trained
with our vision-aware data mixture, exhibits competitive language proficiency while consistently
outperforming the Lang-Favorable model on all visual tasks, with the blind tuning method providing
an additional performance boost.

C.3 Results

As shown in Table [3] the Balanced model, pre-trained with balanced recipe, exhibits competitive
language proficiency. Notably, it achieves a lower (better) average perplexity of 7.49 compared to the
Language-favorable model’s 8.72, while also maintaining a slightly higher average accuracy (0.655
vs. 0.647). An interesting dynamic observed during pre-training was that the Balanced model’s
language performance initially lagged behind the Language-favorable model, beginning to surpass
it after approximately 600B tokens. This may suggests that when the pre-training token volume is
sufficiently large, the benefits from reasoning-related tokens can be more effectively unleashed when
grounded in a substantial amount of world knowledge, ultimately resulting in strong performance
also on the language side.

On VQA benchmarks detailed, the Balanced model consistently outperforms the Language-Favorable
model in most of the benchmarks, achieving a higher overall VQA average (38.64 vs. 37.32). This

“This type of hallucination may persists even in strong models including GPT-5 thinking, Gemini 2.5, and
Claude Opus 4.1. Models will exhibit such hallucinatory behaviors when answering VQA questions without
actual visual context given. Some examples are presented in Appendix[[] This highlights a systemic issue that
warrants more future investigation.
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confirms that the deliberate pre-training on a data mixture rich in reasoning and visual-world text
successfully imbues the LLM with stronger visual priors in a large-scale.

Furthermore, the application of our blind visual instruction tuning trick yields additional overall
performance gains for both models by clear margins. The performance gains are most pronounced in
the Knowledge categories, while tasks in OCR & Chart VQA, conversely, suffer a performance drop.
This pattern suggests that while the blind tuning phase provides a more effective initialization for the
subsequent visual instruction tuning, it gains more from strengthening the model’s ability to leverage
its internal knowledge and reasoning priors to "short-cut" the problem. This is highly beneficial for
knowledge-intensive tasks where answers can be inferred or reasoned from textual context and the
LLM’s pre-existing knowledge.

D Related Work

D.1 From LLMs to MLLMs.

With the rapid development of LLMs (Radford et al., 2021; Google, [2023;  Touvron et al.,[2023)), a
direction of work extend LLMs to Multimodal LLMs. Pioneering works like Flamingo (Alayrac
et al. 2022) and BLIP-2 (Li et al., |2023) connected pre-trained vision encoders to LLMs using
connectors like cross-attention modules. Later models such as LLaVA (Liu et al., 2023a)) demonstrate
that even with a projection layer, LLMs can be extended MLLM with visual instruction tuning. This
adapter-style architecture has been widely explored in numerous subsequent works (Liu et al.| 2024a;
Tong et al.,[2024a; Laurencon et al., [2024} [Liu et al.| 2024b}; |Al@Metal [2024; Bai et al., 2025b; Zhu
et al., 2025; [Team et al.| 2025} [Lin et al., 2024).

The success of visual instruction tuning has enabled open-source multimodal models to achieve
performance even comparable to proprietary counterparts (Google), 2023} xAl| 2024} |OpenAlL 2024).
This success underscores that multimodal capabilities in adapted LLMs largely emerge through
instruction tuning, effectively unlocking knowledge already embedded in pretrained language mod-
els (Zhou et al.| [2024). Furthermore, recent studies (Tong et al., [2024a; [Laurencon et al.|, [2024)
highlight that improvements in the underlying language model remain the most impactful means to
improve multimodal performance. Inspired by these insights, our work investigates the visual priors
and inherent multimodal potential embedded within pretrained LLM:s.

Though there are different ways of connecting vision to LLMs like the use of discrete tokeniza-
tion (Wang et al., 2024} Deng et al., 2025} [Team, [2024), we focus on adapter-style architectures,
which are most widely used and permit clean analysis of visual priors from language pre-training.

D.2 The role of data in shaping foundation model capabilities.

Pretrained LLMs encode rich latent knowledge—even across modalities—depending heavily on the
nature of their training data (Kaplan et al., [2020; |Grattafiori et al.| 2024} Han et al.,[2022; Rae et al.|
2021; Penedo et al.l 2023 |Lu et al.,[2022a; Mayilvahanan et al., [2025). This has shifted the focus of
research from simply scaling data to understanding the role of data and then strategically curating
it to unlock specific, powerful abilities (Allen-Zhu, 2024; /Aryabumi et al., [2024; |Ye et al.| [2024;
Shinnick et al.| [2025)).

A prominent example, and one highly relevant to our findings, is the strategic inclusion of reasoning-
centric data like code. Research has consistently shown that pretraining on a mix of text and code
does more than just improve coding skills; it significantly enhances a model’s foundational reasoning
and ability to understand abstract, structural patterns (Muennighoff et al., 2023} |Aryabumi et al.}
2024; Ma et al., 2023 [Zhang et al., |2025). This suggests that the pre-training data mixture may
endows the model with latent, generalizable structures that can be activated for tasks beyond their
original domain.

This has established a central challenge in the field: determining the optimal data mixture to cultivate
these desired foundational abilities (Chen et al., {2024} |Albalak et al., 2023 [Ma et al., [2023; Xie et al.}
2023; [Touvron et al.|[2023} |Grattafiori et al.l 2024; Zhang et al., [2024; Held et al., 2025} Bai et al.,
2024} |Albalak et al., 2023; Shukor et al.| 2025a). This has spurred a move beyond simple heuristics
toward quantitative frameworks which aim to predict a model’s performance based on different data
blends, thereby guiding the search for an optimal mixture.
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However, much of this prior work has focused on optimizing data mixtures for core language
proficiency. As we transition from LLMs to MLLMs, a critical question emerges: how do these
text-only pre-training choices influence the model’s visual priors and the potential for multimodal
capabilities? Our work directly addresses this gap. We extend the investigation of language data
composition’s impact from the purely linguistic to the visual domain, systematically analyzing how
different text sources contribute to the emergent visual priors in LLMs and seeking data mixture to
help them "learn to see" more effectively from text pre-training.

E Limitations and Future Research Directions

While this work provides a systematic analysis of visual priors in LLMs, it is subject to several
limitations that open avenues for future research.

First, our investigation primarily centers on adapter-style MLLM architectures. While this is a
prevalent and effective paradigm, our findings may not fully generalize to other approaches, such as
those that employ discrete visual tokenization (Team) 2024; Wang et al.| [2024; Deng et al., 2025}
Wu et al.| 2024) or involve end-to-end joint training of vision and language components (Diao et al.,
2024; Tao et al., 20255 Diao et al., [2025; [Shukor et al.| 2025b)). In these latter cases, language and
vision data are co-trained, making it hard to identify the priors originating solely from language. The
dynamics of how visual priors are formed and utilized could differ in these models, which leaves a
promising future direction.

Second, a significant area our study does not address is the safety and ethical implications of these
learned visual priors. Language corpora are known to contain societal biases, stereotypes, and
potentially harmful content (Bengio et al.,[2024; |Qu et al., 2023)). Our analysis focused on capability,
but did not investigate whether these text-based priors encode biased visual associations (e.g., linking
certain objects or roles to specific genders or races) that could manifest as harmful generation or
classification behavior in a downstream MLLM. A thorough audit of the fairness and safety of these
emergent priors is a critical next step.

Finally, our study is confined to the domain of static images, leaving the exploration of visual priors
for dynamic modalities, such as video understanding, as an open question. For example, the temporal
knowledge important for video understanding might be learned more from story-related data like
literature. Investigating how different textual sources contribute to priors for temporal reasoning,
action recognition, and causality in video is a rich area for future work.

F Conclusion

This work has undertaken a systematic deconstruction of the visual priors that LLMs acquire from
text-only pre-training. Through a series of controlled experiments manipulating data composition, we
moved beyond observing the phenomenon of vision priors to interrogating its fundamental drivers.

Our investigation provides a data-centric roadmap for developing multimodal systems, shifting
the paradigm from serendipitous emergence to the deliberate cultivation of visual capabilities. By
showing that core reasoning abilities are a transferable, modality-agnostic foundation, our work offers
more empirical supports for the idea that models can learn a unified representation of the world from
even a single modality.

Looking forward, we hope this research encourages a paradigm where LLM development is more
considerate of vision and multimodality, prompting the cultivation of visual priors from the earliest
stages of pre-training. We also hope it inspires a deeper investigation into the fundamental correlations
between cross-modal representations, contributing to a more unified understanding of how knowledge
is structured across modalities.

G Broader Impact

Our research provides a systematic analysis of how prior visual capabilities emerge in LLMs from
language-only pre-training, shifting the paradigm from accidental discovery to deliberate cultivation.
While our work focuses on capability, the textual data used for pre-training contains societal biases.
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A significant risk is that these models could learn and reinforce harmful visual stereotypes, which
could then manifest in downstream multimodal systems.

Nevertheless, our findings primarily help researchers and developers understand the nature and
origins of these visual priors. We demonstrate that these priors are not a single, uniform block but are
composed of separable perception and reasoning components, each cultivated by different types of
text.

This deeper understanding provides a clear, actionable path for more efficiently cultivating these
abilities. Instead of relying on serendipity scaling, teams can now strategically curate their text-only
pre-training data to deliberately build a stronger foundation for vision tasks before multimodal training
even begins. This targeted approach not only improves the final model’s multimodal performance
but also reduces the computational resources required, offering a more sustainable methodology for
creating the next generation of vision-language models.

H Conceptual Language Data Classification

This section provides the detailed conceptual classification setting and results for the key pre-training
data sources discussed in the main paper. We use a 32B dense LLM (Yang et al., 2025a) to perform a
multi-label classification on 1024-token segments from each data source. Below is the full prompt
provided to the LLLM for the conceptual data classification task. The prompt instructs the model to
perform a multi-label classification on text segments, assigning one or more predefined categories
that describe the content.

Prompt for LLM-based Conceptual Data Classification

Analyze the provided text paragraph. Classify its content by identifying the primary concepts
and domains using only the categories listed below. Select categories that represent the text’s
significant content.

e visual concept: Language for naming visual entities (e.g., objects, people,
places, actions, scenes).

e visual attribute: Language describing visual properties (e.g., color, size, shape,
texture, style).

* visual relationship: Language describing spatial or part-whole relations be-
tween entities.

* code reasoning: Content centered on algorithmic problem-solving, logical cod-
ing implementation, and software engineering challenges.

* math reasoning: Content focused on logical math reasoning, proof construction,
and the application of mathematical principles to solve problems.

* science reasoning: Focuses on scientific reasoning, including hypothesis test-
ing, data analysis, and modeling of complex systems.

If none of the above categories apply, output None.
_ J

The percentages in Table [ represent the proportion of text segments within each data source that
were assigned a given conceptual label.

I Robust Parsing for VQA Evaluations

A significant challenge in the automated evaluation of VQA is that models often generate conversa-
tional or free-form text instead of a single-letter answer. A naive parsing strategy that only checks for
an exact match to the ground-truth letter (e.g., "B") would unfairly penalize models that provide a
correct but differently formatted response.

To illustrate, consider a simple VQA task:

* Question: “What is the primary object in the image?”
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Reasoning Categories (%) Visual Categories (%)

code math science reasoning visual visual visual visual
Data sources reasoning reasoning reasoning combination concept attribute relationship combination
web-crawl 35 3.6 8.6 10.0 27.7 14.1 135 26.9
encyclopedia 0.5 2.3 3.0 3.4 12.2 2.9 6.0 12.4
academia 21.0 68.2 74.4 83.3 52 0.7 5.1 53
literature 0.3 13 8.9 9.1 334 8.4 279 335
math 31.1 81.7 83.2 92.9 7.8 2.8 6.6 8.0
code 96.7 133 6.8 97.3 33 2.0 24 3.7

Table 4: Conceptual categories of key pre-training data corpus (%). The table shows the
percentage of text segments from each data corpus classified into one of the conceptual categories.

e Options: (A) A bicycle, (B) A car, (C) A tree
¢ Ground Truth: B

A model could correctly answer in multiple ways, such as “The answer is (B)”, “A car”, or “The
image shows a car”. To capture all these valid responses, our evaluation protocol employs a robust,
hierarchical parsing strategy. The logic is executed as a sequence of prioritized steps, stopping as
soon as a valid answer is found:

1. Explicit letter extraction: The parser first searches for high-confidence patterns that directly
indicate the chosen option letter. It uses regular expressions to find formats like:

e “The correct answer is (B)”

* “Answer: B”

* Outputs starting or ending with (B)"
* An output that is simply ‘B or ‘B.*

2. Exact option text matching: If the first step fails, the parser extracts the text associated
with each option from the prompt (e.g., "A bicycle", "A car", "A tree"). It then checks if the
model’s generated text is an exact, case-insensitive match for any of these option strings.

» Example caught: A model output of “A car” would be correctly mapped to option B.

3. Substring matching: As a final fallback, the parser checks if the text of any option appears as
a substring within the model’s generated output. This handles more verbose, conversational
answers.

”»

» Example caught: A model output of “The image features a car driving down the street
would be correctly mapped to option B because "a car" is present.

* To prevent ambiguity (e.g., if one option was "car" and another was "race car"), this
step returns the longest matching option text found in the response.

This multi-tiered parsing strategy ensures a comprehensive and fair evaluation across all models,
regardless of their verbosity or adherence to specific formatting instructions. It allows us to more ac-
curately measure the model’s underlying visual capabilities rather than its ability to follow formatting
rules.

J Multi-Level Existence Benchmark Construction

This section describes how we constructed our benchmark using publicly available SA-1B and
ADE20K datasets. We selected images with ground-truth segmentation masks and calculated the
proportion of the image area each object occupied. Based on this, we created three splits: 0-30 for
small objects, 30-60 for medium, and 60-100 for large, dominant objects. For each image, we created
a multiple-choice query to test object existence, sampling distractors from the dataset vocabulary and
filtering them to exclude objects present in the ground truth. As this process is open-vocabulary, we
use an LLM to filter out distractors that correspond to objects already present in the image but under
different names. This ensures the distractors remain plausible but incorrect, providing a granular
evaluation of a model’s ability to identify objects across a wide range of sizes.
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Figure 10: MLE Benchmark Examples. The figure provides examples from the MLE-Bench,
illustrating how the dataset is partitioned based on the ground-truth object size from reference
segmentation maps. For instance, in the 0-30 split, the target object (a fireplace) constitutes a small
fraction of the image. In contrast, the 60-90 split features a correct object (grass) that covers a
substantial portion of the image.

Model 0-30 30-60 60-100 Overall
gpt-5 73.63 90.69  86.31 82.97
gpt-4o-mini 68.72 85.10 87.94 79.32
gemini-2.5-flash 58.88 80.66  80.74 72.11

claude-opus-4-20250514 61.20 7636  59.86 66.58

Table 5: Model performance on the MLE-Bench. Results are reported in three splits based on
object size in percentage (0-30, 30-60, 60-100), along with a weighted overall accuracy, evaluating
the ability of different models to identify objects of varying sizes.

K Multi-Level Existence Benchmark Results

This section presents the performance of top models on our Multi-Level Existence (MLE) benchmark,
which evaluates their ability to identify objects of varying sizes. The results, detailed in Table[3] reveal
distinct performance profiles and highlight that robust perception across all object scales remains a
challenge.

gpt-5 achiees the highest overall performance with a weighted accuracy of 82.97%, demonstrating
strong capabilities across all categories. It particularly excels at identifying medium-sized objects
(90.69%), which form the largest portion of the visual scene, while still maintaining competent, albeit
lower, performance on small objects (73.6%). In contrast, other models exhibit more pronounced
trade-offs. gemini-2.5-flash struggles significantly with small objects, scoring only 58.88%, which is
over 20 percentage points lower than its performance on medium and large objects. This indicates a
potential weakness in fine-grained perception. Similarly, claude-opus-4-20250514 shows a notable
drop in performance on large, dominant objects (59.86%) compared to smaller ones.

These findings underscore the utility of the MLE benchmark in diagnosing model weaknesses. While
some models demonstrate strong general performance, universal recognition across different scales
is not guaranteed. The benchmark effectively serves as a tool for driving progress toward more
comprehensive and reliable visual understanding.

L Hallucinations in Blind VQA

To test for hallucinations, we present two randomly selected questions (with slight rephrasing to
increase diversity) from our MLE-Bench to various models without the corresponding images. The
examples below are from models also chosen randomly, primarily via LMArena (Chiang et al., 2024).
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734 We observe that stronger models do not necessarily guarantee fewer hallucinations in this blind VQA
735  setting.

Question: Which of the following is visible in the image: Choose from: (A) purple and white
striped wall, (B) a person’s arm, (C) a purple triangle, (D) building. Please answer with a
single phrase.

Answers:

gemini 2.5 pro:

A purple and white striped wall
gpt-5 thinking:

a person’s arm
qwen-max-2025-08-15:

Red and white striped wall
04-mini-2025-04-16:

a person’s arm

mistral-medium-2508:
(D) building

gemma 3 27B:

a person’s arm.
04-mini-2025-04-16:

a person’s arm
kimi-k2-0711-preview:
(B) a person’s arm
qwq-32b:

(C) a purple triangle
gpt-oss-120b:

I’'m sorry, but I can’t see images. Could you describe what’s in the picture?
kimi-k2-0711-preview:
(B) a person’s arm

mistral-medium-2508:
(D) building

llama-4-scout-17b-16e-instruct:
B

03-2025-04-16:
building

claude-sonnet-4-20250514:
I don’t see any image attached to your message. Could you please share the image you’d like
me to analyze?

phantom-0807-1:
(D) building

claude-opus-4-1-20250805:
(B) a person’s arm
736
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Question: What can you see in the image: Choose one from: (A) a blue jersey, (B) the street,
(C) araff logo, (D) a blue and white computer screen. Please answer directly.

Answers:
mistral-medium-2508:
D) a blue and white computer screen.

qwen3-235b-a22b-instruct-2507:
(C) araff logo

qwen3-235b-a22b:
(A) a blue jersey

amazon.nova-pro-v1:0:
(A) a blue jersey

phantom-0807-3:

Without access to the image, it is impossible to determine the correct answer definitively.
However, based on the options provided, D) a blue and white computer screen is a common
element in images and could be a plausible choice.

mistral-medium-2508:
(D) building

gpt-0ss-20b:
I’'m sorry, but I can’t see the image.

qwen3-30b-a3b-instruct-2507:
(D) a blue and white computer screen.

gpt-4.1-2025-04-14:
(D) a blue and white computer screen.

phantom-0807-1:
(C) araff logo

claude-sonnet-4-20250514-thinking-32k:
I don’t see any image attached to your message. Could you please share the image you’d like
me to analyze? Once you upload it, I'll be happy to choose from the options you’ve provided.

gpt-5-chat:
(D) a blue and white computer screen.

mistral-medium-2508:
(D) building

claude-opus-4-1-20250805:
Looking at the image, I can see (B) the street. The image shows an urban street scene with
buildings, trees, and what appears to be a road or pathway.

folsom-0811-1:

I cannot view or analyze images directly. However, if you describe the image or provide more
context, I can help determine the correct answer. Since I must choose one option blindly, I'1l
note that (D) a blue and white computer screen is a common object that might align with
typical visual descriptions, but this is a guess. For accuracy, please describe the image!

Additional Qualitative Examples

To illustrate the differences between our models, we provide additional chat examples. These include
one from reasoning combination (Figure[TT) and one from visual combination (Figure[I2).
Each figure shows five different proportions of pre-training data.
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(A) Ais closer
(B)Bis closer

Answers

Select from the following choices.

Question: Two points are circled on the image, labeled by A and B beside each
circle. Which pointis closer to the camera?

Answer the question with a detailed thinking process and explanations.

The correct answer is
(B) B.

The image shows a bird
thatis closer to the
camera. The bird is
positioned to the left of|

The point of interest
for the two points on
the imageis (B). Bis
closer to the camera.

The correct answer is
(B) B is closer. The
image shows the bird
perched on the edge

center of the frame. The point of interestis| | of a rock, which is foreground of the
located at (B). closer to the camera image. Point A is on thq
@ @ @ compared to the rot\:/k. background. v

Point B is located on
the body of the bird,
which is the main
subjectin the

0% reasoning

25% reasoning

50% reasoning

75% reasoning

100% reasoning

Figure 11: Qualitative impact of reasoning-centric data on visual spatial reasoning. The figure
shows answers from five models—pre-trained with 0% to 100% reasoning combination data—to
a visual question requiring depth perception. The answers demonstrate a clear improvement in
reasoning quality: the model with 0% reasoning data gives a blunt answer, while the model with
100% reasoning data provides a detailed explanation correctly applying concepts of foreground and
background.

Question: Two points are annotated on the image, labeled by A and B. Consider
the surface color of the points (the albedo of the surface, without the effect of
shading). Which point has darker surface color, or the colors is about the same?
Select from the following choices.

(A) Ais darker
| (B) B is darker
(C) About the same

Answer the question with a detailed thinking process and explanations.

Answers

The question asks
about the color of the
points on the image.
The correct answer is

The question asks to
identify the color of thg
points. Point Bison a
chair which is black.

The image has darker
surface color, which is
the result of the
surface color being

The correct answer to
the question is (C)
About the same. The
image shows a

The correct answer is
(C) About the same.
The image shows a
kitchen with a white

(C) About the same. The answer is (B) Bis lighter. The lighter kitchen with a white color scheme, which ig
darker. shades are on the left | | countertop, a white a common choice for
side of the image. refrigerator. kitchens.
X V| The answeris (A). X X X
0% visual 25% visual 50% visual 75% visual

100% visual

Figure 12: Qualitative impact of visual-world data on complex visual perception. The figure
displays answers from five models—pre-trained with 0% to 100% visual combination data—to a
question requiring an understanding of color constancy. The results show that while the model with
25% visual data provides the correct answer with reasoning relevant to the core visual principle,
models trained on more visual data offer incorrect answers and flawed explanations. This suggests
that simply increasing descriptive visual text does not necessarily cultivate a deeper perceptual
understanding.
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72 N Samples of Language Pre-training Data

743 We present sample texts from our pre-training data, alongside examples from their corresponding
744 conceptual categories. These sample texts have been slightly reformatted for clarity.

academic

The three Cartesian components of the dipole moment vector were determined using finite
differences. Calculations were carried out at the CCSD(T) [coupled cluster with all single
and double excitations and a perturbational estimate of connected triple excitations] level of
theory with the augmented correlation consistent quadruple zeta basis set, aug-cc-pVQZ(+d
for Cl), in the frozen core approximation. MOLPRO2012 was used for all calculations.

arts

What To Do If Youfe Not Like Everybody Else (Radio 4) is misanthropic comedian Andrew
Lawrence$ guide to fitting in with the rest of the world. This week§ monologue, the first
of the shows second series, looks at special occasions. He begins in typically cynical style:
"Birthdays, weddings, anniversaries, Christmas, new year: every month that goes by seems
to slap us in the face with another contrived cause for celebration... How are the socially
incompetent amongst us supposed to acquit ourselves in such circumstances without coming
across as disagreeable?"

Lawrence speaks with the voice of a gnarled Lee Evans and looks at life through the eyes of
a warped, sociopathic Jack Dee. In his writing he channels the vocabulary of Stewart Lee,
describing Christmas as "a ludicrous social penury" and New Year$ Eve as "the zenith of
nonsensical social situations".

It is, in essence, a standup set, and there are some cracking gags here, from an inventive riff
on the phrase "the done thing", to an extended piece about the itinerant lives of the cheap
bottles of wine guests are obliged to bring along to parties. Parties which, he repeatedly
asserts, no one wants him to come to in the first place. The irony is that, on this evidence,
Lawrence is very good company indeed

biology

Green ash (Fraxinus pennsylvanica) is a member of the olive family, and the species of ash
tree with the largest geographic range in the United States. Green ash grows across almost
the entire Eastern part of the nation and as far west as the Rocky Mountains. Green ash may
prove difficult to tell apart from the other types of ash trees that grow in the U.S. The key to
identification of green ash is to pay the utmost attention to even the smallest details of the
tree.

Look for a tree that grows to a mature height of between 60 and 70 feet, with a spread of
about 45 feet across in its upper canopy. Green ash is a medium-sized species and has an oval
crown of branches. The trunk can be as wide as a foot and a half and the leaves fall from the
tree every autumn.

Observe the foliage of a green ash, looking for a leaf that botanists term as being pinnately
compound. Pinnate means that the separate leaflets that comprise the compound leaf grow
in two rows on a central axis, called a rachis. Green ash has from seven to nine individual
leaflets that grow on a rachis and compose one single leaf. The leaflets are as long as 5 inches,
shaped like the sharp head of a spear, and a shiny shade of green. The entire compound leaf
may be as long as a foot, says the University of Connecticut Plant Database website.

Watch for the leaves of green ash to change to yellow in the autumn. This trait adds to the
appeal that makes the tree a very attractive ornamental species and one that often adorns
lawns, streets and campuses.

Examine the flowers on a green ash. The species has male and female flowers that grow on
separate trees. The flowers have no petals, are a light green or purple color and emerge after
the leaves do in the spring. The female flowers develop in long clusters, according to the
Virginia Department of Forestry website, while the male flowers grow in tighter groupings.
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Study the samaras into which the flowers on the female trees turn. The samaras are a seedpod
that contains the green ash tree$ seeds. The "National Audubon Field Guide to Trees" states
that these samaras resemble keys, hanging in cluster from the female trees as they change
from a green color to a tan hue. Once mature, the 1.5- to 2.5-inch-long samaras fall off the
tree and create quite a mess. This makes the male tree the preference of many landscapers, as
the males will not litter your property.

code

<?php\nRhaco::import ("lang.Validate") ;\nRhaco::import ("lang.
StringUtil") ;\nRhaco::import ("exception.ExceptionTrigger
") ;\nRhaco::import ("exception.model.MaxLengthException")
;\nRhaco::import ("exception.model.MinLengthException") ;\
nRhaco::import ("exception.model.RequireException") ;\
nRhaco::import ("exception.model.DataTypeException") ;\
nRhaco::import ("resources.Message") ;\n\nclass
UrlsTableVerify{\n\tvar $valid = true;\n\n\tfunction
UrlsTableVerify () {\n\t}\n\tfunction verify (&$tableObject)
{\n\t\tforeach(get_class_methods ($this) as $methodName) {\
n\t\t\tif (preg_match("/~verify(.+)$/i",$methodName))
$this->$methodName ($tableObject) ;\n\t\t}\n\t\treturn
$this->valid;\t\n\t}\n\tfunction verifyId(&$tableObject)
{\n\t\t$value = $tablelbject ->getId () ;\n\t\tif (!empty(
$value) && !'Validate::isIntegerLength($value,22)){\n\t\t\
tExceptionTrigger::raise(new DataTypeException(array(
$this ->namedId())),$this->_validName ("id")) ;\n\t\t}F\n\t}\
n\tfunction verifyUrl (&$tableObject){\n\t\t$value =
$tableObject ->getUrl () ;\n\t\tif ($value === "" || $value
=== null){\n\t\t\tExceptionTrigger::raise (new
RequireException (array ($this->namedUrl ())) ,$this->
_validName ("url")) ;\n\t\t}\n\t}\n\tfunction verifyPubdate
(&$tableObject){\n\t\t$value = $tablelbject ->getPubdate ()
;\n\t}\n\n\tfunction namedId () {\n\t\treturn Message::_("
id") ;\n\t}\n\tfunction namedUrl () {\n\t\treturn Message::
("url") ;\n\t}\n\tfunction namedPubdate () {\n\t\treturn
Message::_("pubdate") ;\n\t}\n\tfunction _validName ($name)
{\n\t\t$this->valid = false;\n\t\treturn "Urls_".$name;\n
\t}\n}\n\n?>

computer science

Microseismic Extends Competitive Edge in Passive Seismic Monitoring Using Panasas
Activestor Parallel Storage.

Panasas Parallel Storage Improves I/O Throughput by 2X over Traditional SAN Products,
Enables MicroSeismic to Deliver Accurate Seismic Data Faster to Their Customers FRE-
MONT, Calif. —September 17, 2007— Panasas, Inc., the leader in parallel clustered storage
solutions for the High Performance Computing (HPC) market, has added MicroSeismic, Inc.
to its ever-growing roster of customers providing seismic imaging services for the oil & gas
industry. MicroSeismic has boosted its passive seismic application performance by 2X since
deploying the Panasas® ActiveStor™ Parallel Storage Cluster, enabling the geophysical
data services company to significantly reduce the time it takes to process data and return
high-quality results to their oil & gas customers who benefit from this time advantage in their
drilling efforts.

Houston-based MicroSeismic is the industry leader in passive seismic data acquisition and
analysis. Their passive seismic technology uses data from arrays of surface-located receivers
to monitor reservoir response to simulation injection and other production-related activities,
allowing companies to increase the efficiency and volume of produced oil & gas. As with
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most seismic applications, specialists at MicroSeismic collect and manipulate vast amounts
of data on a daily basis. The company uses 70 terabytes of Panasas parallel storage, which
will allow MicroSeismic to take on more client projects in less time and improve overall IT
productivity, truly giving them a competitive edge and higher profitability.

“Initially, we relied on the local storage provided with Linux servers, but when we introduced
a new processing application, the servers became I/O bound because the prior storage
architecture wasn’t optimized to handle large files. By deploying Panasas ActiveStor parallel
storage running the DirectFLOW® protocol, we increased the performance of the Linux
servers ten-fold and had all of the throughput we needed to satisfy not only the existing
applications, but also future applications that are in development,” said Michael Thornton, vice
president of Data Analysis at MicroSeismic. “We evaluated competitive storage, but Panasas
ActiveStor storage was the only solution that would meet our objectives for performance,
throughput, and ease of management.”

economics

Item HT 42264 Business Card - Greg McKibbin, Chairman & Managing Director, Kodak
Australasia Pty Ltd, 2005-2007 Greg McKibbin’s Kodak Australasia Pty Ltd business card
circa 2005 - 2007. The card identifies Greg as Chairman & Managing Director of Australia &
New Zealand, based at Collingwood.

Greg McKibbin joined Kodak in 1964 and went on to build a 45 year career in sales, marketing
and business management with the company, working in Australia, Asia, America and Europe.
He was responsible for the dismantling of the Coburg factory complex during his time as
Chairman and Managing Director from 2005 - 2007.

This document was donated as part of the Kodak Oral History Project. It complements the
Kodak Heritage Collection of products, promotional materials, photographs and working life
artefacts collected from Kodak Australasia in 2005, when the Melbourne manufacturing plant
at Coburg closed down.

Cardboard business card printed with Kodak logo, photograph and black text. Acquisition
Information Donation from Mr Greg McKibbin, May 2015 Person Depicted Mr Greg McKib-
bin - Kodak Australasia, Pty Ltd , Collingwood , Greater Melbourne , Victoria , Australia ,
2005-2007 Organisation Named Kodak (Australasia) Pty Ltd , Collingwood , Greater Mel-
bourne , Victoria , Australia , 2005-2007 Keywords Photography , Manufacturing , Staff ,
Business Cards , Marketing"

encyclopedia

Gleniffer Lake (Alberta)

Gleniffer Lake also known as Gleniffer Reservoir or originally Lake Gleniffer is an artificial
lake in central Alberta, Canada created in 1983 by the construction of the Dickson Dam
which impounded the Red Deer River, a major tributary of the South Saskatchewan River
which flows into the Saskatchewan River Basin.

It lies at an elevation of 945 metres (3,100 ft), and is approximately 7 kilometres (4.3 mi)
long and 2 kilometres (1.2 mi) wide. The lake is south of Highway 54 and east of the Cowboy
Trail, 36 kilometres (22 mi) west of Innisfail, Alberta and 36 kilometres (22 mi) east of
Caroline.

The lake has a surface of 17.6 square kilometres (6.8 sq mi), and a watershed of 5,610 square
kilometres (2,170 sq mi). It has an average depth of 11.6 metres (38 ft), and reaches a
maximum of 33 metres (108 ft).

Gleniffer Lake has day-use areas, cottages, a campground and resort developments including
Carefree Resort and Gleniffer Lake Resort.

The lake reservoir is a source of drinking water for the surrounding area.

Dickson Dam regulates the flow of the Red Deer River to control for floods and low winter
flows, to improve quality of the river, to create a recreational resource and to provide a reliable,
year-round water supply sufficient for future industrial, regional and municipal growth.
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Flavour molecules come in all sorts of weird and wonderful organic chemistry types, but
one thing they tend to have in common is that they are somewhat volatile; happy to flit from
the thing you’re eating or drinking directly into your retronasal cavities where the majority
of tasting happens. We know that the tongue only really discerns sweet, sour, bitter, salty
and umami flavours, so when a sommelier is telling you that you’ll definitely taste slightly
under-ripe Californian peaches in your orange wine, what they really mean is that you’ll smell
them as you drink, and your pathetic brain will trick you into thinking it’s a taste. Enough
insults, onto the instructions.This one really is the most basic; take your material for infusing
and whack it in your booze, then leave, strain out and you’re done. It works really well with
dried herbs, fruit, vegetables, teas and in the recipe below, for salted peanut infused rum.
When we steep something in alcohol, we’re pulling out all those great flavours, but we’re also
letting the material start to break down, so it’s very important to taste your infusion and stop it
at the point it’s ready. .. don’t just leave some cucumber in a bottle of gin and come back in 6
months, it will be grim. In fact, most infusions are at their best 4-7 days in: primarily because
of the breakdown of plant cells due to alcohol/osmosis stuff , which leaches chlorophyll into
the booze, leaving it tasting bitter and ‘stewed’. good rule of thumb is that you should have at
least 10x the weight of booze as you do material for infusion, so for example, to make a very
passable copy of Hendricks: peel of one cucumber (roughtly 50g) Add all that to a kilner jar,
leave for 4 days, strain and have in a G&T. You just saved £20.

To make the EC Salted Peanut Cuba Libre, you’ll need: Let the peanuts sit in the rum for
24 hours, then strain through a muslin cloth to remove any particles. Do not, under any
circumstances, eat the peanuts that have been soaked, they have been memorably described
as having what you imagine the texture of baby teeth to be. Leave to stand for 24 hours
then carefully pour into another vessel, leaving any sediment. Taking advantage of Ethanol’s
solvent properties, one brilliant thing we can do is strip the flavours from fats and oils. This
was something PDT in New York was famous for, making Bacon infused bourbons for
old fashioneds served with maple syrup (they, quite simply, fucking rule). Hawksmoor did
something similar with their Full Fat Old Fashioned, infusing butter into the bourbon. At
Every Cloud, we infused some lovely olive oil in gin for our clean dirty martini. To do
this, we’re going to stick to the 10:1 ratio again. You’re going to need some space in the
freezer and something for straining the liquid when you’re done. 500ml Gin 50ml Olive Oil
(something very flavourful, you don’t necessarily want extra-virgin here. Olive pomace can
work brilliantly) Mix the gin and olive oil either in a bag you can seal (zip-lock bags are great
for this) or a container you have a lid
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law

Attorneys for a white Chicago police officer charged with murder in the 2014 fatal shooting
of black teenager Laquan McDonald announced Friday they will stick with jurors for the trial
rather than have a judge decide the case. Jury selection wrapped up on Thursday. The court
vetted and selected 12 jurors and five alternates during the past week. The jury is made up of
seven whites, three Hispanics, one African-American and one Asian-American.

Judge Vincent Gaughan had set a Friday deadline for Jason Van Dyke to say whether he
wanted to switch to a bench trial in which the judge would have decided the officers fate.
Under Illinois law, Van Dyke could unilaterally switch to a bench trial, CBS Chicago reported.
Opening statements are now planned for Monday, although the judge still must decide on a
defense request to move the trial outside of Cook County, where Chicago is located. The legal
team representing Van Dyke has been pushing to move the case out of the county, according
to CBS Chicago. Jury selection wrapped up much more quickly than expected.Most of the
prospective jurors said they had seen police video of the shooting. Video shows Van Dyke
shooting McDonald 16 times as the teen seems to be walking away from police with a knife
in his hand. It will be one of the centerpieces at the trial. Some jurors who were excused said
they could not be impartial after what they had seen the video.The release of the video, in
November 2015, sparked large protests, the ouster of the police superintendent and demands
for police reform.Even those who were picked for the panel expressed concern, with the last
male juror saying that he thought the officer had "gone too far" when he shot the 17-year-old.
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erta y se sent al volante. Las tres figuras avanzaban hacia ellos. El hombre y la mujer
retrocedieron hasta la casa mientras el motor del coche se ponia en marcha. Durante un
instante, las ruedas giraron sobre la nieve hasta que dejaron de resbalar y el coche se alejo.
Las figuras echaron a correr y pasaron frente al hombre y la mujer sin prestarles atencion,
pendientes solo del coche que bajaba deslizdndose por la calle nevada. El hombre de pelo
blanco aferraba el volante con ambas manos. Por suerte era tarde, Nochebuena y nevaba, por
lo que no habia trafico que ralentizara su marcha. Sin embargo, aunque el hombre conducia
a gran velocidad, las figuras negras cada vez estaban mds cerca. Corrian tan sigilosamente
que resultaba sobrecogedor; a cada zancada cubrian doce metros y las puntas de sus abrigos
negros ondeaban tras si. Al doblar una esquina, el coche topd con una furgoneta estacionada
y dos figuras se elevaron de un salto por los aires, asiéndose a las fachadas de las casas que
bordeaban la calle. El hombre miré por el retrovisor y vio que sus perseguidores avanzaban
pegados a las fachadas como gargolas que se hubieran desprendido de los tejados. Aunque
su mirada no denotaba sorpresa, pis6 a fondo el acelerador. El coche cruzé a toda velocidad
una plaza y pasé como una exhalacién junto a un grupo de feligreses que salian de la iglesia
a medianoche. Se adentré en el casco antiguo de la ciudad, y a pesar del estruendo de las
ruedas rebotando en las calles adoquinadas, los nifios segufan durmiendo en el asiento trasero.
Una de las figuras se impulsé contra la fachada rojiza de una de las casas y aterrizé con gran
estruendo sobre el coche y, acto seguido, su mano pédlida rompia el techo de un pufietazo y
empezaba a arafiar la chapa.

mathematics

0

is an optimized solution for this problem. Now ... Intuition for orientation of a simplex (in
3 dimensions)

In trying to begin to learn basic homological algebra, i am confronted with orientation of
simplices. The definition seems unmotivated and unintuitive: for n-simplices with n €

{-1,0,1,2},it ...
Covering n-simplex with k-subsets to produce a lower m-simplex, m < n ?
Let vertices of an n-simplex be labeled {z,xa,...,2,} and let the k-subsets or k-

intersections (k < n) be identified as x;, N @, N ... N Ti, = Tiy Tiy - - - Ty, - - -

Do we distinguish two singular simplices if they have different vertex orders?

We define a singular n-simplex in X to be a continuous map o : A™ — X where A" is the
standard n-simplex. Now, as an example, Let X be a singleton {p}.

medicine

Mohamed I. Fayad, D.D.S., M.S., Ph.D. Dr. Fayad received his DDS in 1985 from the
Collage of Dentistry, Cairo University. Dr. Fayad received his Master’s in Oral Sciences
in 1994 from the University of Buffalo. He received his PhD in 1996 as a joint supervision
between University of Buffalo and Cairo University. He received his Endodontic training
at the college of Dentistry at UIC. Currently he is the director of endodontic research, and
a clinical associate professor in the Endodontic department at College of Dentistry at UIC,
dividing his time between teaching, research, and private practice. Dr. Fayad is the co-author
of the Periradicular Surgery chapter in Pathways of the pulp 10th edition (2011) and 11th
edition 2015. Dr. Fayad is the co-editor of the text book “3-D imaging in Endodontics”.

He is a Diplomate of the American Board of Endodontics and gave numerous presentations
nationally and internationally. 25 E Washington St. Ste 1833 3-D Imaging in Endodontics:
A new era in diagnosis and treatment Diagnostic information directly influences clinical
decisions. Accurate data lead to better treatment-planning decisions and potentially more
predictable outcomes. CBVT is an emerging technology that can offer the clinician clinically
relevant information that cannot be gathered from conventional radiography. The ability to
assess an area of Interest in 3 dimensions eliminates the superimposition that is inherent
in conventional radiographic imaging. Cone-beam technology currently has numerous
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applications in the dental field. CBVT is having great impact and is changing dramatically
case diagnosis, treatment planning and treatment outcomes in the daily practice. Half day,
full day, or two day lecture, workshop, or live demo.

philosophy

Light of the eyes : homilies on the Torah, The Hasidism Talmud RELIGION / Judaism /
Sacred Writings Hasidism is an influential spiritual revival movement within Judaism that
began in the eighteenth century and continues to thrive today. One of the great classics of
early Hasidism, The Light of the Eyes is a collection of homilies on the Torah, reading the
entire Five Books of Moses as a guide to spiritual awareness and cultivation of the inner life.
This is the first English translation of any major work from Hasidism’s earliest and most
creative period. Arthur Green’s introduction and annotations survey the history of Hasidism
and outline the essential religious and moral teachings of this mystical movement. The Light
of the Eyes, by Rabbi Menahem Nahum of Chernobyl, offers insights that remain as fresh
and relevant for the contemporary reader as they were when first published in 1798.

politics

There are huge forces arrayed against following the British vote to leave. There are the E.U.,
determined to make sure that leaving is neither easy nor cheap, lest anyone else get the idea;
assorted left-wingers dreaming of socialist paradise; and the slavishly like-minded press.
They all hope for more of the same. On the other side, seemingly outnumbered, are those who
were tired of not being represented, of being told what cucumbers to buy and of imminent
doom if they were to dare defy the powers that be. For the sake of the United Kingdom and,
ultimately, Europe itself, here is hoping that on March 29, 2019, the E.U. will be one member
less.

q-a forum

Question: Assigning one value to another value in rails. I have two models din & company,
on one of the form I am trying to create a functionality in which one can assign Directors to
the respected company & company can be assigned to the directors. Here one company can
have many directors & director can be on board of many companies. I have implemented the
relation between the above two models using HABTM,I have created one model coDir in
which the relation between two will be saved as a combination of din_id & company_id. I am
trying to use two drop down menus where multiple selection is to be used.Now the problem
is that how can I assign the directors to the companies & vice versa. If any one has any idea
will save my weekend.

Answer: I would suggest you use has_many :through in this case. And use checkboxes for
your desired functionality(although you could probably use a multiple select if you wish.
Here are a couple of example tutorials to get you started.

web-crawl

Vieques offers a lot of options for adventurers, from horseback riding on deserted beaches,
to the one-of-a-kind bio bay experience, to scuba diving at an abandoned military pier
(Mosquito Pier or Rompeolas) a mile of the northern coast. The pier is about a mile long. It
was constructed in 1941 and was supposed to connect Vieques with the mainland of Puerto
Rico. But those plans were abandoned in 1943. At the end of the pier is a massive dock
supported by pillars going deep to the ocean floor. The dock is on the calm, protected side of
the pier and over the years the dock has become a shelter for all kinds of marine life. The
beautiful thing is, it’s basically an off-shore dive. The scuba operators take the divers and all
the gear there by pick-up truck. If you are into diving you have to check it out. We are happy
to help you arrange the dive trip. Below is a video that Mike Corey did earlier this year about
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diving at the pier. It gives you a great idea of what to expect, but it doesn’t come close to the
real experience. We are sure you are going to love it.

visual concept

Take a riverboat up the Wailua—which translates as the "river of the great sacred spirit"—fed
by the Mount Waialeale shield volcano, one of the wettest spots on the planet. Seven temples
once stood along Hawaii$ longest and only navigable freshwater passage. Today, the remains
of four are still visible, alongside petroglyphs and rocks where the islands alii (royalty) would
give birth. Stretch your legs at the stunning Fern Grotto: Verdant plants blanket the roof of
the volcanic-rock cave there. Smith’s offers 80-minute tours there on open-air boats, which
include the songs and stories of ancient Hawail, plus a bonus hula lesson (smithskauai.com).
Take a riverboat up the Wailua—which translates as the "river of the great sacred spirit"—fed
by Mount Waialeale, one of the wettest spots on the planet. Seven temples once stood along
Hawaiis$ longest and only navigable freshwater passage. Today, the remains of four are still
visible, alongside petroglyphs and rocks where the islands alii (royalty) would give birth.
Stretch your legs at the Fern Grotto: Verdant plants blanket the roof of the volcanic-rock cave
there.

visual attribute

These Spring Play Dough Mats are perfect for the upcoming weather! Is anyone else ready
for winter to just be done?I’m so ready for spring, yet it is snowing outside right now, not
cool. It seems as this winter weather has literally gone on for forever. . .and I'm ready for
Spring to be here now. Luckily, in just a few short weeks, Spring will be a reality! In order to
prepare for that glorious nature change, we’re celebrating with these Printable Spring Play
Dough Mats. You’ll love the ease of being able to print out these play dough mats and watch
your little ones create. It’s so much fun to watch their excitement grow with their learning!
Print out the play dough mats and either laminate them or place them inside page protectors
and they can be used with play dough right away. My daughter loves covering up the pictures
with different colored play dough. My son rolls out the play dough to place them on top
of the letters. It’s a great activity for preschoolers to learn their letters and it gives them a
multi-sensory approach to letters. Especially if they’re not writing that well yet. Don’t forget
to get your Spring Play Dough Mat Printables here! We also love games in our home, so
while the weather is still just a little chilly outside, here are some fun family games as well!
Visit these amazing bloggers and see what their favorite games that they enjoy in their home.

visual relationship

I do like to amuse myself with the titles of my blog posts. How can a box be both tall and
small??? When it’s one of mine it can be! OK, so it’s not super tall, it’s 5.5 (14cm) tall, but
its definitely small at 1.25” (3cm) wide. So yes, I reckon it’s tall and small at the same time. . ..
I really enjoyed doing the tone on tone stamping a few weeks ago and am quite passionate
about the Beautiful Bouquet stamp set right now, so I decided to see what they’d look like
when put together as a set and a technique. I haven’t used the matching framelits all that much,
so I added just a tiny delicate detail on the front with a little bit of sponging around the edges.
Also quite cute! And how gorgeous is the Island Indigo tone on tone? I genuinely don’t think
I’ve used this colour in the 12 months since we moved to Cambridgeshire. The reason I know
this is because when I set up my new office, I set out my cardstock in a particular way with a
space for full sheets of cardstock and a space for off cuts, of which I ready prepped half a
dozen card blanks in each colour. I haven’t used or added to the Island Indigo space. Oops,
bad demo here! So it was worth making this project even if just to remind myself what a
fabulous colour it is! I adore the flower detail on the ribbon!! Very cute, love the flower. Very
pretty. I love that blue, such a pretty color. Thanks for sharing this project with us.
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