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ABSTRACT

Antibody, used by the immune system to identify and neutralize foreign objects
such as pathogenic bacteria and viruses, plays an important role in immune sys-
tem. In the field of drug engineering, the essential task is designing a novel anti-
body to make sure its paratope (substructures in the antibody) binds to the epitope
of the specific antigen with high precision. Also, understanding the structure of
antibody and its paratope can facilitate a mechanistic understanding of the func-
tion. Therefore, antibody structure prediction has always been a highly valuable
problem for drug discovery. AlphaFold2, a breakthrough in the field of structural
biology, provides a feasible solution to predict protein structure based on pro-
tein sequences and computationally expensive coevolutionary multiple sequence
alignments (MSAs). However, the computational efficiency and undesirable pre-
diction accuracy on antibody, especially on the complementarity-determining re-
gions (CDRs) of antibody limit its applications on the industrially high-throughput
drug design. In this paper, we present a novel method named xTrimoABFold to
predict antibody structure from antibody sequence based on a pretrained antibody
language model (ALM) as well as homologous templates, which are searched
from protein database (PDB) via fast and cheap algorithms. xTrimoABFold out-
performs the MSA-based AlphaFold2 and the protein language model based SO-
TAs, e.g., OmegaFold, HelixFold-Single and IgFold with a large significant mar-
gin (30+% improvement on RMSD) while performs 151x faster than AlphaFold2.
To the best of our knowledge, xTrimoABFold is the best antibody structure pre-
dictor to date in the world.

1 INTRODUCTION

Antibody is an important type of proteins for disease diagnosis and treatment. The structures of
antibodies are closely related to their functions, so that antibody structure prediction, which aims
to predicting the 3D coordinates of atoms in antibody, is essential in the biological and medical
applications such as protein engineering, modifying the antigen binding affinity, and identifying an
epitope of specific antibody. However, manual experimental methods such as X-ray crystallography
are time-consuming and expensive.

Recently, deep learning methods have achieved great success in protein structure prediction (Jumper
et al., 2021; Baek et al., 2021; Li et al., 2022). In short, these methods incorporate evolutional
and geometric information of protein structures and deep neural networks. In particular, Al-
phaFold2 (Jumper et al., 2021) introduces the architecture to jointly model the multiple sequence
alignments (MSAs) and pairwise information, which is able to end-to-end predict the protein struc-
tures in near experimental accuracy. Nevertheless, unlike general proteins, antibodies do not evolve
naturally but rather they bind to specific antigens and evolve specifically (fast and one-way evolv-
ing), the MSAs of antibodies especially on complementarity-determining regions (CDRs) are not
always available or reliable, which hurts the accuracy of models on antibody data.

With the development of large-scale pretrained language model, many protein language models (Rao
et al., 2020; Elnaggar et al., 2022; Rives et al., 2021; Rao et al., 2021; Ruffolo et al., 2021; Ofer et al.,
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2021; Wu et al., 2022) have been developed to generate the representation of protein sequence and
show promising performance on contact prediction (Iuchi et al., 2021; Rao et al., 2020), functional
properties prediction (Meier et al., 2021; Hie et al., 2021) and structure prediction from single se-
quence (Hong et al., 2022; Wu et al., 2022; Fang et al., 2022; Chowdhury et al., 2021; Ruffolo &
Gray, 2022). These single-sequence-based structure predictors typically follows a two-stage frame-
work that i) trains a protein language model (PLM) on large-scale unlabeled protein databases, e.g.,
UniRef50, UniRef90, BFD or Observed Antibody Space (OAS) database (Olsen et al., 2022a), ii)
employs the evoformer variants and structure module variants to predict protein structures from the
learned representation from the pretrained PLM. Their experimental results show comparable accu-
racy with the standard AlphaFold2 and perform much more efficient because of skipping the compu-
tationally expensive CPU-based MSA searching stage. Although large-scale PLM show promising
results, neither of PLM-based methods outperform AlphaFold2 on both general protein databases
and antibody databases.

Contribution. In this paper, we focus on one the of the most important problems in the field of drug
discovery: antibody structure prediction. We claim that when conducting structure prediction on
antibody, the general protein language model (PLM) is not the best optional. In contrast, we employ
an antibody language model (ALM) pretrained on the large-scale OAS database and use evoformer
and structure modules to learn the antibody structures in an end-to-end fashion. Also, we design fast
and cheap template searching algorithms based on two modalities of both sequence and structures.
The searched templates help xTrimoABFold learn from a good starting point. We construct two
large antibody databases of 19K antibody structure database and 501K protein structure database
from RCSB PDB (Berman et al., 2000) 1. Experimental results show that our xTrimoABFold per-
forms much better than all the latest SOTAs, e.g., AlphaFold2, OmegaFold, HelixFold-Single and
IgFold, with a significant margin (30+% improvement on RMSD). To the best of our knowledge,
xTrimoABFold is currently the most accurate antibody structure prediction model of the world. We
believe such large improvement on antibody prediction from xTrimoABFold will make a substantive
impact on drug discovery.

2 RELATED WORKS

Protein & Antibody Structure Prediction. Protein structure prediction aims to getting the 3D
coordinates from an amino acid sequence, which has been an important open research problems for
over 50 years (Dill et al., 2008; Anfinsen, 1973). In recent years, deep learning methods have been
widely used in protein structure prediction and considerable progress has been made by using the
co-evolution information from Multiple Sequence Alignments(MSAs), such like AlphaFold (Se-
nior et al., 2019; 2020), AlphaFold2 (Jumper et al., 2021), OpenFold (Ahdritz et al., 2021) and
RoseTTAFold (Baek et al., 2021). However, these methods are time-consuming and strictly de-
pendent on MSAs, which remains a challenge for the structure prediction of orphan proteins with
less homologous information or antibody for which MSAs are not always useful on account of a
fast evolving nature. Recently, Lin et al. (2022), Fang et al. (2022) and Wu et al. (2022) make
protein structure prediction on large protein language models which are no longer dependent on
MSAs, which drastically reduce computation time but incur a certain loss of prediction precision.
In particular, models like DeepAb (Ruffolo et al., 2022), ABlooper (Abanades et al., 2022) and
IgFold (Ruffolo & Gray, 2022) are specifically developed for antibody structure.

pretrained Language Model on general protein and antibody.

• General Protein Language Model (PLM). Typically, protein language models (Rao et al.,
2020; Elnaggar et al., 2022; Rives et al., 2021; Rao et al., 2021; Ruffolo et al., 2021; Ofer
et al., 2021; Wu et al., 2022) employ the popular transformer neural architecture vari-
ants (Vaswani et al., 2017) and train on different protein databases, such as UniRef50,
UniRef90 and BFD, etc. For example, Rao et al. (2021) introduce ESM variants and use
axial attention to learn row and column representation from MSA. Elnaggar et al. (2022)
train several PLMs with different number of parameters on UniRef and BFD datasets. Lin
et al. (2022) extends ESM and proposed ESM-2, which used relative position encoding
to capture the intrinsic interaction of amino acids in the sequence. Wu et al. (2022) pro-

1The two database are splitted by release datetime on January 17th, 2022.
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Figure 1: The architecture of xTrimoABFold, which takes single sequence and coarse-grained struc-
tural prediction as input, and uses pretrained antibody language model and cross-modal templates
to model homologous sequences and structures respectively. Then, the combination of Evoformer
(encoder) and Structure Module (decoder) of AlphaFold2 is employed to predict the fine-grained
prediction 3D structure of antibody.

pose OmegaPLM and use gated attention module (GAT) to replace self-attention layers in
transformer.

• Antibody Language Model (ALM). For antibody problems, language model trained on
antibody sequences may learn more specific language information and can perform more
powerful representations than general PLM. Sapiens (Prihoda et al., 2022) consisting of
two Transformer models were trained on 20M BCR heavy chains and 19M BCR light
chains. DeepAb is a long short-term memory (LSTM) network which is trained on 100k
paired BCR sequences of Observed Antibody Space (OAS) database (Olsen et al., 2022a).
AbLang (Olsen et al., 2022b) contains two models for either light chains or heavy chains
trained on OAS. AntiBERTa (Choi, 2022) and AntiBERTy Ruffolo et al. (2021) are both
BERT-based pretrained language model for antibody trained on OAS with no distinction
on light and heavy chains.

Template Searching Algorithms and Tools . For protein structure prediction, templates struc-
tures can be a kind of auxiliary information to improve the quality of structure models. HH-
Search (Steinegger et al., 2019) applied by AlphaFold2 for template searching is an open source tool
mainly used to template detection by HMM-HMM alignments between query and target database.
Different from HHSearch by making a search based on MSAs, FoldSeek (van Kempen et al., 2022),
can support a fast and accurate structure searching on datasets by using a structure as a query.

3 METHODOLOGY

In this section, we propose xTrimoABFold, an antibody structure prediction pipeline based on the
AlphaFold2 architectures, but without the computationally expensive CPU-based MSA searching.
Specifically, xTrimoABFold uses a pretrained antibody language model to generate residue encoding
and pair attentions to initialize single and pair representations respectively, which can compensate
the loss of homologous information of MSAs. Also, xTrimoABFold adopts a cross-modal tem-
plate searching algorithm, which can quickly search homologous structures in both sequential and
structural modals. The overview of xTrimoABFold is shown in Figure. 1.

3.1 SINGLE SEQUENCE MODELING WITH PRETRAINED ANTIBODY LANGUAGE MODEL

The excellent performance on many downstream tasks , e.g., protein structure prediction, drug-target
interaction of pretrained protein language models (PLMs) shows that PLMs can mine homologous
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sequence information without complex manual preparation of MSAs. Therefore, xTrimoABFold
uses a pretrained antibody language model to generate single and pair representations instead of
MSAs.

Single Representation. By default, pretrained antibody language model generates residue (token)
level representations with a single sequence as input, which can be used as the initial single repre-
sentation of following evoformer (a transformer-based encoder) by proper transformation. Since the
language model adopts the mechanism of multi-head self-attention, each token can get information
from other tokens, which can be seen as a pair2residue communication. Formally, given a residue
sequence of an antibody, the computation of single representation is as follows:

z = PLMab(x), s
0 = Linear(z), z ∈ RN×dlm , s0 ∈ RN×ds (1)

where N refers to the number of residues in the given protein, dlm, ds are the hidden sizes of lan-
guage model and following evoformer respectively, PLMab is pretrained antibody language model,
x = {x1, x2, · · · , xN} denotes the sequence of residues, and Linear refers to the linear layer of
neural network. Then, s0 is used as the initial single representation of evoformer.

Figure 2: An illustration of the residue2pair com-
munication.

Pair Representation. The attention weights
of multi-head self-attention mechanism in anti-
body language model are rich in prior knowl-
edge about the relation between residues such
as position information, which can be natu-
rally combined as the initial pair representation
through adaptive transformation. Specifically,
the generation of initial pair representation can
be formalized as follows:

qij = Concat

({
softmax

(Qk,l
i (Kk,l

j )T + aij√
dlm

)∣∣∣l ∈ [1, L], k ∈ [1, H]
})

(2)

where p0
ij = Linear(qij), q ∈ RN×N×HL, L and H denote the number of layers and attention

heads respectively, Qk,l
i and Kk,l

j are the query and key vectors of residues i and j in l-th layer
and k-th head respectively,aij denotes the relative position encoding between i and j, and p0 ∈
RN×N×dp is the initial pair representation.

The above calculation can be regarded as residue2pair communication because of multi-head query-
key product of residue pairs are involved in this step.

3.2 STRUCTURE PRIOR: CROSS-MODAL HOMOLOGOUS STRUCTURE SEARCHING

Structure templates typically provide a good prior for structure prediction. The previous works such
as AlphaFold2 search templates by MSAs-based algorithms, e.g., MMseqs2 (Steinegger & Söding,
2017), HHBlits (Remmert et al., 2012), which are expensive, inefficient and highly depend on MSAs
quality. In this paper, we provide an memory and computation efficient cross-modal template search-
ing algorithm, which introduces two perspectives of sequence and structure to search templates
without MSAs. Before conducting template search, we construct a novel antibody database named
Antibody Data Bank (ADB), which is derived from RCSB Protein Data Bank (PDB) (Berman et al.,
2000) and contains 501K proteins structures.

Sequential Modal Searching. Taking into account the idea that similar antibody sequences are
likely to have similar 3D structures 2, we use sequence alignment based similarity score to search
the structures with similar sequences to target antibody from the database as the templates. The
similarity score function can be formalized as:

2Although this idea is not work everywhere, we believe it could provide a well prior empirically.
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Sim(x1,x2) = Align(x1,x2))/max(len(x1), len(x2)), (3)

where x1 and x2 are residue sequences, and Align(., .) is the sequence alignment, which denotes
the maximum matched residues between two amino acid sequences (e.g., Align(’GVI’, ’GIV’) =
2), we use the Needleman-Wunsch algorithm (Likic, 2008) for sequence alignment computation.
Sequential modal searching first screens out all sequences whose similarity scores are in the range of
(0.4, 0.95), and restricts the available templates to up to 10 with the maximum similarity scores 3 to
target sequence database. After that, these top 10 structures will be considered as a part of template
candidates for the following training or inference.

Structural Modal Searching. Structural modal searching focuses on finding similar structures in
the database based on the coarse-grained structural prediction of the target antibody even though the
sequences of these structures may not match the target. We use target sample in AlphaFold Protein
Structure Database 4 as the coarse-grained structural prior. Similar to sequential modal searching,
we compute the alignment scores between structure of target antibody and structures in database
and remove the target itself and the structures with too high similarity to the target structure from
database. We add the top 10 structures to the template candidate set. We use FoldSeek (van Kempen
et al., 2022), a fast tool suitable for structure-pairwise alignment to calculate alignment scores.

Template Features After cross-modal template searching, we can get T template candidates, T
is less than or equal to 20 because of the duplication of two modal search results. We choose 4
templates from candidate set of top-2 sequential modal templates and top-2 structural modal tem-
plates at inference time. In the training step, we randomly select min(Uniform[0, T ], 4) templates
out of this restricted set of T templates, and we believe that the structures selected by two searching
algorithms contain more homologous structure information, so that we assign higher sampling prob-
ability to these structures. We employ the template encoder of AlphaFold2 to encode the template
structures into two types of template features of template angle features and template pair features,
and add them to the initial single and pair representations respectively, which can be formalized as
follows:

ŝ0 = Concat(s0,fta), p̂
0 = p0 + ftp; (4)

where fta ∈ R4×N×ds , ŝ0 ∈ R5×N×ds , p̂0,ftp ∈ RN×N×dp , fta and ftp are the template angle
and pair features respectively, and ŝ0 and p̂0 are the initial single and pair representations with
template features.

3.3 XTRIMOABFOLD

Evoformer and Structure Module. We use the Evoformer of AlphaFold2 to model complex in-
formation in initial single and pair representations. ŝ0 and p̂0 can be naturally taken as the input
of Evoformer. Note that the column-wise gated self-attention of Evoformer is necessary, which can
exchange the sequence information modeled by the antibody language model with the structure in-
formation of templates. We follow the other important components of AlphaFold2, i.e., Structure
Module, which employs a number of geometric transformation operators such as Invariant Point
Attention to predict the 3D structures of the protein end-to-end. Moreover, a recycling mechanism
is employed to refine the predicted structures iteratively followed AlphaFold2.

Training Objective. xTrimoABFold is trained end-to-end by a variation of the loss function pro-
posed by AlphaFold2 of Frame Aligned Point Error and a number of auxiliary losses, which can be
formalized as follows:

Ltrain = 0.5LFAPE + 0.5Laux + 0.3Ldist + 0.01Lconf , (5)

3One can tune number of selected templates accordingly.
4https://alphafold.ebi.ac.uk/
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Table 1: Statistics of datasets

Dataset Protein Count Residue Count Resolution Statistic

min max mean std min max mean std
Training BCR Set 18470 71 879 191 46 0.92 9.00 2.82 0.95

Test BCR Set 470 97 236 183 47 1.14 7.51 2.81 0.78
RCSB PDB Set 501533 2 4433 259 199 0.48 9.00 2.59 1.00

where LFAPE refers to the framed aligned point error (FAPE) over all atoms (Jumper et al., 2021),
Laux are the averaged FAPE and torsion losses on the inter-mediate structures over Cα only, Ldist

is an averaged cross-entropy loss for distogram prediction, Lconf is the model confidence loss, these
four loss functions are proposed by AlphaFold2. Compared to AlphaFold2, xTrimoABFold removes
the loss on masked MSA, because we don’t need MSA anymore.

Fine-tuning with CDR focal loss Since the structure of complementarity determining region
(CDR) in antibody is usually hard to predict than other framework regions (FR), we fine-tune xTri-
moABFold with a CDR focal loss after training. Formally, the CDR focal loss is denoted as:

xij = T−1
j ◦ xi, x

true
ij = T true−1

j ◦ xtrue
j , Tj , T

true
j ∈ (R3×3,R3), xi,x

true
i ∈ R3. (6)

dij =

√∥∥xij − xtrue
ij

∥∥2 + ϵ, ϵ = 10−4Å
2

(7)

LfcCDR =
1

Z

1

NCDR
atoms

∑
i∈{1,··· ,NCDR

atoms}

1

Nframes

∑
j∈{1,··· ,Nframes}

min(dclamp, dij), dclamp, Z = 10Å (8)

Lfine-tune = Ltrain + λLfcCDR (9)

where xi,x
true
i are the prediction and ground-truth 3D coordinates of atom i in CDR regions re-

spectively, Tj , T
true
j are the SE(3) transformations, NCDR

atoms denotes the number of atoms in CDR
regions of antibodies, and Nframes is the number of local frames. Fine-tuning with Lfine-tune helps
xTrimoABFold pay more attention to the difficult CDR regions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In the experiments, we created two large datasets. The first one is 19K antibody structure
dataset. We got a total of 18937 antibody data consisting of both amino acid sequences and structures
selected from RCSB Protein Data Bank (PDB) (Berman et al., 2000) released before April 13th,
2022. The specific selections focusing on the structures and sequences are as follows. We firstly
split each PDB file into single chains, and then make the selection. On the one hand, among the
whole 19736 BCR chains from PDB, samples which have no structure resolution values or those
of which the structure resolution is larger than 9Å were filtered out to keep the quality of structure
data. On the other hand, as for the sequences, we filtered out the samples whose sequence is empty
or those the repetition rate of a kind of amino acid is more than 90 percent in a sequence. Besides,
we also conducted deduplication on the sequence and kept the samples which have lower structure
resolution. After these filtering processes, we got 18937 antibody data as our dataset. Among
these, we collected data released before January 17th, 2022 as the training set which contains 18470
samples and other 470 samples to be the test set. The second dataset is our 501K protein structure
database. We got the whole protein database downloaded from RCSB PDB. Filtering out the missing
structure file, we got a total of 593491 protein chains. Later, we deleted the parts out of specification
on structure resolution and sequence similarity mentioned before. After that, we finally get rid of
the repeated examples getting total 501533 protein chains. Table 1 provides detailed statistics.
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Baseline. We compare our xTrimoABFold method with 4 latest state-of-art protein structure pre-
diction methods: AlphaFold2 (Jumper et al., 2021), PLM-based HelixFold-Single (Fang et al., 2022)
and OmegaFold (Wu et al., 2022), ALM-based IgFold (Ruffolo & Gray, 2022). For AlphaFold2, we
made the inference using five different models and picked up the structures with highest pLDDT 5

confidence for benchmarking. We also trained a variant of our model called xTrimoABFold-ESM,
which replaces the antibody language model to a general protein language model of ESM2 Lin et al.
(2022). The performance of xTrimoABFold-ESM is worse than xTrimoABFold, which demon-
strates that antibody language model is a better optional than general protein language model.

Evaluation metrics. To evaluate the quality of antibody structure prediction, we used root-mean-
squared-deviation (RMSD), TM-Score (Zhang & Skolnick, 2004), GDT TS and GDT HA Zemla
et al. (1999) as the evaluation metric. Both two values are calculated over backbone heavy atoms
after alignment of the respective framework residues by DeepAlign (Wang et al., 2013). In order to
evaluate the performance on CDR loops which are considered difficult for model to predict (Ruf-
folo & Gray, 2022), we calculated these two metrics on both antibody structures and CDR loop
structures.

TM-Score = max

 1

Ltarget

Lcommon∑
i

1

1 +
(

di

d0(Ltarget)

)2
 ,

where Ltarget is the sequence length of target protein and Lcommon is the number of residues that
appear in both the template and target structures.

Hyperparameter Settings. We used AntiBERTy (Version 0.0.5, installed from PyPI), a BERT-
based pretrained protein language model trained on OAS with 558M antibody natural sequences to
generate residue level representations. The hidden dimension of the model is 512 and the feedward
dimension is 2048 AntiBERTy contains 8 layers, with 8 attention heads per layer. In total, AntiB-
ERTy contains approximately 26M trainable parameters (Ruffolo et al., 2021). In the training part,
we block the gradient backpropagation of antibody language model and just train the Evoformer and
Structure Module. We use the Adam Optimizer (Kingma & Ba, 2014) with the learning rate of 1e-3,
β1 = 0.9, β2 = 0.999, ϵ = 8 and weight decay of 0. Moreover, We also clip the gradient using the
threshold of 10e9. Our model was trained for 25 epochs in 46 hours on 8 NVIDIA A100 GPUs with
a stayed batch size of 8. The same as AlphaFold2, the crop size of sequence is set into 256. On ac-
count of the replacing of multi- sequence alignments(MSA) representation with the single sequence
representation of antibody language model, we removed InputEmbedder, ExtraMSAEmbedder and
ExtraMSAStack as well as the masked MSA loss compared to AlphaFold2. When making structural
modal searching, Foldseek which enables fast and sensitive comparisons of large structure sets was
used. While searching templates from PDB, the following flags were set to a non-default value for
this tool. We chose 3Di Gotoh-Smith-Waterman as the alignment type and set max-seq into 2000.

4.2 RESULTS OF MAIN EXPERIMENTS

In this subsection, we show the main results and compare our xTimoABFold with four baselines.
Main results contain two part, one of which is the model performance on evaluation metrics, and
another is for the time efficiency. Table 2 and 3 respectively show the accuracy performance of all
models on antibody structure prediction and CDR loop structure prediction. For brevity, we only
present RMSD and TM-score for 3 CDR loops. Moreover, we present the performance with respect
to the antibody structure prediction time of each methods on different length of amino acid sequence
from the test dataset in Figure 3.

Performance on antibody structure. xTrimoABFold significantly outperforms all baselines on
test dataset for antibody structure prediction. In terms of RMSD, xTrimoABFold makes 32.60%,
35.42%, 28.97%, 85.21% improvements over AlphaFold2, OmegaFold, HelixFold-Single and Ig-
Fold. In the meanwhile, this trend continues on other evaluation metrics. That is to say, our xT-
rimoABFold achieves state-of-art performance on the antibody structure prediction compared with

5pLDDT: predicted local distance difference test.
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Figure 3: Median time of MSA search, AlphaFold2 and xTrimoABFold. xTrimoABFold is 151
faster than AlphaFold2.

Table 2: Experimental results of antibody structure prediction on test dataset with 95% confidence
interval. xTrimoABFold-ESM refers the similar approach like xTrimoABFold expect for replacing
the pretrained ALM to the pretrained PLM: ESM2 (Lin et al., 2022) with 15b parameters (the largest
PLM to date). The results show ALM is more suitable for antibody structure prediction.

Method RMSD ↓ TM-Score ↑ GDT TS ↑ GDT HA ↑
AlphaFold2 3.1254 ± 0.1410 0.8385 ± 0.0055 0.7948 ± 0.0057 0.6548 ± 0.0063
OmegaFold 3.2610 ± 0.1463 0.8384 ± 0.0057 0.7925 ± 0.0059 0.6586 ± 0.0063

HelixFold-Single 2.9648 ± 0.0997 0.8328 ± 0.0055 0.7805 ± 0.0057 0.6225 ± 0.0060
IgFold 14.2407 ± 0.4115 0.5035 ± 0.0143 0.4495 ± 0.0157 0.3474 ± 0.0148

xTrimoABFold 2.1059 ± 0.0812 0.8936 ± 0.0053 0.8655 ± 0.0058 0.7439 ± 0.0068
xTrimoABFold-ESM 4.8790 ± 0.1299 0.7057 ± 0.0061 0.6727 ± 0.0063 0.4992 ± 0.0062

not only PLM-based but also MSA-based protein structure prediction methods. To the best of our
knowledge, our xTrimoABFold has achieved optimal performance on antibody structure prediction.

Performance on CDR loops. As for the structure prediction of CDR loops, which are well-known
as difficult domains for model to make accurate prediction, our xTrimoABFold also performs well.
In detail, xTrimoABFold has relatively improvements over HelixFold-Single and IgFold, which
are trained based on a large scale protein language model and antibody language model on CDR1
and CDR2 loop. Concretely, we notice that our xTrimoABFold yields the best performance in
CDR3 loop which has been proven a difficult domain to predict because of the highly variable and
conformationally diverse.

Time efficiency on structure prediction xTrimoABFold performed a fast antibody structure pre-
diction. AlphaFold2 make protein structure prediction according to MSAs, which results in massive
time consumption. Compared with AlphaFold2, our xTiomoABFold is a MSA-free model which
predict the protein structure by a single amino acid sequence with MSA searching. From Figure 3
we can find that, our model performs 151X faster than AlphaFold2, which overcomes the bottle-
neck of time efficiency in protein structure prediction by AlphaFold2, enables large-scale antibody
structures prediction in a fast speed.

4.3 ABLATION STUDY OF MODEL COMPONENTS

In this subsection, we make ablation studies to evaluate the performance improvement brought by
our the introducing of pretrained antibody language model Antiberty and the added CDR focal loss
when fine-tuning the model.
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Table 3: Experimental results of Antibody CDR loop structure prediction on test dataset with 95%
confidence interval.

Method CDR1 CDR2 CDR3

RMSD ↓ TM-Score ↑ RMSD ↓ TM-Score ↑ RMSD ↓ TM-Score ↑
AlphaFold2 0.7151 ± 0.0409 0.6396 ± 0.0070 0.6733 ± 0.0360 0.6669 ± 0.0069 1.4794 ± 0.0682 0.5075 ± 0.0090
OmegaFold 0.7202 ± 0.0443 0.6457 ± 0.0073 0.6804 ± 0.0406 0.6750 ± 0.0069 1.4861 ± 0.0685 0.5114 ± 0.0092

HelixFold-Single 1.5964 ± 0.1093 0.3361 ± 0.0131 1.1659 ± 0.0894 0.3564 ± 0.0137 1.6303 ± 0.1088 0.2132 ± 0.0116
IgFold 2.7411 ± 0.1059 0.3138 ± 0.0093 2.6774 ± 0.1022 0.3339 ± 0.0093 3.3222 ± 0.1055 0.2104 ± 0.0078

xTrimoABFold 0.6064 ± 0.0294 0.6585 ± 0.0072 0.5899 ± 0.0278 0.6823 ± 0.0067 1.2539 ± 0.0584 0.5517 ± 0.0095

Figure 4: Model performance on RMSD w/o CDR focal loss

Performance gains from pretrained antibody language model xTrimoABFold used pretrained
antibody language model, AntiBERTy to generate residue-level representations, which contains
more specific antibody information compared to general protein language model like OmegaPLM,
ESM-2(Rives et al., 2021) etc. Here we fixed the other part of xTrimoFold and use ESM-2, a large-
scale protein language model trained on 250 million protein sequences to validate our choice of
antibody language model rather than regular protein language model. This model was trained on
the same setting of xTrimoABFold and get worse performance compared to xTrimoABFold, the
prediction performance can be seen in Table 2

Performance gains from CDR focal loss From test dataset, we randomly selected ten samples
and compare the improvements of model performance before and after adding CDR focal loss. In
these examples, we observed various degree of decrease of RMSD value compared from predicted
structure to the ground truth Figure 4, meaning that the our focal loss truly makes sense in the anti-
body structure prediction especially for the CDR loops which seems difficult to predict for regular
models.

5 CONCLUSION

In this paper, we have proposed a promising model, xTrimoABFold, for antibody structure predic-
tion. On the one hand, xTrimoABFold employs the pretrained antibody language model to extract
the information of single sequence, which is performs well than traditional protein language mod-
els. On the other hand, xTrimoABFold uses a efficient template searching algorithm based on two
modalities of both sequences and structures.

Limitations and Broader Impact. The limitation of this work is that we only address the antibody
structure prediction although it’s important on drug discovery. In the future, we will extend this work
to general protein prediction and the complex prediction.
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Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

11



Under review as a conference paper at ICLR 2023

Martin Steinegger, Markus Meier, Milot Mirdita, Harald Vöhringer, Stephan J Haunsberger, and
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