
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VEDIT: LATENT PREDICTION ARCHITECTURE FOR
PROCEDURAL VIDEO REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Procedural video representation learning is an active research area where the ob-
jective is to learn an agent which can anticipate and forecast the future given the
present video input, typically in conjunction with textual annotations. Prior works
often rely on large-scale pretraining of visual encoders and prediction models with
language supervision. However, the necessity and effectiveness of extending com-
pute intensive pretraining to learn video clip sequences with noisy text supervision
have not yet been fully validated by previous works. In this work, we show that a
strong off-the-shelf frozen pretrained visual encoder, along with a well designed
prediction model, can achieve state-of-the-art (SoTA) performance in forecasting
and procedural planning without the need for pretraining the prediction model,
nor requiring additional supervision from language or ASR. Instead of learning
representations from pixel space, our method utilizes the latent embedding space
of publicly available vision encoders. By conditioning on frozen clip-level embed-
dings from observed steps to predict the actions of unseen steps, our prediction
model is able to learn robust representations for forecasting through iterative de-
noising —leveraging the recent advances in diffusion transformers (Peebles & Xie,
2023). Empirical studies over a total of five procedural learning tasks across four
datasets (NIV, CrossTask, COIN and Ego4D-v2) show that our model advances
the strong baselines in long-horizon action anticipation (+2.6% in Verb ED@20,
+3.1% in Noun ED@20), and significantly improves the SoTA in step forecasting
(+5.0%), task classification (+3.8%), and procedure planning tasks (up to +2.28%
in success rate, +3.39% in mAcc, and +0.90% in mIoU).

1 INTRODUCTION

Humans regularly perform complex, multi-step procedural activities with ease (e.g., cooking a
recipe, assembling a piece of furniture). This ability stems from our capacity to recognize, reason
about and plan for these activities, which is crucial for developing effective embodied AI systems
to perform similar tasks. Towards this, designing systems that can understand procedural activities
and predict the next logical steps is an active research problem (Brohan et al., 2023; Chang et al.,
2020; Tellex et al., 2011). On the one hand, a large body of prior work on visual representation
learning demonstrates the importance of large-scale image or video pretraining for single-step activity
understanding (Oquab et al., 2024; Bardes et al., 2024; Zhai et al., 2023; Wang et al., 2023c; Chen
et al., 2021; Assran et al., 2023; Xu et al., 2024). On the other hand, encoding sequences of steps
(i.e., building a prediction model) for future step prediction in videos is a relatively new area of
research. Existing procedural video representation learning approaches (Lin et al., 2022; Zhong et al.,
2023) typically inherit the same methodology as traditional activity understanding from single short
video clip — extending single-clip pretraining to large-scale pretraining on video clip sequences
(e.g., in HowTo100M (Miech et al., 2019)) with generic objectives, such as masked step prediction
supervised by noisy ASR annotations obtained from narrated videos (Shvetsova et al., 2024) or fixed
text knowledge bases like wikiHow (Koupaee & Wang, 2018).

However, the necessity and effectiveness of pretraining the prediction model on video clip sequences
have not yet been fully validated in these works for two main reasons. First, the dominant single-
clip pretraining objectives (e.g., masked token prediction) were designed for feature learning of
a short single clip, and are not well aligned to the breadth of downstream procedural tasks (e.g.,
step forecasting, task classification, procedural planning). Second, pretraining for sequences rather

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

than single steps demands a scale of data beyond what is currently available. As a result, current
approaches (Lin et al., 2022; Zhong et al., 2023) fall back on text annotations that are often noisy
and poorly temporally aligned with the video content (e.g., ASR narrations). Therefore, in this work,
we investigate how far an approach can go without requiring extensive pretraining on video clip
sequences. Our hypothesis is that learning an efficient prediction model (i.e., transition function)
over strong abstract representations from frozen visual encoders offers a compelling alternative to
extensive large-scale video clip sequences pretraining for procedural learning tasks.

To this end, we propose our framework VEDIT - Video Embedding Diffusion Transformer – a
scalable diffusion transformer (DiT, Peebles & Xie (2023))-based prediction model to encode multi-
step procedural videos. VEDIT inherits both the diffusion-style training objective and architecture.
Specifically, during training, we utilize the latest Flow Matching technique (Esser et al., 2024; Lipman
et al., 2023; Goodfellow et al., 2016) for iterative denoising from random Gaussian noise into video
clip embeddings. Unlike DiT-based models designed for fine-grained image/video generation (Yang
et al., 2024; Esser et al., 2024) which operate at the patch level, our prediction model works as the
step/state transition function, utilizing the abstract frame-level representations from frozen visual
encoders, operating in latent space (LeCun, 2022). This abstraction allows our model to capture the
temporal aspects of the procedural learning task, resulting in the ability to learn an efficient transition
function. Crucially, our method does not require pre-training as it utilizes existing pre-trained
representations, nor does it rely on additional supervision (from text or ASR).

We evaluate our model on five diverse procedural learning tasks across four datasets. (1) On the
COIN (Tang et al., 2019) dataset, our model outperforms previous SoTA by a large margin (+5.0% for
step forecasting and +3.8% for task classification), and demonstrates scalable learning as we increase
the model size. (2) Our newly proposed VEDIT significantly enhances the overall performance
of previous SoTA (Niu et al., 2024) on procedure learning tasks on NIV (Alayrac et al., 2016),
CrossTask (Zhukov et al., 2019), and COIN (up to +2.28% in success rate, +3.39% in mean accuracy,
and +0.90% in mean IoU), as well as the strong baseline for the Ego4D-v2 (Grauman et al., 2022)
long-horizon action anticipation task (+2.6% in Verb ED@20, +3.1% in Noun ED@20). (3) Finally,
we conduct detailed ablation studies on the choice of visual encoders, architecture ablations and
large-scale pretraining on video clip sequences, and confirm the effectiveness of each component of
our framework design.

In a nutshell, our main contributions can be summarized as follows:

• We propose a procedural video representation learning framework (VEDIT) which leverages
diffusion transformers to predict visual representations entirely in the embedding space.

• By combining strong pretrained visual encoders on single video clips with a simple prediction
model design, our framework is designed to be trained effectively on a single cross-entropy loss
for downstream tasks, eliminating the need for large-scale pretraining on video clip sequences and
additional supervision from actions labels or language for learning the prediction model.

• We evaluate VEDIT on five downsteam tasks, including step classification, step forecasting, task
classification, procedure planning, and long-term action anticipation across four widely-used
benchmark datasets. Our framework outperforms previous SoTAs and baselines by a large margin.

2 RELATED WORKS

Procedural Video Understanding. Learning procedural knowledge from videos has become an
active research area, driven by recent large-scale datasets (Miech et al., 2019; Sener et al., 2022;
Afouras et al., 2024; Song et al., 2024) and models trained on them (Niu et al., 2024; Wang et al.,
2023a;b; Zhao et al., 2022; Lin et al., 2022; Zhong et al., 2023). These models often rely heavily
on large-scale text supervision. For example, DistantSup (Lin et al., 2022) creates text supervision
by linking step descriptions from a textual knowledge base (wikiHow) (Koupaee & Wang, 2018)
to text narrations from ASR in videos. ProceduralVRL (Zhong et al., 2023) aligns ASR narration
embeddings to video representations using strong pretrained image-language models (Radford et al.,
2021). Moreover, prior work uses architectures that necessitate large-scale pretraining on video clip
sequences (e.g., self-attention transformers in ProceduralVRL). In contrast, we propose an efficient
architecture that learns directly from video, side-stepping the requirement for large-scale language
annotations or pretraining on video clip sequences.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Video Clip 1 Video Clip N

…

Training Pipeline

Visual
Encoder

Visual
Encoder

Vector Embedding DiT (VEDiT)
(b) Procedure Planning Task

(a) Step Forecasting / Action Anticipation Task

VEDiT

(c) Procedural Activity Classification Task

Attentive
Classifier

Class Labels:
1. insert money into vending
machine → press button →
take out goods
2. install sofa legs → put on
sofa cover → place cushion
…

…

Cross Entropy Loss

Random Gaussian Noise

VEDiT Attentive
Classifier

Class Labels:
1. assemble bed
2. make orange juice
3. make lantern
…

…

Cross Entropy Loss

Flow Matching
Noise Scheduler

✕ T Steps

…

VEDiT Attentive
Classifier

Class Labels:
1. pour milk
2. cut cucumber
3. take out dry flowers
…

…

Cross Entropy Loss

Figure 1: Overview of our VEDIT training pipeline. Model architecture (left): We introduce
masked clip-level latent prediction as our training objective, where we train a Vector Embedding
DiT (VEDiT) to iteratively denoise T steps from random gaussian noise with flow matching noise
scheduler. Downstream tasks (right): We train VEDiT with a light-weight attentive classifier (Bardes
et al., 2024) with cross-entropy loss for the following tasks. (a) Step forecasting / action anticipation
task: predict the embeddings of next unseen clip from observed clips with VEDiT. (b) Procedure
planning task: predict the embeddings of intermediate unseen clips from observed starting and goal
clips with VEDiT. (c) Procedural activity classification task: given a sequence of observed video
clips, predict the label of the procedural video.

Diffusion Transformers and Flow Matching. Diffusion models (Song et al., 2020a; Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020b) have emerged as a new state-of-the-art architecture
for deep generative models. Compared with UNet-based diffusion models (Rombach et al., 2022;
Blattmann et al., 2023), recent architectures (Ma et al., 2024c; Chen et al., 2024; Esser et al., 2024;
Gao et al., 2024; Yang et al., 2024) designed based on diffusion transformers (Peebles & Xie, 2023)
have achieved significant success and scalability in image and video generation. On the other hand,
flow matching (Lipman et al., 2023; Ma et al., 2024b; Karras et al., 2022; Nichol & Dhariwal, 2021)
has shown great potential as an alternative to DDPM (Nichol & Dhariwal, 2021) for diffusion model
noise scheduling. Inspired by these advances, our work introduces a novel modification of the DiT
architecture and flow matching for procedural activity learning, that leverages pretrained visual
features on single video clips and explicitly models the temporal order of steps.

Procedural Activity Learning with Diffusion Models. Prior work has incorporated diffusion into
procedural learning in various ways. Some works (Soucek et al., 2024; Black et al., 2024) propose
using image- and text-conditioned diffusion-based generation or editing models to generate images of
actions and object state changes while preserving the input image scene. These methods primarily use
diffusion models as off-the-shelf tools for generating intermediate steps in the pixel space. In contrast,
other works (Fang et al., 2023; Shi et al., 2025; Wang et al., 2023b; Zhong et al., 2023) integrate
diffusion as a training objective within their model design, predicting the embeddings of unseen
target clips based on the embeddings of observed clips. Our work follows this second approach,
treating diffusion (flow matching) as a noise scheduler that denoises video embeddings from random
noise, and we have designed a procedural learning framework based on the latest DiT architecture.
Our framework differs from previous works in three folds: (1) training supervision: our model is
designed to be trained directly with cross-entropy loss on downstream tasks, without the need for
extra language supervision; (2) prediction model architecture: instead of using vanilla transformer
blocks as the denoising model, we introduce a new Vector Embedding DiT architecture for procedural
learning from videos, which is proved to be more effective; (3) latent embedding generation: Our
model generates unseen video embeddings from a frozen encoder, thereby operating in the latent
embedding space.

3 APPROACH

In this work, we look at three canonical tasks from the procedural representation learning literature,
Step forecasting, Procedure Planning, and Task classification, following the setup from Zhong et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Video Clip 1

Joint Attention

SiLU &
Linear

FFN

Gate

Scale & Shift Scale & Shift

Gate

Gate

Qs Ks Vs Qt Kt Vt

Q’ K’

V’

Video Clip N

…

Visual Encoder
Random Gaussian Noise

Scale & Shift

FFN

Gate

Scale & Shift

Timestamp

✕M Blocks
VEDiT Block

RoPE RoPE

Concat

Concat
Concat

…

…

Visual Encoder

Figure 2: Vector Embedding Diffusion Transformer (VEDIT) architecture. During training, our
model first uses frozen visual encoders to convert observed video clips into corresponding video
embeddings. Then random Gaussian noises are generated as the initial video embeddings of unseen
target clips. The DiT-based prediction model processes both seen and target video embeddings in two
separate branches, and fuses their information via joint attention blocks where Q′ = Concat[Qs,Qt],
K′ = Concat[Ks,Kt], V′ = Concat[Vs,Vt]. To enable temporal modeling of clips, Rotary positional
embeddings (RoPE) is applied to Q′ and K′ before being input to the attention module. The denoised
target clip embeddings are then given as input to the attentive classifier in downstream tasks.

(2023); Niu et al. (2024). Given a series of video clips (or states) from a procedural event (i.e. cooking
a dish), the objective is to a) predict the label of the unseen future event (or state) to occur (step
forecasting), b) predict the label of unseen events that happened in-between (procedure planning)
and c) predict the label of the entire set of events, from a list of probable classes (task classification).
Generally, given a sequence of N observable video clip representations (vi), we aim to learn a
procedural state representation v̂, which can either capture the information of unseen clips (step
forecasting or procedure planning) or a summary information of the task (task classification) using
a conditional predictor v̂ = Fθ({vi|i ∈ S}), where S is a set of observable clips. Using this
representation, we then aim to learn a classifier to predict the class labels (C) for the given task
h : Rk×D −→ C, where k denotes a set of output embeddings for representation v̂ of dimension D.

Learning a predictor to predict an unseen clip representation typically requires an extensive training
process to learn a rich visual representation and temporal information. In this work, we bypass the
need of learning visual information by leveraging existing pre-trained encoders vi = τ ∗(vi) ∈ Rk×D,
where vi being the clip in pixel space. Therefore, we focus on learning the temporal transition among
clips by operating over the encoder embeddings, v̂ = Fθ({τ ∗(vi)|i ∈ S}), where the predictor needs
to generate latent representation Rk×D embeddings. To generate embeddings with rich visual signals,
we draw inspiration from the diffusion model literature, particularly recent diffusion transformers
(DiT) (Peebles & Xie, 2023; Esser et al., 2024). Given their powerful text-conditioned image and
video generation capabilities (Yang et al., 2024; Ma et al., 2024a), we adapt their strong conditional
generation architecture into a sequential step prediction model for procedural activities. Thus, learning

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a strong predictor would allow us to generate unseen clip embeddings, to enable us to perform the
tasks in procedural representation learning.

3.1 PRELIMINARY: LATENT DIFFUSION MODEL AND RECTIFIED FLOWS

Given an image x ∈ R3×H×W with caption c, image Latent diffusion models (LDMs) (Rombach
et al., 2022) first use an atoencoder E to encode the image into latents z0 = E(x) ∈ RC×H′×W ′

,
where C represents the number of latent channels, and H ′ = H/p, W ′ = W/p represent the spatial
dimension of the latents, with p denotes as patch size. The forward diffusion process is a fixed
diffusion process which adds random noise to the latent variable z0. For example, forward process
with Rectified Flows (RFs) (Liu et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023)
is defined as a straight path between the data distribution z0 and a standard normal distribution
ϵ (i.e., zt = (1 − t)z0 + tϵ, where t ∈ [0, 1]). The reverse process in RFs, on the other hand,
gradually produces less noise samples starting from z1 to z0 in T denoising steps through a learnable
transformer-based denoiser model Fθ parameterized by θ and conditioned on caption c. In our setup,
we transform such denoiser model conditioned on caption/text into a sequential step prediction model
for procedural activities conditioned on observed video clips, with explicit temporal order modeling
via RoPE (Su et al., 2024).

3.2 OUR APPROACH: VECTOR EMBEDDING DIFFUSION TRANSFORMERS (VEDIT)

Overall Training Pipeline of VEDIT. The overall training pipeline of our VEDIT is illustrated
in Fig. 1 left. Given a set S that contains N observable (seen) video clips {v1, v2, ..., vN}, where
each video clip vi ∈ RK×3×H×W contains K frames, we first apply a frozen visual encoder
τ ∗(.) to derive the corresponding video embeddings for each clip vi = τ ∗(vi). Next, random
Gaussian noises are generated as the initial video embeddings of unseen clips {ṽj |j ∈ T }, where
T represents the target set. Then we design VEDIT as the learnable prediction model Fθ which
predicts the unseen target video clip embeddings (v̂) conditioned on all seen video embeddings:
v̂j = Fθ({v}i, ṽj), i ∈ S; j ∈ T . This prediction model is then trained using iterative denoising (Ho
et al., 2020) over T steps, with diffusion timestamps sampled from the Flow Matching Euler Discrete
Scheduler (Esser et al., 2024). Unlike DiT, which is based-on pixel-level and text-conditioned
generation, our model is designed to predict abstract video features in the procedural activity, based
on observed video clips. Additionally, unlike previous works (Lin et al., 2022; Zhong et al., 2023) for
procedural activity understanding, our method does not use extra language supervision such as ASR
or textual knowledge base (e.g., wikiHow) that aligns visual embeddings with text.

Training Objective of VEDiT. A key innovation and distinction of our method, compared with
previous approaches to video embedding prediction for downstream tasks (Zhong et al., 2023; Lin
et al., 2022)—which typically rely on a combination of multiple loss functions (such as video
embedding reconstruction loss and video-language matching loss) for supervision—is that our
pipeline can be effectively trained with a single cross-entropy loss. Unlike previous works that enforce
alignment of the predicted video embeddings with often noisily annotated language descriptions, using
a single cross-entropy loss allows the optimization target to align more effectively with downstream
datasets.

Choice of Visual Encoder. Previous works on procedural learning (Lin et al., 2022; Zhong et al.,
2023; Niu et al., 2024) typically use clip-level features as abstracted visual representation for each
video clip, which can result in a loss of detail. Conversely, DiT models for image and video
generation (Yang et al., 2024; Esser et al., 2024; Peebles & Xie, 2023) are designed for patch-
level generation with a focus on fine-grained visual details, but this comes at the cost of higher
computational demands. To ensure that our model can process videos with multiple clips, encode
sufficient visual information, and avoid excessive computational costs, we explore our model with
diverse CLIP- and SSL-based encoders that output visual features at the clip-, frame-, and patch-levels.
We found empirically that using the [CLS] tokens of SigLIP (Zhai et al., 2023) from 16 uniformly
sampled frames in each clip stands out as the strongest visual representation. An ablation study of
visual encoders is discussed in Sec. 4.3.

VEDIT Model Architecture Design. Fig. 2 visualizes the components of each VEDIT block. Our
architecture is derived from DiT (Peebles & Xie, 2023), which has a two-branch architecture with
one query branch (typically text) tasked to condition the target branch (vision) through adaptive

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

layernorm (Perez et al., 2018). In our work, we utlize the query branch to process the observable (or
seen) video encoder embeddings {vi|i ∈ S}, which conditions the target branch that operates on
unseen, noisy embeddings {ṽj |j ∈ T } through adaptive layernorm, which gets iteratively updated
through denoising. The query branch is further conditioned by using the timestamp t ∈ T sampled
from the noise scheduler, along with its usual application of determining the scale of noise. Unlike
DiT, the information of the query branch and the target branch are fused together using joint attention
before being processed independently through feed-forward layers without weight sharing. Lastly, to
enable temporal modeling of clips, Rotary positional embeddings (RoPE) (Su et al., 2024) is applied
to the input immediately prior to the joint attention module. By utilizing these mechanisms, VEDIT
allows us to learn unseen video embeddings, starting from noise, by conditioning on the observed
video encoder representations. More ablations on design choices are provided in Appendix A.2.

4 EXPERIMENTS

In this section, we first introduce the evaluation datasets and the implementation details of our model
in Sec. 4.1. We then compare our method with SOTAs on five downstream tasks across four datasets
in Sec. 4.2. Finally, we present ablation studies on the visual encoders, as well as the necessity of
pretraining on video clip sequences in Sec. 4.3. More ablations on VEDIT architecture design is
provided in Appendix A.2.

4.1 EXPERIMENTAL SETUP

Evaluation Tasks and Datasets. We evaluate our method on five downstream tasks across four
datasets. COIN (Tang et al., 2019) contains 476 hours of YouTube videos covering 180 tasks and
778 unique steps of daily activities. Following (Zhong et al., 2023; Lin et al., 2022), we evaluated
our model on two tasks: step forecasting and task classification (see Fig. 1 for details). For Ego4D-
v2 (Grauman et al., 2022), we focus on the long-term action anticipation benchmark, which aims to
predict the next Z = N − t future action classes [(verb1, noun1), (verb2, noun2), ..., (verbZ , nounZ)]
given an input video up to timestamp t. This forecasting benchmark contains 243 hours of videos with
a total of 3472 annotated clips. In addition, we utilize NIV (Alayrac et al., 2016), CrossTask (Zhukov
et al., 2019), and COIN datasets to evaluate the procedure planning task (Chang et al., 2020), which
can be seen as a variant of step forecasting task that aims at predicting intermediate action steps
given the observed start and goal video clips. Specifically, CrossTask dataset contains 2750 videos
covering 18 tasks and 133 actions, and NIV dataset contains 150 videos with 5 tasks and 48 actions.
Following (Niu et al., 2024), we report the results with prediction horizon T ∈ {3, 4}.

Evaluation Metrics. For COIN step forecasting and task classification tasks, we use top-1 clas-
sification accuracy of the predicted step/task as the evaluation metric following DistantSup (Lin
et al., 2022). For Ego4D-v2 long-horizon anticipation task, we use the default edit distance (ED)
metric, which is computed as the Damerau-Levenshtein distance (Damerau, 1964) over sequences of
predicted verbs or nouns. Following (Grauman et al., 2022), we report the minimum edit distance at
Z = 20 (ED@20) for K = 5 predicted sequences on the validation set. In addition, for procedure
planning tasks on NIV, CrossTask, and COIN, we evaluate the models on three metrics, including
success rate (SR), mean Accuracy (mAcc) and mean Intersection over Union (mIoU) following
previous works (Chang et al., 2020; Niu et al., 2024; Zhao et al., 2022).

Implementation Details. Our default VEDIT architecture contains 12 transformer blocks, with a
hidden size of 2048 and attention head dimension of 64. During training, we apply classifier-free
guidance with a scale of 7 and denoise the diffusion model for 24 steps using the Flow Matching
Euler Discrete Scheduler (Esser et al., 2024). For COIN step forecasting and task classification tasks,
we use a scheduled learning rate linearly increases from 5 × 10−6 to 5 × 10−5 during the first 3
epochs, and then decays to 5× 10−7 following a cosine schedule, with a total of 30 epochs. For long-
horizon anticipation and the procedure planning tasks, following the same training setting in previous
works (Grauman et al., 2022; Niu et al., 2024), we train the model for 100 and 500 epochs respectively.
Together with VEDIT, we train task specific attentive classifiers h : Rk×D → C (Bardes et al.,
2024), which is an attentive pooler over k output embeddings followed by a single linear layer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Model Pretraining Supervision Pretrain Data Step Forecasting Task Classification

Random Guess N/A N/A 0.1 -
SlowFast (Feichtenhofer et al., 2019) Supervised: action labels Kinetics 25.6 71.6
S3D (Xie et al., 2018) Unsupervised: ASR w. MIL-NCE HT100M 28.1 70.2
ClipBERT (Lei et al., 2021) Supervised: captions COCO+VG - 65.4
VideoCLIP (Xu et al., 2021) Unsupervised: ASR HT100M - 72.5
TSN (RGB + Flow) (Tang et al., 2019) Supervised: action labels Kinetics - 73.4
TimeSformer (Bertasius et al., 2021) Supervised: action labels Kinetics 34.7 83.5
TimeSformer (Bertasius et al., 2021) Unsupervised: ASR w. MIL-NCE HT100M 34.0 85.3
DistantSup (Lin et al., 2022) Unsupervised: ASR + wikiHow HT100M 39.4 88.9
ProceduralVRL (Zhong et al., 2023) Unsupervised: ASR HT100M 46.8 90.8

Ours: TimeSformer + VEDIT N/A N/A 48.7 91.1
Ours: SigLIP (Zhai et al., 2023) + VEDIT N/A N/A 51.8 94.6

Table 1: Step forecasting and task classification results on COIN (Tang et al., 2019) dataset. We
compare our method with a set of strong baselines as well as SOTA methods. Top-1 accuracies are
reported. We bold and underline the best and the second best models in each task respectively.

4.2 MAIN RESULTS

Step Forecasting and Task Classification. In Table 1, we demonstrate the effectiveness of our
VEDIT design on the COIN step forecasting and task classification tasks. Firstly, we use the pre-
trained TimeSformer (Bertasius et al., 2021) visual encoder as τ ∗, as used in ProceduralVRL (Zhong
et al., 2023), the previous state-of-the-art in these tasks. We combined the TimeSformer encoder
with VEDIT designed with joint attention, to arrive at the model TimeSformer+VEDIT. This model
achieves improvements of 2.2% and 0.6% in top-1 accuracy on the step forecasting and task classifi-
cation tasks. Next, using SigLIP (Zhai et al., 2023) as τ ∗ with VEDIT yields additional gains of
3.1% and 3.2% on these two tasks. It is worth noting our methods does not require any large-scale
pretraining on video clip sequences, which proves the effectiveness of using strong language-aligned
single-clip pretrained representations. Additionally, our method does not require explicit text supervi-
sion (i.e., unsupervised) compared to baselines DistantSup and ProceduralVRL, which are trained
with explicit language matching loss (i.e., ASR or ASR+wikiHow). Furthermore, we observe linear
scalability of VEDIT on Step Forecasting task, leading to improved numbers with increasing number
of model parameters (Appendix A.2.3).

1 2 3 4 5 6
0

5

10

15

20

25

30

SR

SCHEMA w/ VEDiT
SCHEMA

1 2 3 4 5 6
0

10

20

30

40

50

m
Ac

c

NIV

1 2 3 4 5 6
0

20

40

60

80

100

m
Io

U

1 2 3 4 5 6
Transformer Blocks

0

5

10

15

20

25

30

SR

SCHEMA w/ VEDiT
SCHEMA

1 2 3 4 5 6
Transformer Blocks

0

10

20

30

40

50

60

m
Ac

c

COIN

1 2 3 4 5 6
Transformer Blocks

0

20

40

60

80

100

m
Io

U

1 2 3 4 5 6
Transformer Blocks

0

10

20

30

40

SR

SCHEMA w/ VEDiT
SCHEMA

1 2 3 4 5 6
Transformer Blocks

0

20

40

60

m
Ac

c

CrossTask

1 2 3 4 5 6
Transformer Blocks

0

20

40

60

80

100

m
Io

U

Figure 3: SCHEMA w/ VEDIT is more stable than
SCHEMA w/ vanilla transformer as we increase the
number of transformer blocks.

Procedure Planning Task. We further eval-
uate VEDIT on procedure planning results
on the NIV, COIN, and CrossTask datasets
with horizons T ∈ {3, 4} in Table 2. Specifi-
cally, we build upon the previous SoTA model,
SCHEMA (Niu et al., 2024), by replacing their
vanilla transformer blocks in the state decoder
and step decoder with our VEDIT blocks. To
ensure a fair comparison, we use the same
number of transformer blocks (i.e., 2 blocks)
with identical hidden dimensions, attention
heads, and we strictly adhere to their training
and evaluation hyperparameters and setups
without any changes. We report the mean and
standard deviation of SR, mAcc, and mIoU
for our results as well as our replication of
SCHEMA averaged over 10 runs.

As shown in Table 2, SCHEMA with
VEDIT consistently outperforms the original
SCHEMA method on NIV (gains of 0.97%-
2.28% for SR, 1.92%-3.39% for mAcc, and
0.49%-0.90% for mIoU) and COIN (gains of 2.21%-5.89% for SR, 2.31%-7.07% for mAcc, and
0.86%-2.57% for mIoU). Additionally, our VEDIT achieves better average performance on the
CrossTask dataset. Moreover, as plotted in Fig. 3, we also observe better stability of VEDIT over
vanilla transformer blocks as we scale up the number of transformer blocks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Datasets Models T = 3 T = 4

SR (↑) mAcc (↑) mIoU (↑) SR (↑) mAcc (↑) mIoU (↑)

NIV

Random 2.21 4.07 6.09 1.12 2.73 5.84
DDN (Chang et al., 2020) 18.41 32.54 56.56 15.97 27.09 53.84
Ext-GAIL (Bi et al., 2021) 22.11 42.20 65.93 19.91 36.31 53.84
P3IV (Zhao et al., 2022) 24.68 49.01 74.29 20.14 38.36 67.29

EGPP (Wang et al., 2023a) 26.05 51.24 75.81 21.37 41.96 74.90
SCHEMA (Niu et al., 2024) 27.93 41.64 76.77 23.26 39.93 76.75

SCHEMA† 26.66±2.27 39.94±2.79 75.58±1.47 22.32±1.15 36.96±1.84 74.39±1.13
SCHEMA w/ VEDIT 28.94±1.07 43.33±0.90 76.48±0.62 23.29±0.44 38.88±1.19 74.88±0.89

(Ours) (2.28↑) (3.39↑) (0.90↑) (0.97↑) (1.92↑) (0.49↑)

COIN

Random <0.01 <0.01 2.47 < 0.01 < 0.01 2.32
Retrieval 4.38 17.40 32.06 2.71 14.29 36.97

DDN (Chang et al., 2020) 13.90 20.19 64.78 11.13 17.71 68.06
P3IV (Zhao et al., 2022) 15.40 21.67 76.31 11.32 18.85 70.53

EGPP (Wang et al., 2023a) 19.57 31.42 84.95 13.59 26.72 84.72
SCHEMA (Niu et al., 2024) 32.09 49.84 83.83 22.02 45.33 83.47

SCHEMA† 26.38±3.66 43.08±4.28 81.49±1.70 21.00±2.56 43.37±3.64 82.70±1.08
SCHEMA w/ VEDIT 32.27±0.44 50.15±0.31 84.07±0.38 23.11±0.27 45.68±0.52 83.56±0.45

(Ours) (5.89↑) (7.07↑) (2.57↑) (2.11↑) (2.31↑) (0.86↑)

CrossTask

Random <0.01 0.94 1.66 < 0.01 0.83 1.66
Retrieval 8.05 23.30 32.06 3.95 22.22 36.97

DDN (Chang et al., 2020) 12.18 31.29 47.48 5.97 27.10 48.46
Ext-GAIL (Bi et al., 2021) 21.27 49.46 61.70 16.41 43.05 60.93
P3IV (Zhao et al., 2022) 23.34 49.96 73.89 13.40 44.16 70.01

PPDP (Wang et al., 2023b) 26.38 55.62 59.34 18.69 52.44 62.38
EGPP (Wang et al., 2023a) 26.40 53.02 74.05 16.49 48.00 70.16
SCHEMA (Niu et al., 2024) 31.83 57.31 78.33 19.71 51.85 74.46

SCHEMA† 30.57±0.38 56.02±0.32 77.60±0.25 20.26±0.33 51.93±0.17 74.51±0.25
SCHEMA w/ VEDIT 31.08±0.31 56.15±0.57 77.54±0.35 20.42±0.24 52.26±0.51 74.76±0.29

(Ours) (0.51↑) (0.13↑) (0.06↓) (0.16↑) (0.33↑) (0.25↑)

Table 2: Procudure planning results on NIV (Alayrac et al., 2016), COIN (Tang et al., 2019), and
CrossTask (Zhukov et al., 2019) datasets with prediction horizon T ∈ {3, 4}. SCHEMA†: our
replication of their method averaged over 10 runs. The best numbers are bolded. Our improvement
over SCHEMA baseline is colored in blue.

Method Encoder Prediction Model ED@5 (↓) ED@5 (↓) ED@20 (↓) ED@20 (↓)

Verb Noun Verb Noun

Ego4D Baseline (Grauman et al., 2022) SlowFast Transformer - - 0.745 0.779
Ego4D Baseline (Grauman et al., 2022) SigLIP Transformer 0.703 0.736 0.718 0.742
PaMsEgoAI (Ishibashi et al., 2023) SlowFast + CLIP Concat + Transformer - - 0.670 0.629
Ours SigLIP VEDIT 0.677 0.711 0.697 0.711

Table 3: Comparison of methods on the validation set of Ego4D (Grauman et al., 2022) long-term
action anticipation challenge. Edit distance (ED) metrics are reported at prediction horizon 5 and 20.

Long-Horizon Action Anticipation. In Table 3, we evaluate our model on the Ego4D-v2 long-
horizon action anticipation task. We introduce a new baseline by replacing the SlowFast (Feicht-
enhofer et al., 2019) visual encoder in the Ego4D baseline model with SigLIP, while keeping the
prediction model (i.e., slowfast trf v2) unchanged. For a fair comparison, we initialize VEDIT
with the same number of transformer blocks and hidden dimension size as the Ego4D baseline
transformer prediction model. Using SigLIP as visual encoder, VEDIT outperforms the Ego4D
baseline in both Verb ED@20 (Ours: 0.697 v.s. Ego4D Baseline: 0.718, lower is better) and noun
ED@20 (Ours: 0.711 v.s. Ego4D Baseline: 0.742, lower is better). In addition, while not directly
comparable, PaMsEgoAI (Ishibashi et al., 2023), achieves lower ED metrics by introducing several
enhancements, including an ensemble of SlowFast and SlowFast-CLIP models, label smoothing
to relax order constraints for future actions, and constraining the (verb, noun) classes based on
word co-occurrence. Some studies (Zhao et al., 2024; Pei et al., 2024; Huang et al., 2023) have
found that combining vision models with the strong planning capabilities of LLMs can achieve
good performance, particularly for long-horizon action anticipation tasks. Therefore, integrating our
method with an LLM could be a promising future direction.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Architecture Pretrain Data CLIP/SSL Token Step Forecasting Task Classification

DINOv2 ViT-Giant/14@224 LVD-142M (Oquab et al., 2024) SSL [CLS] 47.03 90.89
VJEPA ViT-Huge/16@224 VideoMix2M (Bardes et al., 2024) SSL Patch 47.24 86.13
VJEPA ViT-Huge/16@384 VideoMix2M (Bardes et al., 2024) SSL Patch 48.23 87.14
VideoMAE ViT-Huge/16@224 K400 (Kay et al., 2017) SSL Patch 44.78 83.40
SigLIP (default) ViT-SO400M/14@384 WebLI (Chen et al., 2023) CLIP [CLS] 50.05 94.38

Table 4: Ablation on frozen video encoders on COIN (Tang et al., 2019) step forecasting and
procedural activity classification tasks. Top-1 accuracies are reported. We bold and underline the
best and the second best models in each task respectively.

4.3 ABLATIONS

4.3.1 WHICH VISUAL ENCODER WORKS BEST?

To test the impact of visual encoders on procedural activity understanding from instructional videos,
we train VEDIT with 3 blocks for 10 epochs with different visual encoders. We include strong
CLIP-based and self-supervised (SSL) encoders, including SigLIP (ViT-SO400M/14@384) (Zhai
et al., 2023), V-JEPA (Bardes et al., 2024), DINOv2 (Oquab et al., 2024), and VideoMAE Tong et al.
(2022). For V-JEPA and VideoMAE, we provide patch tokens to VEDIT, while for DINOv2 and
SigLIP, we provide [CLS] tokens. We evaluate the model trained with different encoders on COIN
for step forecasting and task classification tasks.

As we observe from Table 4, SigLIP outperforms SSL-based encoders. Among the SSL-based
encoders, VJEPA ViT-H 384 and DINOv2 performs comparably than the baselines for step forecasting
and task classification task respectively. SigLIP outperforms both on a large margin, especially in
Task classification, highlighting the need of language-aligned rich visual representations for stronger
procedural activity understanding.

4.3.2 IS PRE-TRAINING NECESSARY?

Instead of training directly on downstream datasets (i.e., COIN), previous works (Zhong et al., 2023;
Lin et al., 2022) undergo large-scale pretraining on video clip sequences from publicly available
video datasets, such as HowTo100M (Miech et al., 2019). In this section, we question whether
such clip-sequence pretraining is necessary. Specifically, we compare our model trained directly
on COIN with a variant that includes additional clip-sequence pretraining on HowTo100M dataset.
Following the reicpe of Zhong et al. (2023), we set the total number of clips to 9, randomly mask
out the video embedding of one clip, and use the masked clip embedding reconstruction as the
training objective. Additionally, instead of relying on the noisy automatic speech recognition (ASR)
annotations, we use the starting and ending timestamps of each video clip processed and filtered by
HowToCaption (Shvetsova et al., 2024). During pretraining, we employ the AdamW (Loshchilov &
Hutter, 2019) optimizer, with the learning rate linearly increasing from 1× 10−5 to 1× 10−4 during
the first 0.5 training epochs, and then remaining constant for a total of 30 epochs. The pretraining is
conducted on 128 H100 GPUs with a total batch size of 1024, and takes 2 days and 4.5 days for the
165M and 1.77B VEDIT models respectively (see Table 8 for model architecture details).

Surprisingly, we observe only marginal improvement with significant clip-sequence pretraining
(Table 5). Pretraining on video clip sequences only provides an additional 0.3% boost in top-1
accuracy for the step forecasting task. We hypothesize this limited effectiveness of clip-sequence
pretraining may stem from two factors: (1) pretraining dataset is relatively noisy, leading to a
distribution gap with the downstream COIN dataset, and (2) the pretraining objective in (Zhong et al.,
2023) may not be optimal. Exploring better clip-sequence pretraining objectives that can generalize
well across different downstream tasks is left for future work.

5 LIMITATIONS

One potential limitation of our model with multi-step denoising is that it sacrifices efficiency for
performance. Additionally, it is not specifically designed for real-time inference, which is a parallel
topic to our paper and typically involves techniques such as model distillation, quantization, and
hardware-level optimization. We leave the exploration of this direction for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Pretraining Supervision Pretrain Data Step Forecasting Task Classification

SigLIP + VEDIT N/A N/A 51.8 94.6
SigLIP + VEDIT Unsupervised: HowToCaption HT100M 52.1 94.6

Table 5: Effect of large-scale clip-sequence pretraining. We compare VEDIT without large-scale
pretraining with a variant that’s pretrained on 1.16M videos from HowTo100M (Miech et al., 2019)
dataset, using temporal information from HowToCaption (Shvetsova et al., 2024). Top-1 accuracies
are reported.

Denoising Steps 1 4 8 12 16 20 24

Training Clock Time (sec.) 0.41 0.49 0.63 0.82 0.94 1.09 1.24
Inference Clock Time (sec.) 0.40 0.47 0.56 0.66 0.75 0.84 0.93

Training GPU Memory (GB) 21.8 21.9 22.0 22.0 22.1 22.2 22.3
Inference GPU Memory (GB) 15.7 15.7 15.8 15.8 15.8 15.8 15.9

Table 6: Training and inference clock time and GPU memory of VEDIT as we increase the number
of denoising steps.

Here, we provide some analysis by evaluating the training and inference time as well as GPU
memory usage of our model with varying numbers of denoising steps. Specifically, we conducted
this experiment using the VEDiT architecture with 696M trainable parameters. We measured the
clock time and GPU memory required to run inference on the model using 1 COIN video consisting
of 8 clips, with gradient checkpointing enabled.

As shown in the table below, increasing the number of denoising steps from 1 to 24 results in only a
1.32× increase in inference time and a 2.02× increase in training time. This efficiency is partially
because of the adoption of efficient scalable dot product attention in each VEDiT block. Moreover,
because we employ gradient checkpointing to optimize GPU memory usage, GPU memory usage
remains nearly constant without significant variation.

6 CONCLUSION

In this work, we demonstrate that carefully designed predictive models learned on top of single-clip
pretrained visual representations can achieve state-of-the-art performance on procedural learning
tasks across the COIN, CrossTask, NIV, and Ego4D datasets, including step forecasting, procedural
activity classification, procedure planning, and long-term action anticipation. Notably, we achieve
these results without pretraining the prediction module, instead learning it directly from the end tasks.
This contrasts with previous works, which often require computationally expensive pretraining of
the predictor, sometimes with additional supervision. Our findings suggest that further research is
needed to improve clip-sequence pretraining for procedural activities. Specifically, exploring ways
to better align pretraining tasks with downstream tasks could help fully leverage the benefits of
pretraining. Moreover, the data distribution gap, as well as differences in the timestep boundaries of
clips between the large-scale pretraining dataset and the downstream dataset, could be a potential
bottleneck that hinders the effectiveness of large-scale pretraining on noisy videos. Strategies aimed
at improving robustness to distribution shifts (Sun et al., 2020) represent another promising direction
for exploration.

7 REPRODUCIBILITY

In this work, we aim to make VEDIT training and evaluation reproducibile, so that readers can
assimilate the contributions in their own work. By design, VEDIT is highly reproducible as it doesn’t
require expensive pre-training, as it works on top of frozen vision encoders, specifically SigLIP1 for
our main experiments. We ground the discussion of model development in Sec. 3.2. We provide
details of the training pipeline, training & evaluation data and metrics used in Sec. 4.1. Further results
on step classification task and procedure planning tasks are provided in Appendix A.1 for assiting

1https://huggingface.co/google/siglip-so400m-patch14-384

10

https://huggingface.co/google/siglip-so400m-patch14-384

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

replicability and generalization of VEDIT. Detailed ablation results on the model design, including
choice of attention mechanism and denoising steps, are provided in Appendix A.2.3. Finally, we
provide detailed results on the scalability of VEDIT to further shed light on its generalizability with
increasing amount of model parameters. PyTorch (Ansel et al., 2024) implementation of VEDIT
blocks is provided in Algorithm 1. We will release our code post peer review.

REFERENCES

Triantafyllos Afouras, Effrosyni Mavroudi, Tushar Nagarajan, Huiyu Wang, and Lorenzo Torresani.
Ht-step: Aligning instructional articles with how-to videos. Advances in Neural Information
Processing Systems, 36, 2024.

Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, and Simon
Lacoste-Julien. Unsupervised learning from narrated instruction videos. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 4575–4583, 2016.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil
Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations from
video. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL https:
//openreview.net/forum?id=QaCCuDfBk2. Featured Certification.

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In Proceedings of the International Conference on Machine Learning (ICML),
July 2021.

Jing Bi, Jiebo Luo, and Chenliang Xu. Procedure planning in instructional videos via contextual
modeling and model-based policy learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Rich Walke, Chelsea Finn, Aviral Kumar,
and Sergey Levine. Zero-shot robotic manipulation with pre-trained image-editing diffusion
models. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=c0chJTSbci.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22563–22575, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding language
in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023.

11

https://pytorch.org/assets/pytorch2-2.pdf
https://openreview.net/forum?id=QaCCuDfBk2
https://openreview.net/forum?id=QaCCuDfBk2
https://openreview.net/forum?id=c0chJTSbci

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chien-Yi Chang, De-An Huang, Danfei Xu, Ehsan Adeli, Li Fei-Fei, and Juan Carlos Niebles.
Procedure planning in instructional videos. In European Conference on Computer Vision, 2020.

Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. In The Twelfth International Conference on Learning
Representations, 2024.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Se-
bastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan
Puigcerver, Nan Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish V
Thapliyal, James Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol
Ayan, Carlos Riquelme Ruiz, Andreas Peter Steiner, Anelia Angelova, Xiaohua Zhai, Neil
Houlsby, and Radu Soricut. PaLI: A jointly-scaled multilingual language-image model. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=mWVoBz4W0u.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. 2015.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9640–9649, 2021.

Fred J Damerau. A technique for computer detection and correction of spelling errors. Communica-
tions of the ACM, 7(3):171–176, 1964.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Fen Fang, Yun Liu, Ali Koksal, Qianli Xu, and Joo-Hwee Lim. Masked diffusion with task-awareness
for procedure planning in instructional videos. arXiv preprint arXiv:2309.07409, 2023.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
6202–6211, 2019.

Peng Gao, Le Zhuo, Ziyi Lin, Chris Liu, Junsong Chen, Ruoyi Du, Enze Xie, Xu Luo, Longtian Qiu,
Yuhang Zhang, et al. Lumina-t2x: Transforming text into any modality, resolution, and duration
via flow-based large diffusion transformers. arXiv preprint arXiv:2405.05945, 2024.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18995–19012, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Daoji Huang, Otmar Hilliges, Luc Van Gool, and Xi Wang. Palm: Predicting actions through language
models @ ego4d long-term action anticipation challenge. arXiv preprint arXiv:2306.16545, 2023.

Tatsuya Ishibashi, Kosuke Ono, Noriyuki Kugo, and Yuji Sato. Technical report for ego4d long term
action anticipation challenge 2023, 2023. URL https://arxiv.org/abs/2307.01467.

12

https://openreview.net/forum?id=mWVoBz4W0u
https://openreview.net/forum?id=mWVoBz4W0u
https://arxiv.org/abs/2307.01467

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Apostol Natsev, Mustafa Suleyman, and Andrew Zisserman.
The kinetics human action video dataset. ArXiv, abs/1705.06950, 2017.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
pp. 2. Minneapolis, Minnesota, 2019.

Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization dataset.
arXiv preprint arXiv:1810.09305, 2018.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International journal of computer vision,
123:32–73, 2017.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and Jingjing Liu. Less
is more: Clipbert for video-and-language learning via sparse sampling. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 7331–7341, 2021.

Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus Rohrbach, Shih-Fu Chang, and Lorenzo
Torresani. Learning to recognize procedural activities with distant supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13853–13863, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations,
2023.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Bingqi Ma, Zhuofan Zong, Guanglu Song, Hongsheng Li, and Yu Liu. Exploring the role of large
language models in prompt encoding for diffusion models. arXiv preprint arXiv:2406.11831,
2024a.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024b.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint arXiv:2401.03048,
2024c.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated
video clips. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
2630–2640, 2019.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Yulei Niu, Wenliang Guo, Long Chen, Xudong Lin, and Shih-Fu Chang. SCHEMA: State CHanges
MAtter for procedure planning in instructional videos. In The Twelfth International Conference on
Learning Representations, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. Transactions on Machine Learning Research Journal,
pp. 1–31, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Baoqi Pei, Guo Chen, Jilan Xu, Yuping He, Yicheng Liu, Kanghua Pan, Yifei Huang, Yali Wang,
Tong Lu, Limin Wang, and Yu Qiao. Egovideo: Exploring egocentric foundation model and
downstream adaptation. arXiv preprint arXiv:2406.18070, 2024.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, Robert Wang,
and Angela Yao. Assembly101: A large-scale multi-view video dataset for understanding proce-
dural activities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21096–21106, 2022.

Lei Shi, Paul-Christian Bürkner, and Andreas Bulling. Actiondiffusion: An action-aware diffusion
model for procedure planning in instructional videos. In Proc. IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2025.

Nina Shvetsova, Anna Kukleva, Xudong Hong, Christian Rupprecht, Bernt Schiele, and Hilde Kuehne.
Howtocaption: Prompting llms to transform video annotations at scale. ECCV, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020a.

Yale Song, Eugene Byrne, Tushar Nagarajan, Huiyu Wang, Miguel Martin, and Lorenzo Torresani.
Ego4d goal-step: Toward hierarchical understanding of procedural activities. Advances in Neural
Information Processing Systems, 36, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2020b.

Tomas Soucek, Dima Damen, Michael Wray, Ivan Laptev, and Josef Sivic. Genhowto: Learning to
generate actions and state transformations from instructional videos. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR): CVPR. Institute of Electrical and Electronics
Engineers (IEEE), 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International conference on
machine learning, pp. 9229–9248. PMLR, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie
Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1207–1216, 2019.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. Understanding natural language commands for robotic navigation
and mobile manipulation. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI’11, pp. 1507–1514. AAAI Press, 2011.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information processing
systems, 35:10078–10093, 2022.

An-Lan Wang, Kun-Yu Lin, Jia-Run Du, Jingke Meng, and Wei-Shi Zheng. Event-guided procedure
planning from instructional videos with text supervision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 13565–13575, 2023a.

Hanlin Wang, Yilu Wu, Sheng Guo, and Limin Wang. Pdpp: Projected diffusion for procedure
planning in instructional videos. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14836–14845, 2023b.

Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao.
Videomae v2: Scaling video masked autoencoders with dual masking. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14549–14560, 2023c.

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotemporal
feature learning: Speed-accuracy trade-offs in video classification. In Proceedings of the European
conference on computer vision (ECCV), pp. 305–321, 2018.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke
Zettlemoyer, and Christoph Feichtenhofer. VideoCLIP: Contrastive pre-training for
zero-shot video-text understanding. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Online, November 2021. Association for Computa-
tional Linguistics.

Hu Xu, Saining Xie, Xiaoqing Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen Li,
Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. In The
Twelfth International Conference on Learning Representations, 2024.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 11975–11986, 2023.

He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G Derpanis, Richard P Wildes, and Allan D
Jepson. P3iv: Probabilistic procedure planning from instructional videos with weak supervision.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2938–2948, 2022.

Qi Zhao, Shijie Wang, Ce Zhang, Changcheng Fu, Minh Quan Do, Nakul Agarwal, Kwonjoon Lee,
and Chen Sun. Antgpt: Can large language models help long-term action anticipation from videos?
In The Twelfth International Conference on Learning Representations, 2024.

Yiwu Zhong, Licheng Yu, Yang Bai, Shangwen Li, Xueting Yan, and Yin Li. Learning procedure-
aware video representation from instructional videos and their narrations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14825–14835, 2023.

Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and
Josef Sivic. Cross-task weakly supervised learning from instructional videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3537–3545, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

In this appendix, we first present additional results on the step classification task (Appendix A.1.1) and
procedure planning task (Appendix A.1.2). Then we discuss ablations of our model design, including
the choice of attention mechanism (Appendix A.2.1), the choice of denoising steps (Appendix A.2.2),
and the downstream task performance as we scale up the VEDIT model size (Appendix A.2.3).
Furthermore, we provide the PyTorch (Ansel et al., 2024) implementation of VEDIT in Algorithm 1.

A.1 ADDITIONAL RESULTS

A.1.1 STEP CLASSIFICATION TASK

In this section, we present additional results on the COIN step classification task, which aims to
predict the class labels of single-clip videos. In other words, this task tests only the capability of
visual encoders, as the prediction model is not involved. Specifically, for step forecasting and task
classification described in the main paper, we design the attentive pooler as a lightweight single cross-
attention block with one query token to pool the video clip embedding (e.g., the predicted frame-level
[CLS] tokens in SigLIP (Zhai et al., 2023)) into a single vector. For the COIN step classification
task, we increase the depth of the attentive pooler by adding three additional self-attention blocks
before the cross-attention block to aggregate information from the visual features, which we find
further improves classification accuracy.

We compare our method, which uses off-the-shelf frozen visual encoders with a trainable attentive
classifier, against baseline methods reported in previous works (Lin et al., 2022; Zhong et al., 2023).
As shown in Table 7, our method with all five frozen encoders outperforms previous baselines.
V-JEPA performs best among the two SSL-based video encoders (i.e., V-JEPA and VideoMAE).
Increasing the resolution from 224 to 384 on V-JEPA further boosts accuracy. Additionally, due to
the rich information encoded in patch-level tokens, V-JEPA achieves the best performance on the
step classification task among all encoders. Moreover, SigLIP, pretrained on both image and text
data, outperforms all other encoders except for V-JEPA, demonstrating the effectiveness of using
visual-text aligned encoders for procedural activity understanding in instructional videos. However,
as the prediction model is not involved, we do not put primary focus on this task in our paper.

Model Pretraining Supervision Pretrain Data Top-1 Acc. (%)

Baselines
SlowFast (Feichtenhofer et al., 2019) Supervised: action labels Kinetics (Kay et al., 2017) 32.9
TimeSformer (Bertasius et al., 2021) Supervised: action labels Kinetics (Kay et al., 2017) 48.3
ClipBERT (Lei et al., 2021) Supervised: captions COCO+VG (Chen et al., 2015; Krishna et al., 2017) 30.8
VideoCLIP (Xu et al., 2021) Unsupervised: ASR HT100M (Miech et al., 2019) 39.4
TimeSformer (Bertasius et al., 2021) Unsupervised: ASR w. MIL-NCE HT100M (Miech et al., 2019) 46.5
CLIP (Radford et al., 2021) Unsupervised: captions CLIP400M (Radford et al., 2021) 45.9
DistantSup (Lin et al., 2022) Unsupervised: ASR + wikiHow HT100M (Miech et al., 2019) 54.1
ProceduralVRL (Zhong et al., 2023) Unsupervised: ASR HT100M (Miech et al., 2019) 56.9

Ours (Frozen encoder w/ lightweight trainable attentive classifier)
DINOv2 (Oquab et al., 2024) Self-supervised LVD-142M (Oquab et al., 2024) 57.9
V-JEPA@224 (Bardes et al., 2024) Self-supervised VideoMix2M (Bardes et al., 2024) 61.4
V-JEPA@384 (Bardes et al., 2024) Self-supervised VideoMix2M (Bardes et al., 2024) 62.7
VideoMAE (Tong et al., 2022) Self-supervised Kinetics400 (Kay et al., 2017) 58.5
SigLIP (Zhai et al., 2023) Image+Text Pairs WebLI (Chen et al., 2023) 61.8

Table 7: Step classification on COIN dataset. We bold and underline the best and the second best
models in each task respectively. Our strategy of using strong frozen visual encoder with trainable
attentive classifier outperforms all baseline methods.

A.1.2 PROCEDURE PLANNING TASK

In addition to the main results presented in Table 2, we show in Fig. 3 the comparison of our VEDIT
and the vanilla transformer model in (Niu et al., 2024) as we increase the number of transformer
blocks. We report success rate (SR), mean accuracy (mAcc), and mean IoU (mIoU) as evaluation
metrics on the NIV, COIN, and CrossTask datasets. For a fair comparison, we keep all hyper-
parameters the same, with the only change being the number of blocks. We observe that our VEDIT
exhibits significantly better stability compared to the vanilla transformer blocks as we scale up the
model size, without overfitting to the training set. This finding is consistent with our results in Fig. 7.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 VEDIT MODEL ABLATIONS

A.2.1 CHOICE OF ATTENTION MECHANISM

In Fig. 4, we illustrate the differences between our default joint attention in each VEDIT block and
self-attention and cross-attention. We denote the observed and unseen video clip embeddings as vs or
vt. In self-attention, we concatenate vs or vt along the sequence dimension as a single input to the
attention module. In contrast, cross-attention does not utilize self-attention within vs or vt. Here we
conduct ablation study of these attention mechanisms with a prediction model of 3 VEDIT blocks.
As shown in Fig. 5, our joint attention outperforms self-attention in step forecasting (50.3 vs. 49.7)
and task classification (94.4 vs. 94.3) on the COIN dataset. This proves the usefulness of processing
vs and vt differently through adaptive normalization layers before inputing to the attention module.
In addition, due to the absence of self-attention within vs or vt, cross-attention performs the worst.

Joint Attention

Scale & Shift
Q K V Q K V

Q’ K’ V’

Scale & Shift

Self Attention

Scale & Shift
Q

Q

V

V

K

K
Cross Attention

Scale & Shift
K

K

V

V

Q

Q
Cross Attention

Scale & Shift
K

K

V

V

Q

Q

(a) Joint Attention (default) (b) Self-Attention (c) Cross-Attention

Concat

Concat
Concat

Figure 4: Ablation of attention mechanisms, including our de-
fault joint attention, self-attention, and cross-attention. We denote
seen and target video clip embeddings as vs and vt respectively.

Top-1 Acc. (%) (a) (b) (c)
Step Forecasting 50.3 49.7 47.2

Task Classification 94.4 94.3 93.8

Figure 5: Top-1 classification ac-
curacy on COIN dataset with dif-
ferent attention mechanisms.

A.2.2 CHOICE OF DENOISING STEPS

Previous work on masked token prediction, such as BERT (Kenton & Toutanova, 2019) for language
and MAE (He et al., 2022) for images, can be considered single-step denoising, while diffusion
models typically perform single-step denoising during training and multi-step denoising during
inference. In this context, we conduct an ablation study on different denoising steps using diffusion
timestamps sampled from the Flow Matching Euler Discrete Scheduler (Esser et al., 2024) in our
VEDIT training on the COIN step forecasting task. The ablation study here is conducted with a
prediction model of 3 VEDIT blocks, and we report the top-1 classification accuracy averaged over
three independent runs in Fig. 6. Our results show that applying 20 to 40 denoising steps achieves
better accuracy compared to single-step denoising (51.01 for 36 denoising steps v.s. 50.77 for single
denoising step). This multi-step denoising allows us to reuse the same VEDIT architecture, with
observed and target embeddings scaled and shifted by adaptive normalization layers at different
timestamps, without drastically increasing the model’s trainable parameters. Additionally, we observe
that timestamps that are too sparse (e.g., denoising steps of 4) or too dense (e.g., denoising steps
greater than 44) make the model difficult to optimize. We default to use 24 denoising steps in our
main paper as it achieves a good balance between computational cost and accuracy.

A.2.3 SCALABILITY OF VEDIT

Table 8 presents the model architecture details for 10 different scale models we implemented in our
scalability results shown in Fig. 7. Specifically, we examined two different sets of hidden dimensions
(i.e., 1280 and 2048), with varying numbers of VEDIT blocks ranging from 1 to 18. These parameter
settings effectively cover model parameters from 62M to 1.77B (up to ×28 larger in scale). We
evaluated these models on the COIN step forecasting task, and the results are averaged over 5 runs.
As shown in Fig. 7, with the same number of training epochs, a larger VEDIT model achieves a
lower top-1 validation error compared to smaller VEDIT models. This demonstrates that VEDIT is
scalable as we increase the model size.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 4 8 12 16 20 24 28 32 36 40 44 48
Number of Denoising Steps

50.00

50.25

50.50

50.75

51.00

51.25

51.50

To
p-

1
Ac

c
(%

)

Figure 6: Ablation of denoising steps. We report the top-1 accuracy on COIN step forecasting task. A
Denoising steps of 24 achieves a good balance between computational cost and accuracy. The numbers are
averaged over 3 independent runs.

Model # Train Params Layers Hidden Dim. # Attn. Heads Head Dim.

Hidden Dim. = 1280
VEDIT-Single 62M 1 1280 20 64
VEDIT-Tiny 165M 3 1280 20 64
VEDIT-Small 342M 6 1280 20 64
VEDIT-Large 696M 12 1280 20 64
VEDIT-XL 1.05B 18 1280 20 64

Hidden Dim. = 2048
VEDIT-Single 132M 1 2048 32 64
VEDIT-Tiny 418M 3 2048 32 64
VEDIT-Small 871M 6 2048 32 64
VEDIT-Medium 1.34B 9 2048 32 64
VEDIT-Large 1.77B 12 2048 32 64

Table 8: Details of VEDIT models. We introduce models of different number of transformer blocks
(i.e., layers) with two hidden dimension settings.

3 6 9 12 15 18 21 24 27 30
Training Epochs

50

52

54

56

58

To
p-

1
Va

l E
rr

(%
)

62M
132M
165M
342M
418M
696M
871M
1.05B
1.34B
1.77B

Figure 7: Ablation of different VEDIT model sizes. We report the top-1 validation error on COIN
step forecasting task. Our VEDIT demonstrates good scalability as we scale up the model size up to
28 times from 62M to 1.77B. The numbers are averaged over 5 independent runs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1 Simplified PyTorch Implementation for Each VEDiT Block

1 import torch
2 from torch import nn
3

4 class VEDiT(nn.Module):
5

6 def __init__(
7 self, dim, num_attention_heads, attention_head_dim, max_len):
8

9 # adaptive layernorm
10 self.norm1_seen = AdaLayerNormZero(dim)
11 self.norm1_target = AdaLayerNormZero(dim)
12

13 # normalization layers
14 self.norm2_seen = nn.LayerNorm(dim, elementwise_affine=False)
15 self.norm2_target = nn.LayerNorm(dim, elementwise_affine=False)
16

17 # FFN
18 self.ff_seen = FeedForward(dim=dim, dim_out=dim)
19 self.ff_target = FeedForward(dim=dim, dim_out=dim)
20

21 # joint attention
22 self.attn = JointAttention(
23 dim, num_attention_heads, attention_head_dim, max_len)
24

25 def forward(self, target_emb, seen_emb, temb, target_mask):
26

27 # 1. scale & shift
28 norm_target, t_gate_msa, t_shift_mlp, t_scale_mlp, t_gate_mlp = \
29 self.norm1_target(target_emb, emb=temb)
30 norm_seen, s_gate_msa, s_shift_mlp, s_scale_mlp, s_gate_mlp = \
31 self.norm1_seen(seen_emb, emb=temb)
32

33 # 2. joint attention
34 seen_attn_output, target_attn_output = self.attn(
35 hidden_states=norm_target,
36 encoder_hidden_states=norm_seen,
37 target_mask=target_mask)
38

39 # 3.1. target: gate, scale & shift
40 target_emb = target_emb + t_gate_msa * target_attn_output
41 norm_target_emb = self.norm2_target(target_emb)
42 norm_target_emb = norm_target_emb * (1 + t_scale_nlp) + t_shift_nlp
43

44 # 3.2. target: feed foreward
45 ff_target_output = self.ff_target(norm_target_emb)
46 target_emb = target_emb + t_gate_nlp * ff_target_output
47

48 # 4.1. seen: gate, scale & shift
49 seen_emb = seen_emb + s_gate_msa * seen_attn_output
50 norm_seen_emb = self.norm2_seen(seen_emb)
51 norm_seen_emb = norm_seen_emb * (1 + s_scale_nlp) + s_shift_nlp
52

53 # 4.2. seen: feed foreward
54 ff_seen_output = self.ff_seen(norm_seen_emb)
55 seen_emb = seen_emb + s_gate_nlp * ff_seen_output
56

57 return seen_emb, target_emb

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Simplified PyTorch Implementation for JointAttention
1 import torch
2 from torch import nn
3 import torch.nn.functional as F
4

5 class JointAttention(nn.Module):
6

7 def __init__(
8 self, dim, num_attn_heads, attn_head_dim, max_len):
9

10 self.heads, self.head_dim = num_attn_heads, attn_head_dim
11 self.inner_dim = num_attn_heads * attn_head_dim
12 self.max_len = max_len # max number of clips in procedural video
13

14 self.to_q = nn.Linear(dim, self.inner_dim, bias=True)
15 self.to_k = nn.Linear(dim, self.inner_dim, bias=True)
16 self.to_v = nn.Linear(dim, self.inner_dim, bias=True)
17

18 self.add_q = nn.Linear(dim, self.inner_dim, bias=True)
19 self.add_k = nn.Linear(dim, self.inner_dim, bias=True)
20 self.add_v = nn.Linear(dim, self.inner_dim, bias=True)
21

22 self.to_out = nn.Linear(self.inner_dim, dim, bias=True)
23 self.add_out = nn.Linear(self.inner_dim, dim, bias=True)
24

25 self.rotary_emb = RotaryEmbedding(dim=dim) # rope
26

27 def forward(self, hidden_states, encoder_hidden_states, target_mask):
28

29 residual = hidden_states
30 bs = hidden_states.shape[0]
31

32 # 1. concat q, k, and v from projected embeddings
33 query = torch.cat([self.to_q(hidden_states),
34 self.add_q(encoder_hidden_states)], dim=1)
35 key = torch.cat([self.to_k(hidden_states),
36 self.add_k(encoder_hidden_states)], dim=1)
37 value = torch.cat([self.to_v(hidden_states),
38 self.add_v(encoder_hidden_states)], dim=1)
39

40 # 2. get positional indices of seen and target embeddings
41 indices = torch.arange(0, self.max_len).repeat([bs, 1])
42 seen_pos = indices[˜target_mask].reshape([bs, -1])
43 target_pos = indices[target_mask].reshape([bs, -1])
44 input_pos = torch.concat([target_pos, seen_pos], axis=1)
45

46 # 3. apply rope to query and key
47 query = self.rotary_emb.rotate(query, input_pos)
48 key = self.rotary_emb.rotate(key, input_pos)
49

50 # 4. apply attention
51 hidden_states = F.scaled_dot_product_attention(query, key, value)
52 hidden_states = hidden_states.reshape(bs, -1, self.inner_dim)
53 hidden_states, encoder_hidden_states = (
54 hidden_states[:, : residual.shape[1]],
55 hidden_states[:, residual.shape[1] :])
56

57 # 5. linear projection
58 hidden_states = self.to_out(hidden_states)
59 encoder_hidden_states = self.add_out(encoder_hidden_states)
60

61 return hidden_states, encoder_hidden_states

20

	Introduction
	Related Works
	Approach
	Preliminary: Latent Diffusion Model and Rectified Flows
	Our Approach: Vector Embedding Diffusion Transformers (VEDiT)

	Experiments
	Experimental Setup
	Main results
	Ablations
	Which visual encoder works best?
	Is pre-training necessary?

	Limitations
	Conclusion
	Reproducibility
	Appendix
	Additional Results
	Step Classification Task
	Procedure Planning Task

	VEDiT Model ablations
	Choice of Attention mechanism
	Choice of Denoising steps
	Scalability of VEDiT

