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ABSTRACT

This paper introduces a novel deep-learning-based approach for numerical simula-
tion of a time-evolving Schrödinger equation inspired by stochastic mechanics and
generative diffusion models. Unlike existing approaches, which exhibit computa-
tional complexity that scales exponentially in the problem dimension, our method
allows us to adapt to the latent low-dimensional structure of the wave function
by sampling from the Markovian diffusion. Depending on the latent dimension,
our method may have far lower computational complexity in higher dimensions.
Moreover, we propose novel equations for stochastic quantum mechanics, resulting
in linear computational complexity with respect to the number of dimensions. Nu-
merical simulations verify our theoretical findings and show a significant advantage
of our method compared to other deep-learning-based approaches used for quantum
mechanics.

1 INTRODUCTION

Mathematical models for many problems in nature appear in the form of partial differential equations
(PDEs) in high dimensions. Given access to precise solutions of the many-electron time-dependent
Schrödinger equation (TDSE), a vast body of scientific problems could be addressed, including in
quantum chemistry (Cances et al., 2003; Nakatsuji, 2012), drug discovery (Ganesan et al., 2017;
Heifetz, 2020), condensed matter physics (Liu et al., 2013; Boghosian & Taylor IV, 1998), and quan-
tum computing (Grover, 2001; Papageorgiou & Traub, 2013). However, solving high-dimensional
PDEs and the Schrödinger equation, in particular, are notoriously difficult problems in scientific
computing due to the well-known curse of dimensionality: the computational complexity grows expo-
nentially as a function of the dimensionality of the problem (Bellman, 2010). Traditional numerical
solvers have been limited to dealing with problems in rather low dimensions since they rely on a grid.

Deep learning is a promising way to avoid the curse of dimensionality (Poggio et al., 2017; Madala
et al., 2023). However, no known deep learning approach avoids it in the context of the TDSE
(Manzhos, 2020). Although generic deep learning approaches have been applied to solving the TDSE
(Raissi et al., 2019; E & Yu, 2017; Weinan et al., 2021; Han et al., 2018), this paper shows that it
is possible to get performance improvements by developing an approach specific to the TDSE by
incorporating quantum physical structure into the deep learning algorithm itself.

We propose a method that relies on a stochastic interpretation of quantum mechanics (Nelson, 1966;
Guerra, 1995; Nelson, 2005) and is inspired by the success of deep diffusion models that can model
complex multi-dimensional distributions effectively (Yang et al., 2022); we call it Deep Stochastic
Mechanics (DSM). Our approach is not limited to only the linear Schrödinger equation, but can be
adapted to Klein-Gordon, Dirac equations (Serva, 1988; Lindgren & Liukkonen, 2019), and to the
non-linear Schrödinger equations of condensed matter physics, e.g., by using mean-field stochastic
differential equations (SDEs) (Eriksen, 2020), or McKean-Vlasov SDEs (dos Reis et al., 2022).

1.1 PROBLEM FORMULATION

The Schrödinger equation, a governing equation in quantum mechanics, predicts the future behavior
of a dynamic system for 0  t  T and 8x 2 M:

i~@t (x, t) = H (x, t), (1)
 (x, 0) =  0(x), (2)
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where  : M⇥ [0, T ] ! C is a wave function defined over a manifold M, and H is a self-adjoint
operator acting on a Hilbert space of wave functions. For simplicity of future derivations, we consider
a case of a spinless particle in M = Rd1 moving in a smooth potential V : Rd ⇥ [0, T ] ! R+. In
this case, H = �~2

2 Tr(m�1r2) + V, where m 2 Rd ⌦ Rd is a mass tensor. The probability density
of finding a particle at position x is | (x, t)|2. A notation list is given in Appendix A.

Given initial conditions in the form of samples drawn from a density  0(x), we wish to draw samples
from | (x, t)|2 for t 2 (0, T ] using a neural-network-based approach that can adapt to latent low-
dimensional structures in the system and sidestep the curse of dimensionality. Rather than explicitly
estimating  (x, t) and sampling from the corresponding density, we devise a strategy that directly
samples from an approximation of | (x, t)|2, concentrating computation in high-density regions.
When regions where the density | (x, t)|2 lie in a latent low-dimensional space, our sampling strategy
concentrates computation in that space, leading to the favorable scaling properties of our approach.

2 RELATED WORK

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) are general-purpose tools that
have been widely studied for their ability to solve PDEs and can be applied to solve Equation (1).
However, this method is prone to the same issues as classical numerical algorithms since it relies on a
collection of collocation points uniformly sampled over the domain M ✓ Rd. In the remainder of
the paper, we refer to this as a ‘grid’ for simplicity of exposition. Another recent paper by Bruna et al.
(2022) introduces Neural Galerkin schemes based on deep learning, which leverage active learning to
generate training data samples for numerically solving real-valued PDEs. Unlike collocation-points-
based methods, this approach allows theoretically adaptive data collection guided by the dynamics of
the equations if we could sample from the wave function effectively.

Another family of approaches, FermiNet (Pfau et al., 2020) or PauliNet (Hermann et al., 2020),
reformulates the problem (1) as maximization of an energy functional that depends on the solution of
the stationary Schrödinger equation. This approach sidesteps the curse of dimensionality but cannot
be adapted to the time-dependent wave function setting considered in this paper.

The only thing that we can experimentally obtain is samples from the quantum mechanics density.
So, it makes sense to focus on obtaining samples from the density rather than attempting to solve the
Schrödinger equation; these samples can be used to predict the system’s behavior without conducting
real-world experiments. Based on this observation, there are a variety of quantum Monte Carlo
methods (Corney & Drummond, 2004; Barker, 1979; Austin et al., 2012), which rely on estimating
expectations of observables rather than the wave function itself, resulting in improved computational
efficiency. However, these methods still encounter the curse of dimensionality due to recovering
the full-density operator. The density operator in atomic simulations is concentrated on a lower
dimensional manifold of such operators (Eriksen, 2020), suggesting that methods that adapt to this
manifold can be more effective than high-dimensional grid-based methods. Deep learning has the
ability to adapt to this structure.

As noted in Schlick (2010), knowledge of the density is unnecessary for sampling. We need a score
function r log ⇢ to be able to sample from it. The fast-growing field of generative modeling with
diffusion processes demonstrates that for high-dimensional densities with low-dimensional manifold
structure, it is incomparably more effective to learn a score function than the density itself (Ho et al.,
2020; Yang et al., 2022).

For high-dimensional real-valued PDEs, there exist a variety of classic and deep learning-based
approaches that rely on sampling from diffusion processes, e.g., (Cliffe et al., 2011; Warin, 2018;
Han et al., 2018; Weinan et al., 2021). Those works rely on the Feynman-Kac formula (Del Moral,
2004) to obtain an estimator for the solution to the PDE. However, for the Schrödinger equation, we
need an analytical continuation of the Feynman-Kac formula on an imaginary time axis (Yan, 1994)
as it is a complex-valued equation. This requirement limits the applicability of this approach to our
setting. BSDE methods studied by Nüsken & Richter (2021b;a) are closely related to our approach
but they are developed for the elliptic version of the Hamilton–Jacobi–Bellman (HJB) equation. We
consider the hyperbolic HJB setting, for which the existing method cannot be applied.

1A multi-particle case is covered by considering d = 3n, where n – the number of particles.
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3 CONTRIBUTIONS

We are inspired by works of Nelson (1966; 2005), who has developed a stochastic interpretation of
quantum mechanics, so-called stochastic mechanics, based on a Markovian diffusion. Instead of
solving the Schrödinger Equation (1), our method aims to learn the stochastic mechanical process’s
osmotic and current velocities equivalent to classical quantum mechanics. Our formulation differs
from the original one (Nelson, 1966; 2005; Guerra, 1995), as we derive equivalent differential
equations describing the velocities that do not require the computation of the Laplacian operator.
Another difference is that our formulation interpolates anywhere between stochastic mechanics and
deterministic Pilot-wave theory (Bohm, 1952). More details are given in Appendix E.4.

We highlight the main contributions of this work as follows:

• We propose to use a stochastic formulation of quantum mechanics (Nelson, 2005; 1966; Guerra,
1995) to create an efficient computational tool for quantum mechanics simulation.

• We also derive equations describing stochastic mechanics that are equivalent to the expressions
introduced by Nelson but which are expressed in terms of the gradient of the divergence operator,
making them more amenable to neural network-based solvers.

• We empirically estimate the performance of our method in various settings. Our approach shows
a superior advantage to PINNs in terms of accuracy. We also conduct an experiment where our
method shows linear convergence time in the dimension, operating easily in a higher-dimensional
setting.

• We prove theoretically in Section 4.3 that our proposed loss function upper bounds the L2 distance
between the approximate process and the ‘true’ process that samples from the quantum density,
which implies that if loss converges to zero then the approximate process strongly converges to
the ‘true’ process.

Table 1 compares properties of methods for solving Equation (1), where N is the number of discretiza-
tion points in time, Hd is the number of Monte Carlo iterations required by FermiNet to draw a single
sample, and Nf is a number of collocation points for PINN. We follow the general recommendation
that each spatial dimension’s number of points on the grid should be

p
N . Thus, the number of

points on a grid is O(N
d
2+1). We assume a numerical solver aims for a precision " = O( 1p

N
).

Approaches like the PINN or FermiNet require computing the Laplacian, which leads to at least
quadratic computational complexity per training iteration. We also note that for our approach N
is independent from d. In the general case, overall complexity bounds are not known, except for
the numerical solver. We can at least lower bound them based on iterations complexity and known
bounds for the convergence of non-convex stochastic gradient descent (Fehrman et al., 2019) that
scales polynomial with "�1.

Table 1: Comparison of different approaches for simulating quantum mechanics.

Method Domain Time-evolving Adaptive Iteration Complexity Overall Complexity
PINN (Raissi et al., 2019) Compact 3 7 O(Nfd

2
) at least O(Nfd

2
poly("

�1
))

FermiNet (Pfau et al., 2020) Rd 7 3 O(Hdd
2
)

2 at least O(Hdd
2
poly("

�1
))

Numerical solver Compact 3 7 N/A O(d"
�d�2

)

DSM (Ours) Rd 3 3 O(Nd) at least O(Ndpoly("
�1

))

4 DEEP STOCHASTIC MECHANICS

There is a family of diffusion processes that are equivalent to Equation (1) in a sense that all time-
marginals of any such process coincide with | |2; we refer to Appendix E for derivation. Assuming
 (x, t) =

p
⇢(x, t)eiS(x,t), we define:

v(x, t) =
~
m
rS(x, t) and u(x, t) =

~
2m

r log ⇢(x, t). (3)

2Although the original method is for Bohr-Openheimmer potential that leads to even higher complexity, we
do not take this into account here.
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Our method relies on the following stochastic process with ⌫ � 0 3, which corresponds to sampling
from ⇢ =

�� (x, t)
��2 (Nelson, 1966):

dY (t) = (v(Y (t), t) + ⌫u(Y (t), t))dt+

r
⌫~
m

d
!
W, (4)

Y (0) ⇠
�� 0

��2, (5)

where u is an osmotic velocity, v is a current velocity and
!
W is a standard (forward) Wiener process.

Process Y (t) is called the Nelsonian process. Since we don’t know the true u, v, we instead aim at
approximating them with the process defined using neural network approximations v✓, u✓:

dX(t) = (v✓(X(t), t) + ⌫u✓(X(t), t))dt+

r
⌫~
m

d
!
W, (6)

Any numerical integrator can be used to obtain samples from the diffusion process. The simplest one
is the Euler-Maryama integrator (Kloeden & Platen, 1992):

Xi+1 = Xi + (v✓(Xi, ti) + ⌫u✓(Xi, ti))✏+N
�
0,
⌫~
m
✏Id

�
, (7)

where ✏ > 0 denotes a step size, 0  i < T
✏ , and N (0, Id) is a Gaussian distribution. We consider

this integrator in our work. Switching to higher-order integrators, e.g., the Runge-Kutta family of
integrators (Kloeden & Platen, 1992), can potentially enhance efficiency and stability when ✏ is larger.

The diffusion process (4) achieves sampling from ⇢ =
�� (x, t)

��2 for each t 2 [0, T ] for known u

and v. Assume that  0(x) =
p
⇢0(x)eiS0(x). Our approach relies on the following equations for the

velocities:

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
rhr, ui, (8a)

@tu = �rhv, ui � ~
2m

rhr, vi, (8b)

v0(x) =
~
m
rS0(x), u0(x) =

~
2m

r log ⇢0(x). (8c)

These equations are derived in Appendix E.1 and are equivalent to the Schrödinger equation. As
mentioned, our equations differ from the canonical ones developed in Nelson (1966); Guerra (1995).
In particular, the original formulation in (27), which we call the Nelsonian version, includes the
Laplacian of u; in contrast, our version in (8a) uses the gradient of the divergence operator. These
versions are equivalent in our setting, but our version has significant computational advantages, as we
describe later in Proposition 4.1.

4.1 LEARNING DRIFTS

This section describes how we learn the velocities u✓(X, t) and v✓(X, t), parameterized by neural
networks with parameters ✓. We propose to use a combination of three losses: two of them come
from the Navier-Stokes-like equations (8a), (8b), and the third one enforces the initial conditions (8c).
We define non-linear differential operators that appear in Equation (8a), (8b):

Du[v, u, x, t] = �rhv(x, t), u(x, t)i � ~
2m

rhr, v(x, t)i, (9)

Dv[v, u, x, t] =
1

m
rV (x, t) +

1

2
rku(x, t)k2 � 1

2
rkv(x, t)k2 + ~

2m
rhr, u(x, t)i (10)

We aim to minimize the following losses:

L1(v✓, u✓) =

Z T

0
EX

��@tu✓(X(t), t)�Du[v✓, u✓, X(t), t]
��2dt, (11)

3
⌫ = 0 is allowed if and only if  0 is sufficiently regular, e.g., | 0|

2
> 0 everywhere.
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b) Sample paths, an early epoch d) Uniform collocation points  
used by a grid-based solver

a) DSM training
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i = 0 i = 1

c) Sample paths, a final epoch 

u�M

v�M �(0,�2)

u�M

v�M �(0,�2)

Figure 1: An illustration of our approach. Blue regions in the plots correspond to higher-density
regions. (a) DSM training scheme: at every epoch ⌧ , we generate B full trajectories {Xij}ij ,
i = 0, ..., N , j = 1, ..., B. Then we update the weights of our NNs. (b) An illustration of sampled
trajectories at the early epoch. (c) An illustration of sampled trajectories at the final epoch. (d)
Collocation points for a grid-based solver where it should predict values of  (x, t).

L2(v✓, u✓) =

Z T

0
EX

��@tv✓(X(t), t)�Dv[v✓, u✓, X(t), t]
��2dt, (12)

L3(v✓, u✓) = EXku✓(X(0), 0)� u0(X(0))k2 (13)

L4(v✓, u✓) = EXkv✓(X(0), 0)� v0(X(0))k2 (14)

where u0, v0 are defined in Equation (8c). Finally, we define a combined loss using weighted sum
with wi > 0:

L(✓) =
4X

i=1

wiLi(v✓, u✓). (15)

The basic idea of our approach is to, for each iteration ⌧ , to sample new trajectories using Equation (7)
with ⌫ = 1. These trajectories are then used to compute stochastic estimates of the loss (15), and
then we back-propagate gradients of the loss to update ✓. We re-use recently generated trajectories to
reduce computational overhead as SDE integration cannot be paralleled. The training procedure is
summarized in Algorithm 1 and Figure 1; a more detailed version is presented in Appendix B. We

Algorithm 1 Training algorithm pseudocode

Input  0 – initial wave-function, M – epoch number, B – batch size, other parameters (optimizer parameters,
physical constants, Euler-Maryama parameters; see Appendix B)
Initialize NNs u✓0 , v✓0
for each iteration 0  ⌧ < M do

Sample B trajectories using u✓⌧ , v✓⌧ via Equation (7) with ⌫ = 1

Estimate loss L(v✓⌧ , u✓⌧ ) from Equation (15) over the sampled trajectories
Back-propagate gradients to get r✓L(v✓⌧ , u✓⌧ )

Adam optimizer step to get ✓⌧+1

end for
output u✓M , v✓M

use trained u✓M , v✓M to simulate the forward diffusion for ⌫ � 0 given X0 ⇠ N (0, Id):

Xi+1 = Xi + (v✓M (Xi, ti) + ⌫u✓M (Xi, ti))✏+N
�
0,

~
m
⌫✏Id

�
. (16)
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In Appendix G, we describe a wide variety of possible ways to apply our approach for estimating an
arbitrary quantum observable , singular initial conditions like  0 = �x0 , singular potentials, correct
estimations of observable that involve measurement process, recovering the wave function from u, v.

Although PINNs can be used to solve the equations (8a), (8b), that approach would suffer from
having fixed sampled density (see Section 5). While ideologically, we, similarly to PINNs, attempt to
minimize residuals of PDEs (8a), (8b), we do so on the distribution generated by sampled trajectories
X(t), which in turn depends on current neural approximations v✓, u✓. This allows our method to
focus only on high-density regions and alleviates the inherent curse of dimensionality that comes
from reliance on a grid.

4.2 ALGORITHMIC COMPLEXITY

All known deep learning approaches for quantum mechanics suffer from the need to compute the
Laplacian (that requires O(d2) operations, see (Paszke et al., 2017)), which is the major bottleneck
for scaling them to many-particle systems. The following proposition is proved in Appendix D.4:
Proposition 4.1. The algorithmic complexity w.r.t. d of computing rhr, ·i and equation (9) is O(d).

So, our formulation of stochastic mechanics with novel equations (8) is much more amenable
to automatic differentiation tools than if we developed a neural diffusion approach based on the
Nelsonian version that would require O(d2) operations. The same trick cannot be applied for the
classical form of the Schrödinger equation as it relies on the fact that u, v are the full gradients, which
is not the case for the wave function  itself. That means that the algorithmic complexity of PINN
for the Shrödinger equation is O(d2). It is possible to make PINN work at O(d) by using stochastic
estimators of the trace (Hutchinson, 1989). However, it will introduce a noise of an amplitude O(

p
d),

which will require setting a larger batch size (as O(d)) to offset the noise.

4.3 THEORETICAL GUARANTEES

To further justify the effectiveness of our loss function, we prove the following in Appendix F:
Theorem 4.2. (Strong Convergence Bound) We have the following bound between processes Y (the
Nelsonian process that samples from | |2) and X (the neural approximation with v✓, u✓):

sup
tT

EkX(t)� Y (t)k2  CTL(v✓, u✓), (17)

where constant CT is defined explicitly in F.13.

This theorem means optimizing the loss leads to strong convergence of neural process X to the
Nelsonian process Y , and that the loss value directly translates into an improvement of L2 error
between processes. Constant C depends on horizon T and Lipshitz constants of u, v, u✓, v✓. It also
hints that we have a ‘low-dimensional’ structure when the Lipshitz constants of u, v, u✓, v✓ are ⌧ d,
which is the case of low-energy regimes (as large Lipshitz smoothness constant implies large value of
the Laplacian and, hence, energy) and with proper selection of neural architecture (Aziznejad et al.,
2020).

5 EXPERIMENTS

Experimental setup As a baseline, we use an analytical solution (if it is known) or a numerical
solution. We compare our method’s (DSM) performance with PINNs when possible. Further details
on architecture, training procedures, hyperparameters and additional experiments for our approach
and PINNs, and numerical solvers can be found in Appendix C and Appendix D. The code of our
experiments can be found on GitHub 4.

Evaluation metrics We estimate errors between the true values of the mean and the variance of Xt

as the relative L2-norm, namely Em(X) and Ev(X). The standard deviation (confidence intervals)
of the observables are indicated in the results. True v and u values are estimated numerically with

4
https://github.com/anon14112358/deep_stochastic_mechanics

6

https://github.com/anon14112358/deep_stochastic_mechanics


Under review as a conference paper at ICLR 2024

the finite difference method. Our trained u✓ and v✓ should output these values. We measure errors
E(u) and E(v) as the L2-norm between the true and predicted values in L2(Rd ⇥ [0, T ], µ) with
µ(dx, dt) = | (x, t)|2dxdt.

5.1 HARMONIC OSCILLATOR

We consider a harmonic oscillator model with x 2 R1, V (x) = 1
2m!

2(x � 0.1)2, t 2 [0, 1] and
where m = 1 and ! = 1. The initial wave function is given as  (x, 0) / e�x2/(4�2). Then
u0(x) = � ~x

2m�2 , v0(x) ⌘ 0. X(0) comes from X(0) ⇠ N (0,�2), where �2 = 0.1.

We use the numerical solution as the ground truth. Our approach is compared with a PINN. The PINN
input data consists of N0 = 1000 data points sampled for estimating  (x, 0), Nb = 300 data points
for enforcing the boundary conditions (we assume zero boundary conditions), and Nf = 60000
collocation points to enforce the corresponding equation inside the solution domain, all points
sampled uniformly for x 2 [�2, 2] and t 2 [0, 1].

Figure 2 (a) summarizes the results of our experiment. The left panel of the figure illustrates the
evolution of the density | (x, t)|2 over time for different methods. It is evident that our approach
accurately captures the density evolution, while the PINN model initially aligns with the ground truth
but deviates from it over time. Sampling collocation points uniformly when density is concentrated
in a small region explains why PINN struggles to learn the dynamics of Equation (1); we illustrate
this effect in Figure 1 (d). The right panel demonstrates observables of the system, the averaged
mean of Xt and the averaged variance of Xt. Our approach consistently follows the corresponding
distribution of Xt. On the contrary, the predictions of the PINN model only match the distribution at
the initial time steps but fail to accurately represent it as time elapses. Table 2 shows the error rates
for our method and PINNs. In particular, our method performs better in terms of all error rates than
the PINN. These findings emphasize the better performance of the proposed method in capturing the
dynamics of the Schrödinger equation compared to the PINN model.

ti ti

Xi Xi

(a) The harmonic oscillator with S0(x) ⌘ 0.

Xi Xi

ti ti

(b) The harmonic oscillator with S0(x) = �5x.

Figure 2: The results for 1d harmonic oscillator. DSM corresponds to our method.

We also consider a non-zero initial phase S0(x) = �5x. It corresponds to the initial impulse of
a particle. Then v0(x) ⌘ � 5~

m . The PINN inputs are N0 = 3000, Nb = 300 data points, and
Nf = 80000 collocation points. Figure 2 (b) and Table 2 present the results of our experiment. Our
method consistently follows the corresponding ground truth while the PINN model fails to do so.
It indicates the ability of our method to accurately model the behavior of the quantum system. In
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Table 2: The results for different harmonic oscillator settings. In the 3d setting, the reported errors
are averaged across the dimensions. The best result is in bold.

Problem Model Em(Xi) # Ev(Xi) # E(v) # E(u) #

1d,
S0(x) ⌘ 0

PINN 0.698 0.701 25.861 3.621
DSM 0.077 ± 0.052 0.011 ± 0.006 0.00011 2.811⇥ 10�5

Gaussian sampling 0.294 ± 0.152 0.488 ± 0.018 3.198 1.185

1d,
S0(x) = �5x

PINN 2.819 0.674 281.852 68.708
DSM 0.223 ± 0.207 0.009 ± 0.008 1.645⇥ 10�5 2.168⇥ 10�5

Gaussian sampling 0.836 ± 0.296 0.086 ± 0.007 77.578 24.152

3d,
S0(x) ⌘ 0

DSM
(Nelsonian) 0.100 ± 0.061 0.012 ± 0.009 1.200⇥10

�4 3.324⇥ 10�5

DSM
(Grad. Divergence) 0.073 ± 0.048 0.011 ± 0.008 4.482⇥ 10�5

4.333⇥ 10
�5

Gaussian sampling 0.459 ± 0.126 5.101 ± 0.201 13.453 5.063

Interacting system PINN 0.100 2.350 29.572 2.657

DSM 0.091 ± 0.050 0.102 ± 0.020 6.511⇥ 10�5 5.139⇥ 10�5

addition, we consider an oscillator model with three non-interacting particles, which can be seen as
3d system. The results are given in Table 2 and Appendix D.2.

5.2 INTERACTING SYSTEM

Next, we consider a system of two interacting bosons in a harmonic trap with a soft contact term
V (x1, x2) =

1
2m!

2(x2
1 + x2

2) +
g
2

1p
2⇡�2

e�(x1�x2)
2/(2�2) and initial condition  0 / e�m!2x2/(2~).

We use ! = 1, T = 1, �2 = 0.1, and N = 1000. The term g controls interaction strength. When
g = 0, there is no interaction, and  0 is the groundstate of the corresponding Hamiltonian H. We use
g = 1 in our simulations. Figure 3 shows simulation results: our method follows the corresponding
ground truth while PINN fails over time. As t increases, the variance of Xi for PINN either decreases
or remains relatively constant, contrasting with the dynamics that exhibit more divergent behavior.
We hypothesize that such discrepancy in the performance of PINN, particularly in matching statistics,
is due to the design choice. Specifically, the output predictions,  (xi, t), made by PINNs are not
constrained to adhere to physical meaningfulness, meaning

R
Rd

�� (x, t)
��2dx does not always equal 1,

making uncontrolled statistics.

Figure 3: The results for two interacting particles. DSM corresponds to our method.

5.3 NAIVE SAMPLING

To further evaluate our approach, we consider the following sampling scheme: it is possible to replace
all measures in the expectations from Equation (15) with a Gaussian noise N (0, 1). Minimising

8
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this loss perfectly would imply that the PDE is satisfied for all values x, t. Table 2 shows worse
quantitative results compared to our approach. More detailed results, including the singular initial
condition and 3d harmonic oscillator setting, are given in Appendix D.3.

5.4 ALGORITHMIC COMPLEXITY

We measure training time per epoch for two versions of the DSM algorithm for d = 1, 3, 5, 7, 9: the
Nelsonian one and our version. The experiments are conducted using the harmonic oscillator model
with S0(x) ⌘ 0. The results are averaged across 30 runs. Figure 4 on the left shows the results. It
demonstrates quadratic time per iteration scaling for the Nelsonian version, while the time grows
linearly for our version. The memory complexity results are given in Appendix D.4.

Figure 4 on the right illustrates the total training time versus the problem dimension. We train our
models until the training loss reaches a threshold of 2.5⇥ 10�5. We observe that train time grows
linearly with d. The performance errors are presented in Appendix D.4. These empirical findings
demonstrate the computational efficiency of our algorithm. In contrast, traditional numerical solvers
would suffer from exponential growth in data when tackling this task.

Figure 4: Empirical complexity evaluation of our method.

6 DISCUSSION AND LIMITATIONS

Limitations This paper considers the simplest case of the linear spinless Schrödinger equation on
a flat manifold Rd with a smooth potential. For many practical setups, such as quantum chemistry,
quantum computing or condensed matter physics, our approach should be modified, e.g., by adding a
spin component or by considering some approximation and, therefore, requires additional validations
that are beyond of the scope of this work. We have shown evidence of adaptation of our method to
one kind of low-dimensional structure, but this paper does not explore a broader range of systems
with low latent dimension.

Broader impacts It is hypothesized that simulations of quantum systems cannot be done effectively
on classic computers, otherwise known as the problem of P 6= BQP (Bernstein & Vazirani, 1997). If
that is true, then no algorithm should scale as a polynomial of the dimension for all problems. In
our work, we propose the algorithm that can simulate some systems effectively in linear time. It may
be possible to learn polynomial-time approximations to Shor’s algorithm (Shor, 1997) on a classic
computer using some modification of the proposed deep learning approach. While this possibility is
highly unlikely, the risk that comes with it (Bernstein & Lange, 2017) should not be ignored.

Conclusion and future work We develop the new algorithm for simulating quantum mechanics
that addresses the curse of dimensionality by leveraging the latent low-dimensional structure of the
system. This approach is based on a modification of the stochastic mechanics theory that establishes a
correspondence between the Schrödinger equation and a diffusion process. We learn the drifts of this
diffusion process using deep learning to sample from the corresponding quantum density. We believe
that our approach has the potential to bring to quantum mechanics simulation the same progress that
deep learning has enabled in artificial intelligence. We provide future work discussion in Appendix I.
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