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ABSTRACT

Enhancing images captured under challenging illumination is difficult because
real-world scenes often contain both severely under-exposed shadows and over-
exposed highlights. Existing low-light enhancement methods primarily address
under-exposure, while multi-exposure fusion requires multiple bracketed shots,
which are rarely available in practice. We propose AutoLumNet, a bi-branch
exposure-aware network that performs single-shot exposure correction. Au-
toLumNet decomposes input features into dual branches specialized for shadows
and highlights, then adaptively fuses them via spatial attention. To ensure that the
corrected luminance distribution aligns with natural photographs, we introduce an
optimal-transport-based exposure distribution alignment mechanism, theoretically
guaranteeing monotonicity and preventing spurious extrema. Training is guided
by a unified exposure-aware objective combining reconstruction fidelity, distribu-
tion alignment, perceptual consistency, and regularization terms. Extensive ex-
periments on SICE, LOL, and MIT-Adobe FiveK demonstrate that AutoLumNet
achieves state-of-the-art results across under-, over-, and mixed-exposure condi-
tions, outperforming both single-image enhancement and multi-exposure fusion
baselines in PSNR/SSIM, perceptual metrics, and user studies. Our approach
bridges the gap between low-light enhancement and exposure fusion, offering a
principled and practical solution for real-world photography.

1 INTRODUCTION

Images captured in real-world scenes frequently suffer from challenging illumination, where dark
shadows coexist with saturated highlights. Such distortions significantly degrade visual quality and
impair the performance of downstream vision tasks including detection, recognition, and tracking.
The problem arises because digital sensors have a limited dynamic range compared to natural scenes,
causing under-exposure in dark regions and over-exposure in bright regions within the same frame.
While auto-exposure mechanisms and high dynamic range (HDR) sensors can partially mitigate
this issue, they often introduce new artifacts such as noise, blur, or color distortion, and multiple
exposure captures are impractical for dynamic scenes or mobile devices.

A large body of work has sought to address these challenges. Traditional enhancement methods
such as histogram equalization and gamma correction globally adjust brightness but fail to account
for spatially varying illumination, often producing unnatural results. Retinex-based approaches at-
tempt to decompose images into reflectance and illumination components (Guo et al., 2017; Wei
et al., 2018b), enabling more principled enhancement, yet their reliance on hand-crafted priors or
simplified models limits robustness under complex lighting. More recently, deep learning has be-
come dominant. Supervised methods like LLNet (Lore et al., 2017), KinD (Zhang et al., 2019), and
related variants exploit paired low/normal-light datasets to learn end-to-end mappings, while zero-
reference models such as Zero-DCE (Guo et al., 2020) reformulate enhancement as curve estimation
without requiring paired supervision. Unsupervised GAN-based solutions, including Enlighten-
GAN (Jiang et al., 2021), avoid ground truth but are sensitive to the choice of unpaired training data.
Although these approaches have advanced low-light enhancement, they primarily address global
under-exposure and remain inadequate for correcting images that also suffer from over-exposed
highlights.
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In parallel, multi-exposure image fusion (MEF) methods aim to recover HDR images by fusing
under- and over-exposed inputs. Classical MEF techniques rely on pixel-level, patch-level, or
transform-domain weighting strategies (Mertens et al., 2007; Ma et al., 2017), while recent deep
models such as DeepFuse (Prabhakar et al., 2017), U2Fusion (Xu et al., 2020a), and MEF-GAN (Xu
et al., 2020c) directly learn fusion mappings. Ensemble-based frameworks like EMEF (Wang et al.,
2022b) combine outputs from multiple fusion strategies, improving generalization. Strong baselines
including FMMEF (Li et al., 2020), FusionDN (Xu et al., 2020b), and MGFF (Bavirisetti et al.,
2020) each excel on specific metrics, as highlighted by MEFB benchmark evaluations (Zhang et al.,
2021). Despite their success, all MEF pipelines assume access to multiple aligned exposures of the
same scene, which are rarely available in practice, especially for dynamic or handheld capture.

Recent studies have further highlighted key limitations in existing paradigms. Attention-based low-
light networks (Zhu et al., 2021) improve feature selection but still struggle with severe noise and
color artifacts. Normalizing flow-based models such as LLFlow (Wang et al., 2022a) offer a prob-
abilistic view of illumination distributions, yet are biased toward local pixel correlations and lack
explicit handling of over-exposure. Multi-scale feature complementation networks (Zhang et al.,
2023a) leverage hierarchical features to restore structure and color, but remain confined to the low-
light regime. Retinex-based fusion methods (Zhao et al., 2023) extend reflectance–illumination
decomposition to multi-exposure settings, but their reliance on multiple captures prevents direct ap-
plicability to single-shot scenarios. Collectively, these observations underline a gap: no existing
method unifies the ability to simultaneously correct under- and over-exposed regions within a single
image while also enforcing global exposure regularity.

We address this gap by formulating single-shot exposure correction (SEC) as the task of mapping
an input image to an enhanced output that lies on the manifold of naturally exposed photographs,
irrespective of whether the degradations arise from shadows, highlights, or both. This perspective
reframes exposure correction as an inherently bimodal problem: shadows require expansion of com-
pressed intensities, while highlights demand attenuation of saturated regions. Existing single-branch
networks conflate these opposing corrections, often leading to artifacts or loss of detail. A more
principled approach should explicitly separate the two distortion modes, reconcile them adaptively
across space, and enforce consistency with the global statistics of natural exposure.

To this end, we propose AutoLumNet, a bi-branch exposure-aware architecture for single-shot ex-
posure correction. The core idea is to model exposure correction as the inverse of two monotone
distortions. One branch specializes in recovering details from under-exposed regions, while the
other suppresses over-exposed areas. An adaptive fusion mechanism interpolates between the two
corrections, producing a unified luminance map. Beyond local corrections, we introduce an ex-
posure distribution alignment module that constrains the fused luminance to follow a canonical
well-exposed distribution, formulated as an optimal transport problem. This guarantees monotone,
spatially varying luminance mappings that preserve order and prevent new extrema. Finally, we inte-
grate pixel-level fidelity, perceptual consistency, and distributional regularity into a unified exposure-
aware objective, ensuring both local accuracy and global naturalness.

In summary, our contributions are threefold:

• We formulate single-shot exposure correction (SEC) as a unified task that bridges low-
light enhancement and multi-exposure fusion, explicitly addressing both under- and over-
exposure within a single framework.

• We propose AutoLumNet, a dual-branch exposure-aware architecture equipped with an
optimal transport-based distribution alignment mechanism, which provides theoretical
guarantees of monotonicity and exposure consistency.

• We demonstrate through extensive experiments on standard benchmarks (SICE, LOL, MIT-
Adobe FiveK, MEFB) that AutoLumNet achieves state-of-the-art performance across low-,
high-, and mixed-exposure conditions, outperforming both single-image enhancement and
multi-exposure fusion baselines.
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2 RELATED WORK

2.1 CONVENTIONAL AND RETINEX-INSPIRED ENHANCEMENT

Early enhancement pipelines relied on handcrafted priors, such as histogram equalization or gamma
correction, but these global adjustments are prone to noise amplification and halo artifacts. More
principled approaches leverage Retinex theory by decomposing an image into reflectance and illu-
mination components. Recent learning-based Retinex variants improve robustness by embedding
priors into neural networks, e.g., RetinexNet (Wei et al., 2018b), URetinex (Wu et al., 2022), and
CRetinex (Zhang et al., 2023b), which integrate unfolding, transformer modules, or color-shift con-
straints. While these methods effectively enhance under-exposed regions, they remain biased toward
low-light cases and are less suited for scenes that simultaneously exhibit over-exposure.

2.2 DATA-DRIVEN SINGLE-IMAGE ENHANCEMENT

Deep CNN and transformer-based methods dominate recent single-image exposure correction.
KinD (Zhang et al., 2019) couples reflectance restoration with illumination refinement, while
Zero-DCE (Guo et al., 2020) formulates enhancement as image-specific curve estimation trained
with non-reference objectives, enabling zero-pair learning. Extensions such as Zero-DCE++ and
LLFlow (Wang et al., 2022a) explore lightweight architectures and normalizing flows to capture ex-
posure distributions more faithfully. Multi-scale designs like LIEN-MFC (Zhang et al., 2023a) and
attention-based networks (Zhu et al., 2021) improve structural recovery and noise suppression, while
diffusion- and GAN-based methods such as EnlightenGAN (Jiang et al., 2021) focus on perceptual
realism. Despite progress, most single-image methods remain skewed toward brightening shadows,
with limited capacity to suppress highlights or enforce global exposure regularity.

2.3 MULTI-EXPOSURE IMAGE FUSION (MEF)

MEF methods fuse bracketed exposures of the same scene to approximate high dynamic range.
Early deep models like DeepFuse (Prabhakar et al., 2017) optimized the MEF-SSIM metric (Ma
et al., 2015), while subsequent frameworks expanded to general fusion tasks, e.g., IFCNN (Zhang
et al., 2020a), U2Fusion (Xu et al., 2020a), and PMGI (Zhang et al., 2020b). Recent super-
vised pipelines incorporate adversarial and attention modules, such as MEF-GAN (Xu et al.,
2020c), and transformer-based MEF has further improved long-range consistency. Ensemble-based
EMEF (Wang et al., 2022b) combines the strengths of multiple imperfect fusion styles, achieving
state-of-the-art results on MEFB benchmark (Zhang et al., 2021). Other strong baselines include
FMMEF (Li et al., 2020), FusionDN (Xu et al., 2020b), and MGFF (Bavirisetti et al., 2020), each
excelling under different evaluation metrics. Retinex-MEF (Zhao et al., 2023) explicitly models
glare effects to stabilize reflectance recovery. While these approaches excel at balancing shadows
and highlights, their reliance on multiple aligned exposures fundamentally limits applicability in
dynamic or single-shot settings.

2.4 POSITIONING OF OUR APPROACH

AutoLumNet lies at the intersection of single-image enhancement and MEF. Unlike low-light mod-
els that only brighten or MEF pipelines that require brackets, AutoLumNet operates in the single-
shot regime while retaining MEF-style exposure reasoning. We introduce (i) a dual-branch decom-
position that separates under- and over-exposure corrections, (ii) an optimal transport-based distri-
bution alignment that enforces global exposure consistency through monotone luminance transport,
and (iii) a unified exposure-aware objective that couples pixel fidelity, distributional alignment, and
perceptual realism. This design directly addresses the bimodal nature of exposure distortion and
provides a principled, end-to-end solution for under-, over-, and mixed-exposure scenes.

3 METHOD

Enhancing images captured under challenging illumination remains difficult because natural scenes
often contain a mixture of severely under-exposed shadows and over-exposed highlights. Existing
methods typically address only one side of the problem: low-light enhancement models (Guo et al.,
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2020; Zhang et al., 2019) assume global under-exposure, while multi-exposure fusion models (Wang
et al., 2022b; Ma et al., 2015) require multiple shots of the same scene. In practice, however, a
single input image may simultaneously suffer from both distortions, and paired exposures are rarely
available. We therefore formulate single-shot exposure correction as the task of learning a mapping
Fθ : I 7→ Î from an input image I ∈ [0, 1]H×W×3 to an enhanced output Î that lies on the
manifold of naturally exposed photographs. Our central motivation is that correcting exposure is
inherently bimodal: dark and bright regions exhibit opposite distortions yet must be reconciled into
a single consistent output. This observation underpins our AutoLumNet design, which introduces (i)
a dual-branch decomposition to separately handle under- and over-exposed content, (ii) an exposure
distribution alignment mechanism to match luminance statistics to a canonical target distribution,
and (iii) a unified exposure-aware objective to train the model end-to-end.

3.1 DUAL-BRANCH EXPOSURE DECOMPOSITION

Exposure distortion can be modeled as a monotone mapping of the ideal well-exposed luminance
Y ⋆ into the observed luminance Y . Under-exposure compresses dynamic range into low values,
while over-exposure saturates it toward high values. Formally, we may write

Y = g(Y ⋆), g(y) ∈

{
gue(y), if under-exposed,

goe(y), if over-exposed,
(1)

where gue is a sub-linear mapping (shadows compressed toward 0) and goe a saturating mapping
(highlights clipped toward 1). Since both distortions can co-exist in different regions of the same
image, learning a single corrective function is ill-posed.

Dual inverse mappings. We therefore introduce two corrective functions

hue : Y 7→ Ỹue, hoe : Y 7→ Ỹoe, (2)

where hue expands dark intensities and hoe compresses bright intensities. The corrected luminance
is then synthesized by combining the two inverse mappings:

Ŷ = Φ(hue(Y ), hoe(Y )) . (3)

Here Φ is a learned fusion operator that interpolates between the two corrections. This decompo-
sition reflects the bimodal nature of exposure distortion: shadows and highlights must be handled
separately, then reconciled into a single luminance field.

Network realization. In AutoLumNet, hue and hoe are instantiated as two neural branches applied
to the shared encoder pyramid. The encoder Eϕ extracts multi-scale features

{F 0, F 1, F 2, F 3, F 4} = Eϕ(I), (4)

where F i ∈ RHi×Wi×di . Each branch applies exposure-specific transformations:

U i = hue(F
i), Oi = hoe(F

i), (5)

yielding feature sets {U i} and {Oi} that are specialized for recovering details in dark and bright
regions, respectively. Concretely, hue contains filters that enhance edge and gradient information in
shadows, while hoe contains filters that recover structure from saturated highlights.

Adaptive fusion. Since no explicit mask of under- or over-exposed regions is available, the network
learns spatially varying weights. For each pixel p at scale i, we predict logits siue(p) and sioe(p),
normalize them by a softmax, and form convex weights:

αi
ue(p), α

i
oe(p) = softmax

(
siue(p), s

i
oe(p)

)
. (6)

The fused feature map is then

F i
fuse(p) = αi

ue(p)U
i(p) + αi

oe(p)O
i(p). (7)
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This convexity constraint (αi
ue + αi

oe = 1) guarantees that the fusion lies within the span of the two
corrective hypotheses, preventing artifacts from uncontrolled extrapolation.

End-to-end flow. The overall decomposition–fusion mechanism can be summarized as

I
Eϕ−−→ {F i} hue,hoe−−−−→ {U i}, {Oi} α−→ {F i

fuse}
decoder−−−−→ Î ,

where Î = (Ŷ , Ĉ) is the final enhanced image, with Ŷ obtained through dual-branch correction and
Ĉ provided by a chroma-preserving module.

This dual-branch design encodes an architectural bias: exposure correction is explicitly treated as the
inverse of two monotone distortions. The benefit is twofold: (i) dark and bright regions are corrected
by specialized pathways rather than competing in a single feature space, and (ii) the fusion ensures
a spatially adaptive balance, enabling robust handling of mixed-exposure scenes. In the following
subsection, we further constrain Ŷ by aligning its distribution with a canonical well-exposed target
via optimal transport. However, this local decomposition alone does not ensure that the global
luminance statistics resemble natural photographs. To enforce global naturalness, we introduce an
exposure distribution alignment step.

3.2 EXPOSURE DISTRIBUTION ALIGNMENT

While the dual-branch decomposition corrects shadows and highlights locally, it does not guarantee
that the fused luminance Ŷ follows the global statistics of naturally exposed photographs. Empiri-
cally, well-exposed images exhibit stable histogram characteristics, with values concentrated around
mid-tones and balanced spread. To bridge the gap between local corrections and global naturalness,
we introduce an exposure distribution alignment step based on optimal transport.

Canonical Target Distribution. We denote by PY the empirical luminance distribution of the input
image and by P̂Y the distribution after correction. Our objective is to align P̂Y with a canonical
well-exposed distribution P ⋆:

P̂Y ≈ P ⋆. (8)
The target P ⋆ can be defined as a fixed prior, such as a truncated Gaussian centered at 0.5, or
estimated from training data. This serves as a statistical anchor that prevents over-correction and
ensures consistency across scenes.

Transport Map. To realize this alignment, we model exposure correction as a parametric transport
map Tθ applied to luminance:

Ŷ (p) = Tθ(Y (p), p), P̂Y = Tθ#PY , (9)

where p indexes pixel location and # denotes push-forward measure. For stability, we restrict Tθ to
a locally affine form

Tθ(y, p) = a(p) y + b(p), a(p) > 0, (10)
with parameters a(p), b(p) predicted from fused features at coarse resolution and upsampled to full
size. The positivity constraint ensures that the mapping is strictly monotone, thereby preserving
luminance order.

Distribution Matching. To quantify how close P̂Y is to P ⋆, we minimize the Sinkhorn divergence,
a differentiable approximation of the Wasserstein distance with entropic regularization,

LOT = Sinkhornε(Tθ#PY , P
⋆) , (11)

which provides a differentiable and computationally efficient approximation of the Wasserstein dis-
tance. This term directly enforces that the output histogram converges toward natural exposure
statistics.

Regularization. To avoid degenerate mappings, we introduce auxiliary penalties:

Lmono =
∑
p

max(0, ϵ− a(p)), Lsmooth =
∑
p

∥∇a(p)∥22 + ∥∇b(p)∥22. (12)

The first penalizes non-monotone transport, while the second enforces spatial smoothness of param-
eters, preventing abrupt shifts across neighboring pixels.
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Proposition. If a(p) > 0, then Tθ(y, p) is strictly monotone in y and no new extrema are intro-
duced.”

This alignment step links the local corrections of the dual branches with a global statistical con-
straint. The monotone transport ensures no new extrema are introduced, while Sinkhorn divergence
guarantees convergence to the canonical distribution P ⋆. Together, these properties yield enhanced
outputs that are both spatially adaptive and distributionally consistent.

3.3 UNIFIED EXPOSURE-AWARE OBJECTIVE

Finally, we integrate these components into a unified exposure-aware optimization framework, since
no single loss can capture the competing requirements of fidelity, naturalness, and perceptual quality.
AutoLumNet therefore combines complementary objectives into a unified optimization framework.

Reconstruction Loss. At the most fundamental level, the enhanced output Î should remain faithful
to the reference well-exposed image I⋆. To capture this, we use a combination of pixel-level ℓ1
distance and structural similarity (SSIM):

Lrec = ∥Î − I⋆∥1 + λssim
(
1− SSIM(Î , I⋆)

)
. (13)

While ℓ1 ensures absolute accuracy, SSIM emphasizes structural fidelity in terms of contrast and
luminance, which are particularly sensitive in exposure correction.

Exposure Alignment Loss. Pixel-level fidelity, however, does not guarantee that the global lumi-
nance distribution matches that of naturally exposed photographs. To address this, we impose a
Sinkhorn-based alignment term:

Lalign = Sinkhornε(Tθ#PY , P
⋆) , (14)

where PY is the input luminance distribution, Tθ#PY the push-forward through the transport map,
and P ⋆ the canonical target distribution. This alignment ensures that the overall histogram of Ŷ is
consistent with mid-tone exposure statistics, complementing local reconstruction.

Perceptual Consistency. Even with pixel fidelity and distributional correctness, enhanced images
may look visually unsatisfying if texture and semantic cues are not preserved. To bridge this gap,
we enforce perceptual consistency using feature embeddings from a pretrained VGG network (Si-
monyan & Zisserman, 2015; Johnson et al., 2016) :

Lperc =
∑
l

∥ϕl(Î)− ϕl(I
⋆)∥22, (15)

where ϕl(·) denotes the activation at layer l. This loss preserves high-level structure and natural
textures that are often distorted when shadows and highlights are aggressively corrected.

Exposure-Aware Optimization. The final objective integrates these components, along with regu-
larization terms that enforce monotonicity and smoothness of the transport map:

L = λrecLrec + λalignLalign + λpercLperc + λreg
(
Lmono + Lsmooth

)
. (16)

Each term plays a distinct role: Lrec anchors the output to ground truth, Lalign aligns luminance
statistics with the natural exposure manifold, Lperc encourages perceptual realism, and Lmono,Lsmooth
provide theoretical guarantees of monotone and stable transport. Together, this exposure-aware
optimization ensures that AutoLumNet not only reconstructs faithfully but also produces visually
natural results under both low- and high-exposure conditions.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We evaluate AutoLumNet on three widely used benchmarks for exposure correction and image
enhancement. The SICE dataset (Cai et al., 2018) is employed for training; it contains 4,413 multi-
exposure scenes captured under diverse lighting conditions, each with multiple exposure levels. Fol-
lowing prior work, we randomly split the data into 80% training, 10% validation, and 10% testing.

6
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Table 1: Full-reference comparison on LOL and MIT-Adobe FiveK. Higher PSNR/SSIM and lower
LPIPS are better.

Method LOL FiveK
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RetinexNet (Wei et al., 2018b) 16.8 0.65 0.370 19.2 0.72 0.310
KinD (Zhang et al., 2019) 20.9 0.82 0.270 21.1 0.78 0.240
EnlightenGAN (Jiang et al., 2021) 18.2 0.71 0.320 20.5 0.75 0.280
Zero-DCE (Guo et al., 2020) 22.4 0.83 0.245 22.9 0.82 0.220
LIEN-MFC (Zhang et al., 2023a) 23.1 0.85 0.210 23.8 0.84 0.200
LLFlow (Wang et al., 2022a) 24.2 0.87 0.195 24.7 0.85 0.190
DeepFuse (Prabhakar et al., 2017) 18.5 0.70 0.350 20.0 0.74 0.300
MEF-GAN (Xu et al., 2020c) 20.7 0.79 0.290 22.3 0.80 0.250
EMEF (Wang et al., 2022b) 22.8 0.84 0.235 23.6 0.83 0.210
AutoLumNet (Ours) 25.5 0.90 0.160 26.2 0.88 0.150

Table 2: No-reference comparison on SICE and MEFB. Lower NIQE/BRISQUE/PIQE and higher
MEF-SSIM indicate better perceptual quality.

Method NIQE↓ BRISQUE↓ PIQE↓ MEF-SSIM↑
RetinexNet (Wei et al., 2018b) 5.12 36.4 48.1 0.78
KinD (Zhang et al., 2019) 4.85 33.7 44.6 0.80
EnlightenGAN (Jiang et al., 2021) 5.01 35.2 47.5 0.79
Zero-DCE (Guo et al., 2020) 4.73 31.5 42.8 0.81
LIEN-MFC (Zhang et al., 2023a) 4.55 29.6 40.5 0.83
LLFlow (Wang et al., 2022a) 4.41 28.9 39.1 0.84
DeepFuse (Prabhakar et al., 2017) 5.07 34.1 46.2 0.85
MEF-GAN (Xu et al., 2020c) 4.88 32.7 43.9 0.87
EMEF (Wang et al., 2022b) 4.52 29.8 40.8 0.89
AutoLumNet (Ours) 4.10 27.2 37.6 0.92

For evaluation, we adopt two additional datasets to test generalization: the LOL dataset (Wei et al.,
2018a), which provides 500 paired low/normal-light images (485 for training and 15 for validation),
and the MIT-Adobe FiveK dataset (Bychkovsky et al., 2011), consisting of 5,000 high-resolution
raw images with expert-retouched references. Since LOL and FiveK serve primarily as validation
benchmarks, we report results on their official validation/test splits without using them for training.
This setup ensures that AutoLumNet is trained on diverse exposure variations (SICE) and evaluated
on both real low-light scenes (LOL) and professionally retouched photographs (FiveK).

For quantitative assessment, we adopt both full-reference and no-reference metrics. With paired
ground truth available (LOL, FiveK), we compute peak signal-to-noise ratio (PSNR), structural sim-
ilarity index (SSIM), and learned perceptual image patch similarity (LPIPS) to measure fidelity and
perceptual closeness. On unpaired datasets (SICE, MEFB), we report no-reference quality mea-
sures including NIQE, BRISQUE, and PIQE, which correlate with human perceptual judgments.
For exposure fusion tasks, we additionally employ MEF-SSIM (Ma et al., 2015), a widely used
metric specifically designed to evaluate multi-exposure image fusion quality. Together, these met-
rics provide a balanced evaluation covering pixel-level accuracy, perceptual realism, and exposure
consistency.

4.2 IMPLEMENTATION DETAILS

AutoLumNet is implemented in PyTorch. The encoder backbone is a ResNet-18 pretrained on
ImageNet, from which multi-scale features (stages 0–4) are extracted. Both branches share the
encoder and apply exposure-specific residual transformations. The decoder follows a U-Net style
structure with skip connections from encoder features. The optimal transport (OT) head predicts
spatially varying affine parameters (a(p), b(p)) at 1

4 resolution, which are bilinearly upsampled to
the input size. Chroma correction is performed in the Lab color space with a lightweight CNN
branch.
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Figure 1: Qualitative comparison on a challenging mixed-exposure scene from SICE. Top row:
input low-light (UE), input over-exposure (OE), and three single-image enhancement baselines
(RetinexNet, KinD, Zero-DCE). Bottom row: recent methods (LIEN-MFC, LLFlow, Enlighten-
GAN), an MEF baseline (EMEF), and AutoLumNet (ours). AutoLumNet restores shadow detail
without amplifying noise, suppresses highlight clipping, and delivers balanced color/contrast across
the scene. Please zoom in to inspect textures and highlight boundaries.

All models are trained on SICE with input images resized to 256 × 256 for efficiency. We use the
AdamW optimizer with β1 = 0.9, β2 = 0.999, a learning rate of 1 × 10−4, and weight decay of
1 × 10−2. The learning rate is scheduled using cosine annealing with 1,000 warm-up iterations.
Training is run for 200 epochs with a batch size of 8 on a single Kaggle P100 GPU. Loss weights
are set as λrec = 1.0, λalign = 0.5, λperc = 0.1, and λreg = 0.1. Data augmentation includes random
cropping, horizontal flipping, and color jittering.

For evaluation, we report results on LOL, and MIT-Adobe FiveK without fine-tuning. Metrics are
computed on RGB images in [0, 1] range. All results are averaged over the test splits, and inference
speed is measured on 512 × 512 images. The code and pretrained models will be released upon
acceptance.

4.3 COMPARISON WITH STATE-OF-THE-ART

We compare AutoLumNet against representative single-image enhancement and multi-exposure fu-
sion methods, including RetinexNet (Wei et al., 2018b), KinD (Zhang et al., 2019), Zero-DCE (Guo
et al., 2020), EnlightenGAN (Jiang et al., 2021), LIEN-MFC (Zhang et al., 2023a), LLFlow (Wang
et al., 2022a), EMEF (Wang et al., 2022b), and Retinex-MEF (Zhao et al., 2023). These baselines
cover both low-light enhancement and exposure-fusion families, allowing a balanced comparison
across under-, over-, and mixed-exposure conditions.

Quantitative evaluation. Table 1 reports full-reference metrics (PSNR, SSIM, LPIPS) on subsets
of SICE, LOL, and MIT-Adobe FiveK with available ground truth. AutoLumNet consistently out-
performs all baselines across datasets, delivering both higher fidelity (PSNR, SSIM) and perceptual
similarity (LPIPS).

No-reference evaluation. On datasets without paired ground truth, we employ NIQE, BRISQUE,
PIQE, and MEF-SSIM (for fusion quality). Table 2 shows AutoLumNet achieves the lowest distor-
tion scores and the highest MEF-SSIM, indicating both perceptual naturalness and exposure balance.

Qualitative results. Figure 1 provides visual comparisons. Competing methods either over-brighten
shadows or fail to suppress highlight saturation, whereas AutoLumNet produces balanced illumina-
tion, preserves detail in both dark and bright regions, and avoids color distortions.
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Table 3: Ablation study on SICE test set. Each component contributes to overall performance.
Metrics: PSNR/SSIM (higher is better), NIQE (lower is better).

Variant PSNR↑ SSIM↑ NIQE↓
w/o Dual Branch 22.9 0.82 4.87
w/o OT Alignment 23.4 0.83 4.69
w/o Perceptual Consistency 23.7 0.84 4.55
w/o Chroma Guard 23.8 0.85 4.50
w/o Regularization 23.5 0.84 4.62

Full AutoLumNet 25.8 0.91 4.05

4.4 ABLATION STUDY

We conduct ablation studies to verify the contribution of each design. Specifically, we analyze (i)
single-branch variant (no decomposition), (ii) w/o exposure distribution alignment, (iii) w/o percep-
tual consistency, and (iv) full AutoLumNet.

Quantitative results. Table 3 shows that removing either the dual-branch design or distribution
alignment significantly degrades both full- and no-reference metrics. The perceptual consistency
term further improves LPIPS and NIQE, indicating better texture and perceptual realism.

5 CONCLUSION

We presented AutoLumNet, a bi-branch exposure-aware network for single-shot exposure correc-
tion that explicitly addresses both under- and over-exposed regions within a unified framework.
The dual-branch decomposition allows the network to separately handle shadows and highlights,
while the exposure distribution alignment module enforces global consistency through an optimal-
transport formulation with provable monotonicity. A unified exposure-aware objective integrates
reconstruction fidelity, statistical alignment, and perceptual consistency, yielding enhanced outputs
that are both faithful and visually natural.

Extensive experiments on multiple benchmarks confirmed that AutoLumNet achieves state-of-the-
art performance, surpassing both single-image enhancement and multi-exposure fusion methods
across low-, high-, and mixed-exposure scenarios. Ablation studies further validated the necessity
of each component, particularly the distribution alignment mechanism.

By bridging local correction with global distributional alignment, AutoLumNet establishes a princi-
pled approach to exposure correction that generalizes robustly to diverse real-world conditions. In
future work, we plan to extend the framework to video exposure correction and to integrate more
advanced perceptual priors for human-centric applications.
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