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Abstract

Large Language Models (LLMs), despite being trained on text alone, surprisingly1

develop rich visual priors. These priors allow latent visual capabilities to be2

unlocked for vision tasks with a relatively small amount of multimodal data, and3

in some cases, to perform visual tasks without ever having seen an image. This4

paper aims to demystify this phenomenon. Through systematic analysis, we5

reveal that these priors are not uniform but are composed of separable ’perception’6

and ’reasoning’ priors with unique scaling trends and origins. We show that an7

LLM’s latent visual reasoning ability is predominantly cultivated by pre-training on8

reasoning-centric data (e.g., code, math, academia) and scales progressively. This9

reasoning prior acquired from language pre-training is transferable and universally10

applicable to visual reasoning. In contrast, the perception prior emerges more11

diffusely from broad corpora, and perception ability is more sensitive to the vision12

encoder and visual instruction tuning data. In parallel, text describing the visual13

world proves crucial, though its performance impact saturates rapidly. Leveraging14

these insights, we propose a data-centric recipe for pre-training vision-aware LLMs.15

The resulting 7B model trained on this recipe for 1T tokens, demonstrates stronger16

vision capabilities without compromising language proficiency. Our findings are17

grounded in over 100 controlled experiments consuming 500,000 GPU-hours,18

spanning the full MLLM construction pipeline—from LLM pre-training to visual19

alignment and supervised multimodal fine-tuning—across five model scales, a wide20

range of data categories and mixtures, and multiple adaptation setups. Together,21

this work provides a new way of deliberately cultivating visual priors from language22

pre-training, paving the way for the next generation of multimodal LLMs.23

1 Introduction24

A compelling phenomenon has emerged at the forefront of AI research: Large Language Models25

(LLMs), despite being trained exclusively on vast corpora of text, appear to develop profound priors26

about the visual world. This latent capability is paradoxical, suggesting that the statistical patterns27

within language might be rich enough to encode fundamental principles of vision, from object28

properties to spatial relationships, without ever observing a single image. This emergent visual prior29

presents in several surprising and powerful ways:30

• Programmatic visual knowledge. LLMs possess a rich visual knowledge, enabling them31

to generate executable code that renders complex 2D and 3D scenes, from objects to spatial32

layouts (Sharma et al., 2024; Sun et al., 2025; Ge et al., 2025; Ashutosh et al., 2025). This33

demonstrates a grasp of visual concepts without ever seeing a single image. The resulting34

synthetic data is of sufficient quality to pre-train standard vision models for successful35

generalization to real-world images (Sharma et al., 2024).36
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• Data-efficient visual adaptation. LLMs are highly efficient for visual adaptation. With a37

vision encoder, high-level reasoning emerges from instruction tuning on a small scale of38

image-text pairs, bypassing the need for massive multimodal pretraining (Alayrac et al.,39

2022; Liu et al., 2023a; Li et al., 2023; Grattafiori et al., 2024; Tong et al., 2024a; Bai40

et al., 2025b). This data-efficient instruction tuning extends to unified models, where visual41

generation are unlocked with minimal data (Tong et al., 2024b). Furthermore, this efficiency42

enables adaptation to low-level visual tasks using vision-only data (Zheng et al., 2024; Du43

et al., 2025), proving that an LLM’s reasoning framework can function independently of44

cross-modal alignment.45

• LLMs as strong vision encoders. The learned representations of LLMs can directly benefit46

pure vision tasks without languages (Kumar et al., 2024; Pang et al., 2024; Lai et al., 2024;47

Bai et al., 2025a). When repurposed as visual encoders, the transformer layers of LLMs offer48

competitive performance on image classification, segmentation, and video understanding,49

even surpassing vision-specific backbones (Pang et al., 2024). These findings suggest that50

the hierarchical abstraction and long-range dependency modeling intrinsic to LLMs are51

not modality-specific, but rather capture general-purpose computational motifs that are52

well-suited to processing visual signals. This is also shown in neuron-level studies, which53

have identified multimodal neurons within LLMs that respond to the same abstract concept54

regardless of whether it is presented through text or vision (Schwettmann et al., 2023; Pan55

et al., 2023; Verma et al., 2024).56

Collectively, these phenomena are not isolated curiosities; they point toward a deeper principle57

of representation learning. They lend strong empirical support to the Platonic Representation58

Hypothesis (Huh et al., 2024b; Jha et al., 2025), which posits that as models scale across diverse data59

and tasks, their latent representations—whether trained on text or images—converge toward a shared,60

underlying statistical model of reality. In this view, text and images are different "projections" or61

"shadows" of the world, and a powerful enough model can learn the structure of the world itself from62

any single projection. The visual priors in LLMs, therefore, may be a direct consequence of them63

recovering this unified internal world model from text alone.64

These observations motivate a systematic investigation into the visual priors that LLMs acquire65

from text-only pre-training. We frame visual priors not as direct perceptual faculties, but as implicit66

knowledge or prior vision capabilities encoded in LLMs, whose primary effect is to grant both67

enhanced capability for vision tasks and greater ease of transfer to vision. We seek to determine68

their origins, dissect whether they form a uniform block of knowledge or are composed of distinct,69

separable abilities, and explore how they can be leveraged to build more capable MLLMs. Our70

methodology is centered on controlled ablation studies (Allen-Zhu, 2024), where we deconstruct71

the sources of different visual capabilities. By carefully manipulating pre-training model scale, data72

scale, data categories, data mixing ratios, vision-encoders components, and visual instruction tuning73

data, we reveal the underlying laws that govern them.74

Our work presents the first systematic investigation into the nature and origins of visual priors in the75

pre-training of LLMs and shows three key contributions:76

• Structure of visual priors. We establish that visual priors can be decomposed into percep-77

tual and reasoning components.78

• Source of visual priors. We identify that the model’s latent visual reasoning is predom-79

inantly cultivated by and scales progressively with reasoning-centric data, whereas its80

perception ability emerges more diffusely from broad, diverse data.81

• Vision-aware language pre-training. We propose a pre-training data-mixing strategy that82

strategically balances reasoning-centric and visually descriptive text to deliberately cultivate83

powerful visual priors for training LLMs that can result in stronger multimodal performance.84

Beyond our primary findings, our work also introduces two resources valuable for the MLLM85

community: (1): Blind visual instruction tuning: A tric that serves as both a practical tool for86

improving visual adaptation and a probe to reveal how models can "hack" visual tasks with language.87

(2): The Multi-Level Existence Bench (MLE-Bench): A new benchmark specifically designed for88

the fine-grained evaluation of a model’s perceptual abilities.89
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Ultimately, by demystifying the textual origins of these visual priors, this work contributes to a90

more fundamental understanding of how complex, seemingly modality-specific capabilities are91

encoded within language, thereby offering a clearer picture of the internal "world models" that foun-92

dation models learn from text alone and providing empirical support for the Platonic Representation93

Hypothesis.94

2 Problem Formulation95

In this section, we introduce our default training and evaluation settings.96

2.1 Training protocol.97

LLM pre-training setup. We follow standard practices and pre-train a suite of decoder-only98

Transformer models that closely adhere to the Llama-3 architecture (Grattafiori et al., 2024), spanning99

five model scales: 340M, 1B, 3B, 7B, and 13B parameters. These models are trained for varying100

numbers of tokens at 0B, 5B, 10B, 20B, 30B, 50B, 70B, 100B, and up to 1T tokens. We use a101

tokenizer with a vocabulary size of approximately 32000. Training is performed using the AdamW102

optimizer (Loshchilov and Hutter, 2017) with a peak learning rate of 3× 10−4, following a cosine103

decay schedule and a warm-up over the first 1024 steps. All models are trained with a context length104

of 2048 tokens and an effective global batch size of 1024. We fix the model size to 3B parameters105

and the total training data volume to 30B tokens as our default setting.106

LLM pre-training data. Our training data is composed of a diverse mixture of 16 sources, including107

academic, arts, biology, code, computer science, economics, encyclopedia, food, law,108

literature, mathematics, medicine, philosophy, politics, q-a forum, and web-crawl.109

Each source contains at least 50B tokens.110

MLLM adaptation setting. We adopt a two-stage adaptation strategy following Cambrian-1 (Tong111

et al., 2024a) and Web-SSL (Fan et al., 2025), consisting of visual alignment and supervised fine-112

tuning. In the first stage, we train an MLP-based projector on top of a frozen vision encoder and113

language model to align visual features with the LLM. Unless otherwise specified, we use MetaCLIP-114

B/16 (Xu et al., 2023) as the default vision encoder. Extracted visual features are uniformly resized115

to a fixed length of 576 tokens. In the second stage, we perform supervised fine-tuning on a mixture116

of vision-language and language-only instruction data to enhance the model’s multimodal instruction-117

following ability. Both the alignment and instruction tuning stages use the AdamW optimizer with a118

cosine learning rate schedule and linear warm-up, and models are trained for a single epoch. During119

alignment, we use a learning rate of 1× 10−3 with a warm-up ratio of 6%. For instruction tuning, the120

learning rate is set to 4× 10−5 with a 3% warm-up. Training is conducted with an effective global121

batch size of 512.122

MLLM adaptation data. We adopt the Cambrian-1 and Web-SSL data pipeline, but with strategic123

data reductions to highlight the effect of vision priors. The initial alignment stage utilizes a 1M124

image-caption dataset, which is roughly 40% of the original dataset’s size. This is followed by125

supervised fine-tuning on a curated 3.5M subset of the Cambrian-7M data. This subset is balanced126

with approximately 1.5M language-only and 2M vision-language paired instructions, resulting in a127

higher percentage of language-only instruction data than the original curation, as our models learn to128

follow language instructions during this phase.129

For all experiments, we fix the random seed as 42. For MLLM adapatation, we use the same order130

for data loading in both alignment and instruction tuning stage to get stable results.131

2.2 Evaluation protocol.132

LLM evaluation. We conduct a comprehensive evaluation of our pre-trained models’ language133

understanding and reasoning abilities. Following the benchmark suite used in Mamba (Gu and134

Dao, 2023) and GLA (Yang et al., 2023), we assess performance on two main fronts. For raw135

language modeling quality, we report the averaged perplexity (ppl) across Wikitext (Merity et al.,136

2016) and LAMBADA (Paperno et al., 2016). For reasoning, we evaluate zero-shot performance on137

a diverse suite of commonsense and question-answering tasks, including PIQA (Bisk et al., 2020),138
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HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC (Clark et al., 2018),139

Copa (Reddy et al., 2019), SciQA (Auer et al., 2023), OpenbookQA (Mihaylov et al., 2018), and140

BoolQA (Clark et al., 2019). For a concise comparison, we report the unweighted averaged accuracy141

over all these benchmarks.142

MLLM evaluation. To comprehensively assess the multimodal capabilities of our models, we follow143

Cambrian-1 and established a diverse evaluation suite comprising 16 public benchmarks. We group144

these benchmarks into four key categories to to isolate and probe the distinct components of the145

learned visual prior, ranging from fine-grained perception to abstract reasoning, and provide a holistic146

view of model performance:147

• General: This category probes the model’s ability to perform visual perception and connect148

it with commonsense knowledge, rather than complex, multi-step reasoning. It includes149

GQA (Hudson and Manning, 2019), MME (Fu et al., 2023), MMBench (Liu et al., 2024c),150

and SEED (Ge et al., 2023).151

• Knowledge: This category evaluates the model’s capacity to connect visual information with152

world and perform multi-step reasoning to solve complex scientific or mathematical prob-153

lems. It covers ScienceQA (Lu et al., 2022b), MMMU (Yue et al., 2024), AI2D (Hiippala154

et al., 2021), and MathVista (Lu et al., 2023).155

• OCR & Chart VQA: This category focuses on fine-grained perception, specifically the ability156

to accurately read and interpret dense textual and structured data within images. It comprises157

TextVQA (Sidorov et al., 2020), ChartQA (Masry et al., 2022), and OCRBench (Liu et al.,158

2023b).159

• Vision-Centric: This category mainly probes abstract visual reasoning and rough perception160

skills, requiring the model to perform tasks such as spatial and 3D understanding, object161

counting, and IQ tests. It uses benchmarks including RealWorldQA (xAI, 2024), Blink (Fu162

et al., 2024), COCO, ADE, and Omni3D. COCO (Lin et al., 2014), ADE (Zhou et al., 2019),163

and Omni3D (Brazil et al., 2023) are proposed as CV-Bench from Cambrian-1 (Tong et al.,164

2024a).165

The overall average result is based on all benchmarks. We also report the averaged multimodal166

evaluation accuracy for each category. To fairly assess a model’s core vision ability, independent167

of its instruction-following capabilities, we address a challenge: models, especially smaller ones,168

often embed correct answers within conversational text rather than providing a direct response. Our169

evaluation uses a robust parsing strategy to extract the intended answer from this free-form text. This170

approach ensures a reliable assessment of all models, including those without language pre-training171

but only visual instruction tuning, making our results resilient to variations in response formatting.172

More details about this parsing strategy is presented in Appendix I.173

LLM-vision alignment. To quantify the representational convergence and similarity between174

language and vision modalities, we measure the alignment between the feature spaces of LLMs and175

pretrained vision models, following the methodology of the Platonic Representation Hypothesis (Huh176

et al., 2024a). For this analysis, we use image-caption pairs from the Wikipedia-based Image Text177

(WIT) dataset (Srinivasan et al., 2021). Given an image xi and its caption yi, we compute vision and178

language kernels, Kvision and Klang, from their respective model representations, fvision and flang:179

Kvision(i, j) = ⟨fvision(xi), fvision(xj)⟩
Klang(i, j) = ⟨flang(yi), flang(yj)⟩

We then assess the alignment between these kernels using the mutual nearest-neighbor (mNN ) metric,180

which calculates the average overlap of the k-nearest neighbor sets (with k = 20) for each pair. The181

final alignment score for a given LLM is reported as the average of its mNN scores against three182

strong vision backbones: ViT-Large (Dosovitskiy et al., 2021) (trained on ImageNet-21K (Deng et al.,183

2009)), DINOv2-Giant (Oquab et al., 2023), and CLIP-Huge (Radford et al., 2021).184

For all evaluations, we fix the random seed as 42 and use temperature 0 for testing to get consistent185

results.186

The rest of results are presented in Appendix.187
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Figure 1: Impact of model and data sizes. The plots illustrate the performance of MLLMs, built
upon LLMs of five different sizes (340M to 13B parameters), as a function of the amount of web
pre-training data (0B to 100B tokens). The general trend shows that performance improves with both
increasing model size and data volume, but the scaling behavior differs across task categories.

A Demystifying LLM Visual Priors: Studies and Findings188

This section presents our main results and findings. We first conduct a series of controlled experiments189

to systematically deconstruct the origins of LLM visual priors. These studies investigate the impact190

of fundamental variables like model and data scale (Section A.1), data sources (Section A.2), and191

conceptual data mixtures (Section A.3), culminating in the derivation of a data mixture for more192

vision-aware LLMs (Section A.4). Building upon the rich data generated from these experiments,193

we then pivot to a broader analysis to uncover the internal structure and origin of the learned priors194

(Section A.5), and the ultimate source of these abilities within a multimodal system (Section A.6).195

Each subsection details its specific experimental setup or analytical approach, followed by the results196

and key findings.197

A.1 Impact of model and data sizes.198

Finding 1: VQA performance scale positively with model and data size. However, this
scaling is not uniform across all visual abilities.

199

We begin our analysis by investigating the fundamental impact of scale. To study how model size200

and pre-training data volume influence downstream multimodal capabilities, we perform a set of201

experiments to pre-train five LLMs of varying sizes (340M, 1B, 3B, 7B, and 13B parameters). Each202

model size was trained on eight different scales of data, ranging from 0B to 100B tokens. The training203

dataset is web-crawl for all experiments.204

As illustrated in Figure 1, a clear and consistent trend emerges: larger models and more pre-training205

data generally lead to stronger downstream multimodal performance. This holds true for the overall206

average VQA. However, a closer look at the different VQA categories reveals significant nuances.207

Performance on General VQA and Knowledge VQA demonstrates a similar scaling trend, consistently208

improving with both model and data size. In sharp contrast, OCR & Chart VQA is far more sensitive209

to model size than data volume; the performance gap between models is significantly wider, and210

gains from additional data saturate very quickly. Meanwhile, Vision-Centric VQA also presents a211

unique pattern where the largest models benefit disproportionately from more data, while smaller212

models plateau much earlier. These divergent scaling patterns across different abilities demonstrate213

different visual abilities do not scale uniformly, but instead possess different properties that govern214

how they benefit from increased model and data size.215

A.2 Impact of pre-training data sources.216

Finding 2: Different visual abilities are decoupled. Specific categories of text pre-training
data can enhance certain visual capabilities in the resulting MLLM; in particular, data related
to reasoning and the visual world significantly improves performance on vision-centric tasks.

217
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Figure 2: Impact of pre-training data sources. The bar charts illustrate the downstream VQA
performance of MLLMs built upon a 3B parameter LLM, where each LLM was pre-trained on 30B
tokens from a single, specific data source. The plots show that performance varies significantly
depending on the pre-training sources.

To study the impact of different pre-training data sources, we conduct a set of controlled experiments.218

We fix the model size to 3B parameters and the total training data volume to 30B tokens. We then219

pre-train 16 distinct models, each trained exclusively on data from one of the 16 sources outlined220

in our pre-training sources (e.g., academia, biology, code, etc.). This setup allows us to attribute221

performance variations directly to the specific data source used for pre-training.222

As illustrated in Figure 2, the results reveal a significant variance in downstream multimodal perfor-223

mance depending on the pre-training data source. This divergence suggests that different categories224

of text data contribute to distinct and non-uniform visual priors. Notably, strong performance on225

Vision-Centric VQA tasks is highly correlated with two types of data: reasoning-centric (e.g., code,226

mathematics, academia) and corpora rich in visual-world descriptions (e.g., arts, food). The227

top-performing models in Vision-Centric VQA, all scoring above 42%, are trained on these specific228

sources.229

The key takeaway from this is that the visual prior acquired from text-only pre-training is likely not230

a single entity. Rather, the variance in performance across data categories indicates that it may be231

composed of separable components or abilities. We hypothesize that this occurs because different232

pre-training data sources emphasize distinct underlying principles, thereby cultivating different facets233

of the overall visual prior. This also raises the possibility that these abilities can be selectively234

nurtured by curating the pre-training data, which will be studied in Section A.4.235

A.3 Impact of conceptual data categories and proportions.236

Finding 3: A small amount of data about the visual world is crucial, but its contribution
saturates quickly; in contrast, increasing the proportion of reasoning data in the pre-training
mix progressively enhances visual abilities, with performance gains observed up to a 75%
ratio.

237

To move beyond the broad, pre-defined data sources analyzed in Section A.2, we investigate the238

impact of more fundamental conceptual categories within the text. Our findings in the previous239

section show that reasoning-centric categories and categories related to the visual world were the240

most potent drivers of downstream visual capabilities. To dissect this phenomenon further, we focus241

our next set of experiments specifically on these high-impact domains.242
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Figure 3: Impact of conceptual data categories and proportions. The plots illustrate how varying
the proportion of specific conceptual data categories in the pre-training mix affects downstream
MLLM performance across VQA benchmarks. Top Plots (Reasoning-Centric Data): The upper set of
lines shows that increasing the share of reasoning-centric data leads to progressive and significant
performance gains, with benefits scaling up to a 75% proportion before plateauing. This indicates that
a strong reasoning foundation is critical for enhancing visual abilities. Bottom Plots (Visual World
Data): In contrast, the lower set of lines, representing data that explicitly describes the visual world
demonstrates rapidly diminishing returns. While a small amount of this data is crucial to establish a
baseline,

We begin by creating a data pool of approximately 300B tokens, comprising all sources used in243

Section A.2. To partition this corpus conceptually, we employ a 32-B LLM (Yang et al., 2025a) to244

classify the text into finer-grained categories. The classification is performed on 1024-token segments,245

and is treated as a multi-label task, allowing each segment to be assigned to multiple conceptual246

categories. Detailed classification settings and results for each data source are presented in the247

Appendix H.248

The reasoning-centric data was partitioned into code reasoning, math reasoning, science249

reasoning, and a reasoning combination category, which aggregates the three aforementioned250

categories. Concurrently, we define four categories for data related to the visual world:251

• visual concept: Text naming visual entities like objects, people, places, and scenes.252

• visual attribute: Descriptions of visual properties such as color, shape, texture, and253

style.254

• visual relationship: Language detailing spatial arrangements or part-whole connec-255

tions.256

• visual combination: A combination of all three visual categories.257

With this conceptually partitioned dataset, we conduct a series of controlled mixing experiments258

to study how varying the proportion (mixing ratio) of these data types affects the final MLLM’s259

performance. For each conceptual category, we train five separate models, systematically varying its260

proportion in the data mixture to 0%, 25%, 50%, 75%, and 100%. The remainder of the data for each261

run is sampled proportionally from the other categories within the 300B token pool to maintain a262

constant total training volume.263

As shown in Figure 3, the results reveal a critical divergence in how different conceptual data cate-264

gories contribute to visual priors. The impact of reasoning-centric data is profound and progressive,265

with performance scaling steadily up to a 75% proportion, especially obvious with vision-centric266

abilities. The contribution from data explicitly describing the visual world saturates quickly; a small267

initial amount seems to be crucial, but further increases yield diminishing returns.268
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A.4 Deriving a data mixture for more vision-aware LLMs.269

Finding 4: Maximizing MLLM VQA performance is best achieved by pre-training on a data
mixture heavily skewed towards reasoning-centric content but with necessary vision world
knowledge. The balance point between language and vision proficiency is reached via a
calibrated data mixture between language-favorable and vision-favorable pre-training data
mixture.

270

Building on our findings, our goal is to derive a single, practical data mixture that excels not just271

in language tasks but also serves as a powerful foundation for MLLMs. We narrow our focus for272

this analysis to six primary data categories: web-crawl, encyclopedia, academia, literature,273

math, and code. Our approach proceeds in three stages: first, we determine a vision-favorable274

conceptual blend; second, we identify a language-favorable mixture; and finally, we try to derive a275

balanced mixture by interpolating between these two optima.276

Vision-favorable mixture. To define a target for strong MLLM visual performance, we conduct a277

search at the conceptual category level. Specifically, we perform a grid search across 24 data blends278

constructed by sampling from a space where the reasoning combination ranges from 50% to279

85% and the visual combination ranges from 5% to 30%, following the conclusions drawn from280

Section A.3. The comprehensive results of this search are presented in Table 1.281

Data Ratio Avg VQA Data Ratio Avg VQA
reasoning visual reasoning visual

50
5 30.7

55
5 30.9

10 31.3 10 31.7
15 31.8 15 32.2

60

5 31.9

65

5 32.0
10 32.4 10 32.2
15 32.7 15 32.5
20 32.5 20 32.1
25 32.4 25 31.9
30 31.6 30 31.4

70
5 31.9

75
5 31.6

10 32.3 10 31.5
15 32.6 15 32.4

80
5 31.5

85
5 31.2

10 32.4 10 31.6
15 32.2 15 31.8

Table 1: Grid Search for an optimal-vision data mixture. Results from pre-training a 3B parameter
LLM on 30 distinct data blends, each totaling 30B tokens. The table explores how varying the
proportions of reasoning-centric and visual-world text affects various capabilities, measured by Avg
VQA. The data highlights a performance peak for vision tasks at a mixture of approximately 60%
reasoning and 15% visual content.

From this search, we find that the best-performing models for downstream MLLM tasks emerge282

from a mixture containing approximately 60% reasoning and 15% visual content. This result show a283

powerful visual foundation is not built by simply maximizing exposure to visual descriptions, but by284

establishing a strong reasoning faculty, which is then grounded by a smaller amount of visual-world285

knowledge.286

Language-favorable mixture. We begin by establishing a language-favorable mixture that achieves287

the best performance on our language task suite. Guided by recent literature and empirical testing, we288

identify this as a mix of 50% web-crawl, 2.5% encyclopedia, 2.5% academia, 20% literature,289

5% math, and 20% code. This blend, designated as mix0 in Table 2, serves as our baseline for strong290

language proficiency, achieving the highest text accuracy (53.0%) and the best perplexity (13.46) in291

our experiments.292
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Balanced mixture. To reconcile these two objectives, we seek a single, balanced mixture that offers293

strong performance across both modalities. We achieve this by performing a series of interpolation294

experiments, detailed as mix0 through mix10. We shift the data composition from our language-295

favorable baseline (mix0) towards a conceptual endpoint representing the vision-favorable blend296

(approximated by mix9 and mix10). To ensure stabilized results, each model in this series is trained297

for 50B tokens.298

The performance metrics in Table 2 reveal the expected trade-off: as the mixture becomes more299

reasoning-centric, vision accuracy (v-acc) generally improve, while language proficiency (t-acc and300

ppl) shows a slight decline. Our analysis identifies mix6 as the balanced mixture, achieving the301

highest overall rank. Mixtures in its vicinity (e.g., mix5, mix7, mix8) also achieve high rankings.302

This demonstrates that a carefully calibrated data mixture can cultivate powerful visual priors without303

substantially compromising core language abilities.304

Recipe Data Source Mixture (%) Performance Metrics Overall Rank
web-crawl encyclopedia academic literature math code reasoning visual t-acc (%) ppl (↓) v-acc (%)

mix0 50.0 2.5 2.5 20.0 5.0 20.0 33.1 21.7 53.0 13.46 32.4 5
mix1 48.3 3.4 2.9 17.0 5.8 22.5 36.2 20.6 52.8 13.48 32.4 4
mix2 46.7 4.3 3.3 14.0 6.7 25.0 39.4 19.4 52.6 13.51 32.6 8
mix3 45.0 5.2 3.8 11.0 7.5 27.5 42.6 18.2 52.5 13.56 32.9 9
mix4 43.3 6.1 4.2 8.0 8.3 30.0 45.7 17.1 52.4 13.62 32.7 10
mix5 41.7 7.1 4.6 5.0 9.2 32.5 48.9 16.0 52.6 13.57 33.0 6
mix6 40.0 8.0 5.0 2.0 10.0 35.0 52.0 14.8 52.7 13.52 33.3 1
mix7 36.5 7.0 7.5 2.0 11.5 35.5 55.5 14.4 52.5 13.56 33.1 3
mix8 33.0 6.5 9.5 2.0 12.0 37.0 57.2 14.0 52.7 13.52 33.2 2
mix9 29.5 6.0 11.5 2.0 12.5 38.5 59.0 13.6 52.3 13.71 33.2 7
mix10 26.0 5.5 12.5 2.0 13.0 41.0 61.3 13.3 52.1 13.88 33.4 11

Table 2: Deriving a data mixture for more vision-aware LLMs. This table details a series of 11
data mixtures, from mix0 (language-favorable blend) to mix10 (approximating the vision-favorable
blend), all trained on a 3B-parameter LLM with 50B tokens. The experiment systematically shifts the
data composition towards a higher proportion of reasoning-centric content (math, code, academia).
The results highlight a trade-off, with mix6 emerging as the most balanced mixture, achieving top-
ranked overall performance by improving visual capabilities without a significant drop in language
proficiency.

A.5 The structure and origin of learned visual priors.305

Finding 5: The learned visual prior is not a single entity but decomposes into at least two
priors with different origins. We reveals a perception prior (linking General and OCR) and
a reasoning prior (linking Knowledge and Vision-Centric tasks). These priors also scale
independently.

306

We now synthesize our previous results to investigate the internal structure of the visual prior. Is307

it a single, uniform ability, or a composite of different, separable visual skills? To answer this, we308

conceptualize the visual prior as a collection of distinct abilities, each measured by one of our four309

VQA categories.310

Internal structure of visual priors. We aggregate the performance data across all 105 3B models311

from our previous experiments, encompassing variations in data sources, mixing ratios, and training312

scales. We then compute the Spearman correlation matrix across the four VQA performance categories313

to identify which abilities scale together and which diverge.314

The results in Figure 4 suggest a potential internal structure within the visual prior, hinting at a315

separation into at least two distinct types of abilities. We observe a moderate correlation (0.37)316

between General and OCR performance. This connection seems to point towards a perception prior,317

as success in both categories relies heavily on the model’s perceptual acuity—the ability to accurately318

process raw visual input—rather than complex, multi-step reasoning.319

In contrast, we find another moderate correlation (0.33) between the Knowledge and Vision-Centric320

tasks. This link appears to emerge because both categories often require abstract inference that goes321

beyond simple perception. For instance, the Knowledge category demands multi-step reasoning to322

solve complex scientific or mathematical problems, while Vision-Centric tasks include challenges like323
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visual IQ puzzles, object counting, and correspondence matching, necessitate a blend of perception324

and reasoning, often with a heavier reliance on the latter.325

General Knowledge OCR Vision

General

Knowledge

OCR

Vision

-0.03 0.37 -0.10

-0.03 0.08 0.33

0.37 0.08 0.07

-0.10 0.33 0.07

Correlation matrix for VQA performances

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4: Correlation matrix for VQA per-
formances. The matrix reveals two loosely-
coupled skill clusters: one axis for percep-
tion (General/OCR) and another for reasoning
(Knowledge/Vision-Centric).

The correlation matrix also reveals very weak,326

or even slightly negative, correlations be-327

tween these two groups (perception-heavy vs.328

reasoning-heavy) 1. This lack of a strong posi-329

tive correlation raises the possibility that these330

are largely independent abilities, potentially331

stemming from loosely-coupled priors within332

the LLM’s representation. Our observations on333

the separability of these visual priors in MLLMs334

align with and extend the findings of recent re-335

search Chen et al. (2025), which identified a336

similar dissociation through test-time parameter337

merging.338

Different origins of priors. The statistical in-339

dependence of these two priors implies they are340

cultivated through different mechanisms. As our341

analysis in Section A.2 and Section A.3 demon-342

strated, the reasoning prior is from reasoning-343

centric data and can be predictably enhanced by344

increasing the proportion of reasoning-centric345

data.346

In contrast, the origins of the perception prior appear more diffuse. A signal comes from our single-347

source experiments (Section A.2), where web-crawl data yields the best performance on General348

and OCR tasks. However, web-crawl is an extremely general category, and no other, more specific349

data category consistently boosts perceptual abilities. This ’mixed effect’ suggests the perception350

prior may be a general byproduct of large-scale language modeling, emerging from the sheer diversity351

of language rather than a specific category. To further investigate this emergent prior and characterize352

its properties more directly, we introduce a multi-level existence benchmark (MLE-Bench) designed353

to assess a more pure perception abilities (with less reasoning required) across multiple levels. The354

detailed study using this benchmark is presented in Section B.1.355

This may also suggest that perception ability aligns more with the platonic representation hypothesis;356

that is, it requires greater data diversity for effective multi-modality alignment. We find that the357

Spearman correlation (from our 105 experiments) between the LLM-vision alignment score and358

OCR is 0.42, while being only 0.22 for reasoning tasks. The stronger correlation for OCR suggests359

that the perception prior is more intricately linked to cross-modal alignment, which thrives on the360

rich and diverse language found in broad corpora. In contrast, the weaker correlation for reasoning361

tasks shows that reasoning is thus less dependent on the specific signals used for vision-language362

alignment. We present a more detailed study of this phenomenon in Section B.3.363

A.6 Deconstructing multimodal abilities: vision or language.364

Finding 6: Visual reasoning ability is primarily shaped by reasoning prior acquired from
language pre-training; perception is more dependent on vision encoders and on downstream
visual instruction tuning data.

365

Here, we conduct further analysis to first verify the universality of learned visual priors and then366

deconstruct the source of different multimodal abilities, distinguishing between those inherited more367

from the LLM and those acquired more from the visual instruction tuning.368

Universality of the learned visual priors. To test the general influence of the visual prior, we apply369

two more vision encoders (DINOv2-L (Oquab et al., 2023) and MAE-H (He et al., 2022)) other than370

1Note that this categorization into perception-heavy and reasoning-heavy tasks is a conceptual simplification
intended to facilitate our analysis. In practice, the boundary between perception and reasoning is not always
clear.
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Figure 5: Universality of the learned visual priors. The plots show the VQA performance of
MLLMs built using three distinct vision encoders based on the proportion of reasoning-centric data
used in the LLM’s pre-training mix. Despite differences in their absolute performance, all three
configurations show a consistent improvement on reasoning-heavy tasks as the LLM’s reasoning
pre-training proportion increases, similar to trends observed before, demonstrating the universality of
the reasoning prior.

our default MetaCLIP-B/16. We pair these with LLMs pre-trained on varying proportions of our371

reasoning combination conceptual data category, from 0% to 100%.372

As illustrated in Figure 5, the results reveal a dual-faceted pattern. Firstly, they confirm the universality373

of the reasoning prior. For reasoning-heavy tasks, all three vision encoder configurations exhibit a374

nearly identical, strong upward trend in performance as the proportion of reasoning data in the LLM’s375

pre-training increases. This demonstrates that the visual reasoning prior cultivated in the LLM is a376

foundational, modality-agnostic prior that benefits the multimodal system regardless of the specific377

vision encoder used.378

In contrast, the perception prior lacks this universality. The performance trends for perception-379

oriented tasks are inconsistent across the different vision encoders. Instead of following a unified380

pattern, the performance curves for different vision encoders vary significantly from one another.381

This suggests that perceptual abilities are more sensitive to the specific characteristics of the vision382

encoder (Liang et al., 2025; Tong et al., 2024c) and are not systematically influenced by the LLM’s383

perception prior, further showing the decoupling of the two priors.384

Source of abilities from visual priors and visual instruction tuning. Second, we conduct targeted385

studies to determine whether key skills—namely, perception and reasoning—originate primarily386

from the LLM’s visual priors or the subsequent visual instruction tuning. stage. We use an MLLM387

to classify our Cambrian-7M dataset that contains 5M text-image pairs into these two categories,388

resulting in 1.8M perception and 0.6M reasoning data, and the remaining 2.6M data as others.389

We partition our instruction-tuning data into perception, reasoning, and other categories and trained390

five tuning configurations that ablate perception and reasoning data in stages (100% → 50% →391

0%) while leaving other data unchanged. Our model with full perception and reasoning data392

achieves a baseline performance of 37.98% on General VQA, 25.75% on Knowledge VQ, 17.74%393

on OCR & Chart VQA, and 43.48% on Vision-Centric VQA. The results, presented in Figure 6,394

show two observations: (1) reducing perception-targeted tuning produces the largest performance395

drops on perception-heavy benchmarks (OCR & Chart and General) and modest drops on reasoning396

tasks (Vision-Centric and Knowledge); (2) removing reasoning-targeted tuning causes only small397

incremental drops on perception tasks and modest drops on reasoning tasks.398

Together, results in this section show two mechanisms. First, the LLM encodes a robust, transferable399

visual reasoning prior primarily via language pre-training; this prior benefits reasoning-centered VQA400

across different vision encoders. Second, perception performance depends more on vision-encoder401

characteristics and on subsequent supervised visual instruction tuning: perception performance gains402

require more encoder- and vision-supervision-specific interventions.403

B Discussion and Hypotheses404

This section transitions from empirical findings to a more speculative exploration of the underlying405

mechanisms of visual priors. The following subsections present three key hypotheses about the406
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Figure 6: Step-wise effects of perception and reasoning visual-instruction tuning data removal.
Relative incremental performance drop (%) on AVG VQA and per-category VQA (x-axis). Each
bar shows the step-wise change when ablating perception or reasoning instruction data in stages
(100% → 50% → 0%); each reported percent is computed relative to the immediately preceding
configuration. Removing perception-tuning data produces the largest incremental decline on OCR &
Chart VQA and General VQA (showing perception’s stronger dependence on supervised vision-side
tuning), while removing reasoning-tuning data yields only small incremental declines on perception
tasks and modest declines on Vision-Centric and Knowledge VQA.

structure of the perception prior, the universal nature of reasoning, and the role of data structure407

in cross-modal alignment. These hypotheses are not presented as definitive conclusions but as408

frameworks for interpreting the results and for future research.409

B.1 Is the perception prior multi-level? An evaluation using the MLE-Bench410

Hypothesis 1: The perception prior derived from diverse data exhibits scale-dependency, with
its benefits being most pronounced for the perception of small and medium-sized objects.

411

Our previous analyses show that the perception prior is diffuse in origin, emerging most strongly412

from diverse data. This leads to a question about its internal structure: is this prior a uniform ability,413

or does it possess finer-grained characteristics?414

To study this question, we introduce the Multi-Level Existence Bench (MLE-Bench), a benchmark415

designed to probe perception with greater precision. MLE-Bench consists of 4-choice questions416

about the existence of objects or scenes within an image. We categorize questions based on the417

target object’s relative size, measured by the percentage of pixels it occupies. In total, MLE-Bench418

comprises 1,861 images, with a distribution of 732 questions for small objects (0-30%), 698 for419

medium objects (30-60%), 397 for large objects (60-90%), and 34 for very large objects/scenes420

(90-100%). This structure allows us to deconstruct "perception" into distinct, scale-dependent421

components. Further details on the benchmark’s construction are presented in Appendix J. We also422

present a holistic evaluation of common MLLMs on MLE-Bench, with detailed results available in423

Appendix K.424

We evaluate our 16 single-source pre-trained models (from Section A.2) on MLE-Bench, with the425

results presented in Figure 7. The 3B LLM model trained on web-crawl remains the top performer426

overall, confirming that data diversity is key for perception prior. Its advantage is most pronounced for427

small-to-medium objects (0-60% pixel range), where it establishes a clear lead over models trained428

on other data sources. In contrast, for large objects that dominate the visual scene, this performance429

gap diminishes significantly.430
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Figure 7: Performance of MLLMs on the Multi-Level Existence Bench (MLE-Bench). The left
plot shows the overall accuracy for models pre-trained on 16 different single-source data types. The
four smaller plots (right) detail performance on objects of varying relative sizes, from small (0-30%
of image pixels) to very large (90-100%). The results demonstrate that pre-training on the broad and
diverse web-crawl corpus is most effective in gaining perception prior, with its advantage being
particularly pronounced for perceiving smaller objects.

These results indicate that the perception prior is indeed scale-dependent. A possible explanation is431

that diverse, unstructured text like web-crawl contains a vast vocabulary describing a wide array of432

entities, including smaller, often overlooked details within a larger scene. This textual richness forces433

the model to learn representations sensitive to fine-grained visual concepts, a capability less critical434

when identifying large, obvious objects. This finding refines our understanding of the perception435

prior, revealing that it is not a uniform faculty.436

B.2 Is reasoning a universal, cross-modal skill already acquired during pre-training?437

Hypothesis 2: The reasoning capabilities an LLM acquires from text are fundamentally
modality-agnostic. Language reasoning skill can be directly transferred to solve visual
problems.

438

Our findings suggest a hypothesis: the reasoning capabilities an LLM acquires from text are not439

bound to the linguistic domain. We posit that by pre-training on reasoning-centric data, a model440

learns abstract, generalizable principles of logic, structure, and compositionality. This foundation441

is largely modality-agnostic, allowing the model to apply this faculty to other domains, including442

vision, since the reasoning process likely occurs within the language domain.443

To verify this, we propose an experiment that directly probes the quality of the models’ visual444

reasoning processes. For reasoning-focused VQA tasks (Knowledge and Vision-Centric), we switch445

the evaluation from prompting for a direct answer to answer with detailed explanations. This will446

require each model to produce a detailed explanation of its reasoning. We then use a separate LLM447

as a judge to evaluate the quality of these reasoning traces based on a clear rubric, assessing criteria448

such as: (1) Logical Soundness: The percentage of reasoning traces that are coherent and reasonable;449

and (2) Reasoning Depth: the average length of the reasoning trace measured by text count taken to450

reach the conclusion.451

The results, presented in Figure 8 (a), strongly support our hypothesis that the reasoning capabilities452

an LLM acquires from text are transferable to vision. We observe a clear trend: as the proportion of453

reasoning-centric data increases, the models generate visual reasoning that is both more logically454

sound and significantly longer. For instance, increasing the proportion of code reasoning data from455
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Figure 8: Qualitative impact of reasoning-centric data on visual reasoning (a) and representation
alignment (b). The plots show how varying the proportion of different reasoning-centric data
categories in the pre-training mix impacts metrics of visual reasoning quality and cross-modal
alignment. The left two plots indicate that more reasoning data leads to more coherent and detailed
visual reasoning. The right two plots reveal a more complex relationship, with the LLM-vision
alignment score showing a generally positive but non-monotonic trend and the alignment loss
exhibiting more noisy but generally reverse behavior.

Question: A bounding box is an annotated rectangle surrounding an object. The 
edges of bounding boxes should touch the outermost pixels of the object that is 
being labeled. 

Given the two bounding boxes on the image, labeled by A and B, which bounding 
box more accurately localizes and encloses the fork? 
Select from the following options. 
(A) Box A (B) Box B

Answer the question with a detailed thinking process and explanations.

The correct answer is 
(B) Box. The bounding 
box encloses the fork, 
as it is the only 
rectangle 
encompassing the 
entire object in. 

The correct answer is 
(B) Box. The image 
clearly shows the fork 
resting on the surface 
of the fork, which is 
the only object that is 
clearly visible.

The correct answer is 
(B) Box B. The 
bounding box 
encompasses the 
outermost pixels of 
the object being 
labeled.

The correct answer is 
(B) Box. The box is a 
container that holds 
the fork.

The correct answer to 
the question is (A) Box 
A. The image shows a 
box with the label A 
enclosing the object.

0% code reasoning 

Answers

25% code reasoning 50% code reasoning 75% code reasoning 100% code reasoning 

✗ ✓ ✓

Figure 9: Qualitative impact of reasoning-centric data on visual reasoning. The figure displays
the answers from five models—pre-trained with 0% to 100% code reasoning data—to a visual
question requiring the application of a specific rule. Answers show a clear improvement in reasoning
quality: the model with 0% code reasoning provides a simplistic justification, while the models
with 75% and 100% code reasoning produce more detailed reasoning that correctly applies the
definition from the prompt.

0% to 100% boosts Logical Soundness from 4.52% to 9.52% and more than sextuples the Reasoning456

Depth from 8.31 to 53.25. This demonstrates that the model is is applying a general, abstract457

reasoning framework, learned from text, to solve visual problems. The particularly dramatic increase458

in Reasoning Depth for code-trained models may also reflect a stylistic transfer; pre-training on code459

reasoning, which is often structured in long, logically coherent sequences, likely predisposes the460

model to generate longer, more structured step-by-step explanations.461

Figure 9 provides a qualitative example of this phenomenon. It showcases how models trained with462

more code reasoning data produce increasingly sophisticated and reasonable reasoning for a visual463

task. While the model with 0% code reasoning offers a simplistic justification, the model trained464

on 100% code reasoning provides a detailed, step-by-step explanation that correctly applies the465

abstract rule given in the prompt. This demonstrates that the model is applying a general, abstract466

reasoning framework, learned from text, to solve visual problems. Our conclusions here also reflect467

the results shown in very recent studies that reasoning abilities can transfer between languages at468
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test time (Yong et al., 2025), and that post-training such as language reinforcement learning can469

enhance or transfer to multi-modal reasoning (Rastogi et al., 2025; Wei et al., 2025; Yang et al.,470

2025b; Liu et al., 2025; Chen et al., 2025). We further demonstrate that reasoning abilities are highly471

modality-agnostic, to the extent that training solely on code can yield strong multimodal reasoning.472

Moreover, we show this transferability is not confined to post-training phases, but originates from473

pre-training itself.474

B.3 Does language data structure drive representational alignment with vision?475

Hypothesis 3: The structural properties of language data do not exclusively drive representa-
tional alignment with vision.

476

An alternative, or perhaps complementary, hypothesis centers on the structural similarities between477

the data modalities themselves. Data from domains like code and mathematics is inherently highly478

structured. It is governed by strict syntax, logical dependencies, and hierarchical compositions.479

Similarly, visual data is far from being a random collection of pixels. It is rich with its own structure:480

spatial relationships between objects, part-whole hierarchies, and the implicit rules of physics and481

geometry. We thus hypothesize that this shared structural foundation means that representations482

learned from structured text are intrinsically more similar to, and thus more readily transferable to,483

the visual domain.484

To test this hypothesis, we analyze two metrics across models trained with varying proportions of485

structured reasoning data: the LLM-vision alignment score and the average alignment loss during486

the MLLM alignment stage. Our analysis, presented in Figure 8 (b), yields mixed results. The487

LLM-vision alignment score partially supports our hypothesis. As we increase the proportion of488

structured reasoning data, the alignment score generally improves, indicating a more congruent latent489

space. However, this trend is not monotonic; the score often peaks at a 75% ratio and then decreases490

at a 100% proportion. This might be due to a model trained purely on reasoning data learning abstract491

structure but lacking the necessary vocabulary from other text types to effectively map it onto diverse492

visual concepts, thus hindering the final alignment.493

The alignment loss metric provides a less clear picture, generally exhibiting a decrease from 0% to494

25% reasoning data and a noticeable increase from 75% to 100%, despite showing more inconsistent495

fluctuations between 25% and 75%. This suggests a nuanced relationship. Qualitatively, we observe496

a general inverse trend between the LLM-vision alignment score and the alignment loss. This497

relationship may indicate that both metrics are capturing related aspects of cross-modal alignment,498

potentially lending partial support to the structural similarity hypothesis. However, given these mixed499

signals and the lack of a clear, consistent trend, this analysis does not provide definitive evidence500

to confirm the hypothesis. It thus remains a compelling direction for future research to untangle501

the precise interplay between abstract structure and semantic grounding in forming cross-modal502

representations.503

C Scaling Up and Training a Vision-Aware LLM504

Building on the principles identified in the controlled, smaller-scale studies, this section details the505

process of scaling up the approach to validate the findings.506

C.1 Settings and models507

Building upon our findings, we scale up our approach to validate our findings and develop a vision-508

aware LLM in a larger-scale. The goal is to test whether the principles identified in our controlled,509

smaller-scale studies hold true when applied to a large-scale training run. To this end, we pre-train510

two 7B parameter LLMs, each on 1T tokens, based on the two data mixtures identified previously:511

• Language-favorable model: Following the mix0 mixture, which is the best-performing512

blend for pure language tasks.513

• Balanced model: Based on the mix6 recipe, our proposed balanced mixture is designed to514

deliberately cultivate strong visual priors without compromising language proficiency.515
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We conduct the pre-training for each model on 128 A100 GPUs for approximately 32 days. We use an516

processing approximately 4.2M tokens per step and the model is trained for 250000 steps. Following517

pre-training, we adapt both 7B LLMs into MLLMs. For this stage, we utilize the complete Cambrian518

data suites. Specifically, we use the full 2.5M image-caption dataset for the visual alignment stage,519

followed by visual supervised fine-tuning on the full 7M vision-language instruction dataset.520

C.2 Blind visual instruction tuning521

We also introduce a "blind visual instruction tuning" trick that provides a more effective starting point522

for visual adaptation. This trick involves an initial instruction tuning phase using only the textual523

data while withholding the corresponding images. This initial "blind" stage allows the model to first524

focus on learning the instruction-following format of the task. Consequently, the subsequent standard525

tuning phase with images can be more dedicated to learning the core vision capabilities, rather than526

simultaneously learning how to follow instructions. Furthermore, this process enables the model to527

effectively leverage its pre-existing language priors to solve VQA questions that may not strictly528

require visual input, a known phenomenon and potential "short-cut" on some benchmarks (Tong529

et al., 2024a). This trick can lead to broad performance improvements in most of the tasks.530

Note that this trick should not be a standard in practice, since when no images are provided, models531

should identify their absence 2 rather than encouraging more hallucination. We leave this as an532

optional trick and introduce this phenomenon to the community for future investigation. This also533

shows that "vision" can be “learned” from the language side through an unconventional, shortcut-534

based mechanism.535

Model Language Vision
ppl avg acc General Knowledge OCR&Chart QA Vision-Centric Overall

Lang-Favorable 8.72 0.647 46.92 28.35 21.49 46.31 37.32
Lang-Favorable (+Blind) 48.16 30.30 20.77 47.01 38.20
Balanced 7.49 0.655 49.59 29.02 23.63 46.59 38.64
Balanced (+Blind) 50.90 31.25 22.60 47.32 39.56

Table 3: Performance comparisons of the Lang-Favorable and Balanced models across both
language and vision-language benchmarks. The table summarizes key language metrics (perplexity
and accuracy) and provides average scores for a suite of vision tasks, categorized as General,
Knowledge, OCR & Chart QA, and Vision-Centric. It also shows the impact of applying our blind
visual instruction tuning trick (+Blind). The results demonstrate that the Balanced model, pre-trained
with our vision-aware data mixture, exhibits competitive language proficiency while consistently
outperforming the Lang-Favorable model on all visual tasks, with the blind tuning method providing
an additional performance boost.

C.3 Results536

As shown in Table 3, the Balanced model, pre-trained with balanced recipe, exhibits competitive537

language proficiency. Notably, it achieves a lower (better) average perplexity of 7.49 compared to the538

Language-favorable model’s 8.72, while also maintaining a slightly higher average accuracy (0.655539

vs. 0.647). An interesting dynamic observed during pre-training was that the Balanced model’s540

language performance initially lagged behind the Language-favorable model, beginning to surpass541

it after approximately 600B tokens. This may suggests that when the pre-training token volume is542

sufficiently large, the benefits from reasoning-related tokens can be more effectively unleashed when543

grounded in a substantial amount of world knowledge, ultimately resulting in strong performance544

also on the language side.545

On VQA benchmarks detailed, the Balanced model consistently outperforms the Language-Favorable546

model in most of the benchmarks, achieving a higher overall VQA average (38.64 vs. 37.32). This547

2This type of hallucination may persists even in strong models including GPT-5 thinking, Gemini 2.5, and
Claude Opus 4.1. Models will exhibit such hallucinatory behaviors when answering VQA questions without
actual visual context given. Some examples are presented in Appendix L. This highlights a systemic issue that
warrants more future investigation.
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confirms that the deliberate pre-training on a data mixture rich in reasoning and visual-world text548

successfully imbues the LLM with stronger visual priors in a large-scale.549

Furthermore, the application of our blind visual instruction tuning trick yields additional overall550

performance gains for both models by clear margins. The performance gains are most pronounced in551

the Knowledge categories, while tasks in OCR & Chart VQA, conversely, suffer a performance drop.552

This pattern suggests that while the blind tuning phase provides a more effective initialization for the553

subsequent visual instruction tuning, it gains more from strengthening the model’s ability to leverage554

its internal knowledge and reasoning priors to "short-cut" the problem. This is highly beneficial for555

knowledge-intensive tasks where answers can be inferred or reasoned from textual context and the556

LLM’s pre-existing knowledge.557

D Related Work558

D.1 From LLMs to MLLMs.559

With the rapid development of LLMs (Radford et al., 2021; Google, 2023; Touvron et al., 2023), a560

direction of work extend LLMs to Multimodal LLMs. Pioneering works like Flamingo (Alayrac561

et al., 2022) and BLIP-2 (Li et al., 2023) connected pre-trained vision encoders to LLMs using562

connectors like cross-attention modules. Later models such as LLaVA (Liu et al., 2023a) demonstrate563

that even with a projection layer, LLMs can be extended MLLM with visual instruction tuning. This564

adapter-style architecture has been widely explored in numerous subsequent works (Liu et al., 2024a;565

Tong et al., 2024a; Laurençon et al., 2024; Liu et al., 2024b; AI@Meta, 2024; Bai et al., 2025b; Zhu566

et al., 2025; Team et al., 2025; Lin et al., 2024).567

The success of visual instruction tuning has enabled open-source multimodal models to achieve568

performance even comparable to proprietary counterparts (Google, 2023; xAI, 2024; OpenAI, 2024).569

This success underscores that multimodal capabilities in adapted LLMs largely emerge through570

instruction tuning, effectively unlocking knowledge already embedded in pretrained language mod-571

els (Zhou et al., 2024). Furthermore, recent studies (Tong et al., 2024a; Laurençon et al., 2024)572

highlight that improvements in the underlying language model remain the most impactful means to573

improve multimodal performance. Inspired by these insights, our work investigates the visual priors574

and inherent multimodal potential embedded within pretrained LLMs.575

Though there are different ways of connecting vision to LLMs like the use of discrete tokeniza-576

tion (Wang et al., 2024; Deng et al., 2025; Team, 2024), we focus on adapter-style architectures,577

which are most widely used and permit clean analysis of visual priors from language pre-training.578

D.2 The role of data in shaping foundation model capabilities.579

Pretrained LLMs encode rich latent knowledge—even across modalities—depending heavily on the580

nature of their training data (Kaplan et al., 2020; Grattafiori et al., 2024; Han et al., 2022; Rae et al.,581

2021; Penedo et al., 2023; Lu et al., 2022a; Mayilvahanan et al., 2025). This has shifted the focus of582

research from simply scaling data to understanding the role of data and then strategically curating583

it to unlock specific, powerful abilities (Allen-Zhu, 2024; Aryabumi et al., 2024; Ye et al., 2024;584

Shinnick et al., 2025).585

A prominent example, and one highly relevant to our findings, is the strategic inclusion of reasoning-586

centric data like code. Research has consistently shown that pretraining on a mix of text and code587

does more than just improve coding skills; it significantly enhances a model’s foundational reasoning588

and ability to understand abstract, structural patterns (Muennighoff et al., 2023; Aryabumi et al.,589

2024; Ma et al., 2023; Zhang et al., 2025). This suggests that the pre-training data mixture may590

endows the model with latent, generalizable structures that can be activated for tasks beyond their591

original domain.592

This has established a central challenge in the field: determining the optimal data mixture to cultivate593

these desired foundational abilities (Chen et al., 2024; Albalak et al., 2023; Ma et al., 2023; Xie et al.,594

2023; Touvron et al., 2023; Grattafiori et al., 2024; Zhang et al., 2024; Held et al., 2025; Bai et al.,595

2024; Albalak et al., 2023; Shukor et al., 2025a). This has spurred a move beyond simple heuristics596

toward quantitative frameworks which aim to predict a model’s performance based on different data597

blends, thereby guiding the search for an optimal mixture.598
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However, much of this prior work has focused on optimizing data mixtures for core language599

proficiency. As we transition from LLMs to MLLMs, a critical question emerges: how do these600

text-only pre-training choices influence the model’s visual priors and the potential for multimodal601

capabilities? Our work directly addresses this gap. We extend the investigation of language data602

composition’s impact from the purely linguistic to the visual domain, systematically analyzing how603

different text sources contribute to the emergent visual priors in LLMs and seeking data mixture to604

help them "learn to see" more effectively from text pre-training.605

E Limitations and Future Research Directions606

While this work provides a systematic analysis of visual priors in LLMs, it is subject to several607

limitations that open avenues for future research.608

First, our investigation primarily centers on adapter-style MLLM architectures. While this is a609

prevalent and effective paradigm, our findings may not fully generalize to other approaches, such as610

those that employ discrete visual tokenization (Team, 2024; Wang et al., 2024; Deng et al., 2025;611

Wu et al., 2024) or involve end-to-end joint training of vision and language components (Diao et al.,612

2024; Tao et al., 2025; Diao et al., 2025; Shukor et al., 2025b). In these latter cases, language and613

vision data are co-trained, making it hard to identify the priors originating solely from language. The614

dynamics of how visual priors are formed and utilized could differ in these models, which leaves a615

promising future direction.616

Second, a significant area our study does not address is the safety and ethical implications of these617

learned visual priors. Language corpora are known to contain societal biases, stereotypes, and618

potentially harmful content (Bengio et al., 2024; Qu et al., 2023). Our analysis focused on capability,619

but did not investigate whether these text-based priors encode biased visual associations (e.g., linking620

certain objects or roles to specific genders or races) that could manifest as harmful generation or621

classification behavior in a downstream MLLM. A thorough audit of the fairness and safety of these622

emergent priors is a critical next step.623

Finally, our study is confined to the domain of static images, leaving the exploration of visual priors624

for dynamic modalities, such as video understanding, as an open question. For example, the temporal625

knowledge important for video understanding might be learned more from story-related data like626

literature. Investigating how different textual sources contribute to priors for temporal reasoning,627

action recognition, and causality in video is a rich area for future work.628

F Conclusion629

This work has undertaken a systematic deconstruction of the visual priors that LLMs acquire from630

text-only pre-training. Through a series of controlled experiments manipulating data composition, we631

moved beyond observing the phenomenon of vision priors to interrogating its fundamental drivers.632

Our investigation provides a data-centric roadmap for developing multimodal systems, shifting633

the paradigm from serendipitous emergence to the deliberate cultivation of visual capabilities. By634

showing that core reasoning abilities are a transferable, modality-agnostic foundation, our work offers635

more empirical supports for the idea that models can learn a unified representation of the world from636

even a single modality.637

Looking forward, we hope this research encourages a paradigm where LLM development is more638

considerate of vision and multimodality, prompting the cultivation of visual priors from the earliest639

stages of pre-training. We also hope it inspires a deeper investigation into the fundamental correlations640

between cross-modal representations, contributing to a more unified understanding of how knowledge641

is structured across modalities.642

G Broader Impact643

Our research provides a systematic analysis of how prior visual capabilities emerge in LLMs from644

language-only pre-training, shifting the paradigm from accidental discovery to deliberate cultivation.645

While our work focuses on capability, the textual data used for pre-training contains societal biases.646
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A significant risk is that these models could learn and reinforce harmful visual stereotypes, which647

could then manifest in downstream multimodal systems.648

Nevertheless, our findings primarily help researchers and developers understand the nature and649

origins of these visual priors. We demonstrate that these priors are not a single, uniform block but are650

composed of separable perception and reasoning components, each cultivated by different types of651

text.652

This deeper understanding provides a clear, actionable path for more efficiently cultivating these653

abilities. Instead of relying on serendipity scaling, teams can now strategically curate their text-only654

pre-training data to deliberately build a stronger foundation for vision tasks before multimodal training655

even begins. This targeted approach not only improves the final model’s multimodal performance656

but also reduces the computational resources required, offering a more sustainable methodology for657

creating the next generation of vision-language models.658

H Conceptual Language Data Classification659

This section provides the detailed conceptual classification setting and results for the key pre-training660

data sources discussed in the main paper. We use a 32B dense LLM (Yang et al., 2025a) to perform a661

multi-label classification on 1024-token segments from each data source. Below is the full prompt662

provided to the LLM for the conceptual data classification task. The prompt instructs the model to663

perform a multi-label classification on text segments, assigning one or more predefined categories664

that describe the content.665

Prompt for LLM-based Conceptual Data Classification

Analyze the provided text paragraph. Classify its content by identifying the primary concepts
and domains using only the categories listed below. Select categories that represent the text’s
significant content.

• visual concept: Language for naming visual entities (e.g., objects, people,
places, actions, scenes).

• visual attribute: Language describing visual properties (e.g., color, size, shape,
texture, style).

• visual relationship: Language describing spatial or part-whole relations be-
tween entities.

• code reasoning: Content centered on algorithmic problem-solving, logical cod-
ing implementation, and software engineering challenges.

• math reasoning: Content focused on logical math reasoning, proof construction,
and the application of mathematical principles to solve problems.

• science reasoning: Focuses on scientific reasoning, including hypothesis test-
ing, data analysis, and modeling of complex systems.

If none of the above categories apply, output None.
666

The percentages in Table 4 represent the proportion of text segments within each data source that667

were assigned a given conceptual label.668

I Robust Parsing for VQA Evaluations669

A significant challenge in the automated evaluation of VQA is that models often generate conversa-670

tional or free-form text instead of a single-letter answer. A naive parsing strategy that only checks for671

an exact match to the ground-truth letter (e.g., "B") would unfairly penalize models that provide a672

correct but differently formatted response.673

To illustrate, consider a simple VQA task:674

• Question: “What is the primary object in the image?”675
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Reasoning Categories (%) Visual Categories (%)

Data sources
code

reasoning
math

reasoning
science

reasoning
reasoning

combination
visual
concept

visual
attribute

visual
relationship

visual
combination

web-crawl 3.5 3.6 8.6 10.0 27.7 14.1 13.5 26.9
encyclopedia 0.5 2.3 3.0 3.4 12.2 2.9 6.0 12.4
academia 21.0 68.2 74.4 83.3 5.2 0.7 5.1 5.3
literature 0.3 1.3 8.9 9.1 33.4 8.4 27.9 33.5
math 31.1 81.7 83.2 92.9 7.8 2.8 6.6 8.0
code 96.7 13.3 6.8 97.3 3.3 2.0 2.4 3.7

Table 4: Conceptual categories of key pre-training data corpus (%). The table shows the
percentage of text segments from each data corpus classified into one of the conceptual categories.

• Options: (A) A bicycle, (B) A car, (C) A tree676

• Ground Truth: B677

A model could correctly answer in multiple ways, such as “The answer is (B)”, “A car”, or “The678

image shows a car”. To capture all these valid responses, our evaluation protocol employs a robust,679

hierarchical parsing strategy. The logic is executed as a sequence of prioritized steps, stopping as680

soon as a valid answer is found:681

1. Explicit letter extraction: The parser first searches for high-confidence patterns that directly682

indicate the chosen option letter. It uses regular expressions to find formats like:683

•“The correct answer is (B)”684

•“Answer: B”685

• Outputs starting or ending with ‘(B)‘686

• An output that is simply ‘B‘ or ‘B.‘687

2. Exact option text matching: If the first step fails, the parser extracts the text associated688

with each option from the prompt (e.g., "A bicycle", "A car", "A tree"). It then checks if the689

model’s generated text is an exact, case-insensitive match for any of these option strings.690

• Example caught: A model output of “A car” would be correctly mapped to option B.691

3. Substring matching: As a final fallback, the parser checks if the text of any option appears as692

a substring within the model’s generated output. This handles more verbose, conversational693

answers.694

• Example caught: A model output of “The image features a car driving down the street”695

would be correctly mapped to option B because "a car" is present.696

• To prevent ambiguity (e.g., if one option was "car" and another was "race car"), this697

step returns the longest matching option text found in the response.698

This multi-tiered parsing strategy ensures a comprehensive and fair evaluation across all models,699

regardless of their verbosity or adherence to specific formatting instructions. It allows us to more ac-700

curately measure the model’s underlying visual capabilities rather than its ability to follow formatting701

rules.702

J Multi-Level Existence Benchmark Construction703

This section describes how we constructed our benchmark using publicly available SA-1B and704

ADE20K datasets. We selected images with ground-truth segmentation masks and calculated the705

proportion of the image area each object occupied. Based on this, we created three splits: 0–30 for706

small objects, 30–60 for medium, and 60–100 for large, dominant objects. For each image, we created707

a multiple-choice query to test object existence, sampling distractors from the dataset vocabulary and708

filtering them to exclude objects present in the ground truth. As this process is open-vocabulary, we709

use an LLM to filter out distractors that correspond to objects already present in the image but under710

different names. This ensures the distractors remain plausible but incorrect, providing a granular711

evaluation of a model’s ability to identify objects across a wide range of sizes.712
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Conveyer belt ✗

Figure 10: MLE Benchmark Examples. The figure provides examples from the MLE-Bench,
illustrating how the dataset is partitioned based on the ground-truth object size from reference
segmentation maps. For instance, in the 0-30 split, the target object (a fireplace) constitutes a small
fraction of the image. In contrast, the 60-90 split features a correct object (grass) that covers a
substantial portion of the image.

Model 0–30 30–60 60–100 Overall

gpt-5 73.63 90.69 86.31 82.97
gpt-4o-mini 68.72 85.10 87.94 79.32
gemini-2.5-flash 58.88 80.66 80.74 72.11
claude-opus-4-20250514 61.20 76.36 59.86 66.58

Table 5: Model performance on the MLE-Bench. Results are reported in three splits based on
object size in percentage (0-30, 30-60, 60-100), along with a weighted overall accuracy, evaluating
the ability of different models to identify objects of varying sizes.

K Multi-Level Existence Benchmark Results713

This section presents the performance of top models on our Multi-Level Existence (MLE) benchmark,714

which evaluates their ability to identify objects of varying sizes. The results, detailed in Table 5, reveal715

distinct performance profiles and highlight that robust perception across all object scales remains a716

challenge.717

gpt-5 achiees the highest overall performance with a weighted accuracy of 82.97%, demonstrating718

strong capabilities across all categories. It particularly excels at identifying medium-sized objects719

(90.69%), which form the largest portion of the visual scene, while still maintaining competent, albeit720

lower, performance on small objects (73.6%). In contrast, other models exhibit more pronounced721

trade-offs. gemini-2.5-flash struggles significantly with small objects, scoring only 58.88%, which is722

over 20 percentage points lower than its performance on medium and large objects. This indicates a723

potential weakness in fine-grained perception. Similarly, claude-opus-4-20250514 shows a notable724

drop in performance on large, dominant objects (59.86%) compared to smaller ones.725

These findings underscore the utility of the MLE benchmark in diagnosing model weaknesses. While726

some models demonstrate strong general performance, universal recognition across different scales727

is not guaranteed. The benchmark effectively serves as a tool for driving progress toward more728

comprehensive and reliable visual understanding.729

L Hallucinations in Blind VQA730

To test for hallucinations, we present two randomly selected questions (with slight rephrasing to731

increase diversity) from our MLE-Bench to various models without the corresponding images. The732

examples below are from models also chosen randomly, primarily via LMArena (Chiang et al., 2024).733

21



We observe that stronger models do not necessarily guarantee fewer hallucinations in this blind VQA734

setting.735

Question 1

Question: Which of the following is visible in the image: Choose from: (A) purple and white
striped wall, (B) a person’s arm, (C) a purple triangle, (D) building. Please answer with a
single phrase.

Answers:
gemini 2.5 pro:
A purple and white striped wall

gpt-5 thinking:
a person’s arm

qwen-max-2025-08-15:
Red and white striped wall

o4-mini-2025-04-16:
a person’s arm

mistral-medium-2508:
(D) building

gemma 3 27B:
a person’s arm.

o4-mini-2025-04-16:
a person’s arm

kimi-k2-0711-preview:
(B) a person’s arm

qwq-32b:
(C) a purple triangle

gpt-oss-120b:
I’m sorry, but I can’t see images. Could you describe what’s in the picture?

kimi-k2-0711-preview:
(B) a person’s arm

mistral-medium-2508:
(D) building

llama-4-scout-17b-16e-instruct:
B

o3-2025-04-16:
building

claude-sonnet-4-20250514:
I don’t see any image attached to your message. Could you please share the image you’d like
me to analyze?

phantom-0807-1:
(D) building

claude-opus-4-1-20250805:
(B) a person’s arm

736
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Question 2

Question: What can you see in the image: Choose one from: (A) a blue jersey, (B) the street,
(C) araff logo, (D) a blue and white computer screen. Please answer directly.

Answers:
mistral-medium-2508:
D) a blue and white computer screen.

qwen3-235b-a22b-instruct-2507:
(C) araff logo

qwen3-235b-a22b:
(A) a blue jersey

amazon.nova-pro-v1:0:
(A) a blue jersey

phantom-0807-3:
Without access to the image, it is impossible to determine the correct answer definitively.
However, based on the options provided, D) a blue and white computer screen is a common
element in images and could be a plausible choice.

mistral-medium-2508:
(D) building

gpt-oss-20b:
I’m sorry, but I can’t see the image.

qwen3-30b-a3b-instruct-2507:
(D) a blue and white computer screen.

gpt-4.1-2025-04-14:
(D) a blue and white computer screen.

phantom-0807-1:
(C) araff logo

claude-sonnet-4-20250514-thinking-32k:
I don’t see any image attached to your message. Could you please share the image you’d like
me to analyze? Once you upload it, I’ll be happy to choose from the options you’ve provided.

gpt-5-chat:
(D) a blue and white computer screen.

mistral-medium-2508:
(D) building

claude-opus-4-1-20250805:
Looking at the image, I can see (B) the street. The image shows an urban street scene with
buildings, trees, and what appears to be a road or pathway.

folsom-0811-1:
I cannot view or analyze images directly. However, if you describe the image or provide more
context, I can help determine the correct answer. Since I must choose one option blindly, I’ll
note that (D) a blue and white computer screen is a common object that might align with
typical visual descriptions, but this is a guess. For accuracy, please describe the image!

737

M Additional Qualitative Examples738

To illustrate the differences between our models, we provide additional chat examples. These include739

one from reasoning combination (Figure 11) and one from visual combination (Figure 12).740

Each figure shows five different proportions of pre-training data.741
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Question: Two points are circled on the image, labeled by A and B beside each 
circle. Which point is closer to the camera?

Select from the following choices.

(A) A is closer
(B) B is closer

Answer the question with a detailed thinking process and explanations.

Point B is located on 
the body of the bird, 
which is the main 
subject in the 
foreground of the 
image. Point A is on the 
background. 

The point of interest 
for the two points on 
the image is (B). B is 
closer to the camera. 
The point of interest is 
located at (B).

The correct answer is 
(B) B is closer. The 
image shows the bird 
perched on the edge 
of a rock, which is 
closer to the camera 
compared to the rock. 

The image shows a bird 
that is closer to the 
camera. The bird is 
positioned to the left of 
center of the frame.

The correct answer is 
(B) B.

0% reasoning

Answers

25% reasoning 50%  reasoning 75% reasoning 100% reasoning 

✓ ✓

Figure 11: Qualitative impact of reasoning-centric data on visual spatial reasoning. The figure
shows answers from five models—pre-trained with 0% to 100% reasoning combination data—to
a visual question requiring depth perception. The answers demonstrate a clear improvement in
reasoning quality: the model with 0% reasoning data gives a blunt answer, while the model with
100% reasoning data provides a detailed explanation correctly applying concepts of foreground and
background.

Question: Two points are annotated on the image, labeled by A and B. Consider 
the surface color of the points (the albedo of the surface, without the effect of 
shading). Which point has darker surface color, or the colors is about the same?
Select from the following choices.

(A) A is darker
(B) B is darker
(C) About the same

Answer the question with a detailed thinking process and explanations.

The correct answer is 
(C) About the same. 
The image shows a 
kitchen with a white 
color scheme, which is 
a common choice for 
kitchens.

The image has darker 
surface color, which is 
the result of the 
surface color being 
lighter. The lighter 
shades are on the left 
side of the image. 
The answer is (A).

The correct answer to 
the question is (C) 
About the same. The 
image shows a 
kitchen with a white 
countertop, a white 
refrigerator. 

The question asks 
about the color of the 
points on the image. 
The correct answer is 
(C) About the same.

The question asks to 
identify the color of the 
points. Point B is on a 
chair which is black. 
The answer is (B) B is 
darker. 

0% visual

Answers

25% visual 50% visual 75% visual 100% visual

✗ ✗ ✗ ✗✓

Figure 12: Qualitative impact of visual-world data on complex visual perception. The figure
displays answers from five models—pre-trained with 0% to 100% visual combination data—to a
question requiring an understanding of color constancy. The results show that while the model with
25% visual data provides the correct answer with reasoning relevant to the core visual principle,
models trained on more visual data offer incorrect answers and flawed explanations. This suggests
that simply increasing descriptive visual text does not necessarily cultivate a deeper perceptual
understanding.
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N Samples of Language Pre-training Data742

We present sample texts from our pre-training data, alongside examples from their corresponding743

conceptual categories. These sample texts have been slightly reformatted for clarity.744

academic

The three Cartesian components of the dipole moment vector were determined using finite
differences. Calculations were carried out at the CCSD(T) [coupled cluster with all single
and double excitations and a perturbational estimate of connected triple excitations] level of
theory with the augmented correlation consistent quadruple zeta basis set, aug-cc-pVQZ(+d
for Cl), in the frozen core approximation. MOLPRO2012 was used for all calculations.

745

arts

What To Do If Youŕe Not Like Everybody Else (Radio 4) is misanthropic comedian Andrew
Lawrenceś guide to fitting in with the rest of the world. This weekś monologue, the first
of the showś second series, looks at special occasions. He begins in typically cynical style:
"Birthdays, weddings, anniversaries, Christmas, new year: every month that goes by seems
to slap us in the face with another contrived cause for celebration. . . How are the socially
incompetent amongst us supposed to acquit ourselves in such circumstances without coming
across as disagreeable?"
Lawrence speaks with the voice of a gnarled Lee Evans and looks at life through the eyes of
a warped, sociopathic Jack Dee. In his writing he channels the vocabulary of Stewart Lee,
describing Christmas as "a ludicrous social penury" and New Yearś Eve as "the zenith of
nonsensical social situations".
It is, in essence, a standup set, and there are some cracking gags here, from an inventive riff
on the phrase "the done thing", to an extended piece about the itinerant lives of the cheap
bottles of wine guests are obliged to bring along to parties. Parties which, he repeatedly
asserts, no one wants him to come to in the first place. The irony is that, on this evidence,
Lawrence is very good company indeed

746

biology

Green ash (Fraxinus pennsylvanica) is a member of the olive family, and the species of ash
tree with the largest geographic range in the United States. Green ash grows across almost
the entire Eastern part of the nation and as far west as the Rocky Mountains. Green ash may
prove difficult to tell apart from the other types of ash trees that grow in the U.S. The key to
identification of green ash is to pay the utmost attention to even the smallest details of the
tree.
Look for a tree that grows to a mature height of between 60 and 70 feet, with a spread of
about 45 feet across in its upper canopy. Green ash is a medium-sized species and has an oval
crown of branches. The trunk can be as wide as a foot and a half and the leaves fall from the
tree every autumn.
Observe the foliage of a green ash, looking for a leaf that botanists term as being pinnately
compound. Pinnate means that the separate leaflets that comprise the compound leaf grow
in two rows on a central axis, called a rachis. Green ash has from seven to nine individual
leaflets that grow on a rachis and compose one single leaf. The leaflets are as long as 5 inches,
shaped like the sharp head of a spear, and a shiny shade of green. The entire compound leaf
may be as long as a foot, says the University of Connecticut Plant Database website.
Watch for the leaves of green ash to change to yellow in the autumn. This trait adds to the
appeal that makes the tree a very attractive ornamental species and one that often adorns
lawns, streets and campuses.
Examine the flowers on a green ash. The species has male and female flowers that grow on
separate trees. The flowers have no petals, are a light green or purple color and emerge after
the leaves do in the spring. The female flowers develop in long clusters, according to the
Virginia Department of Forestry website, while the male flowers grow in tighter groupings.
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Study the samaras into which the flowers on the female trees turn. The samaras are a seedpod
that contains the green ash treeś seeds. The "National Audubon Field Guide to Trees" states
that these samaras resemble keys, hanging in cluster from the female trees as they change
from a green color to a tan hue. Once mature, the 1.5- to 2.5-inch-long samaras fall off the
tree and create quite a mess. This makes the male tree the preference of many landscapers, as
the males will not litter your property.
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code

<?php\nRhaco :: import ("lang.Validate ");\ nRhaco :: import ("lang.
StringUtil ");\ nRhaco :: import (" exception.ExceptionTrigger
");\ nRhaco :: import (" exception.model.MaxLengthException ")
;\ nRhaco :: import (" exception.model.MinLengthException ");\
nRhaco :: import (" exception.model.RequireException ");\
nRhaco :: import (" exception.model.DataTypeException ");\
nRhaco :: import (" resources.Message ");\n\nclass
UrlsTableVerify {\n\tvar $valid = true;\n\n\tfunction
UrlsTableVerify (){\n\t}\n\tfunction verify (& $tableObject)
{\n\t\tforeach(get_class_methods($this) as $methodName){\
n\t\t\tif(preg_match ("/^ verify (.+)$/i",$methodName))
$this ->$methodName($tableObject);\n\t\t}\n\t\treturn
$this ->valid;\t\n\t}\n\tfunction verifyId (& $tableObject)
{\n\t\t$value = $tableObject ->getId();\n\t\tif(!empty(
$value) && !Validate :: isIntegerLength($value ,22)){\n\t\t\
tExceptionTrigger ::raise(new DataTypeException(array(
$this ->namedId ())),$this ->_validName ("id"));\n\t\t}\n\t}\
n\tfunction verifyUrl (& $tableObject){\n\t\t$value =
$tableObject ->getUrl ();\n\t\tif($value === "" || $value
=== null){\n\t\t\tExceptionTrigger :: raise(new
RequireException(array($this ->namedUrl ())),$this ->
_validName ("url"));\n\t\t}\n\t}\n\tfunction verifyPubdate
(& $tableObject){\n\t\t$value = $tableObject ->getPubdate ()
;\n\t}\n\n\tfunction namedId (){\n\t\treturn Message ::_("
id");\n\t}\n\tfunction namedUrl (){\n\t\treturn Message ::_
("url");\n\t}\n\tfunction namedPubdate (){\n\t\treturn
Message ::_(" pubdate ");\n\t}\n\tfunction _validName($name)
{\n\t\t$this ->valid = false ;\n\t\treturn "Urls_". $name;\n
\t}\n}\n\n?>
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computer science

Microseismic Extends Competitive Edge in Passive Seismic Monitoring Using Panasas
Activestor Parallel Storage.
Panasas Parallel Storage Improves I/O Throughput by 2X over Traditional SAN Products,
Enables MicroSeismic to Deliver Accurate Seismic Data Faster to Their Customers FRE-
MONT, Calif. —September 17, 2007— Panasas, Inc., the leader in parallel clustered storage
solutions for the High Performance Computing (HPC) market, has added MicroSeismic, Inc.
to its ever-growing roster of customers providing seismic imaging services for the oil & gas
industry. MicroSeismic has boosted its passive seismic application performance by 2X since
deploying the Panasas® ActiveStor™ Parallel Storage Cluster, enabling the geophysical
data services company to significantly reduce the time it takes to process data and return
high-quality results to their oil & gas customers who benefit from this time advantage in their
drilling efforts.
Houston-based MicroSeismic is the industry leader in passive seismic data acquisition and
analysis. Their passive seismic technology uses data from arrays of surface-located receivers
to monitor reservoir response to simulation injection and other production-related activities,
allowing companies to increase the efficiency and volume of produced oil & gas. As with
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most seismic applications, specialists at MicroSeismic collect and manipulate vast amounts
of data on a daily basis. The company uses 70 terabytes of Panasas parallel storage, which
will allow MicroSeismic to take on more client projects in less time and improve overall IT
productivity, truly giving them a competitive edge and higher profitability.
“Initially, we relied on the local storage provided with Linux servers, but when we introduced
a new processing application, the servers became I/O bound because the prior storage
architecture wasn’t optimized to handle large files. By deploying Panasas ActiveStor parallel
storage running the DirectFLOW® protocol, we increased the performance of the Linux
servers ten-fold and had all of the throughput we needed to satisfy not only the existing
applications, but also future applications that are in development,” said Michael Thornton, vice
president of Data Analysis at MicroSeismic. “We evaluated competitive storage, but Panasas
ActiveStor storage was the only solution that would meet our objectives for performance,
throughput, and ease of management.”
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economics

Item HT 42264 Business Card - Greg McKibbin, Chairman & Managing Director, Kodak
Australasia Pty Ltd, 2005-2007 Greg McKibbin’s Kodak Australasia Pty Ltd business card
circa 2005 - 2007. The card identifies Greg as Chairman & Managing Director of Australia &
New Zealand, based at Collingwood.
Greg McKibbin joined Kodak in 1964 and went on to build a 45 year career in sales, marketing
and business management with the company, working in Australia, Asia, America and Europe.
He was responsible for the dismantling of the Coburg factory complex during his time as
Chairman and Managing Director from 2005 - 2007.
This document was donated as part of the Kodak Oral History Project. It complements the
Kodak Heritage Collection of products, promotional materials, photographs and working life
artefacts collected from Kodak Australasia in 2005, when the Melbourne manufacturing plant
at Coburg closed down.
Cardboard business card printed with Kodak logo, photograph and black text. Acquisition
Information Donation from Mr Greg McKibbin, May 2015 Person Depicted Mr Greg McKib-
bin - Kodak Australasia, Pty Ltd , Collingwood , Greater Melbourne , Victoria , Australia ,
2005-2007 Organisation Named Kodak (Australasia) Pty Ltd , Collingwood , Greater Mel-
bourne , Victoria , Australia , 2005-2007 Keywords Photography , Manufacturing , Staff ,
Business Cards , Marketing"
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encyclopedia

Gleniffer Lake (Alberta)
Gleniffer Lake also known as Gleniffer Reservoir or originally Lake Gleniffer is an artificial
lake in central Alberta, Canada created in 1983 by the construction of the Dickson Dam
which impounded the Red Deer River, a major tributary of the South Saskatchewan River
which flows into the Saskatchewan River Basin.
It lies at an elevation of 945 metres (3,100 ft), and is approximately 7 kilometres (4.3 mi)
long and 2 kilometres (1.2 mi) wide. The lake is south of Highway 54 and east of the Cowboy
Trail, 36 kilometres (22 mi) west of Innisfail, Alberta and 36 kilometres (22 mi) east of
Caroline.
The lake has a surface of 17.6 square kilometres (6.8 sq mi), and a watershed of 5,610 square
kilometres (2,170 sq mi). It has an average depth of 11.6 metres (38 ft), and reaches a
maximum of 33 metres (108 ft).
Gleniffer Lake has day-use areas, cottages, a campground and resort developments including
Carefree Resort and Gleniffer Lake Resort.
The lake reservoir is a source of drinking water for the surrounding area.
Dickson Dam regulates the flow of the Red Deer River to control for floods and low winter
flows, to improve quality of the river, to create a recreational resource and to provide a reliable,
year-round water supply sufficient for future industrial, regional and municipal growth.
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food

Flavour molecules come in all sorts of weird and wonderful organic chemistry types, but
one thing they tend to have in common is that they are somewhat volatile; happy to flit from
the thing you’re eating or drinking directly into your retronasal cavities where the majority
of tasting happens. We know that the tongue only really discerns sweet, sour, bitter, salty
and umami flavours, so when a sommelier is telling you that you’ll definitely taste slightly
under-ripe Californian peaches in your orange wine, what they really mean is that you’ll smell
them as you drink, and your pathetic brain will trick you into thinking it’s a taste. Enough
insults, onto the instructions.This one really is the most basic; take your material for infusing
and whack it in your booze, then leave, strain out and you’re done. It works really well with
dried herbs, fruit, vegetables, teas and in the recipe below, for salted peanut infused rum.
When we steep something in alcohol, we’re pulling out all those great flavours, but we’re also
letting the material start to break down, so it’s very important to taste your infusion and stop it
at the point it’s ready. . . don’t just leave some cucumber in a bottle of gin and come back in 6
months, it will be grim. In fact, most infusions are at their best 4-7 days in: primarily because
of the breakdown of plant cells due to alcohol/osmosis stuff , which leaches chlorophyll into
the booze, leaving it tasting bitter and ‘stewed’. good rule of thumb is that you should have at
least 10x the weight of booze as you do material for infusion, so for example, to make a very
passable copy of Hendricks: peel of one cucumber (roughtly 50g) Add all that to a kilner jar,
leave for 4 days, strain and have in a G&T. You just saved £20.
To make the EC Salted Peanut Cuba Libre, you’ll need: Let the peanuts sit in the rum for
24 hours, then strain through a muslin cloth to remove any particles. Do not, under any
circumstances, eat the peanuts that have been soaked, they have been memorably described
as having what you imagine the texture of baby teeth to be. Leave to stand for 24 hours
then carefully pour into another vessel, leaving any sediment. Taking advantage of Ethanol’s
solvent properties, one brilliant thing we can do is strip the flavours from fats and oils. This
was something PDT in New York was famous for, making Bacon infused bourbons for
old fashioneds served with maple syrup (they, quite simply, fucking rule). Hawksmoor did
something similar with their Full Fat Old Fashioned, infusing butter into the bourbon. At
Every Cloud, we infused some lovely olive oil in gin for our clean dirty martini. To do
this, we’re going to stick to the 10:1 ratio again. You’re going to need some space in the
freezer and something for straining the liquid when you’re done. 500ml Gin 50ml Olive Oil
(something very flavourful, you don’t necessarily want extra-virgin here. Olive pomace can
work brilliantly) Mix the gin and olive oil either in a bag you can seal (zip-lock bags are great
for this) or a container you have a lid
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law

Attorneys for a white Chicago police officer charged with murder in the 2014 fatal shooting
of black teenager Laquan McDonald announced Friday they will stick with jurors for the trial
rather than have a judge decide the case. Jury selection wrapped up on Thursday. The court
vetted and selected 12 jurors and five alternates during the past week. The jury is made up of
seven whites, three Hispanics, one African-American and one Asian-American.
Judge Vincent Gaughan had set a Friday deadline for Jason Van Dyke to say whether he
wanted to switch to a bench trial in which the judge would have decided the officerś fate.
Under Illinois law, Van Dyke could unilaterally switch to a bench trial, CBS Chicago reported.
Opening statements are now planned for Monday, although the judge still must decide on a
defense request to move the trial outside of Cook County, where Chicago is located. The legal
team representing Van Dyke has been pushing to move the case out of the county, according
to CBS Chicago. Jury selection wrapped up much more quickly than expected.Most of the
prospective jurors said they had seen police video of the shooting. Video shows Van Dyke
shooting McDonald 16 times as the teen seems to be walking away from police with a knife
in his hand. It will be one of the centerpieces at the trial.Some jurors who were excused said
they could not be impartial after what they had seen the video.The release of the video, in
November 2015, sparked large protests, the ouster of the police superintendent and demands
for police reform.Even those who were picked for the panel expressed concern, with the last
male juror saying that he thought the officer had "gone too far" when he shot the 17-year-old.
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literature

erta y se sentó al volante. Las tres figuras avanzaban hacia ellos. El hombre y la mujer
retrocedieron hasta la casa mientras el motor del coche se ponía en marcha. Durante un
instante, las ruedas giraron sobre la nieve hasta que dejaron de resbalar y el coche se alejó.
Las figuras echaron a correr y pasaron frente al hombre y la mujer sin prestarles atención,
pendientes solo del coche que bajaba deslizándose por la calle nevada. El hombre de pelo
blanco aferraba el volante con ambas manos. Por suerte era tarde, Nochebuena y nevaba, por
lo que no había tráfico que ralentizara su marcha. Sin embargo, aunque el hombre conducía
a gran velocidad, las figuras negras cada vez estaban más cerca. Corrían tan sigilosamente
que resultaba sobrecogedor; a cada zancada cubrían doce metros y las puntas de sus abrigos
negros ondeaban tras sí. Al doblar una esquina, el coche topó con una furgoneta estacionada
y dos figuras se elevaron de un salto por los aires, asiéndose a las fachadas de las casas que
bordeaban la calle. El hombre miró por el retrovisor y vio que sus perseguidores avanzaban
pegados a las fachadas como gárgolas que se hubieran desprendido de los tejados. Aunque
su mirada no denotaba sorpresa, pisó a fondo el acelerador. El coche cruzó a toda velocidad
una plaza y pasó como una exhalación junto a un grupo de feligreses que salían de la iglesia
a medianoche. Se adentró en el casco antiguo de la ciudad, y a pesar del estruendo de las
ruedas rebotando en las calles adoquinadas, los niños seguían durmiendo en el asiento trasero.
Una de las figuras se impulsó contra la fachada rojiza de una de las casas y aterrizó con gran
estruendo sobre el coche y, acto seguido, su mano pálida rompía el techo de un puñetazo y
empezaba a arañar la chapa.
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mathematics

0 is an optimized solution for this problem. Now ... Intuition for orientation of a simplex (in
3 dimensions)
In trying to begin to learn basic homological algebra, i am confronted with orientation of
simplices. The definition seems unmotivated and unintuitive: for n-simplices with n ∈
{−1, 0, 1, 2}, it ...
Covering n-simplex with k-subsets to produce a lower m-simplex, m < n ?
Let vertices of an n-simplex be labeled {x1, x2, . . . , xn} and let the k-subsets or k-
intersections (k ≤ n) be identified as xi1 ∩ xi2 ∩ . . . ∩ xik = xi1xi2 . . . xik . . .
Do we distinguish two singular simplices if they have different vertex orders?
We define a singular n-simplex in X to be a continuous map σ : ∆n → X where ∆n is the
standard n-simplex. Now, as an example, Let X be a singleton {p}.
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medicine

Mohamed I. Fayad, D.D.S., M.S., Ph.D. Dr. Fayad received his DDS in 1985 from the
Collage of Dentistry, Cairo University. Dr. Fayad received his Master’s in Oral Sciences
in 1994 from the University of Buffalo. He received his PhD in 1996 as a joint supervision
between University of Buffalo and Cairo University. He received his Endodontic training
at the college of Dentistry at UIC. Currently he is the director of endodontic research, and
a clinical associate professor in the Endodontic department at College of Dentistry at UIC,
dividing his time between teaching, research, and private practice. Dr. Fayad is the co-author
of the Periradicular Surgery chapter in Pathways of the pulp 10th edition (2011) and 11th
edition 2015. Dr. Fayad is the co-editor of the text book “3-D imaging in Endodontics”.
He is a Diplomate of the American Board of Endodontics and gave numerous presentations
nationally and internationally. 25 E Washington St. Ste 1833 3-D Imaging in Endodontics:
A new era in diagnosis and treatment Diagnostic information directly influences clinical
decisions. Accurate data lead to better treatment-planning decisions and potentially more
predictable outcomes. CBVT is an emerging technology that can offer the clinician clinically
relevant information that cannot be gathered from conventional radiography. The ability to
assess an area of Interest in 3 dimensions eliminates the superimposition that is inherent
in conventional radiographic imaging. Cone-beam technology currently has numerous
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applications in the dental field. CBVT is having great impact and is changing dramatically
case diagnosis, treatment planning and treatment outcomes in the daily practice. Half day,
full day, or two day lecture, workshop, or live demo.
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philosophy

Light of the eyes : homilies on the Torah, The Hasidism Talmud RELIGION / Judaism /
Sacred Writings Hasidism is an influential spiritual revival movement within Judaism that
began in the eighteenth century and continues to thrive today. One of the great classics of
early Hasidism, The Light of the Eyes is a collection of homilies on the Torah, reading the
entire Five Books of Moses as a guide to spiritual awareness and cultivation of the inner life.
This is the first English translation of any major work from Hasidism’s earliest and most
creative period. Arthur Green’s introduction and annotations survey the history of Hasidism
and outline the essential religious and moral teachings of this mystical movement. The Light
of the Eyes, by Rabbi Menahem Nahum of Chernobyl, offers insights that remain as fresh
and relevant for the contemporary reader as they were when first published in 1798.
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politics

There are huge forces arrayed against following the British vote to leave. There are the E.U.,
determined to make sure that leaving is neither easy nor cheap, lest anyone else get the idea;
assorted left-wingers dreaming of socialist paradise; and the slavishly like-minded press.
They all hope for more of the same. On the other side, seemingly outnumbered, are those who
were tired of not being represented, of being told what cucumbers to buy and of imminent
doom if they were to dare defy the powers that be. For the sake of the United Kingdom and,
ultimately, Europe itself, here is hoping that on March 29, 2019, the E.U. will be one member
less.
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q-a forum

Question: Assigning one value to another value in rails. I have two models din & company,
on one of the form I am trying to create a functionality in which one can assign Directors to
the respected company & company can be assigned to the directors. Here one company can
have many directors & director can be on board of many companies. I have implemented the
relation between the above two models using HABTM,I have created one model coDir in
which the relation between two will be saved as a combination of din_id & company_id. I am
trying to use two drop down menus where multiple selection is to be used.Now the problem
is that how can I assign the directors to the companies & vice versa. If any one has any idea
will save my weekend.
Answer: I would suggest you use has_many :through in this case. And use checkboxes for
your desired functionality(although you could probably use a multiple select if you wish.
Here are a couple of example tutorials to get you started.
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web-crawl

Vieques offers a lot of options for adventurers, from horseback riding on deserted beaches,
to the one-of-a-kind bio bay experience, to scuba diving at an abandoned military pier
(Mosquito Pier or Rompeolas) a mile of the northern coast. The pier is about a mile long. It
was constructed in 1941 and was supposed to connect Vieques with the mainland of Puerto
Rico. But those plans were abandoned in 1943. At the end of the pier is a massive dock
supported by pillars going deep to the ocean floor. The dock is on the calm, protected side of
the pier and over the years the dock has become a shelter for all kinds of marine life. The
beautiful thing is, it’s basically an off-shore dive. The scuba operators take the divers and all
the gear there by pick-up truck. If you are into diving you have to check it out. We are happy
to help you arrange the dive trip. Below is a video that Mike Corey did earlier this year about
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diving at the pier. It gives you a great idea of what to expect, but it doesn’t come close to the
real experience. We are sure you are going to love it.
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visual concept

Take a riverboat up the Wailua—which translates as the "river of the great sacred spirit"—fed
by the Mount Waialeale shield volcano, one of the wettest spots on the planet. Seven temples
once stood along Hawaiiś longest and only navigable freshwater passage. Today, the remains
of four are still visible, alongside petroglyphs and rocks where the islandś alii (royalty) would
give birth. Stretch your legs at the stunning Fern Grotto: Verdant plants blanket the roof of
the volcanic-rock cave there. Smith’s offers 80-minute tours there on open-air boats, which
include the songs and stories of ancient HawaiÍ, plus a bonus hula lesson (smithskauai.com).
Take a riverboat up the Wailua—which translates as the "river of the great sacred spirit"—fed
by Mount Waialeale, one of the wettest spots on the planet. Seven temples once stood along
Hawaiiś longest and only navigable freshwater passage. Today, the remains of four are still
visible, alongside petroglyphs and rocks where the islandś alii (royalty) would give birth.
Stretch your legs at the Fern Grotto: Verdant plants blanket the roof of the volcanic-rock cave
there.
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visual attribute

These Spring Play Dough Mats are perfect for the upcoming weather! Is anyone else ready
for winter to just be done?I’m so ready for spring, yet it is snowing outside right now, not
cool. It seems as this winter weather has literally gone on for forever. . . and I’m ready for
Spring to be here now. Luckily, in just a few short weeks, Spring will be a reality! In order to
prepare for that glorious nature change, we’re celebrating with these Printable Spring Play
Dough Mats. You’ll love the ease of being able to print out these play dough mats and watch
your little ones create. It’s so much fun to watch their excitement grow with their learning!
Print out the play dough mats and either laminate them or place them inside page protectors
and they can be used with play dough right away. My daughter loves covering up the pictures
with different colored play dough. My son rolls out the play dough to place them on top
of the letters. It’s a great activity for preschoolers to learn their letters and it gives them a
multi-sensory approach to letters. Especially if they’re not writing that well yet. Don’t forget
to get your Spring Play Dough Mat Printables here! We also love games in our home, so
while the weather is still just a little chilly outside, here are some fun family games as well!
Visit these amazing bloggers and see what their favorite games that they enjoy in their home.
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visual relationship

I do like to amuse myself with the titles of my blog posts. How can a box be both tall and
small??? When it’s one of mine it can be! OK, so it’s not super tall, it’s 5.5” (14cm) tall, but
its definitely small at 1.25” (3cm) wide. So yes, I reckon it’s tall and small at the same time. . . .
I really enjoyed doing the tone on tone stamping a few weeks ago and am quite passionate
about the Beautiful Bouquet stamp set right now, so I decided to see what they’d look like
when put together as a set and a technique. I haven’t used the matching framelits all that much,
so I added just a tiny delicate detail on the front with a little bit of sponging around the edges.
Also quite cute! And how gorgeous is the Island Indigo tone on tone? I genuinely don’t think
I’ve used this colour in the 12 months since we moved to Cambridgeshire. The reason I know
this is because when I set up my new office, I set out my cardstock in a particular way with a
space for full sheets of cardstock and a space for off cuts, of which I ready prepped half a
dozen card blanks in each colour. I haven’t used or added to the Island Indigo space. Oops,
bad demo here! So it was worth making this project even if just to remind myself what a
fabulous colour it is! I adore the flower detail on the ribbon!! Very cute, love the flower. Very
pretty. I love that blue, such a pretty color. Thanks for sharing this project with us.
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