
GRAND-SLAMIN’ Interpretable Additive Modeling
with Structural Constraints

Shibal Ibrahim
MIT

Cambridge, MA
shibal@mit.edu

Gabriel Isaac Afriat
MIT

Cambridge, MA
afriatg@mit.edu

Kayhan Behdin
MIT

Cambridge, MA
behdink@mit.edu

Rahul Mazumder
MIT

Cambridge, MA
rahulmaz@mit.edu

Abstract

Generalized Additive Models (GAMs) are a family of flexible and interpretable
models with old roots in statistics. GAMs are often used with pairwise interactions
to improve model accuracy while still retaining flexibility and interpretability but
lead to computational challenges as we are dealing with order of p2 terms. It
is desirable to restrict the number of components (i.e., encourage sparsity) for
easier interpretability, and better computational and statistical properties. Earlier
approaches, considering sparse pairwise interactions, have limited scalability, espe-
cially when imposing additional structural interpretability constraints. We propose
a flexible GRAND-SLAMIN framework that can learn GAMs with interactions un-
der sparsity and additional structural constraints in a differentiable end-to-end
fashion. We customize first-order gradient-based optimization to perform sparse
backpropagation to exploit sparsity in additive effects for any differentiable loss
function in a GPU-compatible manner. Additionally, we establish novel non-
asymptotic prediction bounds for our estimators with tree-based shape functions.
Numerical experiments on real-world datasets show that our toolkit performs
favorably in terms of performance, variable selection and scalability when com-
pared with popular toolkits to fit GAMs with interactions. Our work expands
the landscape of interpretable modeling while maintaining prediction accuracy
competitive with non-interpretable black-box models. Our code is available at
https://github.com/mazumder-lab/grandslamin.

1 Introduction

Many state-of-the-art learners e.g., tree ensembles, neural networks, kernel support vector machines,
can be difficult to interpret. There have been various efforts to derive some post-training explainability
from these models —see [5] for a survey. Post-hoc explainability attempts to explain black-box
prediction with interpretable instance-specific approximations e.g, LIME [49] and SHAP [35].
However, such approximations are known to be unstable [12, 28], expensive [51] and inaccurate [32].
Hence, it is desirable to consider modeling approaches that are inherently interpretable.

Amongst classical approaches, there are some models that have inherent interpretability e.g., Linear
models, CART [4] and Generalized Additive Models (GAMs)[14]. GAMs [15] which have old roots
in statistics are considered a front-runner in the context of interpretable modeling. They consider
an additive model of the main effects of the form: g(IE[y]) =

∑
j∈[p] fj(xj), where xj denotes the

jth feature in input x ∈ Rp, fj is a univariate shape function and g denotes the link function that
adapts the model to various settings such as regression or classification. GAMs are considered easy
to interpret as the impact of each feature can be understood via visualizing the corresponding shape
function e.g., plotting fj(xj) vs xj . However, such models often suffer in prediction performance
when compared to black-box methods e.g., deep neural networks (DNNs). This can be attributed in
part to the fact that GAMs do not consider interactions among covariates.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/mazumder-lab/grandslamin

There has been some exciting work that aims to reduce this performance gap by considering GAMs
with pairwise interactions [see, for example, 34, 60, 6, 46, 9, 10, and the references therein]. GAMs
with pairwise interactions consider a model of the following form:

g(IE[y]) =
∑

j∈[p]

fj(xj) +
∑

(j,k)∈I
fj,k(xj , xk) (1)

where fj,k is a bivariate shape function and I ⊆ {(1, 2), (1, 3), ..., (p− 1, p)} denotes the set of all
pairwise interactions. Under this model, fj(xj) is the j-main effect and fj,k(xj , xk) is the (j, k)-th
interaction effect. Pairwise interactions are considered interpretable as each of the bivariate shape
function fj,k can be visualized as a heatmap on an xj , xk-plane. Despite their appeal, GAMs with
pairwise interactions pose several challenges: (i) Learning all pairwise interaction effects of the order
of p2 lead to computational and statistical challenges. (ii) Performing component selection such that
only a few of the components {fj} and {fj,k} are nonzero in an end-to-end fashion (while training)
is a hard combinatorial optimization problem. We remind the reader that component selection is
needed to aid interpretability. (iii) Imposing structural constraints on the interaction effects, e.g.,
hierarchy [42, 13, 7, 39, 3, 60, 10] makes the associated optimization task more complex.

In this paper, we introduce a novel GRAND-SLAMIN framework that allows for a flexible way to
do component selection in GAMs with interactions under additional structural constraints in an
end-to-end fashion. In particular, we introduce an alternative formulation of GAMs with interactions
with additional binary variables. Next, we smooth these binary variables so that we can effectively
learn these components via first-order methods in smooth optimization (e.g, SGD). Our formulation
appears to have an edge over existing methods in terms of (i) model flexibility for enhanced structural
interpretability and (ii) computational efficiency. First, the binary variables allow us to impose in the
model (a) component selection constraints and (b) additional structural constraints (e.g, hierarchy)
via a unified optimization formulation. Both of constraints (a), (b) can aid interpretability, model
compression, and result in faster inference and better statistical properties. Second, the our smoothing
procedure for the binary variables allows us to have customized algorithms that exploit sparsity in the
forward and backward pass of the backpropagation algorithm.

For structural interpretability, we study two notions: weak and strong hierarchy [42, 13, 7, 39, 3].

Weak Hierarchy : fj,k ̸= 0 =⇒ fj ̸= 0 or fk ̸= 0 ∀(j, k) ∈ I, j ∈ [p], k ∈ [p]. (2)
Strong Hierarchy : fj,k ̸= 0 =⇒ fj ̸= 0 and fk ̸= 0 ∀(j, k) ∈ I, j ∈ [p], k ∈ [p]. (3)

Weak hierarchy allows an interaction effect fj,k to be selected if either main effect fj or fk is selected.
Strong hierarchy allows for an interaction effect fj,k to be selected only if both main effects fj
and fk are selected. Such hierarchy constraints are popular in high-dimensional statistics: (i) They
lead to more interpretable models [36, 3, 10], (ii) They promote practical sparsity, i.e., reduce the
number of features that need to be measured when making new predictions (see Sec. 6.2) — this
can reduce future data collection costs [3, 61], (iii) Additional constraints can also help regularize a
model, sometimes resulting in improved AUC (see Sec. 6.1). (iv) They can also reduce variance in
estimation of main effects in the presence of interaction effects (see Sec. 6.4), allowing the user to
have more “trust” on model interpretability explanations.

Contributions. To summarise, while it’s well acknowledged that GAMs with sparse interactions
are a useful flexible family of explainable models, learning them pose significant computational
challenges due to the combinatorial nature of the associated optimization problem. Our technical
contributions in this paper be summarized as:

1. We propose a novel optimization formulation that makes use of indicator (binary) variables. The
indicator variables allow us to impose both (a) component selection and (b) structural constraints
in an end-to-end fashion. We consider a smooth and continuous parameterization of the binary
variables so that the optimization objective is differentiable (for a smooth training loss) and hence
amenable to first order methods such as SGD.

2. We show the flexibility of our framework by considering two different notions of hierarchy.
While these constraints improve interpretability, they make the combinatorial problem more
challenging [3, 17]. We propose end-to-end algorithms to train these models, making our approach
quite different from existing neural-based toolkits [60, 10].

3. We exploit sparsity in the indicator variables during the course of the training for sparse forward
and backward passes in a customized backpropagation algorithm in a GPU-compatible manner.
This provides speedups on training times up to a factor of 10× over standard backpropagation.

2

4. We study novel statistical properties of our model, and present non-asymptotic prediction error
bounds. Different from earlier work, our results apply to learning with tree-based shape functions
(for both main and interaction effects).

5. We introduce a new open-source toolkit GRAND-SLAMIN and perform experiments on a collection
of 16 real-world datasets to demonstrate the effectiveness of our toolkit in terms of prediction
performance, variable selection and scalability.

2 Related Work

GAMs. GAMs have a long history in statistics [14] and have been extensively studied. They’re often
studied with smooth spline shape functions [see, e.g, 37, 47, 20, 63, 62, and references therein].
Some works have studied tree-based shape functions [33] and neural basis functions [1, 58].

GAMs with all pairwise interactions. In this thread, [9] study low-rank decomposition with neural
network shape functions; [46] fit all pairwise interactions using shared neural bases.

Sparse GAMs with interactions. [31] introduced COSSO, which penalizes the sum of the Sobolev
norms of the functional components, producing sparse models. [23] propose ELAAN, which is an ℓ0-
regularized formulation with smooth cubic splines. [23] demonstrate the usefulness of their approach
in a regression setting in terms of compact component selection and efficiency on a large-scale Census
survey response prediction. [34, 40, 6] explore tree-based shape functions for fitting additive models
with sparse interactions. [34] consider all main effects and a subset of pairwise interactions; the
subset of interactions are selected via greedy stage-wise interaction detection heuristics. [40] provide
an efficient implementation of the above approach as Explainable Boosting Machines (EBMs). [6]
propose NODE-GA2M: an end-to-end learning approach with differentiable neural oblivious decision
(NODE) trees [44]. Component selection in NODE-GAM is achieved by constraining the number of
trees, and each tree learns to use one or two features via entmax transformation [43].

Structural Constraints. Structural interpretability constraints such as hierarchical interactions, have
been studied for both linear settings [3, 30, 59, 17] and nonparametric settings [45, 60, 10, 23]. We
briefly review prior work on nonparametric hierarchical interactions as it relates to this paper. [60]
proposed GAMI-Net, which is a multi-stage neural-based approach that fits all main effects and a
subset of Top-k interaction effects, selected via a fast interaction screening method [34]. Amongst
this screened set, interactions that satisfy the weak hierarchy are later used to fit interaction effects.
They also prune some main and interaction effects after training based on a variation-based ranking
measure. [10] proposed SIAN, which uses Archipelago [54] to measure the strength of each main and
interaction effect from a trained DNN, and then screens (i.e., selects a subset of candidate main and
interaction effects) using Archipelago scores to identify main effects and interaction effects that obey
strong hierarchy. Then, it fits a GAM model with the screened main and interaction effects. [60] and
[10] only support screening of interactions obeying hierarchy before the training for interaction effects
is done. None of these approaches impose hierarchy while training with interactions. [23] with their
ELAAN framework also consider strong hierarchy in the presence of ℓ0-regularized formulation with
splines for the least squares loss (regression). ELAAN has a two-stage approach: It selects a candidate
set of interactions and then applies commercial mixed integer programming solvers to learn sparse
interactions under a hierarchy constraint. This approach would require customized algorithms to adapt
to different loss objectives e.g., multiclass classification. To our knowledge, current techniques for
sparse hierarchical (nonparametric) interactions are not based on end-to-end differentiable training:
they can be limited in flexibility and scalability—a gap we intend to fill in this work.

Table 1: Relevant work on sparse GAMs with Interactions. Models in rows 1-2 have some variable
selection but no hierarchy; models in row 3-5 have screening-based approaches for hierarchy.
Paper Selection Method Structural Constraints Reg. Classif. Shape

Functions
Statistical
Properties ScalableMain Interactions Weak Hier. Strong Hier. Bin. Multi

EBM [40] None Greedy ✗ ✗ ✓ ✓ ✓ trees ✗ ✓

NODE-GA2M [6] Entmax+Anneal ✗ ✗ ✓ ✓ ✓ trees ✗ ✓
GAMI-Net [60] Prune Screening Screening ✗ ✓ ✓ ✗ neural ✗ ✗
SIAN [10] None Screening ✗ Screening ✓ ✓ ✗ neural ✓ ✗
ELAAN [23] Group L0 ✗ Screening+Convex Relax. ✓ ✗ ✗ splines ✓ ✓
GRAND-SLAMIN Binary Variables End-to-end End-to-end ✓ ✓ ✓ trees ✓ ✓

Hier.=Hierarchy, Reg.=Regression, Classif.=Classification, Bin.=Binary, Relax.=Relaxation

3

Note [9] and [10] also consider higher-order interactions (beyond two-way ones), which can be
hard to interpret. For convenience, Table 1 summarizes some relevant work on Sparse GAMs with
interactions and possible structural constraints.

3 Problem Formulation

We first present in Sec. 3.1 an alternative formulation of GAMs with interactions using binary
variables for imposing sparsity and structural constraints. Next, in Sec. 3.2, we present a smooth
reformulation of the objective that can be solved with first-order gradient-based methods.

3.1 An optimization formulation with binary variables

We first present an alternative formulation of GAMs with interactions under sparsity with/without
additional structured hierarchy constraints. Let us consider the parameterization:

f =
∑

j∈[p]

fj(xj)zj +
∑

(j,k)∈I
fj,k(xj , xk)q(zj , zk, zj,k), (4)

with main effects fj(·), interaction effects fj,k(·) and binary gates zj and q(zj , zk, zj,k). We consider
three different parameterizations for q(·), satisfying the following different constraints:

No structural constraint: q(zj , zk, zj,k)
def
= zj,k, (5)

Weak hierarchy: q(zj , zk, zj,k)
def
= (zj + zj − zjzk)zj,k, (6)

Strong hierarchy: q(zj , zk, zj,k)
def
= zjzkzj,k. (7)

The binary gates zj and q(zj , zk, zj,k) play the role of selection. In particular, when zj = 0, the
corresponding j-th main effect fj(·) is excluded from our additive model (4). Similarly, when
q(zj , zk, zj,k) = 0, the corresponding (j, k)-th interaction effect fj,k(·) is excluded. Then, we can
formulate the regularized objective as:

min
{fj},{fj,k},

{zj}∈{0,1}p,{zj,k}∈{0,1}|I|

ÎE[ℓ(y, f)] + λ
(∑
j∈[p]

zj + α
∑

(j,k)∈I
zj,k

)
, (8)

where the first term denotes empirical loss over the training data, the penalty term controls model
sparsity: λ ≥ 0 is the selection penalty, α ∈ [1,∞) controls the relative selection strength of main
and interaction effects. We refer to the framework in (8) under the different constraints (5)-(7) as
GRAND-SLAMIN1. We discuss extension of this framework to third-order interactions in Supplement
Sec. D. However, we do not consider third-order interactions in our experiments as third-order
interactions are hard to interpret.

The formulation in (8) with binary variables zj , zj,k and functions fj , fj,k with any of the constraint
sets (5)-(7) is a challenging discrete optimization problem (with binary variables) and is not amenable
to differentiable training via SGD (for example). Sec. 3.2 explores approximate solutions to (8) using
a smooth reformulation of the binary variables. Intuitively, we rely on continuous relaxations of the
binary variables z’s and parameterize f ’s with smooth tree-based shape functions. The reformulation
allows us to use first-order methods.

3.2 A Smooth Reformulation of Problem (8)

We discuss a smooth reformulation of the objective in (8). We describe an approach to parameterize
the continuous relaxation of the binary variables zj , zj,k with a Smooth-Step function [18] and use
smooth tree-based shape functions to model {fi}, {fj,k}.

3.2.1 Relaxing Binary Variables with Smooth Gates

We present an approach to smooth the binary gates z’s in (8) using a smooth-step function [18], which
we define next.

1GRAND-SLAMIN stands for GeNeRAlizeD Sparse Learning of Additive Models with INteractions.

4

Smooth-Step Function. Smooth-step function is a continuously differentiable function, similar in
shape to the logistic function. However, unlike the logistic function, the smooth-step function can
output 0 and 1 exactly for sufficiently large magnitudes of the input (see Appendix B for details). This
function has been used for smoothing binary representations for conditional computation [18, 19, 21].

We parameterize each of the z’s in (8) as S(µ), where µ ∈ R is a learnable parameter and S(·) denotes
the Smooth-step function. We parameterize the additive function as: f =

∑
j∈[p] fj(xj)S(µj) +∑

(j,k)∈I fj,k(xj , xk)q(S(µj), S(µk), S(µj,k))) and optimize the following objective:

min
{fj},{fj,k},

{µj}∈Rp,{µj,k}∈R|I|

ÎE[ℓ(y, f)] + λ(
∑

j∈[p]

S(µj) + α
∑

(j,k)∈I
S(µj,k)). (9)

Note that S(µj) and S(µj,k) are continuously differentiable, so the formulation in (9) is amenable to
first-order gradient-based methods (e.g, SGD).

Achieving binary gates. To encourage each of the S(µj)’s and S(µj,k)’s to achieve binary state
(and, not fractional) by the end of training, we add an entropy regularizer τ(

∑
j∈[p] Ω(S(µj)) +∑

(j,k)∈I Ω(S(µj,k))) where Ω(S(µ)) = −(S(µ) logS(µ) + (1−S(µ)) log(1−S(µ))) and τ ≥ 0

controls how quickly each of the gates S(µ) converges to a binary z.

3.2.2 Soft trees

1

2 3

p

1

2 3

Figure 1: Modeling main and interaction effects
with soft trees. ϕ denotes the sigmoid activation
function. We omit biases in split nodes for brevity.
For interaction effect, W j,k

i,1 ∈ R and W j,k
i,2 ∈ R

denote the weights in i-th node of the (j, k)-th tree.

We use soft trees [25, 24, 53, 11]—based on
hyperplane splits (univariate or bivariate) and
constant leaf nodes — as shape functions to
parameterize the main effects fj(·) and the pair-
wise interaction effects fj,k(·). See Figure 1 for
an illustration. Soft trees were introduced as
hierarchical mixture of experts by [25] and fur-
ther developed by [24, 53, 11]. They allow for
end-to-end learning [27, 18, 22]. They also have
efficient implementations when learning tree en-
sembles [22]. A detailed definition of soft tress
is given in Appendix A.

4 Efficient Implementation

We discuss a fast implementation of our ap-
proach. The key elements are: (i) Tensor param-
eterization of trees, (ii) Sparse backpropagation,
and (iii) Complementary screening heuristics.

Tensor Parameterization of Additive Effects.
Typically, in neural-based additive model imple-
mentations [1, 60], a separate network module
is constructed for each shape function. The out-
puts from each model are sequentially computed
and combined additively. This can create bot-
tleneck in scaling these models. Some recent
approaches e.g., [10] try to work around this ap-
proach by constructing a large block-wise network to compute representations of all shape functions
simultaneously. However, this comes at a cost of large memory footprint. For tree-based shape
functions, drawing inspiration from [22], we can implement a tensor-based formulation of all shape
functions, leveraging the fact that each tree has the same depth. This parameterization can exploit
GPU-friendly parallelization in computing all shape functions simultaneously without increasing
memory footprints.

Sparse Backpropagation. We use first-order optimization methods (e.g., SGD and its variants)
to optimize GRAND-SLAMIN. Typically, a main computational bottleneck in optimizing GAMs with
all pairwise interactions via standard gradient-based backpropagation methods is the computation

5

of forward pass and gradient computations with respect to all additive components (both main and
interaction effects). This can hinder training large GAMs with interactions. We exploit the sparsity in
GRAND-SLAMIN via the sparsity in the smooth-step function and its gradient during training.

Recall that S(µj)’s and S(µjk)’s play a role of selection in a smoothed fashion. In the early stages
of training, S(µj)’s and S(µjk)’s are all in the range (0, 1). As the optimization proceeds, due to
the entropic regularization and selection regularization, S(µj)’s and S(µjk)’s progressively achieve
binary state {0, 1} — the gradient with respect to µj and µjk also reaches 0 because of the nature of
smooth-step function S(·). All the additive components corresponding to the selection variables that
reached 0 can be removed from both the forward and the backward computational graph. This sparse
backpropagation approach can provide large speedups on training times up to a factor of 10× over
standard backpropagation. Additionally, there is progressively a reduced memory footprint during
the course of training in comparison to standard backpropagation.

The approach outlined above (use of Smooth-Step function for selection) when specialized to additive
models allows us to implement GPU-friendly sparse backpropagation — this makes our work different
from [18], which does not support GPU training.

Screening. We describe how screening approaches prior to training, can complement our sparse
backpropagation approach when the number of all pairwise interactions is large e.g., of the order
100, 000. Fast screening methods based on shallow-tree like models are proposed in [34] for identify-
ing prominent pairwise interactions. These are used by various toolkits e.g., EBM [40], GAMI-Net
[60]. These screening approaches are complementary to our selection approach with indicator vari-
ables. We used CART [4] for each pairwise interaction and sorted the interaction effects based on
AUC performance to select an initial screened set of interaction effects. In particular, we can consider
I to be a screened subset (e.g., 10, 000) of all pairwise interaction effects of the order 100, 000. Then,
we run our end-to-end learning framework under the component selection constraints on the main and
screened interaction effects. We observe that such screening can be beneficial for multiple reasons: (i)
The training time can be reduced further by 3×– 5×. (ii) The memory footprint of the model reduces
by 10×. (iii) There is no loss in accuracy—the accuracy can sometimes improve with screening —
see ablation study in Supplement Sec. F.6. Note that even with screening, our approach is different
from GAMI-Net as they directly screen to a much smaller set of interactions e.g., 500 and there is no
component selection when training with these interactions.

5 Statistical Theory

In this section, we explore the statistical properties of our additive model with soft tree shape functions.
We assume that observations are noisy versions of some (unknown) underlying noiseless data. We
do not assume the noiseless data comes from a tree-based model. We show that if our model can
approximate the true noiseless data well, the prediction error resulting from the noise converges
to zero as the number of observations grows. In particular, for n data observations (xi, yi)

n
i=1 we

consider a sparsity-constrained version of Problem (8) with the least-squares loss as given by

f(t)(y) ∈ argmin
n∑

i=1

[yi −
∑

j∈[p]

fj(xi,j)zj − (t− 1)
∑

(j,k)∈I
fj,k(xi,j , xi,k)q(zj , zk, zj,k)]

2, (10)

s.t. {zj} ∈ {0, 1}p, {zj,k} ∈ {0, 1}|I|,
∑

j∈[p]

zj +
∑

(j,k)∈I
q(zj , zk, zj,k) ≤ s,

for t ∈ {1, 2}, where fj , fj,k are depth-d soft trees (cf. Section 3.2.2). For t = 1, Problem (10)
simplifies to a main effects model, while t = 2 corresponds to the model with pairwise interactions.
We study the case with no hierarchy constraints here, q(zj , zk, zj,k) = zj,k as in (5). We expect our
approach to extend to more general cases, but we do not pursue that here.

Model Setup. We assume for i ∈ [n], the data is bounded, ∥xi∥2 ≤ 1. The noisy observations are
given as yi = h∗(xi) + εi = y∗i + εi where h∗ is the unknown underlying generative model (need
not be a tree ensemble), and εi

iid∼ Normal(0, σ2) are noise values. Suppose f is a feasible solution
for Problem (10). Let U ,L denote the set of internal nodes and leaves for a depth d tree, and let
(W j ,oj) be the set of weights corresponding to internal nodes and leaves of tree j i.e. fj(xj) in this
solution, where W j ∈ R|U|,oj ∈ R|L|. We also let W j

i , o
j
l be the weights corresponding to node

i ∈ U and leaf l ∈ L in tree j, respectively. We define W j,k
i , oj,kl for fj,k(xj , xk) and i ∈ U , l ∈ L

6

in a similar fashion, where W j,k ∈ R|U|×2,oj,k ∈ R|L|. See Figure 1 for an illustration. Define

ū(f) = max
j∈[p],i∈U

zj=1

|W j
i | ∨ max

j∈[p],l∈L
zj=1

|ojl | ∨ max
j,k∈[p],i∈U

zj,k=1

∥W j,k
i ∥2 ∨ max

j,k∈[p],l∈L
zj,k=1

|oj,kl |

where ∨ denotes maximum. Conceptually, ū(f) is the largest weight (in absolute value) that appears
in all main effect and interaction soft trees. Let f̂ = f(t)(y) be the estimator resulting from the noisy
data, and f∗ = f(t)(y

∗) be the oracle estimator that is the best approximation to the noiseless data
among feasible solutions of (10) (i.e., among sparse additive tree models). We assume the following:

(A1) The activation function ϕ : R 7→ [0, 1] for soft trees is L-Lipschitz for some L > 0.
(A2) There exists B > 0 such that ū(f̂) ∨ ū(f∗) ≤ B.

Assumption (A2) ensures the trees resulting from the data are uniformly bounded. This is a mild
assumption as in practice, the data is bounded and the resulting trees are also bounded as a result.

Main Results. Our first result is for a general setup, where p can be much larger than n.

Theorem 1. Let f̂ , f∗ be as defined above and take A = 2∨ 2d+2B ∨B2dL2d+3 and a = exp(−1).
Under the model setup, assume s ≥ 1 and σ ≳ 1.2 Then,
(1) For t = 1, if n ≳ σ2(s log p+ s2A2), then with high probability

1

n

n∑
i=1

(f̂(xi)− y∗i)
2 ≲ 1

n

n∑
i=1

(f∗(xi)− y∗i)
2 + σ4/3

n2/3

(
(s log p)2/3 + (sA)4/3

)
.

(2) For t = 2, if n ≳ σ2+2a(s log p+ s3A3), then with high probability

1

n

n∑
i=1

(f̂(xi)− y∗i)
2 ≲ 1

n

n∑
i=1

(f∗(xi)− y∗i)
2 + σ2(1+a)/(2+a)

n1/(2+a)

(√
s log p+ (sA)3/2

)2/(2+a)
.

Theorem 1 presents non-asymptotic bounds for the performance of our method. Particularly, this
theorem shows that under a well-specified model where y∗i = f∗(xi), prediction error rates of
n−2/3 and n−1/(2+a) ≈ n−0.42 are achievable for main effects and interaction models, respectively.
Particularly, this implies that the prediction error of our estimator (resulting from the noise in
observations) converges to zero as we increase the total number of samples, n. We note that although
the rate from the main effects model is sharper, such models might be too simple to capture the
noiseless data, leading to larger oracle error. Therefore, in practice, the interactions model can lead to
better performance. Next, we show that under the asymptotic assumption that n → ∞, the error rate
for the interaction models can be further improved.
Theorem 2. Under the model setup with t = 2, assume all parameters are fixed except n. For any
positive sequence an with limn→∞ an = 0, there exists a positive sequence bn with limn→∞ bn = 0

such that if n ≳ b
−1/2(2+an)
n then with high probability

1

n

n∑
i=1

(f̂(xi)− yi)
2 ≲ 1

n

n∑
i=1

(f∗(xi)− y∗i)
2 + 1

n1/(2+an) .

Theorem 2 shows that essentially when n → ∞ and other parameters in the problem stay constant,
an error rate of n−0.5 is achievable for the interactions model which improves upon Theorem 1.

Discussion of previous work: As stated, our results are the first to present prediction bounds special-
ized to learning sparse additive models with soft trees. Moreover, as we discuss in Appendix C.5, our
upper bounds (rates) generally align with the best known rates available in the literature for learning
main effects and interactions, such as [23, 52], or hold under milder assumptions.

6 Experiments

We study the performance of GRAND-SLAMIN on 16 real-world datasets and compare against relevant
baselines for different cases. We make the following comparisons:

1. Performance comparison of GRAND-SLAMIN without/with structural constraints against existing
toolkits for sparse GAMs with interactions.
2The notation ≲,≳ depict an inequality holds up to a universal constant independent of problem data.

7

(a) Toolkits that support sparse interactions: EB2M [40] and NODE-GA2M [6]
(b) Toolkits that support hierarchy constraints: GAMI-Net [60] and SIAN [10]

2. Variable selection comparison against the competing toolkits.
3. Computational scalability of GRAND-SLAMIN toolkit with sparse backpropagation.
4. Variance reduction with structural constraints

Additional results are included in Supplement Sec. F that study (i) comparison with full complexity
models in F.1, (ii) comparison with GAMs with all pairwise interactions in F.2, (iii) comparison with
Group Lasso selection approach in F.3, (iv) choice of shape functions in F.4, (v) effect of entropy on
performance and component selection in F.5, and (vi) effect of screening on training times, memory
and performance in F.6.

Datasets. We use a collection of 16 open-source classification datasets (8 binary, 6 multiclass and 2
regression) from various domains. We consider datasets with a wide range of number of all pairwise
interactions 10− 200000. A summary of the datasets is in Table E.1 in the Appendix.

Table 2: Test ROC AUC of GRAND-SLAMIN, EB2M and
NODE-GA2M. We report median along with mean abso-
lute deviation across 10 runs.

Dataset EB2M NODE-GA2M GRAND-SLAMIN
Magic 93.12± 0.001 94.27± 0.13 93.86± 0.30
Adult 91.41± 0.0004 91.75± 0.14 91.54± 0.14
Churn 91.97± 0.005 89.62± 5.61 92.40± 0.41 (SH)
Satimage 97.65± 0.0007 98.70± 0.07 98.81± 0.04
Texture 99.81± 0.0004 100.00± 0.00 100.00± 0.00
MiniBooNE 97.86± 0.0001 98.44± 0.02 97.77± 0.05 (WH)
Covertype 90.08± 0.0003 95.39± 0.12 98.11± 0.08
Spambase 98.84± 0.01 98.78± 0.06 98.55± 0.07 (SH)
News 73.03± 0.002 73.53± 0.06 73.24± 0.04 (SH)
Optdigits 99.79± 0.0003 99.93± 0.02 99.98± 0.0
Bankruptcy 93.85± 0.01 92.02± 1.03 92.51± 0.54 (WH)
Madelon 88.04± 0.02 60.07± 0.82 89.25± 1.03 (WH)
Activity 74.96± 8.77 99.86± 0.04 99.24± 1.45
Multiple 99.96± 0.0002 99.94± 0.02 99.95± 0.02

Table 3: Test ROC AUC for GRAND-SLAMIN with structural
constraints i.e., (6) or (7), GAMI-Net and SIAN. We report
median across 10 runs along with mean absolute deviation.

GAMI-Net
WH

SIAN
SH

GRAND-SLAMIN
Dataset\Model WH SH
Magic 91.72± 0.05 93.02± 0.06 93.16± 0.55 93.37± 0.16
Adult 91.01± 0.04 90.67± 0.05 91.34± 0.32 91.46± 0.15
Churn 90.05± 0.77 92.98± 0.20 92.28± 0.75 92.40± 0.41
Spambase 98.67± 0.04 98.28± 0.04 98.45± 0.15 98.55± 0.07
MiniBooNE 96.11± 0.41 95.90 97.77± 0.05 97.62± 0.30
News 72.54± 0.05 72.28 73.15± 0.08 73.24± 0.04
Bankruptcy 92.46± 0.12 90.71 92.51± 0.54 90.45± 1.87
Madelon 88.14± 0.94 83.18 89.25± 1.03 86.23± 1.89
WH=Weak Hierarchy, SH=Strong Hierarchy.
For SIAN, for some of the larger datasets (row 5-9),
we use the number for best trial as SIAN takes
∼ 24 hours on V100 Tesla GPU.

Tuning Details. For all the experi-
ments, we tune the hyperparameters
using Optuna [2] with random search
on a held-out validation set. We com-
pute statistical averages across multi-
ple runs for the optimal hyperparam-
eters for all models. In particular, we
report median test ROC AUC across
10 runs along with the mean absolute
deviation (MAD). Additional details
are in the Appendix E.

6.1 Prediction Performance

Comparison with EB2M and
NODE-GA2M. We first study
the performance of our model in
comparison to two tree-based state-of-
the-art toolkits which support sparse
GAMs with interactions without any
structural constraints e.g., EB2M
and NODE-GA2M. We report the
ROC AUC performance in Table 2.
Our model outperforms EB2M in
10 out of 14 datasets. Our model is
also competitive with NODE-GA2M
as it can outperform in 50% of the
datasets. In summary, our results
in Table 2 show that we are at par
with state-of-the-art methods for
unstructured component selection.
Our key advantage is to do hierarchical interactions, which NODE-GA2M and EB2M can not support.
Additionally, we can achieve faster training times (Sec. 6.3) and improve on variable selection (Sec.
6.2) than NODE-GA2M and EB2M.

Structural constraints: Weak and Strong Hierarchy. Next, we study our method with structural
constraints i.e., (6) for weak hierarchy or (7) for strong hierarchy. We compare against two competing
neural-based state-of-the-art methods for sparse GAMs with hierarchical interactions: (i) GAMI-Net
with support for weak hierarchy, and (ii) SIAN with support for strong hierarchy. We omit multiclass
datasets as both GAMI-Net and SIAN do not support them. We report the ROC AUC performance in
Table 3. Our models outperform GAMI-Net and SIAN in 7/8 datasets.

Additionally, our models are much more compact in terms of overall number of parameters — our
tree-based shape functions have 100× and 10× smaller number of parameters than the neural-based

8

shape functions used by GAMI-Net and SIAN respectively. Moreover, our toolkit is significantly
faster than SIAN and GAMI-Net on larger datasets — see Sec. 6.3.

Additionally, we compare interpretable modeling toolkits with full complexity models e.g., deep
neural network (DNN), in Supplement Sec. F.1. We observed interpretable models to outperform
full complexity models on these datasets. We also compare our toolkit that fits sparse components
with toolkits that fit all pairwise interactions e.g., NA2M, NB2M and SPAM in Supplement Sec. F.2.
GRAND-SLAMIN generally outperform these methods with enhanced interpretability due to sparsity
and structural constraints. We also study how our toolkit performs when we replace soft tree shape
functions with MLP shape functions in Supplement Sec. F.4. Interestingly, we observe that soft trees
seem to have an edge when the parameters are matched with MLP.

6.2 Variable Selection

Table 4: Number of features used by GRAND-SLAMIN without/with
additional structural constraints and competing approaches. Hy-
phen (-) indicates multiclass classification is not supported by
GAMI-Net and SIAN.

EB2M NODE
GA2M

GAMI
Net

SIAN GRAND-SLAMIN
Dataset\Model None WH SH
Magic 10± 0 10± 0 10± 0 10± 0 10± 0 9± 1 7± 0
Adult 14± 0 14± 0 14± 1 14± 0 13± 1 11± 1 11± 1
Churn 19± 0 19± 0 18± 2 19± 0 19± 0 11± 1 12± 2
Satimage 36± 0 36± 0 − − 36± 0 36± 0 22± 2
Texture 40± 0 40± 0 − − 40± 0 37± 2 17± 2
MiniBooNE 50± 0 50± 0 16± 12 34 50± 0 50± 0 28± 3
Covertype 54± 0 54± 0 − − 34± 1 54± 1 54± 0
Spambase 57± 0 57± 0 52± 2 55± 1 57± 0 56± 3 54± 2
News 58± 0 58± 0 47± 1 52 58± 0 58± 0 58± 0
Optdigits 64± 0 64± 0 − − 64± 0 64± 0 59± 1
Bankruptcy 95± 0 95± 0 60± 15 69 95± 0 60± 26 7± 16
Madelon 500± 0 500± 0 61± 56 490 26± 19 19± 15 24± 9
Activity 533± 0 346± 6 − − 182± 15 440± 22 159± 21
Multiple 649± 0 649± 0 − − 648± 1 629± 9 649± 0
WH=Weak Hierarchy, SH=Strong Hierarchy.

We evaluate the performance of
our models in terms of feature
selection. We report the num-
ber of features selected in Ta-
ble 4 by each toolkit for sparse
GAMs with interactions. We
see that GRAND-SLAMIN with
structural constraints, in partic-
ular strong hierarchy, can sig-
nificantly reduce the number of
features selected by the GAMs
with interactions model. For ex-
ample, on Bankruptcy datasets,
GRAND-SLAMIN achieves fea-
ture compression up to a factor
of 8× over state-of-the-art GAM
toolkits. Having fewer features
reinforces the usefulness of addi-
tive models as being interpretable.

6.3 Computational Scalability

Next, we discuss the scalability of GRAND-SLAMIN.

Sparse backpropagation. We highlight the usefulness of our efficient approach with sparse back-
propagation in Figure 2 on Activity dataset. We show in Figure 2[a] that during the course of
training, the number of selected components (selected via binary variables z’s and q(·)’s) becomes
progressively smaller. This leads to much faster computations at each epoch in Figure 2[b] due to

(a) Number of selected effects at each epoch. (b) Training time (seconds) for each epoch.

Figure 2: GRAND-SLAMIN with standard (dense) backpropagation vs sparse backpropagation on
Activity dataset. (a) shows the number of nonzero effects:

∑
j zj +

∑
(j,k)∈I q(zj , zk, zj,k) and (b)

shows the time for each epoch during the course of training.

9

Figure 3: Estimated main effects in the presence of interaction effects on bikesharing dataset [Left]
without hierarchy, [Middle] weak hierarchy and [Right] strong hierarchy. Strong hierarchy has the
smallest error bars.

sparse forward and backward passes. By exploiting sparsity during training, we can get 10× faster
training times than with standard backpropagation.

Comparison with other toolkits. Our toolkit is highly competitive in terms of training times with
all existing tree-based and neural-based toolkits for sparse GAMs with interactions. For example,
on Madelon dataset, we are 15× faster than NODE-GA2M, 20× faster than EBM, 1300× faster
than SIAN and 25× faster than GAMI-Net. See Supplement Sec. F.7 for more detailed timing
comparisons across multiple datasets. Note that, in addition, we can also handle the case of structured
interactions — extending the flexibility of existing end-to-end training methods.

6.4 Variance Reduction with Structural Constraints

We provide a visualization study to further highlight an important contribution of our work. In
particular, our framework can support models with structural constraints. Hence, we study the effect
of these constraints on the stability of learning main effects (in the presence of interactions) when
these structural constraints are imposed or not. For this exercise, we consider bikesharing dataset. We
visualize some of the main effects in the presence/absence of hierarchy in Figure 3. Note that for
visualization, we used the purification strategy [29, 6] post-training that pushes interaction effects
into main effects if possible. We can observe in Figure 3 that when additional hierarchy constraints
are imposed, the error bars are much more compact across different runs. This can potentially
increase the trust you can have on the model for deriving interpretability insights. We show additional
visualizations on another dataset (American Community Survey from US Census Planning Database
2022 [55]) to show the same behavior in Supplement Section G.

7 Conclusion

We introduce GRAND-SLAMIN: a novel and flexible framework for learning sparse GAMs with
interactions with additional structural constraints e.g., hierarchy. This is the first approach to do end-
to-end training of nonparameteric additive models with hierarchically structured sparse interactions.
Our formulation uses binary variables to encode combinatorial constraints. For computational
reasons, we employ smoothing of the indicator variables for end-to-end optimization with first-order
methods (e.g., SGD). We propose sparse backpropagation, which exploits sparsity in the nature of
the smoothing function in a GPU-compatible manner and results in 10× speedups over standard
backpropagation. We present non-asymptotic prediction bounds for our estimators with tree-based
shape functions. Numerical experiments on a collection of 16 real-world datasets demonstrate the
effectiveness of our toolkit in terms of prediction performance, variable selection and scalability.

10

Acknowledgments and Disclosure of Funding

This research was supported in part, by grants from the Office of Naval Research (N000142112841),
and Liberty Mutual Insurance. The authors acknowledge the MIT SuperCloud [48] for providing
HPC resources that have contributed to the research reported within this paper.

References
[1] Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana, and

Geoffrey Hinton. Neural additive models: Interpretable machine learning with neural nets. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

[2] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, et al. Optuna: A next-generation hyperparameter
optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[3] Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions. The Annals of
Statistics, 41(3):1111–1141, June 2013.

[4] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor &
Francis, 1984.

[5] Nadia Burkart and Marco F. Huber. A survey on the explainability of supervised machine learning. J. Artif.
Intell. Res., 70:245–317, 2020.

[6] Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. NODE-GAM: Neural generalized additive model
for interpretable deep learning. In International Conference on Learning Representations, 2022.

[7] Hugh Chipman. Bayesian variable selection with related predictors. The Canadian Journal of Statistics /
La Revue Canadienne de Statistique, 24(1):17–36, 1996.

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[9] Abhimanyu Dubey, Filip Radenovic, and Dhruv Mahajan. Scalable interpretability via polynomials.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[10] James Enouen and Yan Liu. Sparse interaction additive networks via feature interaction detection and sparse
selection. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in
Neural Information Processing Systems, 2022.

[11] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree, 2017.

[12] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):3681–3688, Jul. 2019.

[13] M. Hamada and C. F. J. Wu. Analysis of designed experiments with complex aliasing. Journal of Quality
Technology, 24(3):130–137, 1992.

[14] Trevor Hastie and Robert Tibshirani. Generalized additive models: some applications. Journal of the
American Statistical Association, 82(398):371–386, 1987.

[15] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[16] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The Lasso
and Generalizations. Chapman & Hall/CRC, 2015.

[17] Hussein Hazimeh and Rahul Mazumder. Learning hierarchical interactions at scale: A convex optimization
approach. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning
Research, pages 1833–1843. PMLR, 26–28 Aug 2020.

[18] Hussein Hazimeh, Natalia Ponomareva, Petros Mol, et al. The tree ensemble layer: Differentiability meets
conditional computation. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
4138–4148. PMLR, 13–18 Jul 2020.

11

[19] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua Chen, Rahul
Mazumder, Lichan Hong, and Ed Chi. DSelect-k: Differentiable selection in the mixture of experts with
applications to multi-task learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[20] J. Huang, J.L. Horowitz, and F. Wei. Variable selection in nonparametric additive models. The Annals of
Statistics, 38:2282–2313, 2010.

[21] Shibal Ibrahim, Wenyu Chen, Hussein Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul Mazumder.
Comet: Learning cardinality constrained mixture of experts with trees and local search. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, page 832–844,
New York, NY, USA, 2023. Association for Computing Machinery.

[22] Shibal Ibrahim, Hussein Hazimeh, and Rahul Mazumder. Flexible modeling and multitask learning using
differentiable tree ensembles. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, page 666–675, New York, NY, USA, 2022. Association for
Computing Machinery.

[23] Shibal Ibrahim, Rahul Mazumder, Peter Radchenko, and Emanuel Ben-David. Predicting census survey
response rates with parsimonious additive models and structured interactions. arXiv, abs/2108.11328,
2021.

[24] Ozan Irsoy, O. T. Yildiz, and Ethem Alpaydin. Soft decision trees. Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), pages 1819–1822, 2012.

[25] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
Comput., 6(2):181–214, mar 1994.

[26] Michael J Kearns and Robert E Schapire. Efficient distribution-free learning of probabilistic concepts.
Journal of Computer and System Sciences, 48(3):464–497, 1994.

[27] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, et al. Deep neural decision forests. In 2015
IEEE International Conference on Computer Vision (ICCV), pages 1467–1475, 2015.

[28] Himabindu Lakkaraju and Osbert Bastani. "how do i fool you?": Manipulating user trust via misleading
black box explanations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, AIES
’20, page 79–85, New York, NY, USA, 2020. Association for Computing Machinery.

[29] Benjamin J. Lengerich, S. Tan, Chun-Hao Kingsley Chang, Giles Hooker, and Rich Caruana. Purifying
interaction effects with the functional anova: An efficient algorithm for recovering identifiable additive
models. In International Conference on Artificial Intelligence and Statistics, 2019.

[30] Michael Lim and Trevor Hastie. Learning interactions via hierarchical group-lasso regularization. Journal
of Computational and Graphical Statistics, 24(3):627–654, July 2015.

[31] Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression.
The Annals of Statistics, 34:2272–2297, 2006.

[32] Zachary C. Lipton. The mythos of model interpretability: In machine learning, the concept of interpretabil-
ity is both important and slippery. Queue, 16(3):31–57, jun 2018.

[33] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible models for classification and regression. In
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, page 150–158, New York, NY, USA, 2012. Association for Computing Machinery.

[34] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate intelligible models with pairwise
interactions. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’13, page 623–631, New York, NY, USA, 2013. Association for Computing
Machinery.

[35] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 4768–4777,
Red Hook, NY, USA, 2017. Curran Associates Inc.

[36] Peter McCullagh and John A Nelder. Generalized linear models, volume 37. CRC press, 1989.

[37] Lukas Meier, Sara van de Geer, and Peter Buhlmann. High-dimensional additive modeling. The Annals of
Statistics, 37(6B):3779 – 3821, 2009.

12

[38] Shahar Mendelson and Roman Vershynin. Entropy and the combinatorial dimension. Inventiones mathe-
maticae, 152(1):37–55, 2003.

[39] J. A. Nelder. A reformulation of linear models. Journal of the Royal Statistical Society. Series A (General),
140(1):48–77, 1977.

[40] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml: A unified framework for machine
learning interpretability. ArXiv, abs/1909.09223, 2019.

[41] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and Jason H. Moore. Pmlb:
a large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(1):36, 2017.

[42] Julio L. Peixoto. Hierarchical variable selection in polynomial regression models. The American Statistician,
41(4):311–313, 1987.

[43] Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse sequence-to-sequence models. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1504–1519, Florence,
Italy, July 2019. Association for Computational Linguistics.

[44] Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. In International Conference on Learning Representations, 2020.

[45] Peter Radchenko and Gareth M. James. Variable selection using adaptive nonlinear interaction structures in
high dimensions. Journal of the American Statistical Association, 105(492):1541–1553, December 2010.

[46] Filip Radenovic, Abhimanyu Dubey, and Dhruv Mahajan. Neural basis models for interpretability. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[47] Pradeep Ravikumar, John Lafferty, Han Liu, et al. Sparse additive models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 71(5):1009–1030, November 2009.

[48] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand, David Bestor, Bill
Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Lauren
Milechin, Julia Mullen, Andrew Prout, Antonio Rosa, Charles Yee, and Peter Michaleas. Interactive
supercomputing on 40,000 cores for machine learning and data analysis. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–6. IEEE, 2018.

[49] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the predic-
tions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA, 2016. Association for
Computing Machinery.

[50] Mark Rudelson and Roman Vershynin. Combinatorics of random processes and sections of convex bodies.
Annals of Mathematics, pages 603–648, 2006.

[51] Dylan Z Slack, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. Reliable post hoc explanations:
Modeling uncertainty in explainability. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, 2021.

[52] Zhiqiang Tan and Cun-Hui Zhang. Doubly penalized estimation in additive regression with high-
dimensional data. The Annals of Statistics, 47(5):2567 – 2600, 2019.

[53] Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, et al. Adaptive neural trees. ArXiv, abs/1807.06699,
2019.

[54] Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? interpretable
attribution for feature interactions. In Advances in Neural Information Processing Systems, 2020.

[55] US Census Bureau. Planning database, October 2022.

[56] Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

[57] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

[58] Shibiao Xu, Zhiqi Bu, Pratik Chaudhari, and Ian Barnett. Sparse neural additive model: Interpretable deep
learning with feature selection via group sparsity. ArXiv, abs/2202.12482, 2022.

13

[59] Xiaohan Yan and Jacob Bien. Hierarchical sparse modeling: A choice of two group lasso formulations.
Statistical Science, 32(4):531–560, November 2017.

[60] Zebin Yang, Aijun Zhang, and A. Sudjianto. Gami-net: An explainable neural network based on generalized
additive models with structured interactions. Pattern Recognit., 120:108192, 2021.

[61] Guo Yu, Daniela Witten, and Jacob Bien. Controlling costs: Feature selection on a budget. Stat, 11(1):e427,
2022.

[62] Ming Yuan and Ding-Xuan Zhou. Minimax optimal rates of estimation in high dimensional additive
models. The Annals of Statistics, 44(6):2564–2593, 2016.

[63] Tuo Zhao and Han Liu. Sparse additive machine. In Neil D. Lawrence and Mark Girolami, editors,
Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22
of Proceedings of Machine Learning Research, pages 1435–1443, La Palma, Canary Islands, 21–23 Apr
2012. PMLR.

14

Supplementary Material for GRAND-SLAMIN’ Interpretable Additive Modeling
with Structural Constraints

A Definition of Soft Trees

Formally, an interaction soft tree with the set of (internal) nodes U and the set of leaves L is a
function such as f(·;W ,o) : R2 7→ R where W ∈ R|U|×2 and o ∈ R|L|. The output is then given
as f((xj , xk);W ,o) =

∑
l∈L P ({(xj , xk) → l})ol where P ({(xj , xk) → l}) is the proportion of

(xj , xk) that is routed to leaf l. Particularly, P ({(xj , xk) → l}) =
∏

i∈A(l) ri,l(xj , xk) where A(l)

denotes the set of ancestors of l and ri,l(xj , xk) denotes the proportion of (xj , xk) is routed to leaf l
from node i. These values are given as ri,l(xj , xk) = ϕ(W T

i (xj , xk)) if l belongs to the left subtree
of i, and ri,l(xj , xk) = 1− ϕ(W T

i (xj , xk)) if l belongs to the right subtree of i, where ϕ(·) is the
sigmoid activation function. A soft tree f(·;W ,o) : R 7→ R for a main effect is defined similarly.

B Smooth-Step Function

The smooth-step function [18] has been used in soft trees for conditional computation [18] and
routing in sparse mixture of experts [19, 21]. It can output exact zeros and ones, thus allowing for
hard selection. Let γ be a non-negative scalar parameter. The smooth-step function takes the form:

h(t) =


0 if t ≤ −γ/2

− 2
γ3 t

3 + 3
2γ t+

1
2 if γ/2 ≤ t ≤ γ/2

1 if t ≥ γ/2

(B.1)

The smooth-step function is continuously differentiable, similar to the logistic function. Additionally,
it performs hard selection, i.e., outside [−γ/2, γ/2], the function produces exact zeros and ones.

C Proofs of Main Results

C.1 Preliminaries

Before proceeding with the proof, we define some notation we use throughout this section. Given
the data points x1, · · · ,xn, we let Pn the empirical measure supported on x1, · · · ,xn, Pn =∑n

i=1 δxi
/n. We define the norm with respect to Pn as

∥f∥Pn
=

√√√√ 1

n

n∑
i=1

f(xi)2. (C.1)

Next, we define covering and packing numbers.

Definition C.1 (Covering number [38]). Let F be a functional class and x1, · · · ,xn be a set of n
observations. An ϵ-cover of F with respect to Pn is a set of functions f1, · · · , fN such that for any
f ∈ F , there exists j ∈ [N] such that

∥f − fj∥Pn
≤ ϵ.

The covering number of F with respect to Pn at scale ϵ, denoted as N (F , Pn, ϵ), is the smallest N
such that there exists an ϵ-cover of F with respect to Pn with size N .

Definition C.2 (Packing number [56]). Let F be a functional class and x1, · · · ,xn be a set of n
observations. An ϵ-packing of F with respect to Pn is a set of functions f1, · · · , fN such that for any
i, j ∈ [N],

∥fi − fj∥Pn ≥ ϵ.

The packing number of F with respect to Pn at scale ϵ, denoted as P(F , Pn, ϵ), is the largest N such
that there exists an ϵ-packing of F with respect to Pn with size N .

The following well-known lemma establishes the equivalence between packing and covering numbers.

15

Lemma C.1 (Lemma 4.2.8 [56]). For ϵ > 0,

P(F , Pn, 2ϵ) ≤ N (F , Pn, ϵ) ≤ P(F , Pn, ϵ).

Finally, we define the fat-shattering dimension of a function class.

Definition C.3 (Fat-shattering dimension [26]). Let F be a functional class. Given a subset S =
{x1, · · · ,xn} ⊆ Rp, the class F ϵ-shatters S, if there exists c = (c1, · · · , cn) ∈ Rn, such that for
every e ∈ {0, 1}n, there exists f ∈ F such that

f(xi) ≥ ci + ϵ/2 for ei = 1, and f(xi) ≤ ci − ϵ/2 for ei = 0.

The fat-shattering dimension of F at scale ϵ, denoted as fatϵ(F) is the size of the largest subset S
that is ϵ-shattered by F .

The following theorem relates the fat-shattering dimension to the covering number discussed above.

Theorem C.1. If there exists v > 0 such that

fatxϵ(F) ≤ v

x
∀x ≥ 1,

then
logN (F , Pn, Cϵ) ≤ Cv.

Proof. The theorem is a direct result of Theorems 6.3 of [50] and Lemma C.1.

C.2 Technical Lemmas

Let U ,L denote the set of internal nodes and leaves of a depth d tree, respectively. Let us define the
class of soft trees with depth d and data dimension p as

F(d, p) =
{
f(x;W ,o) : B2

p 7→ R, ū(f(x;W ,o)) ≤ B
}

(C.2)

where B2
p is the Euclidean ball of dimension p, W ∈ R|U|×p and o ∈ R|L| and

ū(f(x;W ,o)) = max
k∈U

∥wk∥2 ∨max
l∈L

|ol|

with wk ∈ Rp being the vector of weights for node k from W . Our first result is characterizing the
fat-shattering dimension of F(d, p).

Lemma C.2. Let A = 2 ∨ 2d+2B ∨B2dL2d+3. For ϵ > 0,

fatϵ(F(d, p)) ≤
(
A

ϵ

)p

. (C.3)

Proof. First, suppose ϵ > 2B2d. We show that fatϵ(F(d, p)) = 0. To this end, note that for x and
f ∈ F(d, p),

|f(x)| =

∣∣∣∣∣∑
l∈L

P ({x → l})ol

∣∣∣∣∣ ≤∑
l∈L

|ol| ≤ 2dB (C.4)

where P is defined in Appendix A.As a result, for f1, f2 ∈ F(d, p) and x,

|f1(x)− f2(x)| ≤ 2B2d < ϵ (C.5)

showing no single point can be ϵ-shattered. Therefore, fatϵ(F(d, p)) = 0.
Let 0 < ϵ ≤ 2B2d and suppose {x1, · · · ,xN} is ϵ-shattered by F(d, p) at level c. We show that
for i, j ∈ [N], ∥xi − xj∥2 ≥ ϵ/(B2dL2d). To this end, assume there exists i, j ∈ [N] such that
∥xi −xj∥2 < ϵ/(B2dL2d). Without loss of generality assume ci ≥ cj and choose e ∈ {0, 1}p such
that ei = 1, ej = 0. Suppose f(·;W ,o) ∈ F(d, p) shatters the data with e. Particularly,

f(xi;W ,o) ≥ ci + ϵ/2, f(xj ;W ,o) ≤ cj − ϵ/2. (C.6)

16

For k ∈ U , l ∈ L, if k ∈ A(l) we have

|rk,l(xi)− rk,l(xj)| =
∣∣ϕ(wT

k xi)− ϕ(wT
k xi)

∣∣
(a)

≤ L|wT
k xi −wT

k xj |
(b)

≤ LB∥xi − xj∥2 (C.7)

where rk,l is defined in Appendix A, wk ∈ Rp is the vector of weights for node k from W , (a) is
by (A1) and (b) is by ū(f(x;W ,o)) ≤ B (recall the Assumption (A2)). Next,

|P ({xi → l})− P ({xj → l})| =

∣∣∣∣∣∣
∏

k∈A(l)

rk,l(xi)−
∏

k∈A(l)

rk,l(xj)

∣∣∣∣∣∣
≤ dLB∥xi − xj∥2 (C.8)

where the inequality is by (C.7) and the fact that rk,l ∈ [0, 1] is bounded. Finally,

|f(xi;W ,o)− f(xj ;W ,o)| =

∣∣∣∣∣∑
l∈L

P ({xi → l})ol −
∑
l∈L

P ({xj → l})ol

∣∣∣∣∣
≤
∑
l∈L

|ol| |P ({xi → l})− P ({xj → l})|

≤ 2dB2dL∥xi − xj∥2 (C.9)

where the last inequality is true as |L| = 2d and |ol| ≤ B by ū(f(x;W ,o)) ≤ B. As we assumed
∥xi − xj∥2 < ϵ/(B2dL2d), we have from (C.9)

|f(xi;W ,o)− f(xj ;W ,o)| < ϵ

while on the other hand, by the shattering property (C.6),

f(xi;W ,o)− f(xj ;W ,o) ≥ (ci − cj)︸ ︷︷ ︸
≥0

+2ϵ/2 ≥ ϵ (C.10)

which is a contradiction. Therefore, for every i, j ∈ [N], we must have ∥xi − xj∥2 ≥ ϵ/(B2dL2d)
or in other words, {x1, · · · ,xN} is a ϵ/(B2dL2d)-packing of B2

p . Thus,

N
(a)

≤ N (B2
p , ∥ · ∥2, ϵ/(2B2dL2d))

(b)

≤
(
4B2dL2d

ϵ
+ 1

)p

≤
(
4B2dL2d

ϵ
+ 1 ∨ 2B2d

)p

(c)

≤
(
4B2dL2d

ϵ
+

1 ∨ 2B2d

ϵ

)p

≤
(
A

ϵ

)p

where N (B2
p , ∥ · ∥2, ϵ) is the ϵ-covering number of B2

p , (a) is by Lemma C.1, (b) is true by Corol-
lary 4.2.13 of [56] and (c) is true as ϵ ≤ 2d+1B.

Lemma C.3. There exists an absolute constant C > 0 such that for ϵ > 0,

logNp(F(d, p), Pn, ϵ) ≤ C

(
CA

ϵ

)p

.

17

Proof. From Lemma C.2, for x ≥ 1

fatxϵ(F(d, p)) ≤
(
A

xϵ

)p

=

(
A

ϵ

)p
1

xp

≤
(
A

ϵ

)p
1

x
(C.11)

where the last inequality is true as p ≥ 1. The proof is complete by Theorem C.1.

In the next step, we consider trees that only use a subset of variables, such as J ⊆ [p]. Formally, we
let

F0(J , d) =
{
f({xj}j∈J ;W ,o) : B2

p 7→ R, , ū(f({xj}j∈J ;W ,o)) ≤ B
}
. (C.12)

Lemma C.4. For ϵ > 0,

logN (F0(J , d), Pn, ϵ) ≤ C

(
CA

ϵ

)|J |

.

Proof. Let Pn,J be the empirical distribution supported on coordinates in J ,

Pn,J =
1

n

n∑
i=1

δxJ

where xJ is the sub-vector of x with coordinates in J . Then,

N (F0(J , d), Pn, ϵ) ≤ N (F(d, |J |), Pn,J , ϵ)

The result follows from Lemma C.3.

Next, let us define the classes of functions with interactions in J ⊆ 2[p],

F1(d, J) =

∑
J∈J

fJ (x;WJ ,oJ) : B2
p 7→ R, fJ (·;WJ ,oJ) ∈ F0(J , d)

 (C.13)

and the class of functions with at most s interactions of size at most t (i.e t-dimensional interactions),

F∗(d, t, s) =
{
f1 + f2 : J ⊆ 2[p], |J| ≤ s, |J | ≤ t ∀J ∈ J, f1 ∈ F1(d, J), f2 ∈ F1(d, J∗)

}
(C.14)

for a fixed J∗ with |J∗| ≤ s and |J | ≤ t for J ∈ J∗.

Lemma C.5. Suppose 0 < ϵ ≤ 2sCA and 1 ≤ t ≤ 2. Then,

logN (F∗(d, t, s), Pn, ϵ) ≤ 2s log p+ 2Cs

(
2CsA

ϵ

)t

.

Proof. Let S(F0(J , d)) be a minimal ϵ/2s-cover of F0(J , d). Hence, |S(F0(J , d))| =
N (F0(J , d), Pn, ϵ/2s). Define

S =
{
J ⊆ 2[p], |J | ≤ t ∀J ∈ J, |J| ≤ s

}
(C.15)

and

S∗ =
⋃
J∈S

∑
J∈J

S(F0(J , d)) +
∑
J∈J∗

S(F0(J , d))

 (C.16)

18

where A+B = {a+ b : a ∈ A, b ∈ B} denotes the Minkowski sum. Note that from Lemma C.4,
for J ∈ S and J ∈ J,

N (F0(J , d), Pn, ϵ/2s) ≤ exp

(
C

(
2sCA

ϵ

)|J |
)

≤ exp

(
C

(
2sCA

ϵ

)t
)

(C.17)

as 2sCA/ϵ ≥ 1. For the rest of the proof, we let

Nt(ϵ) = exp

(
C

(
CA

ϵ

)t
)
.

Suppose f ∈ F∗(d, t, s),

f(x) =
∑
J∈J0

fJ (x;WJ ,oJ) +
∑
J∈J∗

fJ (x;WJ ,oJ) (C.18)

for some J0 ∈ S. For any J ∈ J0 ∪ J∗, let f̃J ∈ S(F0(J , d)) be such that ∥f̃J − fJ ∥Pn ≤ ϵ/2s.
Let

f̃(x) =
∑
J∈J0

f̃J (x; W̃J , õJ) +
∑
J∈J∗

f̃J (x; W̃J , õJ). (C.19)

Note that f̃ ∈ S∗. Next,

∥f − f̃∥Pn
=

∥∥∥∥∥∥
∑
J∈J0

(fJ − f̃J) +
∑
J∈J∗

(fJ − f̃J)

∥∥∥∥∥∥
Pn

≤
∑
J∈J0

∥fJ − f̃J ∥Pn
+
∑
J∈J∗

∥fJ − f̃J ∥Pn

≤ 2sϵ/2s = ϵ (C.20)

as |J0|, |J∗| ≤ s. As a result, S∗ is a ϵ-cover for F∗(d, t, s). Moreover,

N (F∗(d, t, s), Pn, ϵ) ≤ |S∗|

≤
∑
J∈S

∏
J∈J

|S(F0(J , d))|
∏

J∈J∗
|S(F0(J , d))|

≤
∑
J∈S

∏
J∈J

N (F0(J , d), Pn, ϵ/2s)
∏

J∈J∗
N (F0(J , d), Pn, ϵ/2s)

(a)

≤
∑
J∈S

Nt(ϵ/2s)
2s

(b)

≤ p2sNt(ϵ/2s)
2s (C.21)

where (a) is by (C.17) and (b) is true as |S| ≤ (pt)s ≤ p2s. As a result,

logN (F∗(d, t, s), Pn, ϵ) ≤ 2s log p+ 2s logNt(ϵ/2s)

≤ 2s log p+ 2Cs

(
2CsA

ϵ

)t

. (C.22)

Lemma C.6. Suppose 0 < δ ≤ 1 ∧ 2sCA. Then, for a = exp(−1),∫ δ

δ2/4σ

√
logN (F∗(d, 1, s), Pn, ϵ)dϵ ≤ (

√
2s log p+ CsA)

√
δ∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ ≤

(√
2s log p+

√
2Cs(2CsA)

)
(4σ/δ)a.

(C.23)

19

Proof. Note that if δ > 4σ, the lemma is trivial. Therefore, we assume δ ≤ 4σ. From Lemma C.5

√
logN (F∗(d, t, s), Pn, ϵ) ≤

√
2s log p+ 2Cs

(
2CsA

ϵ

)t

≤
√
2s log p+

√
2Cs(2CsA)t/2ϵ−t/2. (C.24)

Hence, as δ ≤ 1,∫ δ

δ2/4σ

√
logN (F∗(d, 1, s), Pn, ϵ)dϵ ≤

∫ δ

0

√
logN (F∗(d, 1, s), Pn, ϵ)dϵ

≤
∫ δ

0

√
2s log pdϵ+

∫ δ

0

2CsAϵ−1/2dϵ

≤
√

2s log pδ + CsAδ1/2

≤
√

2s log pδ1/2 + CsAδ1/2 (C.25)

Moreover,∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ ≤

∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ

≤
∫ δ

0

√
2s log pdϵ+

∫ δ

δ2/4σ

2CsA
√
2Csϵ−1dϵ

≤
√

2s log p+ 2
√
2CsCsA log(4σ/δ). (C.26)

Next, consider the function h(x) = xa − log(x) where a = exp(−1). We will show h(x) ≥ 0 for
x > 0. Note that

h′(x) = axa−1 − 1

x

therefore h(a−1/a) = h′(a−1/a) = 0. Moreover,

h′′(x) =
a(a− 1)xa + 1

x2

so h′′(a−1/a) = (1 + a(a− 1)a−1)/(a−2/a) > 0, showing that a−1/a is a minimum for h(x), and
therefore h(x) ≥ 0 for x > 0. Hence, from (C.26),∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ ≤

√
2s log p+

√
2Cs2CsA log(4σ/δ)

≤
√

2s log p+
√
2Cs2CsA(4σ/δ)a

≤
√

2s log p(4σ/δ)a +
√
2Cs2CsA(4σ/δ)a (C.27)

as δ ≤ 4σ or 4σ/δ ≥ 1.

Lemma C.7. Under the assumptions of Theorem 2, for any sequence an, n ≥ 1 such that an > 0
and limn→∞ an = 0, there exists a positive sequence bn such that limn→∞ bn = 0 and∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ ≤

(√
2s log p+

√
2Cs(2CsA)

)
(4σ/δ)an ∀δ ≤ bn.

Proof. Consider the function hn(x) = xan − log(x). Note that

lim
x→∞

xan

log x
= lim

x→∞
anx

an = ∞

therefore, there exists a sequence γn such that limn→∞ γn = ∞ and

hn(x) ≥ 0, ∀x ≥ γn.

20

Therefore, if δ ≤ 4σ/γn ∧ 4σ ∧ 1 =: bn, from (C.26),∫ δ

δ2/4σ

√
logN (F∗(d, 2, s), Pn, ϵ)dϵ ≤

√
2s log p+ 2

√
2CsCsA log(4σ/δ)

≤
√

2s log p+ 2
√
2CsCsA(4σ/δ)an

≤
(√

2s log p+
√
2Cs(2CsA)

)
(4σ/δ)an . (C.28)

Lemma C.8. For any ϵ, δ > 0,

N (F∗(d, t, s) ∩ {∥f∥Pn
≤ δ}, Pn, ϵ) ≤ N (F∗(d, t, s), Pn, ϵ). (C.29)

Proof. Let S = {f1, · · · , fN} be a minimal ϵ-cover of F∗(d, t, s) where N = N (F∗(d, t, s), Pn, ϵ).
Let S∗ = {f∗

1 , · · · , f∗
N} where for i ∈ [N],

f∗
i =

{
fi if ∥fi∥Pn

≤ δ

fiδ/∥fi∥Pn if ∥fi∥Pn > δ
∈ F∗(d, t, s) ∩ {∥f∥Pn

≤ δ}.

We show S∗ is a ϵ-cover for F∗(d, t, s) ∩ {∥f∥Pn
≤ δ}.

Let f ∈ F∗(d, t, s) ∩ {∥f∥Pn
≤ δ}. Let j ∈ [N] be such that ∥f − fj∥Pn

≤ ϵ. Let us consider the
following cases:
Case 1: If ∥fj∥Pn

≤ δ, then fj ∈ S∗ showing f∗
j = fj covers f .

Case 2: Suppose ∥fj∥Pn > δ. For any f , let f = (f(x1), · · · , f(xn))/
√
n ∈ Rn. With this notation,

∥f∥Pn
= ∥f∥2. As a result,

ϵ2 ≥ ∥f − fj∥2Pn

=
∥∥(f − f∗

j

)
+
(
f∗
j − fj

)∥∥2
Pn

=

∥∥∥∥(f − f∗
j

)
+

(
δ

∥fj∥Pn

− 1

)
fj

∥∥∥∥2
Pn

=

∥∥∥∥(f − f∗j
)
+

(
δ

∥fj∥2
− 1

)
fj

∥∥∥∥2
2

≥ ∥f − f∗j ∥22 + 2

(
δ

∥fj∥2
− 1

)
fTj (f − f∗j)

= ∥f − f∗j ∥22 + 2

(
δ

∥fj∥2
− 1

)
fTj f − 2

(
δ

∥fj∥2
− 1

)
δ

∥fj∥2
∥fj∥22

(a)

≥ ∥f − f∗j ∥22 + 2

(
δ

∥fj∥2
− 1

)
∥fj∥2δ − 2

(
δ

∥fj∥2
− 1

)
δ∥fj∥2

= ∥f − f∗j ∥22 = ∥f − f∗
j ∥2Pn

(C.30)

where (a) is true as ∥fj∥2 > δ and ∥f∥2 ≤ δ. This shows f∗
j covers f , completing the proof.

C.3 Proof of Theorem 1

Proof. Let

δ1 =

[
64σ(

√
2s log p+ CsA)

]2/3
n1/3

δ2 =

[
16
(√

2s log p+
√
2Cs(2CsA)

)
(4σ)1+a

]1/(2+a)

n1/2(2+a)
.

(C.31)

Claim: For t ∈ {1, 2},

16√
n

∫ δt

δ2t /4σ

√
logN (F∗(d, t, s) ∩ {∥f∥Pn

≤ δt}, Pn, ϵ)dϵ ≤
δ2t
4σ

.

21

We will prove the claim later. Let

F(d, t, s) =
{
f1 : J ⊆ 2[p], |J| ≤ s, |J | ≤ t ∀J ∈ J, f1 ∈ F1(d, J)

}
. (C.32)

Under this notation, we have

f̂t ∈ argmin
f∈F(d,t,s)

1

n

n∑
i=1

(yi − f(xi))
2.

Using the notation from [57][Ch. 13], we have

∂F(d, t, s) = F(d, t, s)−F(d, t, s) = F∗(d, t, s)

with J∗ being the set of interactions for for f∗
t . Moreover, we note that F∗(d, t, s) is star-shaped, that

is for f ∈ F∗(d, t, s) and α ∈ [0, 1], αf ∈ F∗(d, t, s). This is true as

αf(·;W ,o) = f(·;W , αo).

Under the claim and assumptions of the theorem, we have δt ≤ σ so we invoke Corollary 13.7 and
Theorem 13.13 of [57] with γ = 1/2, t = δ to achieve

IP

(
1

n

n∑
i=1

(y∗i − f̂t(xi))
2 ≲ inf

f∈F(d,t,s)

n∑
i=1

(y∗i − f(xi))
2 + δ2t

)
≥ 1− c1 exp(−c2nδ

2
t /σ

2)

(C.33)
completing the proof.
Proof of Claim: For t = 1,

δ21
4σ

=

[
64σ(

√
2s log p+ CsA)

]4/3
4σn2/3

=
16√
n
(
√
2s log p+ CsA)

[
64σ(

√
2s log p+ CsA)

]1/3
n1/6

=
16√
n
(
√
2s log p+ CsA)

√
δ1

≥ 16√
n

∫ δ1

δ21/4σ

√
logN (F∗(d, 1, s), Pn, ϵ)dϵ

≥ 16√
n

∫ δ1

δ21/4σ

√
logN (F∗(d, 1, s) ∩ {∥f∥Pn ≤ δ1}, Pn, ϵ)dϵ (C.34)

where the first inequality is by Lemma C.6 and the final inequality is by Lemma C.8. Next, for t = 2,

δ22
4σ

=

[
16
(√

2s log p+
√
2Cs(2CsA)

)
(4σ)1+a

]2/(2+a)

4σn1/(2+a)

=
16√
n

(√
2s log p+

√
2Cs(2CsA)

) [16(√2s log p+
√
2Cs(2CsA)

)
(4σ)1+a

]−a/(2+a)

(4σ)a

n−a/2(2+a)

=
16√
n

(√
2s log p+

√
2Cs(2CsA)

)
(4σ/δ)a

≥ 16√
n

∫ δ2

δ22/4σ

√
logN (F∗(d, 2, s) ∩ {∥f∥Pn

≤ δ2}, Pn, ϵ)dϵ (C.35)

by Lemmas C.6 and C.8.

C.4 Proof of Theorem 2

Proof. Let

δ2 =

[
16
(√

2s log p+
√
2Cs(2CsA)

)
(4σ)1+an

]1/(2+an)

n1/2(2+an)
.

22

By taking n ≳ b
−2(2+an)
n and invoking Lemmas C.7 and C.8,

δ22
4σ

≥ 16√
n

∫ δ2

δ22/4σ

√
logN (F∗(d, 2, s) ∩ {∥f∥Pn ≤ δ2}, Pn, ϵ)dϵ.

The rest of the proof is similar to the proof of Theorem 1.

C.5 Theory Discussion

First, we consider the case with only main effects, i.e t = 1. In our framework, we use the smooth-
step function which is differentiable with uniformly bounded derivative, but not twice differentiable.
Therefore, our framework operates on L2 Sobolev functions of order 1, i.e. bounded differentiable
functions with bounded gradients. For this case, the results of [52] show that an ℓ2 prediction rate of
n−2/3 (see Remark 4 of [52] with q = 0 and β0 = 1). This is the same rate we achieve in Theorem 1
for t = 1. However, we note that our results hold without differentiability assumption and only
require the activation function to be Lipschitz, showing stronger results specialized to the soft trees
case.

Next, we consider the interaction case with t = 2. In this case, the results of [23] imply an ℓ2
prediction rate of n−1/2 for the class of L2 Sobolev functions of order 1 (see Section S2.2 with
m = 1, leading to rn = n−1/4). This is the same rate our method achieves asymptotically (see
Theorem 2). However, as we discussed, our results hold without the differentiability assumption.

D Extension to third-order interactions

Our approach can be extended to model third-order interactions. In the case of third-order interactions,
the structural constraints for strong and weak hierarchy can be described as follows:

Strong Hierarchy : fj,k,l ̸= 0 =⇒ fj ̸= 0 and fk ̸= 0 and fl ̸= 0, (D.1)
Weak Hierarchy : fj,k,l ̸= 0 =⇒ fj ̸= 0 or fk ̸= 0 or fl ̸= 0. (D.2)

These constraints can be modeled with binary variables as follows:

Strong Hierarchy : q(zj , zk, zl, zj,k,l)
def
= zjzkzlzj,k,l (D.3)

Weak Hierarchy : q(zj , zk, zl, zj,k,l)
def
= (zj + zk + zl − zjzk − zjzl − zkzl + zjzkzl)zj,k,l

(D.4)

Hence, our sparse selection and hierarchy constraints can add value in terms of model compactness
and feature selection in the settings with third-order interactions as well. However, for third-order
interactions, the number of third-order interactions are O(p3). Hence, for scalability, this would also
require using a pre-training screening approach. Despite the fact that our approach is generalizable to
third-order interactions, we do not consider such interactions because these are not considered to be
easily interpretable.

E Datasets, Computing Setup and Tuning

Datasets We use a collection of 16 open-source classification datasets (binary, multiclass and
regression) from various domains, e.g., physics, computing, healthcare, life sciences, finance, and
social networks. They are from Penn Machine Learning Benchmarks (PMLB) [41] and UCI databases
[8]. For datasets with available training, validation and test splits, we used them in their original
form. When no test set was available, we treated the original validation set as the test set and split
the training set into 80% training and 20% validation. For remaining, we randomly split each of
the dataset into 60% training, 20% validation and 20% testing sets. A summary of the 16 datasets
considered is in Table E.1.

Computing Setup. We used a cluster running Ubuntu 7.5.0 and equipped with Intel Xeon Platinum
8260 CPUs and Nvidia Volta V100 GPUs. For all experiments of Sec. 6, each job involving
GRAND-SLAMIN, EBM, Node-GAM, SIAN, GAMI-Net and DNN were run on 8 core, 32GB RAM.
Jobs involving larger datasets (p > 100) were run on Tesla V100 GPUs.

23

Table E.1: Summary of Datasets
Dataset Domain N C p No. of interactions (|I|)
Magic Physics 19,020 2 10 55
Adult Socio-economic 48,842 2 14 91
Churn Business 5,000 2 19 190
Satimage Physics 6,435 6 36 640
Texture Image 5,500 11 40 780
MiniBooNE Physics 130,065 2 50 1,225
Covertype Life Science 581,012 7 54 1,431
Spambase Computing 4,601 2 57 1,596
News Social networks 39,797 2 61 1,830
Optdigits Image 5,620 10 64 2,016
Bankruptcy Finance 6,819 2 96 4,560
Madelon NIPS-2003 2,600 2 500 124,750
Activity Healthcare 4,480 4 533 141,778
Multiple Image 2,000 10 649 210,276
Bike Sharing Transportation 17,389 - 16 120
American Community Survey Demographic 83,059 - 39 741

Tuning. The tuning was done in parallel over the competing models and datasets. We tune the
hyperparameter using Optuna [2] which optimizes the overall AUC on a validation set. We report the
results on a held-out test set. A list of all the tuning parameters and their distributions is given for
GRAND-SLAMIN below:

• Learning Rates: Discrete uniform in the set {0.05, 0.01, 0.005} for Adam with multi-step
decay rate of 0.9 every 25 epochs.

• Batch-size: Discrete uniform in the set {64, 256}.
• λ for selection: Discrete uniform in the set of 11 values {0, 1e− 6, · · · , 1e− 3}.
• γ for Smooth-step: Discrete uniform in the set {0.01, 0.1, 1}.
• τ for Entropy Regularization: Discrete uniform in the set {0.001, 0.01, 0.1}.
• α for relative penalty on interactions: Discrete uniform in the set {1, 10}.
• Epochs: 1000 with early stopping (patience=50) based on validation loss.
• For Madelon, Activity and Multiple datasets, we used screening to reduce the initial set of

interactions to 5000.

For other toolkits, we considered the tuning protocols outlined in the respective papers such that
the parameter controlling the variable selection is tuned. For SIAN, we tuned over the threshold
parameter θ such that the screened set of interactions is upper bounded by {250, 500, · · · , 1000}. We
set τ = 1 such that the model satisfies strong hierarchy. For GAMI-Net, we tuned over the number of
interactions. For small datasets (|I| < 1000), we tuned over the set: {0.2|I|, 0.4|I|, ·, |I|}. For large
datasets (|I| < 1000), we tuned over the set: {250, 500, · · · , 1000}. For EBM, we tuned over the set
of interactions {16, 32, 64, 128} as done by authors in [6]. For NODE-GA2M, we tuned the number
of trees as this controls the maximum number of interactions selected by the model.

F Additional Results

F.1 Comparison with full complexity models e.g., DNN

Here, we compare interpretable modeling toolkits based on pairwise interactions with full complexity
models. In particular, we consider a deep neural network (DNN). We considered the same architecture
for the DNN as used by the authors in [10] for similar comparisons. The architecture is a 4-layered
ReLU-activated neural network. We show the test AUC performance of different models in Table F.1.
Across all datasets, we see that the full complexity DNN model underperforms interpretable models
including GRAND-SLAMIN. However, it is noted that the choice of the architecture for DNN maybe
contributing to the degradation in performance. There maybe other architecture choices for DNN
e.g., neural networks with residual connections, that may perform better.

24

Table F.1: Test ROC AUC of GRAND-SLAMIN, EB2M and NODE-GA2M. We report median across
10 runs along with the mean absolute deviation (MAD).

Interpretable Models Full Complexity Models
Dataset\Model EB2M NODE-GA2M GRAND-SLAMIN DNN
Magic 93.12± 0.001 94.27± 0.13 93.86± 0.30 93.69± 0.04
Adult 91.41± 0.0004 91.75± 0.14 91.54± 0.14 90.26± 0.04
Churn 91.97± 0.005 89.62± 5.61 92.40± 0.41 90.28± 0.34
Satimage 97.65± 0.001 98.70± 0.07 98.81± 0.04 98.67± 0.07
Texture 99.81± 0.0004 100.00± 0.00 100.00± 0.00 99.63± 0.09
MiniBooNE 97.86± 0.0001 98.44± 0.02 97.77± 0.05 97.08± 0.38
Covertype 90.08± 0.0003 95.39± 0.12 98.11± 0.08 93.83± 0.10
Spambase 98.84± 0.01 98.78± 0.06 98.01± 4.70 98.09± 0.07
News 73.03± 0.002 73.53± 0.06 73.24± 0.04 72.19± 0.08
Optdigits 99.79± 0.0003 99.93± 0.02 99.98± 0.00 99.77± 0.04
Bankruptcy 93.85± 0.01 92.02± 1.03 92.51± 0.54 88.38± 0.36
Madelon 88.04± 0.02 60.07± 0.82 89.25± 1.03 63.60± 0.47
Activity 74.96± 8.77 99.86± 0.04 99.24± 1.45 96.64± 1.93
Multiple 99.96± 0.0002 99.94± 0.02 99.92± 0.02 99.94± 0.01

F.2 GRAND-SLAMIN versus GAMs with all pairwise interactions

Next, we compare GRAND-SLAMIN i.e., GAMs with sparse pairwise interactions against GAMs with
all pairwise interactions toolkit:

1. NA2M, i.e., Neural Additive Model [1] with pairwise interactions,

2. NB2M, i.e., Neural Bases Model [46] with pairwise interactions,

3. SPAM, i.e., Scalable Polynomial Additive Model [9] with pairwise interactions.

For NA2M, NB2M, and SPAM, we tuned over learning rate in the set {0.1, 0.01, 0.001, 0.0001} and
number of epochs in the set {50, 100, 500}. We capped the time for each trial for NA2M to 6 hrs.

We show results in Table F.2. We outperform SPAM across many datasets. Notably,
GRAND-SLAMIN improves by 21% over SPAM on Madelon. We are also competitive with NB2M
and NA2M. For larger datasets e.g., Madelon, Activity and Multiple, NB2M and NA2M ran out of
memory on a compute node with 2 V100 Tesla GPUs. Recall also that the goal of our work is to learn
sparse components with/without structural constraints for easier interpretability.

Table F.2: Test ROC AUC for GRAND-SLAMIN and GAMs with all pairwise interaction models, e.g.,
NA2M, NB2M and SPAM.

Dataset NA2M NB2M SPAM GRAND-SLAMIN
(Dense) (Dense) (Dense) (Sparse)

Magic 94.46 ± 0.16 94.11± 0.08 91.75± 0.004 93.86± 0.30
Adult 90.81± 0.10 91.06± 0.03 89.65± 0.001 91.54 ± 0.14
Churn 93.03 ± 0.49 92.16± 0.42 88.41± 0.05 92.40± 0.41
Satimage 98.81± 0.05 98.89 ± 0.03 97.94± 0.02 98.81± 0.04
Covertype out of time 98.36 ± 0.02 96.29± 0.02 98.11± 0.08
Spambase 98.38± 0.05 98.37± 0.06 97.78± 0.04 98.55 ± 0.07
News 71.94± 0.30 72.54± 0.07 72.43± 0.06 73.24 ± 0.04
Bankruptcy 87.83± 0.12 93.01 ± 1.85 89.35± 0.90 92.51± 0.54
Madelon out of memory out of memory 68.59± 0.80 89.25 ± 1.03
Activity out of memory out of memory 99.10± 0.04 99.24 ± 1.45
Multiple out of memory out of memory 99.98 ± 0.03 99.92± 0.02

25

F.3 Comparison with Group Lasso

Group Lasso [16] is also a possible choice for sparse selection, which is popularly used in high-
dimensional statistics and machine learning. We compare against a version of Group Lasso:

min
{fi}i∈[p],

{fi,j}i<j

ÎE

l(y,∑
i∈[p]

fi(xi) +
∑
i<j

fi,j)

+ λ

∑
i∈[p]

∥fi∥2 +
∑
i<j

∥fi,j∥2

 , (F.1)

where ÎE denotes the empirical loss on the training dataset and ∥fi∥2 denotes the regularization
imposed via the group regularization on the leaf weights of the effect i. We compare performance
between GRAND-SLAMIN and Group Lasso (with soft tree shape functions) in terms of test AUC and
variable selection on a few datasets. The numbers are reported in Table F.3. Overall, our approach
significantly outperforms Group Lasso in terms of AUC performance and variable selection.

Table F.3: Comparison of Test ROC AUC of GRAND-SLAMIN with Group Lasso.
Model Group Lasso GRAND-SLAMIN Group Lasso GRAND-SLAMIN

Dataset (AUC) (AUC) (#features) (#features)
Adult 91.19 91.54 ± 0.14 14 12
Spambase 98.32 98.81 ± 0.04 57 44
Madelon 65.22 90.13 ± 1.03 500 15

F.4 GRAND-SLAMIN with different shape functions (Soft Trees vs MLPs)

Next, we compare GRAND-SLAMIN with different shape functions. In particular, we study the effect
of using neural network shape functions instead of soft tree shape functions. We consider multilayer
perceptrons (MLPs) as the functional form for each of the shape functions. We compare test AUC
performance on 5 datasets in Table F.4. Interestingly, it seems to us that soft trees seem to have an
edge over MLPs across some datasets, when MLPs are matched in number of parameters to soft trees.

Table F.4: Soft tree shape functions vs MLP shape functions.
Dataset\Model GRAND-SLAMIN with MLPs GRAND-SLAMIN with Soft Trees
Magic 93.13±0.12 93.86±0.30
Churn 92.33±0.56 92.40±0.41
MiniBooNE 97.41±0.21 97.77±0.05
Spambase 98.27±0.13 98.55±0.07
News 72.87±0.09 73.24±0.04

MLPs with varying complexity We further experimented with MLPs in our framework, where
we vary the complexity of the individual components. We show training time on News dataset
(p = 61, #Interaction = 1800, N = 40k) in Table F.5. The results show that the active set (learnt
by learnable indicators) in the model is the primary contributing factor in terms of timing. The
functions (1 or 2) → 64 → 64 → 1 have at least 22× more parameters than (1 or 2) → 64 → 1.
However, the time only increases by ∼ 1.5×. We also show the AUC performance with MLPs
with varying complexity in Table F.6. Interestingly, we didn’t observe any improvement in AUCs
with more complex components. It seems to us that since our additive modeling framework is
fitting low-dimensional components — 1-dimensional functions for main effects and 2-dimensional
functions for pairwise interactions effects — the complexity of the function class doesn’t need to be
too large to get good model accuracy.

F.5 Effect of entropy regularization

Next, we study the impact of entropy regularization on performance and variable selection. It can be
hypothesized that there might be a trade-off in the speed at which the binary state of the gate variables
should be reached. On the one hand, suppression of the uninformative terms should happen fast as

26

Table F.5: Training times for different choices of MLP shape functions.
% Components Selected MLPs with varying complexity Training times

25% effects

(1 or 2) → 64 → 1 252.4± 0.4
(1 or 2) → 64 → 64 → 1 247.6± 0.8
(1 or 2) → 64 → 64 → 64 → 1 258.8± 10.7
(1 or 2) → 128 → 128 → 1 268.5± 19.1
(1 or 2) → 256 → 256 → 1 837.0± 43.6

75% effects

(1 or 2) → 64 → 1 343.3± 5.3
(1 or 2) → 64 → 64 → 1 422.7± 9.9
(1 or 2) → 64 → 64 → 64 → 1 506.0± 34.4
(1 or 2) → 128 → 128 → 1 552.4± 151.4
(1 or 2) → 256 → 256 → 1 1193.8± 0.3

Table F.6: AUC performance with MLP shape functions.
MLPs with varying complexity Test AUC
(1 or 2) → 64 → 1 72.90 ± 0.09
(1 or 2) → 64 → 64 → 1 72.48± 0.13
(1 or 2) → 64 → 64 → 64 → 1 72.58± 0.17
(1 or 2) → 128 → 128 → 1 72.34± 0.11
(1 or 2) → 256 → 256 → 1 71.86± 0.37

the early forward and backward passes of all p2 interaction trees is computationally prohibitive. On
the other hand, making this decision prematurely means that the model might not have had enough
time to fit terms before suppressing them. We provide an ablation study for model performance as a
function of entropy regularization in Table F.7. We observe that when the entropy regularization is

Table F.7: Effect of entropy regularization τ on test AUC and component selection on Spambase. We
report median and mean absolute deviation across 50 runs.

τ 0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 1.0
AUC 98.58±0.02 98.58±0.02 98.54±0.02 98.37±0.09 98.40±0.12 98.40±0.15 98.43±0.11 98.30±0.08
#Effects
Selected 1653± 0 1235± 164 592± 173 558± 328 535± 352 507± 451 721± 528 1653± 26

too high, the model suffers in performance as some informative terms can also get suppressed too
quickly. When the entropy regularization is too small, the model can produce very dense solutions,
which can hurt interpretability as well as computational scalability. In a reasonable range of entropy
regularization, there is a good region where the model produces a sparse solution for high AUC.
Interestingly, we also observe that we didn’t see a huge sensitivity of variable selection for a range of
entropy values in the middle.

F.6 Effect of screening on performance

103 104 105

Size of screened set, | |
0

20

40

60

80

100

Te
st

 R
OC

 A
UC

 (%
)

Figure F.1: Performance of
GRAND-SLAMIN with various pre-
training screening levels on
Madelon.

Here, we highlight that screening can help improve performance
of our model. We consider a challenging Madelon dataset from
the NIPS-2003 feature selection challenge, where only a very
small subset of features are informative. The number of total
features in the dataset are 500. The number of pairwise interac-
tions in this dataset are ∼ 125k. This is a large combinatorial
space for variable selection in terms of interaction effects. A large
portion of these interactions are non-informative. Pre-training
screening rules similar to the ones used by [34] can effectively
reduce the combinatorial space. Recall that the actual number
of interactions selected by the model is much smaller than the
screened set of interactions through variable selection by our
model while training. We can observe from Fig. F.1 that for
a range of pre-training screening levels, our model can achieve
almost 90% AUC performance — this performance is better than

27

all existing approaches for sparse GAMs with interactions. In particular, the state-of-the art toolkit
NODE-GAM that performs end-to-end variable seclection achieves 60% AUC.

Screening also plays a role in faster runtimes. For example, when the screened set is 10,000
interactions out of a total of 125k, the model can be 3× – 5× faster. Additionally with screening, the
overall memory footprint of the model can be much smaller. The overall memory footprint of the
model is dictated by the number of interaction effects. With screening, the initial memory footprint
of the model can be reduced without a loss in performance.

F.7 Timing comparison

Our toolkit is highly competitive in terms of training times with all existing tree-based and neural-
based toolkits for sparse GAMs with interactions. See Table F.8 for timing comparisons.

Table F.8: Training time in seconds of GRAND-SLAMIN, EB2M, NODE-GA2M, GAMI-Net and SIAN.
We report median across 10 runs. Hyphen (-) indicates either the toolkit does not support multiclass
e.g., GAMI-Net, SIAN or does not fit interaction effects for multiclass e.g., EB2M.

Dataset\Model EB2M NODE-GA2M GAMI-Net SIAN GRAND-SLAMIN
Magic 140 327 1567 608 430
Adult 284 612 3611 2396 1018
Churn 33 699 2340 298 35
Spambase 297 361 1979 2197 133
Miniboone 1181 1523 39334 64200 1662
Online 402 325 9030 3877 432
Bankruptcy 156 240 2630 3410 57
Madelon 403 899 5217 58500 46
Satimage — 133 — — 52
Texture — 128 — — 98
Optdigits — 320 — — 55
Covertype — 604 — — 3144
Activity — 291 — — 110
Multiple — 1417 — — 184

G Additional visualizations for variance reduction in estimation of main
effects under structural constraints

Here we consider tract-level American Community Survey dataset from US Census Bureau Plan-
ning Database 2022 [55]. Following [23], we consider a reduced dataset with ∼ 39 covariates
(741 possible pairwise interactions) and consider the self-response as the regression target. We fit
GRAND-SLAMIN with different structural constraints. We visualize the estimated main effects in the
presence of interaction effects for these structural constraints for some features in Figure G.1. We
can observe that when additional hierarchy constraints are imposed, the error bars are much smaller
across different runs.

28

No Hierarchy Weak Hierarchy Strong Hierarchy

Figure G.1: Estimated main effects in the presence of interaction effects on American Community
Survey dataset [Left] without hierarchy, [Middle] with weak hierarchy and [Right] with strong
hierarchy. Strong hierarchy has the smallest error bars. We show visualization for 5 features: (a) Row
1: Average household income, (b) Row 2: Percentage of households with internet access, (c) Row 3:
Percentage of limited English speaking households, (d) Row 4: Percentage of people below poverty
level, (e) Row 5: Percentage of single-family homes.

29

	Introduction
	Related Work
	Problem Formulation
	An optimization formulation with binary variables
	A Smooth Reformulation of Problem (8)
	Relaxing Binary Variables with Smooth Gates
	Soft trees

	Efficient Implementation
	Statistical Theory
	Experiments
	Prediction Performance
	Variable Selection
	Computational Scalability
	Variance Reduction with Structural Constraints

	Conclusion
	Definition of Soft Trees
	Smooth-Step Function
	Proofs of Main Results
	Preliminaries
	Technical Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Theory Discussion

	Extension to third-order interactions
	Datasets, Computing Setup and Tuning
	Additional Results
	Comparison with full complexity models e.g., DNN
	GRAND-SLAMIN versus GAMs with all pairwise interactions
	Comparison with Group Lasso
	GRAND-SLAMIN with different shape functions (Soft Trees vs MLPs)
	Effect of entropy regularization
	Effect of screening on performance
	Timing comparison

	Additional visualizations for variance reduction in estimation of main effects under structural constraints

