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Abstract

We propose an extension of Thompson sampling to optimization problems over
function spaces where the objective is a known functional of an unknown operator’s
output. We assume that queries to the operator (such as running a high-fidelity
simulator or physical experiment) are costly, while functional evaluations on the
operator’s output are inexpensive. Our algorithm employs a sample-then-optimize
approach using neural operator surrogates. This strategy avoids explicit uncertainty
quantification by treating trained neural operators as approximate samples from a
Gaussian process (GP) posterior. We derive regret bounds and theoretical results
connecting neural operators with GPs in infinite-dimensional settings. Experiments
benchmark our method against other Bayesian optimization baselines on functional
optimization tasks involving partial differential equations of physical systems,
demonstrating better sample efficiency and significant performance gains.

1 Introduction

Neural operators have established themselves as versatile models capable of learning complex,
nonlinear mappings between function spaces [1]. They have demonstrated success across diverse
fields, including climate science [2], materials engineering [3], and computational fluid dynamics
[4]. Although their applications in supervised learning and physical system emulation are well-
studied, their potential for online learning and optimization within infinite-dimensional function
spaces remains relatively untapped.

In many scientific contexts, learning operators that map between function spaces naturally arises,
such as the task of approximating solution operators for a partial differential equation (PDE) [1].
However, adaptive methods that efficiently query these operators to optimize functional objectives
of their outputs (particularly in an active learning setting) are still underdeveloped. For example,
when designing porous structures, one is often interested in optimizing how liquids flow through the
structure using, e.g., Darcy flow PDEs [5], and, in the sciences, inverse problems can be solved by
optimization to infer initial conditions or parameters of a physical process from observations [6, 7].

To address this gap, we propose a framework that integrates neural operator surrogates with Thompson
sampling-based acquisition strategies [8] to actively optimize objectives of the form:

a∗ ∈ argmax
a∈A

f(G∗(a)),

where G∗ : A → U is an unknown operator between function spaces A and U , and f : U → R is a
known functional. We follow the steps of Bayesian optimization frameworks for composite functions
[9, 10], which leverage knowledge of the composite structure to speed-up optimization, extending
these frameworks to functional domains. Applying the theoretical results for the infinite-width limit
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of neural networks [11, 12], we show that a trained neural operator approximates a posterior sample
from a vector-valued Gaussian process [13–15] in a sample-then-optimize approach [16]. Therefore,
we are able to implement an approximate form of Thompson sampling without the need for expensive
uncertainty quantification frameworks for neural operators, such as deep ensembles [17] or mixture
density networks [18], and derive theoretical regret bounds on its performance. Experiments evaluate
our approach on problems with classic PDE benchmarks against Bayesian optimization baselines.

2 Related work

Bayesian optimization with functionals and operators. Bayesian optimization (BO) has been a
successful approach for optimization problems involving expensive-to-evaluate black-box functions
[19]. Prior work on BO in function spaces includes Bayesian Functional Optimization (BFO)
[20], which uses Gaussian processes to model objectives defined over functions, focusing on scalar
functionals without explicitly learning operators. Follow-up work extended the framework to include
prior information about the structure of the admissible input functions [21]. Astudillo and Frazier [9]
introduced the framework of composite Bayesian optimization, which was later applied by Guilhoto
and Perdikaris [10] to optimization problems involving mappings from finite-dimensional inputs to
function-valued outputs. Their objective was to optimize a known functional of these function-valued
outputs. Our approach differs by directly working in function spaces, involving function-to-function
operators. Despite the availability of GP models for function-to-function mappings [22], we are
unaware of BO or GP-based bandit algorithms incorporating such models. Lastly, in the bandits
literature, Tran-Thanh and Yu [23] introduced the problem of functional bandits. Despite the
terminology, they deal with the problem of optimizing a known functional of the arms rewards
distribution, similar to the setting of distributionally robust BO [24], and therefore not directly
comparable to our case.

Thompson sampling with neural networks. Neural Thompson Sampling (NTS) [25] employs
neural networks trained via random initialization and gradient descent to approximate posterior
distributions for bandit problems with scalar inputs and outputs, inspiring our use of randomized
neural training for operator posterior sampling. The Sample-Then-Optimize Batch NTS (STO-
BNTS) variant [16] refines this by defining acquisition functions on functionals of posterior samples,
facilitating composite objective optimization. STO-BNTS extends this to batch settings using Neural
Tangent Kernel (NTK) and Gaussian process surrogates, relevant for future batched active learning
with neural operators. These approaches rely on the NTK theory [11], which shows that infinitely
wide neural networks trained via gradient descent behave as Gaussian processes. To the best of
our knowledge, this approach has not yet been extended to the case of neural network models with
function-valued inputs, such as neural operators.

Active learning for neural operators. Pickering et al. [17] applied deep operator networks (Deep-
ONets) [26] to the problem of Bayesian experimental design [27]. In that framework, the goal
is to select informative inputs (or designs) to reduce uncertainty about an unknown operator. To
quantify uncertainty, Pickering et al. [17] used an ensemble of DeepONets and quantified uncer-
tainty in their predictions based on the variance of the ensemble outputs. Li et al. [18] introduced
multi-resolution active learning with Gaussian mixture models derived from Fourier neural operators
[28]. With probabilistic outputs, mutual information can be directly quantified for active learning and
Bayesian experimental design approaches. Lastly, Musekamp et al. [29] proposed a benchmark for
neural operator active learning and evaluated ensemble-based models with variance-based uncertainty
quantification on tasks involving forecasting. In contrast to our focus in this paper, active learning
approaches are purely focused on uncertainty reduction, neglecting other optimization objectives.

3 Preliminaries

Problem formulation. Let A and U denote two function spaces, and let G∗ : A → U be an
unknown target operator2 between them. Consider an objective functional f : U → R, which is

2Here, we use the term unknown loosely, in the sense that it is not fully implementable within the com-
putational resources or paradigms accessible to us. For example, the target operator can be a simulator in a
high-performance computing facility which we have limited access to.
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assumed known and cheap to evaluate. Given a compact search space S ⊂ A, we aim to solve:3

a∗ ∈ argmax
a∈S

f(G∗(a)), (1)

while G∗ is only accessible via expensive oracle queries: for a chosen a, we observe a function-
valued output y = G∗(a) + ξ, where ξ is a noise term, which is assumed to be zero-mean Gaussian,
independent and identically distributed (i.i.d.) across queries. The algorithm is allowed to query the
oracle with any function in the search space for up to a budget of N queries. For this paper, we focus
on problems with a finite search space |S| < ∞, though the framework we derive is general.

Neural operators. A neural operator is a specialized neural network architecture modeling operators
G : A → U between function spaces A and U [1]. Assume A ⊂ C(X ,Rda) and U ⊂ C(Z,Rdu),
where C(S,S ′) denotes the space of continuous functions between sets S and S ′. Given an input
function a ∈ A, a neural operator Gθ performs a sequence of transformations a =: u1 7→ · · · 7→
uL−1 7→ uL through L layers of neural networks, where ul : Xl → Rdl is a continuous function for
each layer l ∈ {1, . . . , L}, and XL := Z is the domain of the output functions and dL := du. In one
of its general formulations, for a given layer l ∈ {1, . . . , L}, the result of the transform (or update) at
any x ∈ Xl+1 can be described as:

u1(x) := a(x)

ul+1(x) := αl

(∫
Xl

Rl(x, x
′, ul(Πl(x)), ul(x

′))ul(x
′) dνl(x

′) +Wl ul(Πl(x)) + bl(x)

)
Gθ(a)(z) := uL(z) ,

(2)

where Πl : Xl+1 → Xl is a fixed mapping, αl : R → R denotes an activation function applied
elementwise, Rl : Xt+1 × Xt × Rdl × Rdl → Rdt+1×dt defines a (possibly nonlinear or positive-
semidefinite) kernel integral operator with respect to a measure νl on Xl, Wl ∈ Rdl+1×dl is a weight
matrix, and bl : Xl+1 → Rdl+1 is a bias function. We denote by θ the collection of all learnable
parameters of the neural operator: the weights matrices Wl, the parameters of the bias functions bl
and the matrix-valued kernels Rl, for all layers l ∈ {1, . . . , L}. Variations to the formulation above
correspond to various neural operator architectures based on low-rank kernel approximations, graph
structures, Fourier transforms, etc. [1].

Vector-valued Gaussian processes. Vector-valued Gaussian processes extend scalar GPs [13]
to the case of vector-valued functions [14]. Let A be an arbitrary domain, and let U be a Hilbert
space representing a codomain. We consider the case where both the domain A and codomain U
might be infinite-dimensional vector spaces, which leads to GPs whose realizations are operators
G∗ : A → U [15]. To simplify our exposition, we assume that U is a separable Hilbert space,
though the theoretical framework is general enough to be extended to arbitrary Banach spaces [30].
A vector-valued Gaussian process G∗ ∼ GP(Ĝ,K) on A is fully specified by a mean operator
Ĝ : A → U and a positive-semidefinite operator-valued covariance function K : A×A → L(U),
where L(U) denotes the space of bounded linear operators on U . Formally, given any a, a′ ∈ A and
any u, u′ ∈ U , it follows that:

E[G∗(a)] = Ĝ(a), (3)

Cov(⟨G∗(a), u⟩, ⟨G∗(a
′), u′⟩) = ⟨u,K(a, a′)u′⟩ , (4)

where ⟨·, ·⟩ denotes the inner product and Cov(·, ·) stands for the covariance between scalar variables.
Assume we are given a set of observations Dt := {(ai, yi)}ti=1 ⊂ A× U , where yi = G∗(ai) + ξi,
and ξi ∼ N (0,Σ) corresponds to Gaussian noise with covariance operator Σ ∈ L(U). The posterior
mean and covariance can then be defined by the following recursive relations:

Ĝt(a) = Ĝt−1(a) +Kt−1(a, at)(Kt−1(at, at) + Σ)−1(yt − Ĝt−1(at)) (5)

Kt(a, a
′) = Kt−1(a, a

′)−Kt−1(a, at)(Kt−1(at, at) + Σ)−1Kt−1(at, a
′) (6)

for any a, a′ ∈ A, and t ∈ N, which are an extension of the same recursions from the scalar-valued
case [31, App. F] to the case of vector-valued processes. Such definition arises from sequentially

3We use “∈ argmax” acknowledging that the problem may have multiple global optima, forming a set of
global optimizers. Whenever we assume a unique minimizer, we will use the equality symbol “=”, instead.
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Algorithm 1: GP-TS
Input: Search space S, initial data D0

for t ∈ {1, . . . , T} do
Sample gt ∼ GP(µt−1, kt−1)
Select xt ∈ argmaxx∈X gt(x)
Query yt = f(xt) + ϵt
Update Dt = Dt−1 ∪ {xt, yt}

Algorithm 2: NOTS (ours)
Input: Search space S, initial data D0

for t = 1, . . . , T do
θt = argminθ ℓt(θ), θt,0 ∼ N (0,Σ0)
at ∈ argmaxa∈S f(Gθt

(a))
yt = G∗(at) + ξt
Dt = Dt−1 ∪ {at, yt}

conditioning the GP posterior on each observation, starting from the prior GP(Ĝ0,K0). It leads to
the same matrix-based definitions of the usual GP posterior equations [13], but in our case it avoids
complications with the resulting higher-order tensors that arise when kernels are operator-valued.

Thompson sampling. Thompson sampling (TS) is a relatively simple randomized strategy for
sequential decision making under uncertainty, which has found many successes in the Bayesian opti-
mization and multi-armed bandits literature [8, 25, 32, 33]. When applied to optimization problems,
the core idea of TS is to query an objective function f at points xt sampled from the probability distri-
bution of the optimum location x∗ ∈ argmaxx∈X f(x) given the observations Dt−1 := {xi, yi}t−1

i=1 .
To do so, the objective function is modeled as sample from a Bayesian probabilistic model, which is
typically a linear model [8] or a GP [33], and then TS samples realizations gt of the objective from the
model’s posterior p(f |Dt−1). A point xt which maximizes a sampled function gt then corresponds to
a sample from the posterior distribution over the optimum p(x∗|Dt−1). The procedure is summarized
in Algorithm 1 for the case of a GP. Under mild assumptions, TS is known to produce a sequence of
candidates xt such that f(xt) asymptotically converges to f(x∗) [33, 34].

4 Neural operator Thompson sampling

We propose a Thompson sampling algorithm for the optimization of functionals of unknown operators
in the setting of Eq. 1. Instead of relying on extensions of traditional probabilistic methods to operator
modeling, our method applies flexible and scalable neural operators as surrogates Gt, training them
to approximate posterior samples over the true operator G∗ conditioned on data. The method is
designed to efficiently explore the input space while balancing the exploration-exploitation trade-off.

4.1 Approximate posterior sampling

Given data Dt = {(ai, yi)}ti=1, we train a neural operator Gθ with parameters θt that minimize:

ℓt(θ) :=

t∑
j=1

∥yj −Gθ(aj)∥2 + λ∥θ∥2, (7)

where ∥·∥ represents the norm in the underlying space and λ > 0 is a regularization factor which
relates to the noise process ξ [35]. The argmin operator is implemented via gradient descent starting
from θt,0 ∼ N (0,Σ0), where Σ0 is a diagonal matrix following Kaiming [36] or LeCun initialization
[37], which scale the weights initialization variance by the width of the previous layer. By an extension
of standard results on the infinite-width limit of neural networks to the neural operator setting, we
can show that the trained neural operator approximates a posterior sample from a vector-valued GP
when, e.g., we train only the last linear layer (see App. C.2), which in turn guarantees regret bounds
(Sec. 5). The prior over G∗ is implicitly defined as the vector-valued Gaussian process given by the
conjugate kernel [38, 39] associated with the neural operator architecture and the weights initialization
distribution. Lastly, we note that, in practice, observations are discretized over a finite grid or other
finite-dimensional representation [1], so that difference norms in Eq. 7 reduce to Euclidean distances.

4.2 Thompson sampling algorithm

In Algorithm 2, we present the Neural Operator Thompson Sampling (NOTS) algorithm for the
optimization of problem-dependent functionals of black-box operators. The algorithm operates
sequentially over T iterations similar to standard GP-TS (Algorithm 1). To sample a realization from
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the neural operator posterior, each iteration begins with the random initialization of the parameters of
a neural operator that serves as a surrogate model for the true unknown operator. At each iteration,
the neural operator model is trained according to Section 4.1, minimizing a regularized least-squares
loss based on the currently available data, yielding an approximate sample Gt := Gθt

from the true
operator posterior p(G∗|Dt−1). The next step involves selecting the input for querying the oracle
by maximizing the value of the objective functional f over the neural operator’s predictions Gt(a).
Finally, the algorithm runs the potentially expensive step of querying the true operator G∗ with the
selected input function at, which may involve a complex simulation or physical experiment, and
updates the dataset with the new (noisy) observation yt. This process repeats for up to T iterations,
producing a sequence of function-valued queries at that approximates the true optimum a∗ (1).

Computational cost. Each iteration of NOTS incurs a linear computational cost of O(t) due to the
retraining of the neural operator model, which can be further reduced by use of minibatch stochastic
gradient descent. The reinitialization with randomized weights followed by retraining is what ensures
that we have a new approximate posterior sample for TS conditioned on the available data at every
iteration. Compared to a more traditional GP-based approach, which applied to our setting would
incur a O(t3) cost per step due to the inversion of a covariance matrix of t data points, we achieve a
much more computationally efficient and scalable algorithm, despite the cost of retraining the model.

5 Theoretical results

In this section, we establish the theoretical foundation of our proposed method. We show how the
trained neural operator approximates a Gaussian process in the infinite-width limit through the use of
the conjugate kernel, also known as NNGP kernel [38–42], under certain assumptions. This allows
us to extend existing results for Gaussian process Thompson Sampling (GP-TS) [33] to our setting.

5.1 Neural operator abstraction

A neural operator models nonlinear operators G : A → U between possibly infinite-dimensional
function spaces A and U . Current results in NTK [11] and GP limits for neural networks [12] do
not immediately apply to this setting, as they rely on finite-dimensional domains. However, we
can leverage an abstraction for neural operator architectures which sees their layers as maps over
finite-dimensional inputs [43], which result from truncations to make the modeling problem tractable.

Considering a neural operator with a single hidden layer, let M ∈ N represent the layer’s width,
AR : A → C(Z,RdR) denote a (fixed) continuous operator, and b0 : Z → Rdb denote a (fixed)
continuous function. For simplicity, we will assume scalar-valued output functions with du = 1. In
general, with a single hidden layer, the model described in Eq. 2 can be rewritten as:

Gθ(a)(z) = wT
oα (WRAR(a)(z) +Wua(Π0(z)) +Wbb0(z)) , z ∈ Z , (8)

where θ := vec(wo,WR,Wu,Wb) ∈ RM(1+dR+da+db) =: W represents the model’s flattened
parameters. The finite weight matrix WR representing the kernel convolution integral arises as
a result of truncations required in the practical implementation of neural operators (e.g., a finite
number of Fourier modes or quadrature points). With this formulation, one can recover most popular
neural operator architectures [43]. In the appendix, we discuss how Fourier neural operators [28]
fit under this formulation, though the latter is general enough to incorporate other cases. We also
highlight that neural operators possess universal approximation properties [44], given sufficient data
and computational resources, despite the inherent low-rank approximations in their architecture.

5.2 Infinite-width limit of neural operators

With the construction in Eq. 8, we can simply see the result of a neural operator layer when evaluated
at a fixed z ∈ Z equivalently as a M -width feedforward neural network:

Gθ(a)(z) = hθ(vz(a)) := wT
oα(Wvz(a)) , (9)

where the input is given by vz(a) := [AR(a)(z), a(Π0(z)), b0(z)] ∈ V , and V := RdR+da+db .
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Conjugate kernel. We can now derive infinite-width limits. The conjugate kernel describes the
distribution of the untrained neural network hθ : V → R under Gaussian weights initialization, whose
infinite-width limit yields a Gaussian process [38, 40]. Formally, the conjugate kernel is defined as:

kh(v,v
′) := lim

M→∞
Eθ0∼N (0,Σ0)[hθ0

(v)hθ0
(v′)], v,v′ ∈ V . (10)

Since the composition of the map A×Z ∋ (a, z) 7→ vz(a) ∈ V with a kernel on V yields a kernel
on A×Z [45, Lem. 4.3], the conjugate kernel of Gθ is determined by:

kG(a, z, a
′, z′) := kh(vz(a),vz′(a′)), a, a′ ∈ A, z, z′ ∈ Z , (11)

where kh is the conjugate kernel of the neural network hθ . Such a kernel defines a covariance function
for a GP over the space of operators mapping A to U . Assume U ⊂ L2(ν) is a closed subspace of the
space of functions which are square integrable with respect to a σ-finite Borel measure on Z , and let
L(U) denote the space of linear operators on U . The following then defines a positive-semidefinite
operator-valued kernel KG : A×A → L(U):

(KG(a, a
′)u)(z) =

∫
Z
kG(a, z, a

′, z′)u(z′) dν(z′), (12)

for any u ∈ U , a, a′ ∈ A and z ∈ Z . Hence, we can state the following result, whose proof can be
found in Appendix C.3.
Proposition 1. Let Gθ : A → U be a neural operator with a single hidden layer, where U ⊆ L2(ν)
is closed, and ν is a finite Borel measure on Z . Assume wo ∼ N (0, σ2

θI), for σ2
θ > 0 such

that σ2
θ ∝ 1/M , while the remaining parameters have their entries sampled from a fixed normal

distribution. Then, as M → ∞, on every compact subset of A, the neural operator converges in
distribution to a zero-mean vector-valued Gaussian process with operator-valued covariance function
given by:

lim
M→∞

Eθ∼N (0,Σ0)[Gθ(a)⊗Gθ(a
′)] = KG(a, a

′) , a, a′ ∈ A ,

where KG : A×A → L(U) is defined in Eq. 12, and ⊗ denotes the outer product.

5.3 Bayesian cumulative regret bounds

Bayesian regret. We analyze the performance of a sequential decision-making algorithm via its
Bayesian cumulative regret. An algorithm’s instant regret for querying at ∈ A at iteration t ≥ 1 is:

rt := f(G∗(a
∗))− f(G∗(at)) (13)

where a∗ is defined in Eq. 1. The Bayesian cumulative regret after T iterations is then defined as:

RT := E

[
T∑

t=1

rt

]
, (14)

where the expectation is over all sources of randomness affecting the decision-making process, i.e.,
the prior for G∗ and the observation noise. If the algorithm achieves sub-linear cumulative regret, its
simple regret asymptotically vanishes, as limT→∞ E

[
mint∈{1,...,T} rt

]
≤ limT→∞

1
T RT , leading

the algorithm’s queries at to eventually approach the true optimum a∗.

Regularity assumptions. For our analysis, we assume U ⊆ L2(ν) is a closed subspace of the
Hilbert space L2(ν) of square-integrable ν-measurable functions, for a given finite Borel measure
ν on a compact domain Z . We will assume the search space S ⊂ A is finite. The true operator
G∗ : A → U will be assumed to be a sample from a vector-valued Gaussian process G∗ ∼ GP(0,K),
where the operator-valued kernel K : A×A → L(U) is given by the neural operator’s infinite-width
limit in Proposition 1. Observations y = G∗(a) + ξ are assumed to be corrupted by i.i.d. zero-mean
Gaussian noise, ξ ∼ N (0,Σ), where Σ := σ2

ϵ I is a positive-definite linear operator on U .

We adapt state-of-the-art regret bounds for GP-based Thompson sampling [33] to our setting. To
do so, we first observe that, for a linear functional f ∈ L(U ,R), the composition with a Gaussian
random operator G∗ ∼ GP(Ĝ,K) yields a scalar-valued GP, i.e., f ◦ G∗ ∼ GP(f ◦ Ĝ, fTKf),
where the transposition fT interprets f as a vector in the Hilbert space U , which follows from the
Riesz representation theorem. In this case, we can directly apply GP-TS regret bounds to our case.
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Proposition 2. Let f : U → R be a bounded linear functional. Assume that the search space S ⊂ A
is finite, i.e., |S| < ∞, and that observations are corrupted by noise ξ ∼ N (0, σ2

ξI), for a given
σξ > 0. Let NOTS (Algorithm 2) be equipped with a single-hidden-layer neural operator model and
train only its last linear layer. Then, in the infinite-width limit, with λ := σ2

ξ , NOTS achieves:

RT ∈ O(
√
T ) . (15)

This result shows that NOTS achieves sublinear cumulative regret in the infinite-width limit with a
simplified neural operator model consisting of a single hidden layer. This result connects existing
GP-TS guarantees to NOTS, and it differs from existing guarantees for other neural network based
Thompson sampling algorithms [16, 25], which explored a frequentist setting (i.e., the objective
function being a fixed element of the reproducing kernel Hilbert space defined by the network’s neural
tangent kernel). In the Bayesian setting, there is also no need for a time-dependent regularization
parameter, allowing for a simpler implementation. The last-layer-only assumption ensures that the
trained network approximately follows the GP posterior in the infinite-width limit [12, App. D], while
explicit regularization accounts for observation noise [35]. Appendix C presents proofs and further
discussions on limitations and extensions, and a validation experiment can be found in Appendix E.

6 Experiments

We evaluate our NOTS algorithm on two popular PDE benchmark problems: Darcy flow and a shallow
water model. Our results are compared against a series of representative Bayesian optimization and
neural Thompson sampling baselines. More details about our implementations and further experiment
details can be found in Appendix D. Code for our experiments will be made available online.4

6.1 Algorithms

We compare NOTS against a series of GP-based and neural network BO algorithms modeling directly
the mapping from function-valued inputs a ∈ A (discretized over regular grid) to the scalar-valued
functional evaluations f(G∗(a)), besides a trivial random search (RS) baseline. NOTS is implemented
with standard and spherical FNOs [46], following default library settings for these PDEs [47]. We
first implemented BO with a 3-layer infinite-width ReLU Bayesian neural network (BNN) model,
represented as a GP with the corresponding conjugate kernel. According to Li et al. [48], these
models can achieve optimal performance in high-dimensional settings when compared to other BNN
methods. Two versions of this framework are in our experiments, one with log-expected improvement,
given its well established competitive performance [49], simply denoted as “BO” in our plots, and
one with Thompson sampling (GP-TS) [34]. As our experiments are over finite domains, sampling
from a scalar GP boils down to sampling from a multivariate normal distribution. Next, we evaluated
a version of Bayesian functional optimization (BFO) by encoding input functions in a reproducing
kernel Hilbert space (RKHS) via their minimum-norm interpolant and using a squared-exponential
kernel over functions which takes advantage of the RKHS structure as in the original BFO [20].
Lastly, we evaluated sample-then-optimize neural Thompson sampling (STO-NTS), training a 2-layer
256-width fully connected neural network with a regularized least-squares loss [16].

6.2 PDE benchmarks

Darcy flow. Darcy flow models fluid pressure in a porous medium [28], with applications in con-
taminant control, leakage reduction, and filtration design. In our setting, the input a ∈ C((0, 1)2,R+)
is the medium’s permeability on a Dirichlet boundary, and the operator G⋆ maps a to the pressure
field u ∈ C((0, 1)2,R). To train Gθ, we generate 1,000 input–output pairs via a finite-difference
solver at 16 × 16 resolution. Two materials are considered, leading to a binary grid for a and a
continuum of pressure values for each u grid cell. More details are in Li et al. [28] and Appendix D.

Shallow water modeling. Shallow water models capture the time evolution of fluid mass and
discharge on a rotating sphere [46]. The input a ∈ C(S2× {t = 0},R3) represents the initial
geopotential depth and two velocity components, while the output u ∈ C(S2× {t = τ},R3) gives

4Code repository: https://github.com/csiro-funml/nots
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best candidate in-
put function a

best candidate out-
put function u

worst candidate in-
put function a

worst candidate
output function u

Figure 1: Darcy flow rate optimization. Overlay of cumulative regret (top left) and its average (top
right) metrics across trials for the negative total flow rates case in the Darcy flow problem. The
shaded areas correspond to one standard deviation across 10 trials. The corresponding input-output
functions that achieved the best and worst flow rates are presented (bottom). White regions a(x) = 1
means fully open permeability and black regions a(x) = 0 represents impermeable pore material.
The output function suggests pressure field where brighter color indicates higher pressure.

the state at time t = τ . We train Gθ on 200 random initial conditions on a 32× 64 equiangular grid,
using a 1,200 s timestep to simulate up to τ = 6 hours.

6.3 Optimization functionals

We introduce several optimization functionals that are problem-dependent and clarify their physical
meaning in the context of the benchmark problems. As we aim to solve a maximization problem,
physical quantities to be minimized are defined with a negative sign. The first three functionals were
applied to the Darcy flow problem and the last one to shallow water modeling. Note that in both
cases, we have the same domain for the PDE solutions u and input functions a, i.e., Z = X .

Negative total flow rates [50] f(u, a) = −
∫
∂X a(x)(∇u(x) · n)dx. Here ∂X is the boundary

of the domain and n is the outward pointing unit normal vector of the boundary. This functional
integrates the volumetric flux −a(x)∇u(x) along the boundary, which corresponds to the total flow
rate of the fluid. Such an objective can be optimized for leakage reduction and contaminant control.

Negative total pressure [51] f(u) = − 1
2

∫
X |u(x)|dx. This objective computes the total fluid

pressure over the domain in the Darcy flow system.

Negative total potential energy f(u, a) = −
∫
X a(x)∥∇u(x)∥2 dx+

∫
X s(x)u(x) dx. This func-

tional quantifies the system’s total potential energy, balancing the energy dissipated by fluid friction
(the first term) against the potential energy supplied by the uniform fluid source (the second term,
where s = 1 is assumed). The minimizer a∗, therefore, consists of the most hydrodynamically
efficient design for the given flow constraints.

Inverse problem f(u) = − 1
2∥u− uτ∥2. uτ represents the ground truth solution. This objective is

specific to shallow water modeling, as we aim to find the initial condition a that generates uτ at time
τ , which is also a simplification of the assimilation objective in weather forecasting [52, 53].
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(a) Pressure (b) Potential energy

Figure 2: Darcy flow pressure (a) and potential energy (b) optimization problems averaged cumulative
regret. The shaded areas correspond to one standard deviation across 10 trials.

Figure 3: Shallow water inverse problem. Overlay of cumulative regret (left) and its average (right)
metrics across trials for the inverse problem in the shallow water data. The shaded areas correspond
to one standard deviation across 10 trials.

6.4 Results

Our results are presented in Figure 1 to 3, comparing the cumulative regret of NOTS against the
baselines on different settings of PDE problems and functional objectives. Results are summarized in
Table 1 with the final average regret, i.e., RT

T , of each method across the different problems.

In Figure 1, we present our results for the flow rate optimization problem in the Darcy flow PDE
benchmark. The results clearly show that GP-based BO methods struggle in this high-dimensional
setting, while NOTS (ours) is able to consistently find optimal solutions. As described in Section 6.2,
input functions a ∈ A for Darcy flow are binary masks representing two materials of different
permeability which are discretized over a 2D grid of 16-by-16 sampling locations. Hence, when
applied to standard GP-based BO methods, the inputs correspond to 256-dimensional vectors, which
can be quite high-dimensional for standard GPs. The optimization results of the input and output
functions also show the effectiveness of our approach. In the case of the “best candidate” which
achieves the lowest total flow rate, the input function shows large contiguous impermeable regions
that block fluid outflow and thus generate high interior pressure which can be treated as an ideal
design for leakage control. In contrast, the “worst candidate” exhibits the highest total flow rates.
It has smooth, boundary-connected permeable zones allowing fluid to escape effortlessly. Lastly,
figures 2(a) and 2(b) show the results on optimizing pressure and potential energy on Darcy flow.
On these functionals, BO and GP-TS can achieve a better performance, recalling their use of the
infinite-width BNN kernel, which has shown good performance on high-dimensional problems [48].
Yet, we can see significant performance improvements from NOTS with respect to all baselines.

Figure 3 shows our results for the inverse problem on the shallow water PDE benchmark. This setting
involves higher dimensional discretized inputs (6144-dimensional when flattened), leading to an
extremely challenging problem for GP approaches. In particular, the evaluation of the functional
inputs kernel is too computationally intensive for BFO, leading it to crash before 250 iterations
are completed. We believe that STO-NTS’s low performance is due to architectural limitations, as
it uses a simple fully connected network, which leads to a need for higher amounts of data (i.e.,
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Table 1: Results summary: Final average regret of each method and its standard deviation.
Method Darcy flow rates Darcy flow energy Darcy flow pressure Shallow water
RS 0.872± 0.022 0.309± 0.005 0.077± 0.001 4.632± 0.876
BO 0.703± 0.045 0.251± 0.024 0.047± 0.001 1.639± 0.532
BFO 0.788± 0.066 0.208± 0.014 0.078± 0.006 3.076± 0.886
GP-TS 0.674± 0.050 0.189± 0.093 0.038± 0.004 1.942± 0.502
STO-NTS 0.068± 0.002 0.282± 0.011 0.068± 0.002 2.329± 0.800
NOTS 0.012± 0.001 0.125± 0.042 0.012± 0.001 0.134± 0.043

more iterations). NOTS, however, is able to learn the underlying physics of the problem to aid its
predictions, leading to a more efficient exploration and higher performance.

7 Conclusion

We have developed Neural operator Thompson sampling (NOTS) for optimization problems in func-
tion spaces and shown that it provides significant performance gains in encoding the compositional
structure of problems involving black-box operators, such as complex physics simulators or real
physical processes. NOTS also comes equipped with theoretical guarantees, connecting the existing
literature on Thompson sampling to this novel setting involving neural operators.

Discussion. We have shown empirically that using neural operators as surrogates for Thompson
sampling can be effective without the need for expensive uncertainty quantification schemes by
relying on theoretical results for infinitely wide deep neural networks and their connection with
Gaussian processes. Neural operators have allowed for effective representation learning which scales
to very high-dimensional settings, where traditional bandits and Bayesian optimization algorithms
would struggle. Although GPs typically perform well on Bayesian modeling tasks with low volumes
of data, the functional optimization problems we considered have high-dimensional data as both
inputs and outputs, rendering the application of traditional multi-output GP models challenging. The
basic computational complexity of inference with a vector-valued GP model scales cubically with
both the number of data points and the number of output coordinates [14]. For the shallow water
PDE, for example, both inputs and outputs lie in a 6144-dimensional space. With 300 iterations, a
multi-output GP would have to invert a kernel matrix over more than 1 million data points towards
the last iterations. Hence, without specialized kernels and computationally efficient approximations,
a traditional GP approach would be unsuitable due to the very large number of outputs. In contrast,
neural operators are specially designed to deal with function-valued input and output data, typically
over spatial domains, with linearly scaling computational complexity. Therefore, NOTS can better
scale to accommodate longer runs or extensions to batched evaluations than a GP approach, even
though we limited experiments to 300 iterations to allow for comparisons against GP baselines.

Limitations and future work. We note that our current results are focused on the case of finite
search spaces and well specified models, which provide a first step towards more general use cases.
An extension to continuous domain could, for example, parameterize the set of input functions and
optimize such parametric representation or tractable nonparametric extensions [20, 21], which might
be application specific. Our theoretical analysis only considered the case of a neural operator with a
single hidden layer, despite the multi-layer setting in our experiments. These and other limitations
are further discussed in Appendix F. As future work, we plan to investigate the generalization of our
results to more general settings, such as continuous domains and batched evaluations. Lastly, we note
that NOTS also offers a framework for task-to-task amortization and few-shot learning, as operator
learning data can be reused across tasks with different objective functionals.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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the paper has limitations, but those are not discussed in the paper.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15



Justification: In the appendix (supplementary material), the reader can find the proofs and
full assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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of the paper (regardless of whether the code and data are provided or not)?
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Justification: Details in the appendix.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: Code will be released at https://github.com/csiro-funml/nots.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the appendix (supplement)
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard deviations reported with the plots
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details in the appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read NeurIPS Code of Ethics and carried out our research accordingly.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Discussed in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: PDE benchmarks acknowledged in the main paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: Code will be released at https://github.com/csiro-funml/nots.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

20

https://github.com/csiro-funml/nots


Justification: NA.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

We now present detailed theoretical background, proofs, experiment settings, and additional results
that complement the main paper. Appendix A reviews essential background on the infinite-width limit
of neural networks [12] and how they relate to Gaussian processes [13]. We discuss the distinction
and applicability of the two main kernel-based frameworks suitable for this type of analysis, namely,
the neural tangent kernel (NTK) by Jacot et al. [11] and the conjugate kernel, also known as the neural
network Gaussian process (NNGP) kernel [38, 40], which was the main tool for our derivations.
Appendix B formulates Fourier neural operators [28] under the mathematical abstraction that allowed
us to derive the operator-valued kernel for neural operators. The proofs of the main theoretical results
then appear in Appendix C, including the construction and properties of the operator-valued kernel
and the correspondence between trained neural operators and their GP limits. Appendix D describes
the PDE benchmarks considered, namely Darcy flow and shallow water equations, alongside the
respective objective functionals for optimization tasks. Experiment details, hyperparameter settings,
and baseline implementation details are provided in App. D.2. Appendix E presents results on an
experiment with a single-hidden-layer neural operator validating our theoretical results. Lastly, we
discuss limitations and potential broader impact in sections F and G, respectively.

A Additional background

In this section, we discuss the main differences between the neural tangent kernel [11] and the
conjugate kernel, also known as the neural network Gaussian process (NNGP) kernel [12]. Both
kernels are used to approximate the behavior of neural networks, but they differ in how they use
Gaussian processes to describe the network’s behavior.

A.1 Conjugate kernel (NNGP)

The conjugate kernel has long been studied in the neural networks literature, describing the cor-
respondence neural networks with randomized parameters and their limiting distribution as the
network width approaches infinity [38–41, 54]. Neal [40] first showed the correspondence between
an infinitely wide single-hidden-layer network and a Gaussian process by applying the central limit
theorem. More recent works [38, 41, 54] later showed that the same reasoning can be extended to
neural networks with multiple hidden layers. The NNGP kernel is particularly useful for Bayesian
inference as it allows us to define GP priors for neural networks and analyze how they change when
conditioned on data, providing us with closed-form expressions for an exact GP posterior in the
infinite-width limit [38].

Define an L-layer neural network h(·,θ) : X → R with h(x;θ) := hL(x;θ) via the recursion:

h0(x;θ) := x

hl(x;θ) := αl(Wlhl−1(x;θ) + bl) , l ∈ {1, . . . , L}, (16)

where x ∈ X represents an arbitrary input on a finite-dimensional domain X , Wl ∈ RMl×Ml−1

denotes a layer’s weights matrix, Ml is the width of the lth layer, bl ∈ RMl is a bias vector,
αl : R → R denotes the layer’s activation function, which is applied elementwise on vector-valued
inputs, and θ := vec({Wl, bl}Ll=1) collects all the network parameters into a vector. Assume

[Wl]i,j ∼ N
(
0, 1

Ml−1

)
and [bl]i ∼ N (0, 1), for i ∈ {1, . . . ,Ml}, j ∈ {1, . . . ,Ml−1} and

l ∈ {1, . . . , L}, and let M := min{M1, . . . ,ML}. The NNGP kernel then corresponds to the
infinite-width limit of the network outputs covariance function [38] as:

kNNGP(x, x
′) := lim

M→∞
E[h(x;θ)h(x′;θ)], x, x′ ∈ X , (17)

where the expectation is taken under the parameters distribution. By an application of the central
limit theorem, it can be shown [38, 40] that the neural network converges in distribution to a Gaussian
process with the kernel defined above, i.e.:

hθ
d−→ h ∼ GP(0, kNNGP) , (18)

where d−→ denotes convergence in distribution as M → ∞. In other words, the randomly initialized
network follows a GP prior in the infinite-width limit. Moreover, it follows that, when conditioned on
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data DN := {xi, yi}Ni=1, assuming yi = h(xi) + ϵi and ϵi ∼ N (0, σ2
ϵ ), a Bayesian neural network

is distributed according to a GP posterior in the infinite-width limit as:
h|DN ∼ GP(µN , kN ) (19)

µN (x) := E[h(x) | DN ] = kN (x)T(KN + σ2
ϵ I)

−1yN (20)

kN (x, x′) := Cov[h(x), h(x′) | DN ] = k(x, x′)− kN (x)T(KN + σ2
ϵ I)

−1kN (x′), (21)

for any x, x′ ∈ X , where KN := [k(xi, xj)]
N
i,j=1 ∈ RN×N , kN (x) := [k(xi, x)]

N
i=1 ∈ RN ,

yN := [yi]
N
i=1, and we set k := kNNGP to avoid notation clutter. Hence, the NNGP kernel allows

us to compute exact GP posteriors for neural network models. However, we emphasize that the
conjugate kernel should not be confused with the neural tangent kernel [11], which corresponds to
the infinite-width limit of E[∇θh(x;θ) · ∇θh(x

′;θ)], instead.

A.2 Neural tangent kernel (NTK)

The NTK approximates the behavior of a neural network during training via gradient descent by
considering the gradients of the network with respect to its parameters [11]. Consider an L-layer
feedforward neural network hθ : X → R as defined in Eq. 16. In its original formulation, Jacot et al.
[11] applied a scaling factor of 1√

M
to the output of each layer to ensure asymptotic convergence in

the limit M → ∞ of the network trained via gradient descent. However, later works showed that
standard network parameterizations (without explicit output scaling) also converge to the same limit
as long as a LeCun or Kaiming/He type of initialization scheme is applied to the parameters with
appropriate scaling of the learning rates [12, 55], which ensure bounded variance in the infinite-width
limit. The NTK describes the limit:

kNTK(x, x
′) = lim

M→∞
E[∇θhθ(x) · ∇θhθ(x

′)] , (22)

for any x, x′ ∈ X , where the expectation is taken under the parameters initialization distribution.
Under mild assumptions, the trained network’s output distribution converges to a Gaussian process
described by the NTK [11, 38]. Although originally derived for the unregularized case, applying
L2 regularization to the parameters norm yields a GP posterior with a term that can account for
observation noise [35]. Namely, consider the following loss function:

ℓN (θ) :=

N∑
i=1

(yi − hθ(xi))
2
2 + λ∥θ − θ0∥22 , (23)

where θ0 denotes the initial parameters. As the network width grows larger, the NTK tells us that the
network behaves like a linear model [11, 55] as:

h(x;θ) ≈ h(x;θ0) +∇θh(x;θ)
∣∣
θ:=θ0

· (θ − θ0) , x ∈ X . (24)

The approximation becomes exact in the infinite width limit within any bounded neighborhood
BR(θ0) := {θ | ∥θ−θ0∥ ≤ R} of arbitrary radius 0 < R < ∞ around θ0, as the second-order error
term vanishes [55]. The latter also means that ∇θh(·;θ) converges to fixed feature map ϕ : X → H0,
where H0 is the Hilbert space spanned by the limiting gradient vectors. With this observation, our
loss function can be rewritten as:

ℓN (θ) ≈
N∑
i=1

(
yi − h(xi;θ0)−∇θh(xi;θ)

∣∣
θ:=θ0

· (θ − θ0)
)2

+ λ∥θ − θ0∥22 . (25)

The minimizer of the approximate loss can be derived in closed form. Applying the NTK then yields
the infinite-width model:

hN (x) = h(x) + kNTK
N (x)T(KNTK

N + λI)−1(yN − hN ) , (26)

where h ∼ GP(0, kNNGP) denotes the network at its random initialization, as defined above, kNTK
N (x) :=

[kNTK(xi, x)]
N
i=1 ∈ RN , KNTK

N := [kNTK(xi, xj)]
N
i,j=1 ∈ RN×N , and hN := [h(xi)]

N
i=1 ∈ RN . Now

applying the GP limit to the randomly initialized network h [12, 35], we have that:

hN ∼ GP(µ̂N , k̂N ) (27)

µ̂N (x) = kNTK
N (x)T(KNTK

N + λI)−1yN (28)

k̂N (x, x′) = k(x, x′) + kNTK
N (x)T(KNTK

N + λI)−1KN (KNTK
N + λI)−1kNTK

N (x′)

− kNTK
N (x)T(KNTK

N + λI)−1kN (x′)− kN (x)T(KNTK
N + λI)−1kNTK

N (x′),
(29)
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where we again set k := kNNGP to avoid clutter. However, note that such GP model does not generally
correspond to a Bayesian posterior. An exception is where only the last linear layer is trained, while
the rest are kept fixed at their random initialization; in which case case, the GP described by the NTK
and the exact GP posterior according to the NNGP kernel match in the unregularized setting [12].

A.3 Application to Thompson sampling

For our purpose, it is important to have a Bayesian posterior in order to apply Gaussian process
Thompson sampling (GP-TS) [33] for the regret bounds in Proposition 2. Therefore, we are con-
strained by existing theories connecting neural networks to Gaussian processes to assume training
only the last layer of neural networks of infinite width, which gives a Bayesian posterior of the
NNGP after training. In addition, we had to consider the case of a single hidden layer neural operator,
as the usual recursive step applied to derive the infinite-width limit would require an intermediate
(infinite-dimensional) function space in our case, making the extension to the multi-layer case not
trivial due to the usual finite-dimensional assumptions [55]. Nonetheless, the NOTS algorithm
suggested by our theory has demonstrated competitive performance in our experiments even in more
relaxed settings with a multi-layer model. Future theoretical developments in Bayesian analysis of
neural networks may eventually permit the convergence analysis of the more relaxed settings in our
experiments. In any case, we present an experiment with a wide single-hidden-layer model with
training only on the last layer in Appendix E.

B Fourier neural operators under the abstract representation

Recalling the definition in the main paper, we consider a single hidden layer neural operator. Let
M ∈ N represent the layer’s width, AR : A → C(Z,RdR) denote a (fixed) continuous operator, and
b0 : Z → Rdb denote a (fixed) continuous function. For simplicity, we assume scalar outputs with
du = 1. We consider models of the form:

Gθ(a)(z) = wT
oα (WRAR(a)(z) +Wua(Π0(z)) +Wbb0(z)) , z ∈ Z , (30)

where θ := (wo,WR,Wu,Wb) ∈ RM×RM×dR×RM×da×RM×db =: W represents parameters.

Fourier neural operators. As an example, we show how the formulation above applies to the
Fourier neural operator (FNO) architecture [28]. For simplicity, assume that X is the d-dimensional
periodic torus, i.e., X = [0, 2π)d, and Z = X . Then any square-integrable function a : X → Cda

can be expressed as a Fourier series:

a(x) =
∑
s∈Zd

â(s)eι⟨s,x⟩, ∀x ∈ X , (31)

where ι :=
√
−1 ∈ C denotes the imaginary unit, and â(s) are coefficients given by the function’s

Fourier transform F : L2(X ,Cda) → L2(Zd,Cda) as:

â(s) := (Fa)(s) =
1

(2π)d

∫
X
a(x)e−ι⟨s,x⟩ dx , s ∈ Zd . (32)

For a translation-invariant kernel R(x, x′) = R(x − x′), applying the convolution theorem, the
integral operator can be expressed as:∫

X
R(·, x)a(x) dx = R ∗ a

= F−1(F (R) · F (a))

=
∑
s∈Zd

R̂(s)â(s)eι⟨s,·⟩

(33)

In practice, function observations are only available at a discrete set of points and the Fourier series is
truncated at a maximum frequency smax ∈ Zd, which allows one to efficiently compute it via the fast
Fourier transform (FFT). Considering these facts, FNOs approximate the integral as [28]:∫

X
R(x, x′)a(x′) dx′ ≈

N∑
n=1

R̂(sn)â(sn)e
ι⟨sn,x⟩, x ∈ Z , (34)
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where the N values of sn range from 0 to smax in all d coordinates. Finally, defining AR as:
AR : C(X ,Cda) → C(X ,CNda)

a 7→

 (Fa)(s1)e
ι⟨s1,·⟩

...
(Fa)(sN )eι⟨sN ,·⟩

 ,
(35)

and letting WR = [R̂(s1), . . . , R̂(sN )], we recover Eq. 30 for FNOs in the complex-valued case.

For real-valued functions, to ensure that the result is again real-valued, a symmetry condition
is imposed on R̂, so that its values for negative frequencies are the conjugate transpose of the
corresponding values for positive frequencies. However, we can still represent it via a single matrix of
weights, which is simply conjugate transposed for the negative frequencies. Lastly, note that complex
numbers can be represented as tuples of real numbers.

C Theoretical Analysis

In this section, we provide the proofs of the theoretical results presented in the main paper.

C.1 Auxiliary results

Definition 1 (Multi-Layer Fully-Connected Neural Network). A multi-layer fully-connected neural
network with L hidden layers, input dimension d0, output dimension dL+1, and hidden layer widths
d1, . . . , dL, is defined recursively as follows. For input x ∈ X , the pre-activations and activations at
layer l = 1, . . . , L+ 1 are:

v(1)(x) = W(0)x+ b(0) (36)

v(l)(x) = W(l−1)α(v(l−1)(x)) + b(l−1), l = 2, . . . , L, (37)

v(L+1)(x) = W(L)α(v(L)(x)), (38)

where W(l) ∈ Rdl+1×dl are weight matrices, b(l) ∈ Rdl+1 are bias vectors, α : R → R is a
coordinate-wise non-linearity, and the network output is f(x) = v(L+1)(x). The weights are

initialized as W (l)
ij =

(
cW
dl

)1/2
Ŵ

(l)
ij , where Ŵ

(l)
ij ∼ µ with mean 0, variance 1, and finite higher

moments, and biases as b(l)i ∼ N (0, cb), given fixed constants cW > 0 and cb ≥ 0.
Lemma 1 (Infinite-width limit [56]). Consider a feedforward fully connected neural network as
in Definition 1 with non-linearity α : R → R that is absolutely continuous with polynomially
bounded derivative. Fix the input dimension d0, the output dimension dL+1, the number of layers
L, and a compact set X ⊂ Rd0 . As hidden layer widths d1, . . . , dL → ∞, the random field
x 7→ f(x) converges weakly in C(X ,RdL+1) to a centered Gaussian process with covariance
K(L+1) : X × X → RdL+1×dL+1 defined recursively by:

K(l+1)(x, x′) = cbI+ cW E(v,v′) [α(v)⊗ α(v′)] , (39)

where (v,v′) ∼ N
(
0,

[
K(l)(x, x) K(l)(x, x′)

K(l)(x, x′) K(l)(x′, x′)

])
for l ≥ 2, with the initial condition for l = 1

determined by the first-layer weights and biases.
Lemma 2 (Thm. 3.1 in Takeno et al. [33]). Let f ∼ GP(0, k), where k : X × X → R is a
positive-definite kernel on a finite X . Then the Bayesian cumulative regret of GP-TS is such that:

RT ∈ O(
√
TγT ) ,

where γT denotes the maximum information gain after T iterations with the GP model.
Remark 1. On a finite domain |S| < ∞, the maximum information gain is bounded by a constant.
Recalling the definition of γT for a GP model with observations corrupted by i.i.d. Gaussian noise
ϵ ∼ N (0, λ), we have:

γT := max
ST⊂S:|ST |≤T

1

2
log|I+ λ−1KT | ≤ γ|S| , (40)

since, as a set, ST can be of cardinality at most |S| ∈ N. Hence, the kernel matrix KT =
[k(x, x′)]x,x′∈ST

can be of rank at most |S|, so that γT ≤ γ|S|, which is finite for a bounded kernel.
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C.2 Posterior sampling via gradient descent

We briefly review the equivalence between posterior sampling and gradient descent when training
only the last (or readout) layer of a neural network under a (regularized) least-squares loss and LeCun
(or Kaiming He) initialization in the presence of observation noise. We will mainly combine major
results from the NTK and NNGP literature [12, 35, 55] into the setting of our paper. When only the
last layer is trained, the feature maps of the NTK and the NNGP coincide [12, App. D], so that we can
follow an NTK type of analysis of how the loss function relates to the network’s parameters, while
the distribution of the trained network is determined by the NNGP kernel. For simplicity, we focus
on the case of a standard, fully connected, scalar-valued neural network, noticing that this analysis is
readily extensible to the neural operator case by the techniques we use for our main results.

Random feature model. When training only the last layer of a neural network, we have the
following model at initialization:

h0(x) = wT
0ϕ(x), (41)

where we assume w0 ∼ N (0, 1
M I) for the initial weights of the readout layer, with M representing

the network width, and given x ∈ X , ϕ(x) ∈ RM represents the output of the last hidden layer of
the neural network, which consists of a random feature map ϕ : X → RM under the initialization
scheme. Observe that the NNGP kernel is given by:

kNNGP(x, x
′) := lim

M→∞
E[h0(x)h0(x

′)] = lim
M→∞

1

M
E[ϕ(x)Tϕ(x′)] , (42)

for any x, x′ ∈ X . Note that this is the same limit we obtain if w0 ∼ N (0, I) and ϕ(x) is scaled
by 1√

M
, as in the NTK parameterization [11]. Hence, to simplify our derivations, we will adopt the

latter in the remainder of this subsection.

Regularized least-squares estimator. Given N data points DN := {xi, yi}Ni=1 ⊂ X × R, we
consider the following regularized least-squares loss:

ℓN (w) :=
1

2

N∑
i=1

(wTϕ(xi)− yi)
2 +

λ

2
∥w −w0∥2 =

1

2
∥ΦTw − y∥2 + λ

2
∥w −w0∥2 , (43)

where Φ := [ϕ(x)1, . . . ,ϕ(xN )] ∈ RM×N , y := [y1, . . . , yN ]T ∈ RN , w0 ∼ N (0, I), and λ > 0
is a regularization factor. We note that, in practice, due to the small initialization variance of order
1
M , the initial weights w0 will be elementwise very close to zero, especially for large widths M .
Therefore, we omit w0 from the regularizer in Eq. 7, as their practical effect is limited, and a simple
L2 regularizer is typically efficiently implemented as a weight decay term in optimization algorithms
found within modern deep learning frameworks, such as PyTorch [57].

The loss function in Eq. 43 is convex in w and therefore admits a unique minimizer wN ∈ RM ,
which we can derive in closed form as:

∇ℓN (w) = Φ(ΦTw − y) + λ(w −w0)

∇ℓN (w)
∣∣
w=wN

= 0 =⇒ (ΦΦT + λI)wN = Φy + λw0 .
(44)

For λ > 0, the matrix on the left-hand side is positive-definite, and therefore invertible, then:

wN = (ΦΦT + λI)−1(Φy + λw0) . (45)

Suppose w0 ∼ N (0, I). Then wN |y ∼ N (ŵN , Σ̂N ), where:

ŵN := E[wN | y] = (ΦΦT + λI)−1Φy , (46)
and the covariance matrix is given by:

Σ̂N := V[wN | y] = V[(ΦΦT + λI)−1(Φy + λw0) | y]
= V[λ(ΦΦT + λI)−1w0]

= λ2(ΦΦT + λI)−1V[w0](ΦΦT + λI)−1

= λ2(ΦΦT + λI)−2 ,

(47)

where we used the fact that V[Aw] = AV[w]AT for a random vector w, and we also note that
V[w0 | y] = V[w0], given that w0 is sampled independently of y.
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Alternative derivation. Another way of deriving the expression above is via the joint distribution
between wN and y. Assume y = ΦTw∗ + ϵ, for some w∗ ∼ N (0, I) and ϵ ∼ N (0, σ2

ϵ I), so that
Σy := V[y] = ΦΦT + σ2

ϵ I. The joint distribution is:[
wN

y

]
∼ N

([
0
0

]
,

[
(ΦΦT + λI)−1(ΦΣyΦ

T + λ2I)(ΦΦT + λI)−1 (ΦΦT + λI)−1ΦΣy

ΣyΦ
T(ΦΦT + λI)−1 Σy

])
.

(48)
The covariance of the joint distribution is obtained from the linear relation between wN and y as:

ΣwN ,y =

[
(ΦΦT + λI)−1 0

0 I

]([
Φ
I

]
Σy

[
Φ
I

]T
+

[
λ2I 0
0 0

])[
(ΦΦT + λI)−1 0

0 I

]
.

We can see that the matrix above is non-singular and positive definite. In particular, its determinant
can be derived as:

det(ΣwN ,y) = det

(
(ΦΦT + λI)−1 0

0 I

)2

det

([
Φ
I

]
Σy

[
Φ
I

]T
+

[
λ2I 0
0 0

])

= det(ΦΦT + λI)−2 det

([
ΦΣyΦ

T ΦΣy

ΣyΦ
T Σy

]
+

[
λ2I 0
0 0

])
= det(ΦΦT + λI)−2 det

([
ΦΣyΦ

T + λ2I ΦΣy

ΣyΦ
T Σy

])
= det(ΦΦT + λI)−2 det(Σy) det(ΦΣyΦ

T + λ2I−ΦΣyΣ
−1
y ΣyΦ

T)

=
det(Σy) det(λ

2I)

det(ΦΦT + λI)2

> 0 ,

where the inequality holds as long as λ > 0 and σϵ > 0. Conditioning on y then yields:

ŵN = (ΦΦT + λI)−1Φy , (49)

and:

Σ̂N = (ΦΦT + λI)−1(ΦΣyΦ
T + λ2I)(ΦΦT + λI)−1 − (ΦΦT + λI)−1ΦΣyΦ

T(ΦΦT + λI)−1

= λ2(ΦΦT + λI)−2 .
(50)

In contrast, even if λ := σ2
ϵ , note that Σ̂N does not correspond to the exact posterior covariance,

which can be derived as: [
w∗
y

]
∼ N

([
0
0

]
,

[
I Φ

ΦT ΦTΦ+ λI

])
. (51)

=⇒ ΣN := V[w∗ | y] = I−Φ(ΦTΦ+ λI)−1ΦT = λ(ΦΦT + λI)−1 . (52)

Predictions. For the predictive equations, note that adding and subtracting ΦΦTw0 to the expres-
sion for wN yields:

wN = (ΦΦT + λI)−1(Φy + λw0 +ΦΦTw0 −ΦΦTw0)

= w0 + (ΦΦT + λI)−1(Φy −ΦΦTw0)

= w0 +Φ(ΦTΦ+ λI)−1(y −ΦTw0) ,

(53)

where we applied the identity (I+AB)−1A = A(I+BA)−1. Hence, letting hN (x) := ϕ(x)TwN ,
we have that:

hN (x) = h0(x) + ϕ(x)
TΦ(ΦTΦ+ λI)−1(y − h0) , (54)

where h0 := ΦTw0 = [h0(xi)]
N
i=1 ∈ RN . In the infinite-width limit, we then have that:

hN (x) = h0(x) + kN (x)T(KN + λI)−1(y − h0) , (55)

where we set k := kNNGP and adopt the standard GP notation for the kernel vector kN and matrix KN .

27



Underestimated variance. Now considering h0 ∼ GP(0, k), we have that:

E[hN (x) | y] = kN (x)T(KN + λI)−1y (56)

V[hN (x) | y] = k(x, x)− 2kN (x)T(KN + λI)−1kN (x)

+ kN (x)T(KN + λI)−1KN (KN + λI)−1kN (x)

= k(x, x)− kN (x)T(KN + λI)−1kN (x)− λkN (x)T(KN + λI)−2kN (x) ,

(57)

where the last equality follows by adding and subtracting λI from the KN factor in the previous
quadratic term. We can then see that the predictive variance is lower than the exact GP posterior
predictive variance by a factor of λkN (x)T(KN + λI)−2kN (x). The two match when λ → 0, as in
Lee et al. [12]. However, for the noisy case with λ > 0, we have this mismatch. Similarly, for the
weights posterior covariance, we have that:

Σ̂N = λ2(ΦΦT + λI)−2 ⪯ λ(ΦΦT + λI)−1 = ΣN

⇐⇒ λ(ΦΦT + λI)−2 ⪯ (ΦΦT + λI)−1

⇐⇒ λ(ΦΦT + λI)−1 ⪯ I

⇐⇒ (λ−1ΦΦT + I)−1 ⪯ I ,

(58)

which holds since ΦΦT is positive semidefinite and λ > 0. Hence, in the following we analyze the
effect of the underestimated variance on the algorithm’s regret

Effect on the regret bound. We may bound the effect of the posterior variance mismatch in the
regret bound of GP-TS. Let Σt = V[w∗|y] represent the exact posterior covariance matrix (cf.
Eq. 52) after t ≥ 1 iterations, assuming λ := σ2

ϵ , and denote the exact and the approximate posterior,
respectively, as:

Pt := N (ŵt,Σt) (59)

P̂t := N (ŵt, Σ̂t) . (60)

Correspondingly, we set:

x∗ ∈ argmax
x∈X

f(x) (61)

xt ∈ argmax
x∈X

ht(x) , (62)

assuming f(x) = ϕ(x)Tw∗, for some w∗ ∼ N (0, I). The instant regret at iteration t ≥ 1 is then:

E[f(x∗)− f(xt)] = E[E[f(x∗)− f(xt) | Dt−1]]

= E
[∫

RM

∫
RM

f(x∗)− f(xt) dPt−1(w∗) dP̂t−1(wt)

]
= E

[∫
RM

∫
RM

(f(x∗)− f(xt))
dP̂t−1

dPt−1
(wt) dPt−1(w∗) dPt−1(wt)

]

≤ E

[∥∥∥∥∥ dP̂t−1

dPt−1

∥∥∥∥∥
∞

∫
RM

∫
RM

f(x∗)− f(xt) dPt−1(w∗) dPt−1(wt)

]
,

(63)

where we applied Hölder’s inequality, noting that f(x∗) − f(xt) ≥ 0. Therefore, if the Radon-

Nikodym derivative dP̂t−1

dPt−1
is uniformly bounded, the regret bound remains the same. In the finite-

width case M < ∞, the density ratio between multivariate normal distributions with the same mean
gives us:

dP̂t

dPt
(w) =

√
det(Σt)

det(Σ̂t)
exp

(
−1

2
(w − ŵt)

T(Σ̂
−1

t −Σ−1
t )(w − ŵt)

)
, w ∈ RM . (64)
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As Σ̂t ⪯ Σt (58), the difference between the inverses Σ̂
−1

t − Σ−1
t is positive semidefinite. The

maximum is then achieved at w = ŵt, yielding:∥∥∥∥∥ dP̂t

dPt

∥∥∥∥∥
∞

=

√
det(Σt)

det(Σ̂t)

=

√
det
(
ΣtΣ̂

−1

t

)
=

√
det
(
I+ λ−1ΦΦT

)
=

√
det
(
I+ λ−1ΦTΦ

)
(65)

where we applied Sylvester’s determinant identity to third line, and a standard determinant identity
yields the last equality. In the infinite-width limit as M → ∞, we have that ΦTΦ converges to
Kt := [kNNGP(xi, xj)]

t
i,j=1, leading us to:∥∥∥∥∥ dP̂t

dPt

∥∥∥∥∥
∞

=
√
det(I+ λ−1Kt) . (66)

Recalling the definition of the maximum information gain:

γt := max
Xt⊂X :|Xt|≤t

1

2
log det(I+ λ−1Kt) , (67)

we then have that: ∥∥∥∥∥ dP̂t

dPt

∥∥∥∥∥
∞

≤ exp γt , (68)

which is usually an unbounded term, given that γt is a non-decreasing function of t. However, for a
finite domain |X | < ∞, we trivially have that γt ≤ γ|X |, given that the largest finite subset Xt of X
is X itself (see also Remark 1). Hence, in this case, the following holds:

∀t ∈ N ,

∥∥∥∥∥ dP̂t

dPt

∥∥∥∥∥
∞

≤ exp γ|X | , (69)

which is bounded for most practical kernels. Putting it all together, we have that:

∀t ∈ N , E[f(x∗)− f(xt)] ≤ rt exp γ|X | , (70)

where rt represents the Bayesian regret when xt maximizes a sample from the exact GP posterior,
instead of its approximation. Given that γ|X | is a finite constant, the asymptotic rates for the Bayesian
cumulative regret remain the same even in the presence of an underestimated predictive variance.

C.3 Infinite-width neural operator kernel

Assumption 1. The activation function α : R → R is absolutely continuous with derivative bounded
almost everywhere.
Lemma 3 (Continuity of limiting GP). Let Gθ : A → C(Z) be a neural operator with a single
hidden layer, as defined as in Eq. 30. Assume wo ∼ N (0, σ2

θI), for σ2
θ > 0 such that σ2

θ ∝ 1
M , and

let the remaining parameters have their entries be sampled from a fixed normal distribution. Then,
as M → ∞, the neural operator converges in distribution to a zero-mean Gaussian process with
continuous realizations G : A′ → C(Z) on every compact subset A′ ⊂ A.

Proof. As shown in App. 5.2, when evaluated at a fixed point z ∈ Z , a neural operator with a single
hidden layer can be seen as:

Gθ(a)(z) = hθ(ψ(a, z)), a ∈ A , (71)

where ψ(a, z) := vz(a) is a fixed map ψ : A × Z → V , with V = RdR+da+db , and hθ is a
conventional feedforward neural network, as defined in Definition 1. By Assumption 1 and Lemma 1,
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it follows that, as M → ∞, hθ converges in distribution to a Gaussian process h ∼ GP(0, kh)
with continuous sample paths, i.e., P [h ∈ C(V ′)] = 1 on every compact V ′ ⊂ V . The continuity of
ψ : A × Z → V then implies that g := h ◦ ψ is a zero-mean GP whose sample paths lie almost
surely in C(A′ ×Z), for a compact A′ ⊂ A, as Z is already assumed compact. Therefore, for each
a ∈ A, we have P [g(a, ·) ∈ C(Z)] = 1, so that G(a) := g(a, ·) defines an almost surely continuous
operator G : A′ → C(Z) on compact A′ ⊂ A. The verification that G is a vector-valued GP trivially
follows.

Proposition 1. Let Gθ : A → U be a neural operator with a single hidden layer, where U ⊆ L2(ν)
is closed, and ν is a finite Borel measure on Z . Assume wo ∼ N (0, σ2

θI), for σ2
θ > 0 such

that σ2
θ ∝ 1/M , while the remaining parameters have their entries sampled from a fixed normal

distribution. Then, as M → ∞, on every compact subset of A, the neural operator converges in
distribution to a zero-mean vector-valued Gaussian process with operator-valued covariance function
given by:

lim
M→∞

Eθ∼N (0,Σ0)[Gθ(a)⊗Gθ(a
′)] = KG(a, a

′) , a, a′ ∈ A ,

where KG : A×A → L(U) is defined in Eq. 12, and ⊗ denotes the outer product.

Proof of Proposition 1. We start by noting that any continuous function u ∈ C(Z) is automatically
included in L2(ν), since ∥u∥2L2(ν) =

∫
Z u2(z) dν(z) ≤ ν(Z)∥u∥2∞ < ∞. Hence, any operator

mapping into C(Z) also maps into L2(ν) by inclusion.

Applying Lemma 3, it follows that Gθ
d→ G, where G is a zero-mean GP, as M → ∞. Now, given

any u ∈ U , a, a′ ∈ A and z ∈ Z , we have that:

(E[G(a)⊗G(a′)]u)(z) = E[G(a)⟨G(a′), u⟩]

=

(
E
[
g(a, ·)

∫
Z
g(a′, z′)u(z′) dν(z′)

])
(z)

= E
[∫

Z
g(a, z)g(a′, z′)u(z′) dν(z′)

]
=

∫
Z
E[g(a, z)g(a′, z′)]u(z′) dν(z′)

=

∫
Z
kG(a, z, a

′, z′)u(z′) dν(z′) ,

(72)

where we applied the linearity of expectations and the correspondence between g : A×Z → R and
the limiting operator G : A → U . As the choice of elements was arbitrary, it follows that the above
defines an operator-valued kernel KG. Linearity follows from the expectations. Given any a ∈ A, as
a positive-semidefinite operator, the operator norm of KG(a, a) is bounded by its trace, such that:

∥KG(a, a)∥2 ≤ Tr(KG(a, a)) = E[∥G(a)∥2U ] = E
[∫

Z
g2(a, z) dν(z)

]
< ν(Z)E[∥g(a, ·)∥2∞] ,

(73)
and the last expectation is finite, since g is almost surely continuous. Hence, KG(a, a) ∈ L(U).

C.4 Regret bound

Proposition 2. Let f : U → R be a bounded linear functional. Assume that the search space S ⊂ A
is finite, i.e., |S| < ∞, and that observations are corrupted by noise ξ ∼ N (0, σ2

ξI), for a given
σξ > 0. Let NOTS (Algorithm 2) be equipped with a single-hidden-layer neural operator model and
train only its last linear layer. Then, in the infinite-width limit, with λ := σ2

ξ , NOTS achieves:

RT ∈ O(
√
T ) . (15)

Proof of Proposition 2. Following Proposition 1, the infinite-width limit yields G ∼ GP(0,KG). By
linearity, it follows that f ◦G ∼ GP(0, fTKGf) for any fixed bounded linear functional f : U → R.

As discussed in App. C.2, training our model via regularized gradient descent with λ := σ2
ξ then

yields a neural operator that approximates a sample from the GP posterior G∗|Dt ∼ GP(Ĝt,Kt),
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where the posterior mean and covariance operators, Ĝt and Kt, respectively, are described in Eq. 5
and 6. Correspondingly, we have that f ◦ G∗|Dt ∼ GP(f ◦ Ĝt, f

TKtf). The main result then
follows by an application of Lemma 2 and the observation in Remark 1, which allows us to derive a
regret bound without requiring explicit knowledge of the growth rates of the maximum information
gain (cf. Lemma 2), which would be architecture dependent via the conjugate kernel.

Remark 2. Despite the result above assuming that f is only a function of G(a), there is a straight-
forward extension to functionals of the form f : U ×A → R, as considered in our experiments. We
simply need to replace G : A → U with the operator G′ : a 7→ (G(a), a) by a concatenation with an
identity map a 7→ a, which is deterministic. A similar result then follows after minor adjustments.

D Experiment details

D.1 Problems

In this section, we provide the details of the problems used in the experiments.

D.1.1 Darcy flow

Darcy flow describes the flow of a fluid through a porous medium with the following PDE form

−∇ · (a(x)∇u(x)) = g(x), x ∈ Ω = (0, 1)2

u(x) = 0, x ∈ ∂Ω,

where u(x) is the flow pressure, a(x) is the permeability coefficient and g(x) is the forcing function.
We fix g(x) = 1 and generate different solutions at random with zero Neumann boundary conditions
on the Laplacian, following the setting in Li et al. [28], as implemented by the neural operator
package [47]. In particular, for this problem, we generate a search space S with |S| = 1000 data
points. The divergence of f is ∇ · f = ∂fx

∂x +
∂fy
∂y where f : Ω → R2 is a vector field f = (fx, fy).

The gradient ∇u = (∂u(x,y)∂x , ∂u(x,y)
∂y ) where u(x, y) : Ω → R is a scalar field. Inspired by previous

works [5, 50, 58], we chose the following objective functions to evaluate the functions assuming that
we aim to maximize the objective function f(·):

1. Negative total flow rates [50]

f(u, a) =

∫
∂Ω

a(x)(∇u(x) · n)ds

where s = ∂Ω is the boundary of the domain and n is the outward pointing unit normal
vector of the boundary. q(x) = −a(x)∇u(x) is the volumetric flux which describes the rate
of volume flow across a unit area. Therefore, the objective function measures the boundary
outflux. Since the boundary is defined on a grid, n ∈ {[−1, 0], [1, 0], [0, 1], [0,−1]} for the
left, right, top and bottom boundaries. The boundary integral can be simplified as∫ 1

0

[−a(0, y)ux(0, y) + a(1, y)ux(1, y)]dy +

∫ 1

0

[−a(x, 0)uy(x, 0) + a(x, 1)uy(x, 1)]dx

where ux(x, y) =
∂u
∂x , uy(x, y) =

∂u
∂y

2. Negative total pressure (Eq 2.1 in [51])

f(u, g) = −1

2

∫
Ω

(∥u(x)∥2 + β∥g(x)∥2)dx

with β > 0 is a coefficient for the forcing term g(x). With a constant g(x), the objective is
simplified as − 1

2

∫
Ω
∥u(x)∥2dx.

3. Negative total potential energy [5]

f(u, a) = −
∫
X
a(x)∥∇u(x)∥2 dx+

∫
X
s(x)u(x) dx
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This functional corresponds to the system’s total potential energy. It balances the energy
dissipated by fluid friction (the first term) against the potential energy supplied by the
uniform fluid source (the second term, where s = 1 is assumed). In our design optimization
context, where the underlying physical state u is already a stable solution to the Darcy
PDE, minimization of this functional over the set of permeability fields a ∈ S determines
the permeability field a∗ that requires the minimum total energy to sustain the required
fluid injection (source s = 1) while maintaining zero pressure at the boundary (u = 0).
This effectively identifies the most hydrodynamically efficient design for the given flow
constraints. This functional is related to the potential power functional in Wiker et al. [5]
with the difference that the latter requires estimates of the velocity field, while the simplified
energy calculation above only uses the pressure field u.

D.1.2 Shallow Water

The shallow water equation on the rotating sphere is often used to model ocean waters over the
surface of the globe. This problem can be described by the following PDE [46]:

∂φ

∂t
+∇ · (φv) = 0 in S2 × {0,+∞}

∂(φv)

∂t
+∇ · (φv ⊗ v) = g in S2 × {0,+∞}

φ = φ0, v = v0 on S2 × {0}
where the input function is defined as the initial condition of the state a = (φ0, φ0v0) with the
geopotential layer depth φ and the discharge (v is the velocity field), g is the Coriolis force term, and
S2 denotes the surface of the 2-sphere in R3. The output function u predicts the state function at time
t: (φt, φtvt). For this problem, we use a search space S with |S| = 200 data points.

As the shallow water equation is usually chosen as a simulator of global atmospheric variables, we
adopt the most common data assimilation objective [52, 53] in the weather forecast literature defined
as:

f(u, a) =
1

2
⟨a− ap, B

−1(a− ap)⟩+
1

2
⟨u− ut, R

−1(u− ut)⟩,

where ap describes the prior estimate of the initial condition, ut represents the ground truth function,
the background kernel B and error kernel R can be computed with historical data. The objective can
be defined as an inverse problem which corresponds to finding the initial condition a that generates
the ground truth solution function ut. Here we simplify the objective by not penalizing the initial
condition (dropping the prior term) and assuming independence and unit variance on the solution
functions using an identity kernel R), the simplified objective function f(u) = 1

2 ⟨u− ut, u− ut⟩
can be used to measure different initial conditions.

D.2 Algorithm settings

NOTS was implemented using the Neural Operator library [47] and run on NVIDIA H100 GPUs
on CSIRO’s high-performance computing cluster. For each dataset, we selected the recommended
settings for FNO models according to examples in the library. Parameters were randomly initial-
ized using Kaiming (or He) initialization [36] for the network weights, sampling from a normal
distribution with variance inversely proportional to the input dimensionality of each layer, while
biases were initialized to zero. For all experiments, we trained the model for 10 epochs of mini-batch
stochastic gradient descent with an initial learning rate of 10−3 and a cosine annealing scheduler. The
regularization factor for the L2 penalty was set as λ := 10−4. This same setting for the regularization
factor was also applied to our implementation of STO-NTS.

E Additional results with single-hidden-layer model

More closely to the setting in our theoretical results, we tested a single-hidden-layer FNO on the
Darcy flow PDE. Only the last hidden layer of the model was trained via full-batch gradient descent.
The FNO was configured without any lifting layer, having only a single Fourier kernel convolution
and a residual connection, as in the original formulation. The number of hidden channels was set to
2048 to approximate the infinite-width limit.
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Figure 4: Cumulative regret across trials for the Darcy flow rate optimization problem with only
the last linear layer of a single-hidden-layer FNO trained via full-batch gradient descent for NOTS
(labeled as SNOTS). All our results were averaged over 10 independent trials, and shaded areas
represent ±1 standard deviation.

Figure 5: Cumulative regret across trials for the Darcy flow total pressure optimization problem with
only the last linear layer of a single-hidden-layer FNO trained via full-batch gradient descent for
NOTS (labeled as SNOTS).

The results in Figure 4 show that the algorithm with the simpler model (SNOTS) can perform well in
this setting, even surpassing the performance of the original NOTS. However, in the more challenging
scenario imposed by the potential power problem [adapted from 5], we note that SNOTS struggles,
only achieving mid-range performance when compared to other baselines, as shown in Figure 5. This
performance drop suggests that the complexity of the pressure optimization problem may require
more accurate predictions to capture details in the output functions that might heavily influence the
potential power. In general, a quadratic objective will be more sensitive to small disturbances than a
linear functional, hence requiring a more elaborate model.

F Limitations and extensions

Noise. We note that, although our result in Proposition 2 assumes a well specified noise model, it
should be possible to show that the same holds for noise which is sub-Gaussian with respect to the
regularization factor. The latter would allow for configuring the algorithm with any regularization
factor which is at least as large as the assumed noise sub-Gaussian parameter (i.e., its variance if
Gaussian distributed). However, this analysis can be quite involved and out of the immediate scope
of this paper, so we leave it for further research.

Nonlinear functionals. We assumed a bounded linear functional in Proposition 2, which should
cover a variety of objectives involving integrals and derivatives of the operator’s output. However,
this assumption may not hold for more interesting functionals, such as some objectives considered in
our experiments. Similar to the case with noise, any Lipschitz continuous functional of the neural
operator’s output should follow a sub-Gaussian distribution [59]. Hence, the Gaussian approximation
remains reasonable, though a more in-depth analysis would be needed to derive the exact rate of
growth for the cumulative regret in these settings.

Mult-layer models. For the theoretical analysis, we assumed a single hidden layer neural net-
work as the basis of our Thompson sampling algorithm. While this choice provides a simple and
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computationally efficient framework, it may not be optimal for all applications or datasets. For
instance, in some cases, a deeper neural network with more layers might provide better performance
due to increased capacity to capture complex patterns in the data. Extending our analysis to this
setting involves extending the inductive proofs for the multi-layer NNGP [38, 54] to the case of
neural operators. Such extension, however, may require transforming the operator layer’s output
back into a function in an infinite-dimensional space, which may lead to a bottleneck effect affecting
the possibility of a kernel limit [55]. In the single-hidden-layer case, such effect is avoided by
operating directly with the finite-dimensional input function embedding AR(a)(z) ∈ RdR . Recently,
concurrent work has explored the multi-layer neural operator setting [60], but their applicability to
NOTS is left as subject of future work.

Prior misspecification. We assumed that the true operator G∗ follows the same prior as our model,
which was also considered to be infinitely wide. While this assumption greatly simplifies our analysis,
more practical results may be derived by considering finite-width neural operators and a true operator
which might not exactly correspond to a realization of the chosen class of neural operator models.
For the case of finite widths, one simple way to obtain a similar regret bound is to let the width of
the network grow at each Thompson sampling iteration. The approximation error between the GP
model and the finite width neural operator can potentially be bounded as O(M−1/2) [55]. Hence if
the sequence of network widths {Mt}∞t=1 is such that

∑∞
t=1

1√
Mt

< ∞, a similar regret bound to the
one in Proposition 2 should be possible. Furthermore, if other forms of prior misspecification need to
be considered, analyzing the Bayesian cumulative regret (instead of the more usual frequentist regret),
as we did, allows one to bound the resulting cumulative regret of the misspecified algorithm via the
Radon-Nikodym derivative dP

dP̂
of the true prior P with respect to the algorithm’s prior probability

measure P̂ . If its essential supremum
∥∥∥ dP

dP̂

∥∥∥
∞

is bounded, then the resulting cumulative regret
remains proportional to the same bound derived as if the algorithm’s prior was the correct one [8].

G Broader impact

This work primarily focuses on the theoretical exploration of extending Thompson Sampling to
function spaces via neural operators. As such, it does not directly engage with real-world applications
or present immediate societal implications. However, the potential impact of this research lies in
its application. By advancing methods for function-space optimization, this work may indirectly
contribute to various fields that utilize complex simulations and models, such as climate science, engi-
neering, and physics. Improvements in computational efficiency and predictive power in these fields
could lead to positive societal outcomes, such as better climate modeling or engineering solutions.
Nevertheless, any algorithm with powerful optimization capabilities carries ethical considerations. Its
deployment in domains with safety-critical implications must be approached with care to avoid misuse
or unintended consequences. Researchers and practitioners should ensure transparency, fairness, and
accountability in applications potentially affecting society.
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