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Abstract

Locality-sensitive hashing (LSH) is an algorith-001
mic technique that hashes similar input items002
into the same “buckets” with high probabil-003
ity. It is a basic primitive in several large-scale004
data processing applications, including nearest-005
neighbor search, entity resolution, clustering,006
etc. In this work, we focus on the blocking007
phase in the entity resolution task. The goal of008
blocking is to avoid comparing all entity pairs009
by filtering out unmatched pairs. For this pur-010
pose, existing LSH functions that are based on011
generic similarity metric like Jaccard similar-012
ity, can only capture the occurrence of words013
while the semantics of the texts are ignored.014
On the other hand, several work have proposed015
to use language models to vectorize the data016
items and use the similarity of embeddings to017
find candidate pairs. However, it is still a chal-018
lenge to fine-tune the language models so that019
the obtained embeddings can precisely capture020
the similarity of item pairs for ranking purpose.021
To this end, we propose NLSHBlock (Neural-022
LSH Block), a blocking approach that is based023
on pre-trained language models and fine-tuned024
with a novel LSH-inspired loss function. We025
evaluate the performance of Neural-LSH on the026
blocking stage of entity resolution, and show027
that it out-performs existing methods by a large028
margin on a wide range of datasets.029

1 Introduction030

Entity Resolution (ER) is a field of study dedi-031

cated to finding items that belong to the same en-032

tity, and is an essential problem in NLP and data033

mining (Rajaraman and Ullman, 2011; Getoor and034

Machanavajjhala, 2012; Konda et al., 2016)035

For example, Grammarly’s plagiarism checker036

detects plagiarism from billions of web pages and037

academic databases, Google News finds all ver-038

sions of the same news from difference sources039

to have a comprehensive coverage, AWS has an040

Identity Resolution service for linking disparate041

customer identifiers into a single customer profile.042

In such applications, an entity, either a customer 043

profile or a piece of news, is essentially a text item 044

consisting of words, and a pair of items is called a 045

match if the pair represents the same real-world en- 046

tity. A naive approach to finding matching items is 047

to compare each pair of items. This approach how- 048

ever is computationally expensive when the size of 049

the dataset is large due to the quadratic growth in 050

computation time. In the literature, the pipeline of 051

ER usually has two major components: blocking 052

and matching. The blocking component finds can- 053

didate pairs where the two items are likely to be 054

matches while discarding unmatched pairs, and the 055

matching component determines if a candidate pair 056

is really a match. 057

Locality-Sensitive Hashing (LSH) (Rajaraman 058

and Ullman, 2011) can be applied in blocking to 059

find candidate pairs with high Jaccard similarity by 060

using MinHash functions. However, Jaccard simi- 061

larity cannot effectively find candidate pairs in all 062

use cases because it does not understand the latent 063

semantics of the text. Many blocking techniques 064

based on string and set similarity (Gokhale et al., 065

2014; Das et al., 2017; Simonini et al., 2019, 2016) 066

also suffer from similar problems. 067

Most recently, deep learning models, especially 068

the deep language models, have shown great suc- 069

cess in entity resolution by achieving state-of-the- 070

art performance in accuracy (Thirumuruganathan 071

et al., 2021; Wang et al., 2022; Peeters and Bizer, 072

2022; Li et al., 2021; Miao et al., 2021). With 073

the help of deep pre-trained language models, enti- 074

ties can be represented by embeddings to capture 075

the semantics, and similar entities can be found 076

by comparing the similarity of their embeddings. 077

Nonetheless, it is still a challenge to fine-tune the 078

language models specifically for blocking so that 079

the obtained embeddings can precisely capture the 080

similarity of item pairs for ranking purpose. 081

In this work, we present a novel approach 082

called Neural Locality Sensitive Hashing Blocking 083
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(NLSHBlock), which uses deep neural networks to084

approximate the locality preserving hashing func-085

tions. The main components of NLSHBlock in-086

clude a language model for encoding data items and087

projection layers for projecting a high-dimensional088

vector to a scalar value. The scalar value is the089

hash value calculated by the approximated LSH090

function. NLSHBlock generates embeddings for091

data items, and finds candidate item pairs by LSH-092

based search technique on their embeddings. We093

design a loss function that fine-tunes the language094

model with the help of the projection layers, so that095

NLSHBlock can approximate any LSH function.096

After training, the language model is calibrated to097

map data items to a high-dimensional space where098

the similarity of these items is precisely preserved.099

Concisely, the objective of the fine-tuning is to100

maximize the probability that the scalar values of101

a pair of matched items are nearby, and also to102

maximize the probability that the hash values of an103

unmatched pair of items are far apart.104

Existing deep learning models have explored dif-105

ferent learning objectives for blocking. DL-Block106

(Thirumuruganathan et al., 2021) is a deep learn-107

ing framework achieving state-of-the-art results on108

blocking based on a variety of deep learning tech-109

niques, including self-supervised learning. How-110

ever, its self-supervision is either based on auxiliary111

tasks or the triplet loss on randomly generated train-112

ing examples. Sudowoodo (Wang et al., 2022) is113

a multi-purpose Data Integration and Preparation114

framework based on self-supervised contrastive115

representation learning and pre-trained language116

models. It utilizes contrastive loss and data aug-117

mentation to learn representations for blocking.118

Peeters et al. (Peeters and Bizer, 2022) propose119

R-SupCon, a supervised contrastive learning model120

for product matching, and use the learned embed-121

dings for blocking. However, the learning objective122

of R-SupCon is designed for matching, which is123

essentially a binary classification task. With this124

objective, the model is not optimized for the block-125

ing, where the embeddings need to precisely cap-126

ture the similarity of data items. What’s more, in127

some real-world applications, task-specific similar-128

ity measurements for the data items are designed129

for specific use cases. The above methods cannot130

precisely preserve the similarity under specified131

measurements. Designing hash functions for such132

similarity measurements is extremely hard, and133

existing models are mostly designed for general134

cases. 135

NLSHBlock tackles the above issues by learning 136

to approximate locality sensitive hashing functions 137

for data items under the specific similarity measure- 138

ment. The merits of NLSHBlock includes: 139

• It captures the semantics of data items better 140

than traditional LSH with the help of generic 141

pre-trained language models. 142

• Its novel learning objective helps fine-tune the 143

pre-trained language models specifically for 144

capturing the similarity of data items. 145

• On a wide range of real-world datasets for 146

evaluating entity resolution, it out-performs 147

state-of-the-art deep learning models and the 148

traditional LSH-based approach. 149

2 Related Work 150

Locality Sensitive Hashing. The LSH was origi- 151

nally proposed by Indyk and Motwani (1998) for 152

in-memory approximate high-dimensional nearest 153

neighbor search in the Hamming space. Later it 154

was adapted for external memory use by Gionis 155

et al. (1999), and the space complexity is reduced 156

by a “magic radius”. Datar et al. (2004) proposed 157

the locality-sensitive hash functions based on p- 158

stable distribution and extended LSH to Euclid- 159

ian distance. Shrivastava and Li (2014) devel- 160

oped asymmetric LSH for maximum inner product 161

search. Andoni et al. (2015) designed an optimal 162

LSH for Angular distance. Lv et al. (2007) pro- 163

posed multi-probe LSH that checks both data ob- 164

jects falling in the same bucket as the query object, 165

and data objects in buckets that have high success 166

probability. C2LSH (Gan et al., 2012) is a different 167

LSH schemed where the candidates are found by 168

counting the number of collisions. 169

Recently, learned LSH has shown success on 170

the nearest neighbor search of high-dimensional 171

data. Neural LSH (Dong et al., 2020) uses neu- 172

ral networks to predict which bucket to hash for 173

each input data item. Data-dependent hashing is 174

another research direction where the random hash 175

function is chosen after seeing the given datasets, 176

and achieves lower time complexity (Andoni and 177

Razenshteyn, 2015; Andoni and Razensteyn, 2016; 178

Bai et al., 2014; Andoni et al., 2018). These work 179

are dedicated to achieve tighter lower bound for 180

time complexity of LSH methods. 181

Blocking in Entity Matching. Entity Match- 182

ing (EM) is an essential research problem that has 183
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Figure 1: Entity Resolution: determine the matching entries from two datasets.

Product Name Manufacturer Price

instant immersion spanish deluxe 2.0 topics entertainment 39.99

adventure workshop 4th-6th grade 7th edition encore software 29.99

sharp printing calculator sharp el1192b 45.63

Product Name Manufacturer Price

encore inc adventure workshop 4th-6th grade 7th edition encore 26.49

adventure workshop 4th-6th grade 8th edition NULL 39.99

new-sharp shr-el1192bl two-color printing calculator 
12-digit lcd black red

sharp 45.99

match

unmatch

been extensively studied over past decades (Getoor184

and Machanavajjhala, 2012; Konda et al., 2016).185

The goal of EM is to find data items that represent186

the same real-world entity. Blocking and match-187

ing are two main steps in an EM pipeline, and188

many deep learning methods have been proposed189

for the matching step, including (Kasai et al., 2019;190

Peeters et al., 2020; Li et al., 2021; Miao et al.,191

2021; Akbarian Rastaghi et al., 2022; Yao et al.,192

2022). The blocking step is equally important, but193

so far very few deep learning methods are ded-194

icated to it. The purpose of blocking step is to195

reduce the number of pairs for the matching step,196

where the potential number of pair comparisons197

could be as large as the square of the dataset size.198

For instance, if there are a million items in the199

dataset, a naive approach will compare half a tril-200

lion pairs. A simple pairwise comparison function201

averaging 10 micro-second would take more than202

57 days to process all the pairs. What’s more, in203

real-world applications the comparison functions204

may involve complex components such as deep205

neural networks (Wang et al., 2022; Li et al., 2021)206

for better accuracy, and they usually need to deal207

with millions, or even billions, of items. Therefore,208

using a naive approach is not computationally fea-209

sible. The goal of blocking is to find as many true210

matched pairs as possible while keeping the can-211

didate set small. Example techniques include rule-212

based blocking (Gokhale et al., 2014; Das et al.,213

2017), schema-agnostic blocking (Simonini et al.,214

2019), meta-blocking (Simonini et al., 2016), deep215

learning approaches (Zhang et al., 2020; Thirumu-216

ruganathan et al., 2021), and LSH-based blocking217

technique that scale to billions of items for entity218

matching (Borthwick et al., 2020). Most recently,219

people resort to pre-trained language models to220

capture the semantics of text items. For example,221

BERT-based models are fine-tuned by contrastive222

learning methods and/or labeled data, and then gen-223

erate embeddings for items. Then, similar item224

pairs can be found by performing similarity search225

on the embeddings (Li et al., 2021; Wang et al.,226

2022; Peeters and Bizer, 2022).227

Entity blocking can also be considered an Infor-228

mation Retrieval (IR) task. Recent deep learning229

methods (Tonellotto, 2022) in the IR literature such 230

as DPR (Karpukhin et al., 2020), GTR (Ni et al., 231

2021), and Contriever (Izacard et al., 2021) learn 232

dense representation for documents, and candidate 233

pairs can be found by performing similarity search 234

on their dense representations using FAISS (John- 235

son et al., 2019). 236

3 Methodology 237

In this section, we lay out a formal problem defini- 238

tion, discuss the pipeline for solving the blocking 239

task, and describe our proposed ranking loss in- 240

spired by locality sensitive hashing. 241

3.1 Blocking in Entity Resolution 242

A common scenario of Entity Resolution involves 243

two tables A and B of data items, and the goal is 244

to find all pairs (x, y) where x ∈ A ∧ y ∈ B and 245

both x and y refer to the same real-world entity. 246

Such pairs are also called matches. We assume 247

that the two tables have the same schema, i.e. the 248

corresponding columns refer to the same type. 249

Figure 1 shows an example where two tables con- 250

tain product items, and they both of them have the 251

same schema (“Product Name”, “Manufacturer”, 252

“Price”) for their items. The solid arrow indicates 253

that the second item in the left table matches the 254

first item in the right table. The dashed arrow indi- 255

cates that the second item in the left table does not 256

match the second item in the right table. 257

Definition 3.1 (Blocking). Given two collections 258

A and B of data items, the blocking refers to the 259

process of finding a candidate set of pairs C = 260

{(x, y)|x ∈ A, y ∈ B}, where each pair is likely 261

to be a match. 262

Let G be the ground-truth matches, an ideal 263

blocking solution maximizes the recall |C∩G|/|G|, 264

and minimizes the size of candidate set size |C|. 265

With a fixed recall, a smaller |C| means less non- 266

matching pairs are included and a higher precision. 267

Definition 3.2 (Embedding). Given a collection A 268

of data items, a d-dimensional embedding model 269

Memb takes every data item x ∈ D as input and 270

outputs a real vector Memb(x) ∈ Rd. Given a 271

similarity function sim, e.g., euclidean distance, 272
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for every pair of data items (x, x′), the value of273

sim(x, x′) is large if and only if (x, x′) matches.274

For simplicity, we assume all output vectors are275

normalized, i.e. the L-2 norm ∥Memb(x)∥2 = 1276

for every data item x ∈ D.277

3.2 Locality Sensitive Hashing278

The high-level idea behind LSH is to hash items279

into buckets with some hash functions that are de-280

veloped by domain experts to maximize the colli-281

sion (being hashed into the same bucket) possibil-282

ity among similar items and minimize the collision283

possibility of dissimilar items.284

Now we present the definition of Locality Sensi-285

tive Hashing (LSH) (Rajaraman and Ullman, 2011;286

Zhao et al., 2014; Gionis et al., 1999). An LSH fam-287

ily F is defined for a metric space M = (M,d), a288

threshold R > 0, an approximation factor c > 1,289

and probabilities P1 and P2. In the metric space290

M, M is the representation space of the data, and291

d is the distance function in this space. This family292

F is a set of functions h:M → S that map ele-293

ments of the metric space to buckets s ∈ S. An294

LSH family must satisfy the following conditions295

for any two points p, q ∈ M and any hash function296

h chosen uniformly at random from F :297

• if d(p, q) ≤ R, then h(p) = h(q) (i.e., p and298

q collide) with probability at least P1,299

• if d(p, q) ≥ cR, then h(p) = h(q) with prob-300

ability at most P2.301

When P1 > P2, such a family F is called302

(R, cR, P1, P2)-sensitive. If we consider a deep303

neural network as a hash function that maps data304

items to buckets, then we expect the collision prob-305

ability of similar data items are high, and the col-306

lision probability of dissimilar data items are low.307

Instead of designing hash functions that satisfy the308

constraint, we propose to train a deep neural net-309

work to maximize P1 and minimize P2, and this310

process can be considered as neuralizing the LSH.311

3.3 Neuralizing LSH312

The core idea of neuralizing LSH is to train a deep313

neural network to approximate the locality preserv-314

ing hash functions. Instead of using MinHash to315

approximate Jaccard Similarity, or other hash func-316

tions that are designed for approximating generic317

similarity metrics to decide which bucket to hash,318

we use deep neural networks to approximate the319

process. Our rationale is that the locality preserv-320

ing hash functions are sophisticated and designed321

by experts, and it is extremely difficult to design 322

such hash functions for ad-hoc distance functions 323

that are used in many real-world applications. In 324

Figure 3, we give an example of such ad-hoc dis- 325

tance functions, which is a rule-based similarity 326

measurement for matching entities consisting of 327

containment,1 symmetric difference,2 and Jaccard 328

Similarity. It can adapt to specific use cases by 329

configuring the weights of different similarity mea- 330

surement and adding more components. Manually 331

designing hashing techniques that preserve similar- 332

ity for such metric rules is impractical. 333

The full pipeline of NLSHBlock is shown in Fig- 334

ure 4. Given two tables of data items, we first 335

serialize the data items, then use the embedding 336

model Memb to encode the items. Next, we use a 337

neural network with three projection layers to map 338

embeddings to hash values. We denote this process 339

as Nueralized Locality Sensitive Hashing (NLSH ). 340

Given a collection of data items X and a similarity 341

metric M , the training of the Memb involves the 342

original data Xori, augmented version Xaug, and 343

dissimilar items Yneg. The details will be discussed 344

in a later subsection. An optional component is the 345

contrastive learning as shown in the dashed box. 346

Eori and Eaug are embeddings of Xori and Xaug 347

respectively, and constrastive loss functions can be 348

applied for fine-tuning Memb. 349

3.4 Encode the data items 350

To use pre-trained language models for process- 351

ing data items, the raw texts are first serialized 352

the same way as in (Li et al., 2021; Miao et al., 353

2021; Wang et al., 2022): for each data entry e 354

= (attri, vali)1≤i≤k, we let serialize(e) ::= [COL] 355

attr1 [VAL] val1 ... [COL] attrk [VAL] valk. 356

[COL] and [VAL] are special tokens that indicate 357

the beginning of attribute names and values respec- 358

tively. Figure 2 shows an example of serializing a 359

conference paper with four attributes. 360

Next, the serialized texts are fed into an embed- 361

ding model Memb to get one embedding for each 362

data item as shown in the Figure 4. In this work, we 363

consider a pre-trained Transformer-based language 364

model, such as BERT (Devlin et al., 2018) and its 365

variants. Transformer-based language models gen- 366

erate embeddings that are highly contextualized, 367

and capture better understanding of texts compared 368

to traditional word embeddings. 369

1Intersection size divided by the size of the smaller set
2The symmetric difference is equivalent to the union of

both relative complements
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Figure 2: An example for serialization of data items

Authors Title Venue Year

Kleissner, Charly Enterprise Objects Framework: a Second 
Generation Object-relational Enabler

Proceedings of the ACM International Conference on 
Management of Data

1995

[COL] Authors [VAL] Charly Kleissner  [COL] Title [VAL] Enterprise Objects Framework : a Second Generation Object-relational 
Enabler [COL] Venue [VAL] Proceedings of the ACM International Conference on Management of Data [COL] Year [VAL] 1995

serialization

Figure 3: An Example of Customized Similarity Metric

Product Name Manufacturer Price

instant immersion spanish deluxe 2.0 topics entertainment 39.99

adventure workshop 4th-6th grade 7th edition encore software 29.99

sharp printing calculator sharp el1192b 45.63

Similarity_Metric_Rule(item A, item B, attributes, weights):
score = 0.0
For attr in attributes:

score += containment(A[attr], B[attr]) * weights[con]
score += symmetric_difference(A[attr], B[attr]) * weights[sym]
score += jaccard(A[attr], B[attr]) * weights[jac]

return score

Customized 
Similarity

Existing works (Wang et al., 2022; Li et al.,370

2021) have shown that using the pre-trained lan-371

guage models without fine-tuning to obtain embed-372

dings is not the optimal option. Efforts have been373

made to fine-tune the pre-trained language models374

for the matching phase of entity resolution problem.375

However, fine-tuning for the blocking phase is not376

well-studied to the best of our knowledge.377

After getting the embeddings, we use a neural378

network to project the high-dimensional embed-379

dings into scalar values. The neural network con-380

sists of three layers, where the first layer matches381

the dimension of embeddings, second layer is con-382

figurable, and the last layer has a single node.383

3.5 Training NLSHBlock384

To train the embedding model Memb for385

NLSHBlock, we use a tuple of three data items as386

each training example. Let sim be a similarity func-387

tion for a metric M . In each tuple (p, q, r), p and q388

are similar data items, and r is dissimilar to p and q.389

Thus, we have sim(p, q) < sim(q, r). The goal of390

the training to achieve |NLSH (p)−NLSH (q)| <391

|NLSH (p) − NLSH (r)|, and we propose a loss392

function for this purpose:393

LLSH = max(R, |NLSH (p)−NLSH (q)|)394

−min(cR, |NLSH (p)−NLSH (r)|)395

If the absolute difference of hash values of396

two items is smaller than a pre-defined thresh-397

old R, we call it a collision. The first term398

max(R, |NLSH (p) − NLSH (q)|) corresponds399

to the first condition of an LSH family, and400

we want to maximize the probability of col-401

lisions of similar data items. The second402

term −λmin(cR, |NLSH (p)−NLSH (r)|) corre-403

sponds to the second condition of an LSH family,404

and we want to minimize the collision probability405

of two dissimilar items. Figure 5 shows an ideal406

distribution of hash values of data items, where 407

matching items are close-by and the items belong- 408

ing to different entities are far apart. We will dis- 409

cuss details on how to select training tuples in the 410

evaluation section. 411

An optional step of our training is to use the self- 412

supervised learning to fine-tune the pre-trained lan- 413

guage model before the training of NLSHBlock. It 414

is easy to integrate existing models to NLSHBlock. 415

For example, Sudowoodo (Wang et al., 2022) uses 416

self-supervised contrastive learning for fine-tuning 417

the language model. It adapts Barlow Twins (Zbon- 418

tar et al., 2021) and SimCLR (Chen et al., 2020) 419

as its self-supervision loss, and uses Data Aug- 420

mentation (DA) operators for generating distorted 421

versions of the same item for robust representation 422

learning. Examples of such DA operators include 423

randomly removing a few words, swapping the po- 424

sitions of a few words, and token embedding level 425

cutoff (Shen et al., 2020). Such operators are shown 426

to not change the semantics of the data items in pre- 427

vious works, and thus can provide valid contrastion. 428

This self-supervised learning can also be applied 429

to NLSHBlock, and is an optional component. 430

3.6 Blocking 431

After Memb is fine-tuned, we apply the embedding 432

model Memb on each data item and get the high- 433

dimensional vector. We note that LSH is also com- 434

monly used for nearest neighbor search on high- 435

dimensional data (Andoni et al., 2018; Gan et al., 436

2012). Then, we use a similarity search library 437

such as FAISS that supports LSH (Johnson et al., 438

2019) to find the k most similar items for every in- 439

put as the candidate set, where k is a configurable 440

parameter. 441

4 Evaluations 442
We evaluate the performance of Neural-LSH on 443

real-world datasets for blocking in entity resolu- 444
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Figure 4: Architecture of Neural-LSH. The input tables are serialized to text sequences first. The training involves
generating augmented sequences and randomly sampling negative examples. After trained with the loss fuction
LLSH, the model Memb will generate embeddings for finding candidate pairs with LSH-based similarity search.

Memb
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…
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Xori
Xaug
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Table A
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[COL]Attr1 [VAL]valn
…
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…
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Candidate Pairs
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LSH Buckets
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…
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Figure 5: visualization of ideally hashed items

Table 1: Statistics of datasets.
Datasets TableA TableB Groundtruth Pairs

Abt-Buy (AB) 1,081 1,092 1,028
Amazon-Google (AG) 1,363 3,226 1,167

DBLP-ACM (DA) 2,616 2,294 2,220
DBLP-Scholar (DS) 2,616 64,263 5,347

Walmart-Amazon (WA) 2,554 22,074 962

tion. The selected real-world datasets are widely445

used for evaluating the performance of entity in pre-446

vious studies. They and are provided by (Mudgal447

et al., 2018) and publicly available (AnHai’sGroup).448

Their license allows private use.449

4.1 Implementation Details450

We implemented NLSHBlock using PyTorch451

(Paszke et al., 2019) and Huggingface (Wolf et al.,452

2020). The pre-trained language model we use is453

RoBERTa-base (Liu et al., 2019) and the optimizer454

is AdamW. The maximum input token length for455

RoBERTa-base is set to 128. The projector dimen-456

sion is set to 4096 and batch size is 64. The learning457

rate is set to 10−5, and we used linear learning rate458

scheduler. The projection layers of the NLSHBlock459

model is a 4096×4096×1 network, and weights460

are randomly initialized by default in torch, which461

follows a uniform distribution. The total number462

of parameters of our model is 125,236,993. The463

parameters in the loss function R and c are set as464

0.01 and 3 respectively, and they are selected by465

grid search. We trained the model for 150 epochs466

and report the performance on the best epoch. The467

machine we used has a 12-core AMD Ryzen CPU,468

32GB main memory, and 3 RTX 3090s (each with469

24GB memory). For blocking, we construct the470

candidate pairs set by finding top similar items for471

each item and compare the performance with base-472

lines by setting a target recall.473

4.2 Datasets 474

The statistics of the datasets are shown in Table 475

1. These datasets include various domains such 476

as products, publications, and businesses. In each 477

dataset, there are two entity tables A and B, and 478

blocking in entity resolution finds candidate record 479

pairs across the two tables. The goal of blocking 480

is to find as many true matching pairs as possible 481

while minizing the number of candidate pairs. Dur- 482

ing the serialization, we use all the attributes and 483

values for each data item. 484

We design similarity metric rules that are sim- 485

ilar to the example in Figure 3 for the datasets. 486

Suppose we have a collection of products from dif- 487

ference sources whose attributes include “name”, 488

“description”, and “price”. In some sources, the 489

“name” only contains the product name, while other 490

sources may include product details in the “name” 491

attribute. Thus, the Jaccard similarity and symmet- 492

ric difference should have lower weights and the 493

containment score should have higher weight. 494

Each training example for NLSHBlock is a tuple 495

(p, q, r), where p and q are similar items and r is 496

a dissimilar one. There are two sources of similar 497

item pairs: labeled data and data augmentation. 498

All of the above public datasets contain labeled 499

data, and we only used 60% of them for training. 500

We generate augmented version of data items by a 501

variety of operators, including randomly shuffling 502

the words, randomly deleting a small portion of the 503

words, and moving words across the attributes. For 504

each similar item pair, we construct 10 tuples by 505

select 10 dissimilar items. The dissimilar items are 506

randomly selected and filtered by the metrics. The 507

ratio between the number of training tuples and 508

the total number of pairs in the dataset are 2.8%, 509

0.97%, 0.55%, 0.14%, 0.2% for AB, AG, DA, DS, 510

and WA respectively. 511
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Table 2: Comparison of Recall and the Number of Candidate Pairs

Dataset
AB AG DA DS WA

R P F1 R P F1 R P F1 R P F1 R P F1
HDB 84.0 1.5 2.94 97 0.1 0.2 99.6 29.5 45.5 97.7 1.6 3.15 94.7 0.32 0.64
DL-Block 88.0 4.2 8.0 97.1 1.66 3.27 99.6 16.9 28.9 98.1 1.34 2.64 92.2 1.74 3.4
Contriever 88.0 27.7 42.1 97.3 4.4 8.4 99.6 13.8 24.2 99.2 4.13 7.92 94.4 1.37 2.71
Sudowoodo 89 27.9 42.5 97.3 2.35 4.58 99.6 19.3 32.3 98.4 2.05 4.01 95 2.07 4.05
NLSHBlock-u 89.6 42.3 57.4 97.1 3.51 6.78 99.6 32.1 48.6 98.2 2.72 5.3 95.1 4.14 7.94
NLSHBlock 94.4 88.9 91.6 97.3 8.8 16.1 99.6 48.2 65.0 98.9 4.11 7.90 96.3 4.20 8.04
∆ +5.4 +61 +49 +0.0 +4.4 +7.7 +0.0 +19 +20 -0.03 -0.02 -0.02 +1.3 +4.1 +4.0

Table 3: Comparison of the size of Candidate Sets
Datasets AB AG DA DS WA

HDB 57,781 1,132,642 7,494 325,861 284,939
DL-Block 21,600 68,200 13,100 392,400 51,100
Contriever 3,276 25,808 16,058 128,526 66,222

Sudowoodo 3,276 48,390 11,470 257,052 44,148
NLSHBlock-u 2,184 32,260 6,882 192,789 22,074
NLSHBlock 1,092 12,904 4,588 128,526 22,074

4.3 Baselines512
We include an LSH-based method HDB (Borth-513

wick et al., 2020), state-of-the-art deep learning514

framework DL-Block (Thirumuruganathan et al.,515

2021), contrastive learning based method Su-516

dowoodo (Wang et al., 2022), and the neural IR517

model Contriever (Izacard et al., 2021) as the base-518

lines. We use NLSHBlock-u to denote the results519

of our method that only uses augmented training520

data, without labeled data.521

4.4 Main Results on Blocking522

We report Recall, Precision, F1 score, and the size523

of candidate set for each method on each dataset.524

Typically, a higher recall indicates that less true525

matching pairs are missing in the candidate set.526

A higher precision indicates that less unmatching527

pairs appear in the candidate set. F1 score com-528

bines Recall and Precision by their harmonic mean.529

In this work, we set a target recall and compare the530

precision and the size of candidate pairs. In general,531

if the recall is fixed, a smaller candidate set means532

the model excludes more unmatched pairs, which533

boosts the Precision and the F1 score.534

Table 2 show the comparisons of different block-535

ing methods on real-world datasets. We set the536

target recalls of the five datasets as 89%, 97%,537

99%, 97%, and 94% resepectively for AB, AG,538

DA, DS, and WA. These target recalls are selected539

from DL-Block (Thirumuruganathan et al., 2021),540

which represent the top performance in its frame-541

work. For each measurement, a higher score means542

a better performance. In the baseline methods like543

DL-Block and Sudowoodo, for each item in table544

B, they find will have candidates from table A. For545

fair comparison, we follow the same strategy and 546

use LSH for the similarity search. We use under- 547

line to highlight the best results of the baselines, 548

use bold font to highlight the best results among 549

all methods, and use colored numbers to show the 550

performance differences of NLSHBlock against the 551

best baseline on each dataset. 552

In a nutshell, NLSHBlock out-performs all 553

baselines on all datasets except for DS, where 554

NLSHBlock under-performs Contriever by a tiny 555

margin. NLSHBlock out-performs NLSHBlock-u 556

because labeled data helps. 557

On Abt-Buy, HDB does not perform well be- 558

cause it only captures Jaccard similarity of data 559

items, and many true matching data items have 560

very different text lengths. To achieve a high re- 561

call on this type of data, HDB has to include more 562

candidate pairs, and thus its precision is negatively 563

impacted. DL-Block performs better than HDB, 564

because it is a deep learning method and captures 565

more similarity between data items beyond Jac- 566

card similarity. Sudowoodo and Contriever out- 567

performs DL-Block by a large margin because they 568

incorporate contrastive learning and learn more 569

robust representations. NLSHBlock achieves the 570

highest score in Recall, Precision and F1, because 571

our novel learning objective enables NLSHBlock to 572

precisely map items in a space where the similarity 573

is well preserved. 574

On Amazon-Google, HDB does not perform 575

well for the same reason. DL-Block is one order 576

of magnitude better than HDB. NLSHBlock out- 577

performs all baselines in terms of F1 score and 578

reduces candidate set size at least by half, which is 579
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a significant improvement.580

On DBLP-ACM, the data items are academic pa-581

pers, where the true matching pairs have very high582

Jaccard similarity. To explain, if two academic pa-583

per from different datasets refer to the same work,584

they typically have very similar title, author list,585

venue, etc. Thus, the Jaccard similarity is very586

high for matching pairs. This dataset is relatively587

easy to solve and all of the methods can achieve588

higher than 99% recall. The traditional Jaccard589

similarity based method HDB performs better than590

DL-Block, Contriever, and Sudowoodo, because591

the later three methods added random noises during592

training. NLSHBlock out-performs all other meth-593

ods because its loss function help better distinguish594

and rank similar items.595

On DBLP-Scholar, the data items are also aca-596

demic papers, and the LSH method HDB per-597

forms better than DL-Block, but a little worse than598

Sudowoodo. The performance of Contriever is599

slightly better than NLSHBlock because its nega-600

tive sampling techniques let the model sees more601

diverse and larger number of negative examples602

during training, while NLSHBlock basically uses603

random negative sampling. Since this dataset is604

much larger than all others, seeing more negative605

examples helps Contriever gain some advantage.606

On Walmart-Amazon, the performance differ-607

ences among NLSHBlock and baselines are similar608

to Abt-Buy. The precision values in this dataset is609

about an order of magnitude lower than Abt-Buy.610

This is because the ratio of true matching pairs in611

WA is about 50× smaller than AB.612

Table 3 lists the candidate sizes of different613

methods on all datasets. Among all methods,614

NLSHBlock requires much less candidate pairs to615

achieve the target recalls on all but one datasets.616

This is very important in practice, because the com-617

putation cost of the dominating pair-wise matching618

is significantly reduced.619

In summary, NLSHBlock achieves up to 2.2×620

better F1 score compared to existing best meth-621

ods, and consistently outperforms state-of-the-art622

methods on all datasets except on DS, where623

NLSHBlock slightly lags Contriever but still out-624

performs other baselines by a large margin. Given a625

target recall, NLSHBlock can reduce the number of626

candidate pairs by up to 67% compared to state-of-627

the-art methods, and thus significantly saves com-628

putation cost of the matching phase.629

Figure 6: Comparison on Different Training Data
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4.5 Comparisons on Training Data 630
We compare the effect of using different training 631

data for NLSHBlock in Figure 6. The three settings 632

are: augmented data only, labeled data only, and 633

hybrid data (using both augmented and labeled 634

data). We selected two datasets Abt-Buy (AB) 635

and Amazon-Google (AG) and report the relation 636

between the size of candidate set and the recall 637

under three settings. On both datasets, using only 638

augmented data gives the worst performance, and 639

using both types of data gives the best performance. 640

Note that under all of these settings, NLSHBlock 641

out-performs existing methods. 642

4.6 Limitations and Risks of NLSHBlock 643
Unlike traditional LSH methods, NLSHBlock can- 644

not provide theoretical guarantee on the approxi- 645

mation ratio. Although it has empirically shown 646

success on a wide range of real-world datasets, it 647

might require additional adaptations on other use 648

cases. To explain, NLSHBlock is able to capture 649

the similarity of data items under a specific rule. 650

However, the rules are designed by practitioners, 651

and the augmentation operators might need fur- 652

ther development to satisfy the specific rules. If a 653

rule is not carefully designed and is ambiguous, 654

NLSHBlock might not be able to perform well. 655

Despite that, the practice of designing rules and 656

adapting augmentation is far more feasible than 657

designing sophisticate techniques similar to Min- 658

Hash for Jaccard Similarity. Another limitation is 659

that any learning-based model for entity blocking 660

will require some training dataset, while alternative 661

methods such as traditional LSH-based methods 662

can be used without training. 663

5 Conclusion 664

In this paper, we propose NLSHBlock to approxi- 665

mate locality sensitive hashing functions for finding 666

candidate pairs in entity resolution. NLSHBlock is 667

able to preserve the distance under specified simi- 668

larity metric rules, and is practical in real-world use 669

cases. NLSHBlock out-performs existings methods 670

for the blocking step of the entity resolution task 671

on a wide range of real-world datasets. 672
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