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Abstract

Locality-sensitive hashing (LSH) is an algorith-
mic technique that hashes similar input items
into the same “buckets” with high probabil-
ity. It is a basic primitive in several large-scale
data processing applications, including nearest-
neighbor search, entity resolution, clustering,
etc. In this work, we focus on the blocking
phase in the entity resolution task. The goal of
blocking is to avoid comparing all entity pairs
by filtering out unmatched pairs. For this pur-
pose, existing LSH functions that are based on
generic similarity metric like Jaccard similar-
ity, can only capture the occurrence of words
while the semantics of the texts are ignored.
On the other hand, several work have proposed
to use language models to vectorize the data
items and use the similarity of embeddings to
find candidate pairs. However, it is still a chal-
lenge to fine-tune the language models so that
the obtained embeddings can precisely capture
the similarity of item pairs for ranking purpose.
To this end, we propose NLSHBlock (Neural-
LSH Block), a blocking approach that is based
on pre-trained language models and fine-tuned
with a novel LSH-inspired loss function. We
evaluate the performance of Neural-LSH on the
blocking stage of entity resolution, and show
that it out-performs existing methods by a large
margin on a wide range of datasets.

1 Introduction

Entity Resolution (ER) is a field of study dedi-
cated to finding items that belong to the same en-
tity, and is an essential problem in NLP and data
mining (Rajaraman and Ullman, 2011; Getoor and
Machanavajjhala, 2012; Konda et al., 2016)

For example, Grammarly’s plagiarism checker
detects plagiarism from billions of web pages and
academic databases, Google News finds all ver-
sions of the same news from difference sources
to have a comprehensive coverage, AWS has an
Identity Resolution service for linking disparate
customer identifiers into a single customer profile.

In such applications, an entity, either a customer
profile or a piece of news, is essentially a text item
consisting of words, and a pair of items is called a
match if the pair represents the same real-world en-
tity. A naive approach to finding matching items is
to compare each pair of items. This approach how-
ever is computationally expensive when the size of
the dataset is large due to the quadratic growth in
computation time. In the literature, the pipeline of
ER usually has two major components: blocking
and matching. The blocking component finds can-
didate pairs where the two items are likely to be
matches while discarding unmatched pairs, and the
matching component determines if a candidate pair
is really a match.

Locality-Sensitive Hashing (LSH) (Rajaraman
and Ullman, 2011) can be applied in blocking to
find candidate pairs with high Jaccard similarity by
using MinHash functions. However, Jaccard simi-
larity cannot effectively find candidate pairs in all
use cases because it does not understand the latent
semantics of the text. Many blocking techniques
based on string and set similarity (Gokhale et al.,
2014; Das et al., 2017; Simonini et al., 2019, 2016)
also suffer from similar problems.

Most recently, deep learning models, especially
the deep language models, have shown great suc-
cess in entity resolution by achieving state-of-the-
art performance in accuracy (Thirumuruganathan
et al., 2021; Wang et al., 2022; Peeters and Bizer,
2022; Li et al., 2021; Miao et al., 2021). With
the help of deep pre-trained language models, enti-
ties can be represented by embeddings to capture
the semantics, and similar entities can be found
by comparing the similarity of their embeddings.
Nonetheless, it is still a challenge to fine-tune the
language models specifically for blocking so that
the obtained embeddings can precisely capture the
similarity of item pairs for ranking purpose.

In this work, we present a novel approach
called Neural Locality Sensitive Hashing Blocking



(NLSHBIock), which uses deep neural networks to
approximate the locality preserving hashing func-
tions. The main components of NLSHBIlock in-
clude a language model for encoding data items and
projection layers for projecting a high-dimensional
vector to a scalar value. The scalar value is the
hash value calculated by the approximated LSH
function. NLSHBlock generates embeddings for
data items, and finds candidate item pairs by LSH-
based search technique on their embeddings. We
design a loss function that fine-tunes the language
model with the help of the projection layers, so that
NLSHBIlock can approximate any LSH function.
After training, the language model is calibrated to
map data items to a high-dimensional space where
the similarity of these items is precisely preserved.
Concisely, the objective of the fine-tuning is to
maximize the probability that the scalar values of
a pair of matched items are nearby, and also to
maximize the probability that the hash values of an
unmatched pair of items are far apart.

Existing deep learning models have explored dif-
ferent learning objectives for blocking. DL-Block
(Thirumuruganathan et al., 2021) is a deep learn-
ing framework achieving state-of-the-art results on
blocking based on a variety of deep learning tech-
niques, including self-supervised learning. How-
ever, its self-supervision is either based on auxiliary
tasks or the triplet loss on randomly generated train-
ing examples. Sudowoodo (Wang et al., 2022) is
a multi-purpose Data Integration and Preparation
framework based on self-supervised contrastive
representation learning and pre-trained language
models. It utilizes contrastive loss and data aug-
mentation to learn representations for blocking.
Peeters et al. (Peeters and Bizer, 2022) propose
R-SupCon, a supervised contrastive learning model
for product matching, and use the learned embed-
dings for blocking. However, the learning objective
of R-SupCon is designed for matching, which is
essentially a binary classification task. With this
objective, the model is not optimized for the block-
ing, where the embeddings need to precisely cap-
ture the similarity of data items. What’s more, in
some real-world applications, task-specific similar-
ity measurements for the data items are designed
for specific use cases. The above methods cannot
precisely preserve the similarity under specified
measurements. Designing hash functions for such
similarity measurements is extremely hard, and
existing models are mostly designed for general

cases.

NLSHBIlock tackles the above issues by learning
to approximate locality sensitive hashing functions
for data items under the specific similarity measure-
ment. The merits of NLSHBIlock includes:

* It captures the semantics of data items better
than traditional LSH with the help of generic
pre-trained language models.

* Its novel learning objective helps fine-tune the
pre-trained language models specifically for
capturing the similarity of data items.

* On a wide range of real-world datasets for
evaluating entity resolution, it out-performs
state-of-the-art deep learning models and the
traditional LSH-based approach.

2 Related Work

Locality Sensitive Hashing. The LSH was origi-
nally proposed by Indyk and Motwani (1998) for
in-memory approximate high-dimensional nearest
neighbor search in the Hamming space. Later it
was adapted for external memory use by Gionis
et al. (1999), and the space complexity is reduced
by a “magic radius”. Datar et al. (2004) proposed
the locality-sensitive hash functions based on p-
stable distribution and extended LSH to Euclid-
ian distance. Shrivastava and Li (2014) devel-
oped asymmetric LSH for maximum inner product
search. Andoni et al. (2015) designed an optimal
LSH for Angular distance. Lv et al. (2007) pro-
posed multi-probe LSH that checks both data ob-
jects falling in the same bucket as the query object,
and data objects in buckets that have high success
probability. C2LSH (Gan et al., 2012) is a different
LSH schemed where the candidates are found by
counting the number of collisions.

Recently, learned LSH has shown success on
the nearest neighbor search of high-dimensional
data. Neural LSH (Dong et al., 2020) uses neu-
ral networks to predict which bucket to hash for
each input data item. Data-dependent hashing is
another research direction where the random hash
function is chosen after seeing the given datasets,
and achieves lower time complexity (Andoni and
Razenshteyn, 2015; Andoni and Razensteyn, 2016;
Bai et al., 2014; Andoni et al., 2018). These work
are dedicated to achieve tighter lower bound for
time complexity of LSH methods.

Blocking in Entity Matching. Entity Match-
ing (EM) is an essential research problem that has



Figure 1: Entity Resolution: determine the matching entries from two datasets.

Product Name Manufacturer Price

instant immersion spanish deluxe 2.0 topics entertainment = 39.99
adventure workshop 4th-6th grade 7th edition encore software 29.99

sharp printing calculator sharp el1192b 45.63

been extensively studied over past decades (Getoor
and Machanavajjhala, 2012; Konda et al., 2016).
The goal of EM is to find data items that represent
the same real-world entity. Blocking and match-
ing are two main steps in an EM pipeline, and
many deep learning methods have been proposed
for the matching step, including (Kasai et al., 2019;
Peeters et al., 2020; Li et al., 2021; Miao et al.,
2021; Akbarian Rastaghi et al., 2022; Yao et al.,
2022). The blocking step is equally important, but
so far very few deep learning methods are ded-
icated to it. The purpose of blocking step is to
reduce the number of pairs for the matching step,
where the potential number of pair comparisons
could be as large as the square of the dataset size.
For instance, if there are a million items in the
dataset, a naive approach will compare half a tril-
lion pairs. A simple pairwise comparison function
averaging 10 micro-second would take more than
57 days to process all the pairs. What’s more, in
real-world applications the comparison functions
may involve complex components such as deep
neural networks (Wang et al., 2022; Li et al., 2021)
for better accuracy, and they usually need to deal
with millions, or even billions, of items. Therefore,
using a naive approach is not computationally fea-
sible. The goal of blocking is to find as many true
matched pairs as possible while keeping the can-
didate set small. Example techniques include rule-
based blocking (Gokhale et al., 2014; Das et al.,
2017), schema-agnostic blocking (Simonini et al.,
2019), meta-blocking (Simonini et al., 2016), deep
learning approaches (Zhang et al., 2020; Thirumu-
ruganathan et al., 2021), and LSH-based blocking
technique that scale to billions of items for entity
matching (Borthwick et al., 2020). Most recently,
people resort to pre-trained language models to
capture the semantics of text items. For example,
BERT-based models are fine-tuned by contrastive
learning methods and/or labeled data, and then gen-
erate embeddings for items. Then, similar item
pairs can be found by performing similarity search
on the embeddings (Li et al., 2021; Wang et al.,
2022; Peeters and Bizer, 2022).

Entity blocking can also be considered an Infor-
mation Retrieval (IR) task. Recent deep learning

Product Name Manufacturer  Price
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methods (Tonellotto, 2022) in the IR literature such
as DPR (Karpukhin et al., 2020), GTR (Ni et al.,
2021), and Contriever (Izacard et al., 2021) learn
dense representation for documents, and candidate
pairs can be found by performing similarity search
on their dense representations using FAISS (John-
son et al., 2019).

3 Methodology

In this section, we lay out a formal problem defini-
tion, discuss the pipeline for solving the blocking
task, and describe our proposed ranking loss in-
spired by locality sensitive hashing.

3.1 Blocking in Entity Resolution

A common scenario of Entity Resolution involves
two tables A and B of data items, and the goal is
to find all pairs (z,y) where z € A Ay € B and
both x and y refer to the same real-world entity.
Such pairs are also called matches. We assume
that the two tables have the same schema, i.e. the
corresponding columns refer to the same type.

Figure 1 shows an example where two tables con-
tain product items, and they both of them have the
same schema (“Product Name”, “Manufacturer”,
“Price”) for their items. The solid arrow indicates
that the second item in the left table matches the
first item in the right table. The dashed arrow indi-
cates that the second item in the left table does not
match the second item in the right table.

Definition 3.1 (Blocking). Given two collections
A and B of data items, the blocking refers to the
process of finding a candidate set of pairs C' =
{(z,y)|x € A,y € B}, where each pair is likely
to be a match.

Let G be the ground-truth matches, an ideal
blocking solution maximizes the recall |CNG|/|G],
and minimizes the size of candidate set size |C/.
With a fixed recall, a smaller |C| means less non-
matching pairs are included and a higher precision.

Definition 3.2 (Embedding). Given a collection A
of data items, a d-dimensional embedding model
Memp takes every data item x € D as input and
outputs a real vector Memp(z) € RZ. Given a
similarity function sim, e.g., euclidean distance,



for every pair of data items (z,z’), the value of
sim(z, 2’) is large if and only if (z, 2") matches.

For simplicity, we assume all output vectors are
normalized, i.e. the L-2 norm ||Memp(z)|l2 = 1
for every data item x € D.

3.2 Locality Sensitive Hashing

The high-level idea behind LSH is to hash items
into buckets with some hash functions that are de-
veloped by domain experts to maximize the colli-
sion (being hashed into the same bucket) possibil-
ity among similar items and minimize the collision
possibility of dissimilar items.

Now we present the definition of Locality Sensi-
tive Hashing (LSH) (Rajaraman and Ullman, 2011;
Zhao et al., 2014; Gionis et al., 1999). An LSH fam-
ily F is defined for a metric space M = (M, d), a
threshold R > 0, an approximation factor ¢ > 1,
and probabilities P, and P,. In the metric space
M, M is the representation space of the data, and
d is the distance function in this space. This family
F is a set of functions h: M — S that map ele-
ments of the metric space to buckets s € S. An
LSH family must satisfy the following conditions
for any two points p, ¢ € M and any hash function
h chosen uniformly at random from F:

* if d(p,q) < R, then h(p) = h(q) (i.e., p and

q collide) with probability at least P,

* if d(p,q) > cR, then h(p) = h(q) with prob-
ability at most P».

When P; > P», such a family F is called
(R, cR, Py, Py)-sensitive. If we consider a deep
neural network as a hash function that maps data
items to buckets, then we expect the collision prob-
ability of similar data items are high, and the col-
lision probability of dissimilar data items are low.
Instead of designing hash functions that satisfy the
constraint, we propose to train a deep neural net-
work to maximize P; and minimize P», and this
process can be considered as neuralizing the LSH.

3.3 Neuralizing LSH

The core idea of neuralizing LSH is to train a deep
neural network to approximate the locality preserv-
ing hash functions. Instead of using MinHash to
approximate Jaccard Similarity, or other hash func-
tions that are designed for approximating generic
similarity metrics to decide which bucket to hash,
we use deep neural networks to approximate the
process. Our rationale is that the locality preserv-
ing hash functions are sophisticated and designed

by experts, and it is extremely difficult to design
such hash functions for ad-hoc distance functions
that are used in many real-world applications. In
Figure 3, we give an example of such ad-hoc dis-
tance functions, which is a rule-based similarity
measurement for matching entities consisting of
containment,! symmetric difference,? and Jaccard
Similarity. It can adapt to specific use cases by
configuring the weights of different similarity mea-
surement and adding more components. Manually
designing hashing techniques that preserve similar-
ity for such metric rules is impractical.

The full pipeline of NLSHBIock is shown in Fig-
ure 4. Given two tables of data items, we first
serialize the data items, then use the embedding
model M¢mp to encode the items. Next, we use a
neural network with three projection layers to map
embeddings to hash values. We denote this process
as Nueralized Locality Sensitive Hashing (NLSH).
Given a collection of data items X and a similarity
metric M, the training of the M, involves the
original data X,;, augmented version X,,g, and
dissimilar items Yj,eg. The details will be discussed
in a later subsection. An optional component is the
contrastive learning as shown in the dashed box.
Eqi and E,,z are embeddings of X and Xj,g
respectively, and constrastive loss functions can be
applied for fine-tuning Memp.

3.4 Encode the data items

To use pre-trained language models for process-
ing data items, the raw texts are first serialized
the same way as in (Li et al., 2021; Miao et al.,
2021; Wang et al., 2022): for each data entry e
= (attr;,val;),<; <. we let serialize(e) ::= [COL]
attry [VAL] valy ... [COL] attry, [VAL] valy.

[COL] and [VAL] are special tokens that indicate
the beginning of attribute names and values respec-
tively. Figure 2 shows an example of serializing a
conference paper with four attributes.

Next, the serialized texts are fed into an embed-
ding model M, to get one embedding for each
data item as shown in the Figure 4. In this work, we
consider a pre-trained Transformer-based language
model, such as BERT (Devlin et al., 2018) and its
variants. Transformer-based language models gen-
erate embeddings that are highly contextualized,
and capture better understanding of texts compared
to traditional word embeddings.

"ntersection size divided by the size of the smaller set
>The symmetric difference is equivalent to the union of
both relative complements



Figure 2: An example for serialization of data items

Authors Title

Kleissner, Charly | Enterprise Objects Framework: a Second

Generation Object-relational Enabler

Proceedings of the ACM International Conference on

Venue Year

1995
Management of Data

serialization

[COL] Authors [VAL] Charly Kleissner [COL] Title [VAL] Enterprise Objects Framework : a Second Generation Object-relational
Enabler [COL] Venue [VAL] Proceedings of the ACM International Conference on Management of Data [COL] Year [VAL] 1995

Figure 3: An Example of Customized Similarity Metric

Product Name Manufacturer Price

instant immersion spanish deluxe 2.0 topics entertainment | 39.99
adventure workshop 4th-6th grade 7th edition encore software 29.99

sharp printing calculator sharp el1192b 45.63

Existing works (Wang et al., 2022; Li et al.,
2021) have shown that using the pre-trained lan-
guage models without fine-tuning to obtain embed-
dings is not the optimal option. Efforts have been
made to fine-tune the pre-trained language models
for the matching phase of entity resolution problem.
However, fine-tuning for the blocking phase is not
well-studied to the best of our knowledge.

After getting the embeddings, we use a neural
network to project the high-dimensional embed-
dings into scalar values. The neural network con-
sists of three layers, where the first layer matches
the dimension of embeddings, second layer is con-
figurable, and the last layer has a single node.

3.5 Training NLSHBIlock

To train the embedding model Mgy, for
NLSHBIlock, we use a tuple of three data items as
each training example. Let sim be a similarity func-
tion for a metric M. In each tuple (p, g, ), p and ¢
are similar data items, and r is dissimilar to p and q.
Thus, we have sim(p, g) < sim(g,r). The goal of
the training to achieve | NLSH (p) — NLSH(q)| <
|NLSH (p) — NLSH (r)|, and we propose a loss
function for this purpose:

Lrsy = max(R,|NLSH (p) — NLSH (q)|)
—min(cR, |[NLSH (p) — NLSH(r)|)

If the absolute difference of hash values of
two items is smaller than a pre-defined thresh-
old R, we call it a collision. The first term
max(R,|NLSH (p) — NLSH(q)|) corresponds
to the first condition of an LSH family, and
we want to maximize the probability of col-
lisions of similar data items. The second
term —A min(cR, |[NLSH (p) — NLSH (r)|) corre-
sponds to the second condition of an LSH family,
and we want to minimize the collision probability
of two dissimilar items. Figure 5 shows an ideal

Customized
Similarity

Similarity_Metric_Rule(item A, item B, attributes, weights):
score = 0.0
For attr in attributes:
score += containment(A[attr], B[attr]) * weights[con]
score += symmetric_difference(A[attr], B[attr]) * weights[sym]
score += jaccard(A[attr], B[attr]) * weights[jac]
return score

distribution of hash values of data items, where
matching items are close-by and the items belong-
ing to different entities are far apart. We will dis-
cuss details on how to select training tuples in the
evaluation section.

An optional step of our training is to use the self-
supervised learning to fine-tune the pre-trained lan-
guage model before the training of NLSHBlock. It
is easy to integrate existing models to NLSHBIlock.
For example, Sudowoodo (Wang et al., 2022) uses
self-supervised contrastive learning for fine-tuning
the language model. It adapts Barlow Twins (Zbon-
tar et al., 2021) and SimCLR (Chen et al., 2020)
as its self-supervision loss, and uses Data Aug-
mentation (DA) operators for generating distorted
versions of the same item for robust representation
learning. Examples of such DA operators include
randomly removing a few words, swapping the po-
sitions of a few words, and token embedding level
cutoff (Shen et al., 2020). Such operators are shown
to not change the semantics of the data items in pre-
vious works, and thus can provide valid contrastion.
This self-supervised learning can also be applied
to NLSHBIlock, and is an optional component.

3.6 Blocking

After Memp is fine-tuned, we apply the embedding
model M, on each data item and get the high-
dimensional vector. We note that LSH is also com-
monly used for nearest neighbor search on high-
dimensional data (Andoni et al., 2018; Gan et al.,
2012). Then, we use a similarity search library
such as FAISS that supports LSH (Johnson et al.,
2019) to find the & most similar items for every in-
put as the candidate set, where k is a configurable
parameter.

4 Evaluations
We evaluate the performance of Neural-LSH on

real-world datasets for blocking in entity resolu-



Figure 4: Architecture of Neural-LSH. The input tables are serialized to text sequences first. The training involves
generating augmented sequences and randomly sampling negative examples. After trained with the loss fuction
L s, the model M.,,;, will generate embeddings for finding candidate pairs with LSH-based similarity search.
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Figure 5: visualization of ideally hashed items

Table 1: Statistics of datasets.

Datasets TableA | TableB | Groundtruth Pairs
Abt-Buy (AB) 1,081 | 1,092 1,028
Amazon-Google (AG) | 1,363 | 3,226 1,167
DBLP-ACM (DA) 2,616 | 2,294 2,220
DBLP-Scholar (DS) | 2,616 | 64,263 5,347
Walmart-Amazon (WA) | 2,554 | 22,074 962

tion. The selected real-world datasets are widely
used for evaluating the performance of entity in pre-
vious studies. They and are provided by (Mudgal
etal., 2018) and publicly available (AnHai’sGroup).
Their license allows private use.

4.1 Implementation Details

We implemented NLSHBlock using PyTorch
(Paszke et al., 2019) and Huggingface (Wolf et al.,
2020). The pre-trained language model we use is
RoBERTa-base (Liu et al., 2019) and the optimizer
is AdamW. The maximum input token length for
RoBERTa-base is set to 128. The projector dimen-
sion is set to 4096 and batch size is 64. The learning
rate is set to 107>, and we used linear learning rate
scheduler. The projection layers of the NLSHBlock
model is a 4096x4096 x 1 network, and weights
are randomly initialized by default in torch, which
follows a uniform distribution. The total number
of parameters of our model is 125,236,993. The
parameters in the loss function R and c are set as
0.01 and 3 respectively, and they are selected by
grid search. We trained the model for 150 epochs
and report the performance on the best epoch. The
machine we used has a 12-core AMD Ryzen CPU,
32GB main memory, and 3 RTX 3090s (each with
24GB memory). For blocking, we construct the
candidate pairs set by finding top similar items for
each item and compare the performance with base-
lines by setting a target recall.

Embeddings Projection Layers
= o 0
——_ -0.215 O O Hash Value
| I —> O O O
M | 0.148 O O
"I | -0.051 O O
i @ o
Ll H_— —_— ——pp |Candidate Pairs II
| 0.173
1 LSH Buckets

4.2 Datasets

The statistics of the datasets are shown in Table
1. These datasets include various domains such
as products, publications, and businesses. In each
dataset, there are two entity tables A and B, and
blocking in entity resolution finds candidate record
pairs across the two tables. The goal of blocking
is to find as many true matching pairs as possible
while minizing the number of candidate pairs. Dur-
ing the serialization, we use all the attributes and
values for each data item.

We design similarity metric rules that are sim-
ilar to the example in Figure 3 for the datasets.
Suppose we have a collection of products from dif-
ference sources whose attributes include “name”,
“description”, and “price”. In some sources, the
“name” only contains the product name, while other
sources may include product details in the “name”
attribute. Thus, the Jaccard similarity and symmet-
ric difference should have lower weights and the
containment score should have higher weight.

Each training example for NLSHBlock is a tuple
(p, q, ), where p and q are similar items and r is
a dissimilar one. There are two sources of similar
item pairs: labeled data and data augmentation.
All of the above public datasets contain labeled
data, and we only used 60% of them for training.
We generate augmented version of data items by a
variety of operators, including randomly shuffling
the words, randomly deleting a small portion of the
words, and moving words across the attributes. For
each similar item pair, we construct 10 tuples by
select 10 dissimilar items. The dissimilar items are
randomly selected and filtered by the metrics. The
ratio between the number of training tuples and
the total number of pairs in the dataset are 2.8%,
0.97%, 0.55%, 0.14%, 0.2% for AB, AG, DA, DS,
and WA respectively.



Table 2: Comparison of Recall and the Number of Candidate Pairs

Dataset AB AG DA DS WA

R P F1 R P F1 R P F1 R P F1 R P F1
HDB 840 15 294 97 0.1 02 99.6 29.5 45.5 9777 1.6 3.15 94.7 032 0.64
DL-Block 88.0 42 8.0 97.1 1.66 3.27 99.6 169 289 98.1 134 2.64 922 174 34
Contriever 88.0 27.7 42.1 973 44 84 99.6 13.8 242 99.2 4.13 792 | 944 137 271
Sudowoodo 89 279 425 | 973 235 458 99.6 193 323 | 984 2.05 4.01 95 2.07 4.05
NLSHBlock-u 89.6 423 574 97.1 351 6.78 99.6 32.1 48.6 98.2 272 53 95.1 4.14 7.94
NLSHBlock 944 88.9 91.6 97.3 8.8 16.1 99.6 48.2 65.0 98.9 4.11 7.90 96.3 4.20 8.04
A +54 +61 +49 +0.0 +4.4 +7.7 +0.0 +19 +20 -0.03 -0.02 -0.02 | +1.3 +4.1 +4.0

Table 3: Comparison of the size of Candidate Sets

Datasets AB AG DA DS WA
HDB 57,781 1,132,642 7,494 325,861 284,939
DL-Block 21,600 68,200 13,100 392,400 51,100
Contriever 3,276 25,808 16,058 128,526 66,222
Sudowoodo 3,276 48,390 11,470 257,052 44,148
NLSHBIlock-u 2,184 32,260 6,882 192,789 22,074
NLSHBIlock 1,092 12,904 4,588 128,526 22,074

4.3 Baselines

We include an LSH-based method HDB (Borth-
wick et al., 2020), state-of-the-art deep learning
framework DL-Block (Thirumuruganathan et al.,
2021), contrastive learning based method Su-
dowoodo (Wang et al., 2022), and the neural IR
model Contriever (Izacard et al., 2021) as the base-
lines. We use NLSHBIlock-u to denote the results
of our method that only uses augmented training
data, without labeled data.

4.4 Main Results on Blocking

We report Recall, Precision, F1 score, and the size
of candidate set for each method on each dataset.
Typically, a higher recall indicates that less true
matching pairs are missing in the candidate set.
A higher precision indicates that less unmatching
pairs appear in the candidate set. F1 score com-
bines Recall and Precision by their harmonic mean.
In this work, we set a target recall and compare the
precision and the size of candidate pairs. In general,
if the recall is fixed, a smaller candidate set means
the model excludes more unmatched pairs, which
boosts the Precision and the F1 score.

Table 2 show the comparisons of different block-
ing methods on real-world datasets. We set the
target recalls of the five datasets as 89%, 97%,
99%, 97%, and 94% resepectively for AB, AG,
DA, DS, and WA. These target recalls are selected
from DL-Block (Thirumuruganathan et al., 2021),
which represent the top performance in its frame-
work. For each measurement, a higher score means
a better performance. In the baseline methods like
DL-Block and Sudowoodo, for each item in table
B, they find will have candidates from table A. For

fair comparison, we follow the same strategy and
use LSH for the similarity search. We use under-
line to highlight the best results of the baselines,
use bold font to highlight the best results among
all methods, and use colored numbers to show the
performance differences of NLSHBIlock against the
best baseline on each dataset.

In a nutshell, NLSHBlock out-performs all
baselines on all datasets except for DS, where
NLSHBIlock under-performs Contriever by a tiny
margin. NLSHBIlock out-performs NLSHBlock-u
because labeled data helps.

On Abt-Buy, HDB does not perform well be-
cause it only captures Jaccard similarity of data
items, and many true matching data items have
very different text lengths. To achieve a high re-
call on this type of data, HDB has to include more
candidate pairs, and thus its precision is negatively
impacted. DL-Block performs better than HDB,
because it is a deep learning method and captures
more similarity between data items beyond Jac-
card similarity. Sudowoodo and Contriever out-
performs DL-Block by a large margin because they
incorporate contrastive learning and learn more
robust representations. NLSHBIlock achieves the
highest score in Recall, Precision and F1, because
our novel learning objective enables NLSHBIock to
precisely map items in a space where the similarity
is well preserved.

On Amazon-Google, HDB does not perform
well for the same reason. DL-Block is one order
of magnitude better than HDB. NLSHBlock out-
performs all baselines in terms of F1 score and
reduces candidate set size at least by half, which is




a significant improvement.

On DBLP-ACM, the data items are academic pa-
pers, where the true matching pairs have very high
Jaccard similarity. To explain, if two academic pa-
per from different datasets refer to the same work,
they typically have very similar title, author list,
venue, etc. Thus, the Jaccard similarity is very
high for matching pairs. This dataset is relatively
easy to solve and all of the methods can achieve
higher than 99% recall. The traditional Jaccard
similarity based method HDB performs better than
DL-Block, Contriever, and Sudowoodo, because
the later three methods added random noises during
training. NLSHBIlock out-performs all other meth-
ods because its loss function help better distinguish
and rank similar items.

On DBLP-Scholar, the data items are also aca-
demic papers, and the LSH method HDB per-
forms better than DL-Block, but a little worse than
Sudowoodo. The performance of Contriever is
slightly better than NLSHBIlock because its nega-
tive sampling techniques let the model sees more
diverse and larger number of negative examples
during training, while NLSHBIlock basically uses
random negative sampling. Since this dataset is
much larger than all others, seeing more negative
examples helps Contriever gain some advantage.

On Walmart-Amazon, the performance differ-
ences among NLSHBlock and baselines are similar
to Abt-Buy. The precision values in this dataset is
about an order of magnitude lower than Abt-Buy.
This is because the ratio of true matching pairs in
WA is about 50x smaller than AB.

Table 3 lists the candidate sizes of different
methods on all datasets. Among all methods,
NLSHBIlock requires much less candidate pairs to
achieve the target recalls on all but one datasets.
This is very important in practice, because the com-
putation cost of the dominating pair-wise matching
is significantly reduced.

In summary, NLSHBIock achieves up to 2.2 x
better F1 score compared to existing best meth-
ods, and consistently outperforms state-of-the-art
methods on all datasets except on DS, where
NLSHBIlock slightly lags Contriever but still out-
performs other baselines by a large margin. Given a
target recall, NLSHBIlock can reduce the number of
candidate pairs by up to 67% compared to state-of-
the-art methods, and thus significantly saves com-
putation cost of the matching phase.

Figure 6: Comparison on Different Training Data
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4.5 Comparisons on Training Data

We compare the effect of using different training
data for NLSHBlock in Figure 6. The three settings
are: augmented data only, labeled data only, and
hybrid data (using both augmented and labeled
data). We selected two datasets Abt-Buy (AB)
and Amazon-Google (AG) and report the relation
between the size of candidate set and the recall
under three settings. On both datasets, using only
augmented data gives the worst performance, and
using both types of data gives the best performance.
Note that under all of these settings, NLSHBlock
out-performs existing methods.

4.6 Limitations and Risks of NLSHBIlock
Unlike traditional LSH methods, NLSHBIlock can-

not provide theoretical guarantee on the approxi-
mation ratio. Although it has empirically shown
success on a wide range of real-world datasets, it
might require additional adaptations on other use
cases. To explain, NLSHBIlock is able to capture
the similarity of data items under a specific rule.
However, the rules are designed by practitioners,
and the augmentation operators might need fur-
ther development to satisfy the specific rules. If a
rule is not carefully designed and is ambiguous,
NLSHBIlock might not be able to perform well.
Despite that, the practice of designing rules and
adapting augmentation is far more feasible than
designing sophisticate techniques similar to Min-
Hash for Jaccard Similarity. Another limitation is
that any learning-based model for entity blocking
will require some training dataset, while alternative
methods such as traditional LSH-based methods
can be used without training.

5 Conclusion

In this paper, we propose NLSHBIlock to approxi-
mate locality sensitive hashing functions for finding
candidate pairs in entity resolution. NLSHBIock is
able to preserve the distance under specified simi-
larity metric rules, and is practical in real-world use
cases. NLSHBIlock out-performs existings methods
for the blocking step of the entity resolution task
on a wide range of real-world datasets.
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