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Abstract

We propose conducting locally differentially private (LDP) estimation with the aid
of a small amount of public data to enhance the performance of private estimation.
Specifically, we introduce an efficient algorithm called Locally differentially Private
Decision Tree (LPDT) for LDP regression. We first use the public data to grow a
decision tree partition and then fit an estimator according to the partition privately.
From a theoretical perspective, we show that LPDT is ε-LDP and has a minimax
optimal convergence rate under a mild assumption of similarity between public and
private data, whereas the lower bound of the convergence rate of LPDT without
public data is strictly slower, which implies that the public data helps to improve the
convergence rates of LDP estimation. We conduct experiments on both synthetic
and real-world data to demonstrate the superior performance of LPDT compared
with other state-of-the-art LDP regression methods. Moreover, we show that LPDT
remains effective despite considerable disparities between public and private data.

1 Introduction

Differential privacy (DP) [25] is a widely-used technique to protect sensitive information, like in
medical trials [20], recommendation systems [49], and census data sharing [3]. Local differential
privacy (LDP) [38, 24], a variation of DP, has gained particular attention, especially among industry
experts [27, 35]. Unlike DP, LDP assumes data is privatized before being sent to a central collector.
However, LDP models need more data to be accurate compared to DP [24], and many common
techniques in data analysis such as standardization [10] and tree partition [59] are harder with LDP.
This brings challenges to tasks such as density density estimation [23], mean estimation [24], and
Gaussian estimation [36].

Fortunately, in some scenarios, private estimation performance can be enhanced with an additional
public dataset [4, 7]. The public dataset can be either in-distribution, consisting of data from users
who agree to share their personal information [6], or out-of-distribution, such as data from another
source [34]. From a central DP perspective, an increasing amount of research has focused on
leveraging public data to facilitate private learning, where public data mainly serves two purposes.
On one hand, the knowledge learned from public data is implicitly transferred into the private
model. Empirical investigations have demonstrated the effectiveness of pretraining on public data
and fine-tuning privately on sensitive data [63, 43, 41, 61]. By gradient pre-conditioning with a
subspace computed by public data, [65, 62, 37] managed to reduce the required amount of noise in
differentially private gradient descent and accelerate its convergence. Through unlabeled public data,
[45, 46] fed knowledge privately into student models. On the other hand, on public data, we can
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conduct procedures that would be infeasible without access to the raw private data. For example,
[10] used parameters computed by public data to standardize private data, which can augment the
sample complexity of private mean estimation. Recently, [56] employed unlabeled public data to
estimate the leading eigenvalue of the covariance matrix, resulting in an improved sample complexity
for generalized linear models with non-interactive local differential privacy.

The paper focuses on the problem of non-parametric regression with LDP. While regression has
been extensively studied in the central setting [50, 1, 14], the LDP case remains rarely explored.
A notable reason is that most gradient-based methods [50, 1] are prohibited. In order to protect
privacy, each data holder needs to compute the gradient of parameters locally, which requires a large
amount of memory, computing power, and communication capacity on the terminal machine [52].
[29] proposed to impose Laplace noise on the data directly to provide privacy. However, this method
is known to converge slowly [28] and suffer from the curse of dimensionality. More recently, [9, 33]
investigated histogram-based approaches. Though theoretically optimal, histograms may perform
poorly in practice, especially when the dimension of feature space is large. Thus, both methods
proposed in [9, 33] face challenges when applied to real-world problems.

Under such background, using the idea of borrowing public data information, we propose an LDP
non-parametric regression algorithm called the Locally differentially Private Decision Tree (LPDT)
that achieves both optimal convergence rate and superior empirical performance. We first create a
tree partition on the public dataset using the proposed max-edge rule. According to the partition, each
data holder encodes the private data and releases the encoding which is processed using the proposed
privacy mechanism. Finally, the curator aggregates the information in each partition cell and outputs
a decision tree estimator. LPDT is advantageous from at least two perspectives: (i) LPDT integrates
both benefits to leverage public data. It enables adaptive partitioning procedures which can eliminate
some redundant cells and can transfer information from public data to private estimation through the
tree partition. (ii) It inherits the merit of the decision tree model, such as interpretability, efficiency,
stability, extensiveness to multiple feature types, and resistance to the curse of dimensionality.

We summarize our contributions. (i) For the first time, we propose to use public data in locally
differentially private non-parametric regression. (ii) We propose a novel LDP regression algorithm
called the locally differentially private decision tree that achieves theoretical optimality while main-
taining satisfying practical performance. (iii) Under mild assumptions on the similarity between the
distribution of public and private data, we establish the optimal convergence rate of LPDT, whereas
the supremum of excess risk of LPDT without public fails to converge to zero. This demonstrates
the theoretical advantage of incorporating public data. (iv) In experiments, we compare LPDT with
other existing non-parametric LDP regression methods using both synthetic and real-world datasets.
Our results demonstrate the overwhelming performance of LPDT, which illustrates the empirical
improvement brought by public data. Moreover, we show that LPDT performs well even in the
presence of significant disparities between public and private data.

2 Methodology

This section is dedicated to the methodology of LPDT. In Section 2.1, we first present notations and
preliminaries related to regression problems, followed by a recap of the definition of local differential
privacy. Next, we introduce our hybrid privacy mechanism for general partition-based estimation
in Section 2.2. In Section 2.3, we propose our partition rule. Finally, in Section 2.4, we provide a
comprehensive description of LPDT.

2.1 Preliminaries

Notations For any vector x, let xi denote the i-th element of x. Recall that for 1 ≤ p < ∞, the
Lp-norm of x = (x1, . . . , xd) is defined by ∥x∥p := (|x1|p + · · ·+ |xd|p)1/p. Throughout this paper,
we use the notation an ≲ bn and an ≳ bn to denote that there exist positive constant c and c′ such
that an ≤ cbn and an ≥ c′bn, for all n ∈ N. In addition, we denote an ≍ bn if an ≲ bn and bn ≲ an.
Let a ∨ b = max(a, b) and a ∧ b = min(a, b). Besides, for any set A ⊂ Rd, the diameter of A is
defined by diam(A) := supx,x′∈A ∥x − x′∥2. Let the standard Laplace random variable have the
continuous probability density function p(x) = 1

2e
−|x| for x ∈ R.
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Regression is to predict the value of an unobserved output variable Y based on the observed input vari-
able X , based on a dataset D := {(X1, Y1), . . . , (Xn, Yn)} consisting of n i.i.d. observations drawn
from an unknown probability measure P on X ×Y = [0, 1]d × [−M,M ]. The density function of P
is denoted as s. In addition, we have a public dataset Dpub := {(Xpub

1 , Y pub
1 ), . . . , (Xpub

nq
, Y pub

nq
)}

drawn from distribution Q on X × Y with sample size nq . Its density function is denoted as q.

It is legitimate to consider the least square loss L : X ×Y×Y → [0,∞) defined by L(x, y, f(x)) :=
(y − f(x))2 for our target of regression. Then, for a measurable decision function f : X → Y , the
risk is defined by RL,P(f) :=

∫
X×Y L(x, y, f(x)) dP(x, y). The Bayes risk, which is the smallest

possible risk with respect to P and L, is given by R∗
L,P := inf{RL,P(f)|f : X → Y measurable}.

The function that achieves the Bayes risk is called Bayes function, namely, f∗(x) := E
(
Y |X = x

)
.

Definition 2.1 (Local Differential Privacy). Given data {(Xi, Yi)}ni=1, each (Xi, Yi) is mapped to
a piece of privatized information si which is a random variable on S. Let σ(S) be the σ-field on S.
si is drawn conditional on (Xi, Yi) via the distribution R(S | Xi = x, Yi = y) for S ∈ σ(S). Then
the mechanism R provides ε-local differential privacy (ε-LDP) if

sup

{
R(S | Xi = x, Yi = y)

R (S | Xi = x′, Yi = y′)
| S ∈ σ(S), and x, x′ ∈ X , y, y′ ∈ Y

}
≤ eε.

This formulation of local privacy is widely adopted [23, 9]. In contrast to central DP where the
likelihood ratio is taken with respect to some statistics of all data, LDP requires individuals to
guarantee their own privacy by considering the likelihood ratio with respect to each (Xi, Yi). Once
the view s is provided, no further processing can reduce the deniability about taking a value (x, y)
since any outcome s is nearly as likely to have come from some other initial value (x′, y′).

2.2 Privacy mechanism for tree partition

This section focuses on the hybrid privacy mechanism for general tree partitions. We first introduce
the standard regression tree and then present our privacy mechanism based on the random response
and Laplacian mechanism.

For index set I, let π = {Aj}j∈I be any tree partition of X with ∪j∈IAj = X and Ai ∩ Aj = ∅,
i ̸= j. For any x ∈ X , let the cell containing x be A(x). A population decision tree regressor with
partition π is defined as

fπ(x) =
∑
j∈I

1{x ∈ Aj}

∫
Aj

f∗(x′) dP(x′)∫
Aj

dP(x′)
. (1)

Here, we let 0/0 = 0 by definition. To get a empirical estimator given the data set D =
{(X1, Y1), . . . , (Xn, Yn)}, we estimate the numerator and the denominator of (1) respectively. To
estimate the denominator, each sample (Xi, Yi) contributes a one-hot vector Ui ∈ {0, 1}|I| where
the j-th element of Ui is 1{Xi ∈ Aj}. Then an estimation of

∫
Aj

dP(x) is 1
n

∑n
i=1 U

j
i , which

is the number of samples in Aj divided by n. Analogously, an estimation of
∫
Aj

f∗(x)dP(x) is
1
n

∑n
i=1 Yi · U j

i . Combining the pieces, a decision tree regressor is defined as

fπ(x) =
∑
j∈I

1{x ∈ Aj}
∑n

i=1 Yi · U j
i∑n

i=1 U
j
i

. (2)

In other words, fπ(x) estimates f(x) by the average of the responses in the cell A(x). In the non-
private setting, each data holder prepares Ui and Yi according to the partition π and sends it to the
curator. Then the curator aggregates the transmission following (2).

To protect the privacy of each data, we propose to estimate the numerator and denominator of the
population regression tree using a privatized method. Specifically, given U j

i , we independently
sample Ũ j

i using the random response technique [57]

Ũ j
i =

{
U j
i − 1

1+eε/4
with probability eε/4

1+eε/4

1− U j
i − 1

1+eε/4
with probability 1

1+eε/4
.

(3)
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Since ER

[
1
n

∑n
i=1 Ũ

j
i

]
= eε/4−1

eε/4+1
1
n

∑n
i=1 U

j
i , we take eε/4+1

eε/4−1
1
n

∑n
i=1 Ũ

j
i as the estimator of∫

Aj
dP(x). To privatize Y1, · · · , Yn, we use the standard Laplace mechanism [25]. Namely, we let

Ỹi = Yi +
4M

ε
ξi (4)

where ξi are i.i.d. standard Laplace random variables. Similarly, eε/4+1
eε/4−1

1
n

∑n
i=1 Ỹi · Ũ j

i can be used
to estimate

∫
Aj

f∗(x)dP(x). Then using the privatized information (Ũi, Ỹi), i = 1, · · · , n, we define
the locally differentially private decision tree regressor as

fDP
π (x) =

∑
j∈I

1{x ∈ Aj}
∑n

i=1 Ỹi · Ũ j
i∑n

i=1 Ũ
j
i

. (5)

Compared to [9, 33] which used the Laplacian mechanism to protect both Ui and Yi, our mechanism
(3) considers the fact that U is a binary vector. When |I| is large, (3) can be more efficient than the
Laplace mechanism which has a heavier-tailed distribution [23, 24].

2.3 Max-edge partition with variance reduction

While our privacy mechanism applies to any tree partition, it can be challenging to use general
partitions such as the original CART [11] for theoretical analysis. Following the heuristic of [15], we
propose a new splitting rule called the max-edge partition rule using the variance reduction criterion.
This rule is amenable to theoretical analysis and can also achieve satisfactory practical performance.
Given public dataset {(Xpub

i , Y pub
i )}nq

i=1, the partition rule is stated as follows:

• Let A1
0 := [0, 1]d be the initial rectangular cell and π0 := {Aj

0}j∈I0
be the initialized cell

partition. I0 = {1} stands for the initialized index set. In addition, let p ∈ N represent
the maximum depth of the tree and let nl represent the minimum sample size in each leaf.
These parameters are fixed beforehand by the user and possibly depend on n.

• Suppose we have obtained a partition πi−1 of X after i−1 steps of the recursion. Let πi = ∅.
In the i-th step, for each Aj

i−1 ∈ πi−1, j ∈ Ii−1, suppose it is ×d
ℓ=1[aℓ, bℓ]. We choose the

edge to be split among the longest edges. The index set of longest edges is defined as

Mj
i−1 =

{
k | |bk − ak| = max

ℓ=1,··· ,d
|bℓ − aℓ|, k = 1, · · · , d

}
.

• Assume we split along the ℓ-th dimension for ℓ ∈ Mj
i−1, Aj

i−1 is then partitioned into a left
sub-cell Aj,0

i−1(ℓ) and a right sub-cell Aj,1
i−1(ℓ) along the midpoint of the chosen dimension,

where Aj,0
i−1(ℓ) =

{
x | x ∈ Aj

i−1, x
ℓ < aℓ+bℓ

2

}
and Aj,1

i−1(ℓ) = Aj
i−1/A

j,0
i−1(ℓ). Then the

dimension to be split is chosen using the variance reduction criterion:

argmin
ℓ∈Mj

i−1

nq∑
i=1

(
Y pub
i − fπi−1∪Aj,0

i−1(ℓ)∪Aj,1
i−1(ℓ)/A

j
i−1

(Xpub
i )

)2
. (6)

• Once ℓ is selected, We count the number of samples in the sub-cells
∑n

i=1 1(X
pub
i ∈

Aj,k
i−1(ℓ)), k = 0, 1. If either of the cells contains fewer than nl samples, the splitting is

pruned and we let πi = πi ∪Aj
i−1. Otherwise, let πi = πi ∪ {Aj,0

i−1(ℓ), A
j,1
i−1(ℓ))}.

The complete process is presented in Algorithm 2 in the appendix. For each grid, the partition rule
selects the midpoint of the longest edges that achieves the largest variance reduction. This procedure
continues until there are not enough samples contained in any leaf node, or the depth of the tree
reaches its limit.

2.4 Decision Tree with local differential privacy

With these preparations, we finally present the full procedure of LPDT in Algorithm 1.
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Algorithm 1: Locally differentially private decision tree (LPDT)

Input: Private data D = {(Xi, Yi)}ni=1, public data Dpub = {(Xpub
i , Y pub

i )}nq

i=1
Parameters: Depth s, minimum leaf sample size nl.

Curator create tree partition π following max-edge rule in Section 2.3 on public data Dpub.
Data holders of D create privatized information (3) and (4) according to π.
Curator aggregates the privatized information and compute fDP

π by (5).
Output: The LPDT estimator fDP

π .

3 Theoretical results

In this section, we present our theoretical results and related comments. We first provide the ε-LDP
guarantee of LPDT in Section 3.1. In Section 3.2, we establish the optimal convergence rate of LPDT
with max-edge partition and the excess risk lower bound of LPDT without public data. Finally, we
discuss the complexity of LPDT in Section 3.3.

3.1 Privacy guarantee for LPDT

Theorem 3.1. Let π = {Aj}j∈I be any partition of X with ∪j∈IAj = X and Ai ∩Aj = ∅, i ̸= j.
Then the privacy mechanism R(Ũ , Ỹ |X,Y ) defined in (3) and (4) is ε-LDP. Consequently, the LPDT
estimator fDP

π in Algorithm 1 is ε-LDP.

3.2 Convergence rate of LPDT

We first present the necessary assumptions on the distribution P and Q.
Assumption 3.2. Let α ∈ (0, 1]. Assume the true regression function f∗ : X → R is α-Hölder
continuous, i.e. there exists a constant cL > 0 such that for all x1, x2 ∈ X , |f∗(x1) − f∗(x2)| ≤
cL∥x1 − x2∥α. Also, assume that the density function of P is bounded, i.e. p(x) ≤ c for some c > 0.
Assumption 3.3. We assume that there exists some constant τ > 1 such that for all cells A ∈ π,
there holds τ−1

∫
A
dQX(x) ≤

∫
A
dPX(x) ≤ τ

∫
A
dQX(x).

Assumption 3.2 is a standard condition widely used in non-parametric statistics. Assumption 3.3
depicts the similarity between the distribution of public data and private data. It is also a mild
assumption and requires only the probabilities in each cell under PX and QX to be similar. When
p(x) and q(x) are both bounded from 0, this assumption is satisfied. Alternatively, it suffices to
require that p(x)/q(x) is upper and lower bounded.
Theorem 3.4. Let fDP

π be the LPDT estimator in Algorithm 1. Suppose Assumption 3.2 and 3.3 hold.
Then, for nq ≳ n

d
2α+2d , if we set s ≍ log nε2 and nl ≍ nq/2

s, there holds

RL,P(f
DP
π )−R∗

L,P ≲

(
log n

nε2

) α
α+d∧

1
3

with probability 1− 2/n2
q − 5/n2 with respect to Pn ⊗Qnq ⊗Rn where Rn is the joint distribution

of privacy mechanisms in (3) and (4).

Note that we only require nq ≳ n
d

2α+2d , which means the sample size of public data can be much
smaller than private data. As illustrated in [33], the minimax convergence rate over Hölder function
space is (n(eε − 1)

2
)−

α
α+d , indicating that LPDT attains optimal rate when α/(α + d) ≤ 1/3. In

the case α/(α+ d) > 1/3, or equivalently 2α > d, LPDT achieves fast yet sub-optimal convergence
rate n− 1

3 . Note that 2α > d only when d = 1 and α ≥ 1/2, which rarely occurs. The next statement
shows that LPDT fails without public data.
Theorem 3.5. Let fDP

π be the LPDT estimator in Algorithm 1 and P be the class of distributions
satisfying Assumption 3.2. For nq = 0 i.e. there is no public data, for any choice of s, nl, and ε,
there holds

sup
P∈P

(
E
[
RL,P(f

DP
π )

]
−R∗

L,P

)
≳ 1.
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Under the same hypothesis function space, the supremum of excess risk of LPDT does not even
converge without public data. Together with Theorem 3.4, this shows that the prior information
contained in public data can greatly enhance the quality of the private estimation.

We compare our results with those of others. LPDT converges faster than deconvolution-based method
[29] whose rate is n− 2α

2α+5d [28]. As for histogram-based methods, [9] achieves the optimal rate only
when the density function is lower bounded, which is a strong condition. To avoid the condition, [33]
derived an ad hoc estimator by adding a regularization to the marginal density estimation. LPDT
takes another approach to avoid the condition. It does not apply any regularization or truncation on
the estimator in each cell. Instead, as long as Assumption 3.3 holds, the low-density regions can be
identified and treated with larger cells automatically by the parameter nl. As a sacrifice, the large
cells restrict the approximation ability of LPDT and the convergence rate is no more than n−1/3. In
addition, our theoretical results hold in the sense of "with high probability", which is more closely
related to practical needs than "in expectation" as addressed in [9, 33].

Besides these advantages, we also discuss the benefit of public data for removing the range parameter

[10, 9]. Consider the example from [33], where the convergence rate is given by
(

r2dn
nε2

) α
α+d

. When

the set X = ×d
j=1[a

j , bj ] is unknown, it becomes necessary to create a histogram partition over
×d

j=1[−rn, rn], introducing an additional factor of r2dn . However, with publicly available data, we can

approximate the range of the j-th dimension using âj = mini X
j
i and b̂j = maxi X

j
i . Subsequently,

we can perform min-max scaling on each data point from ×d
j=1[â

j , b̂j ] to map it into ×d
j=1[0, 1], and

then train an LPDT on ×d
j=1[0, 1]. Any x that falls outside the range ×d

j=1[0, 1] is predicted as 0. We
demonstrate that by this approach, Theorem 3.4 holds with a probability of at least 1− d/n2

q . See
derivations in Section C.6 in the appendix.

3.3 Complexity analysis

We demonstrate that LPDT is an efficient method. We first consider the average computation
complexity of LPDT. The training stage consists of two parts. The partition procedure takes O(snqd)
time and the computation of (5) takes O(sn) time. From the proof of Theorem 3.4, we know that

2s ≍
(
nε2/ log n

)− d
2α+2d . Thus the training stage complexity is around O(n log nε2 +nqd log nε

2).
Since each prediction of the decision tree takes O(s) time, the test time for each test instance is around
O(log nε2). As for storage complexity, since LPDT only requires the storage of the tree structure

and the prediction value at each node, the space complexity of LPDT is O(
(
nε2/ log n

)− d
2α+2d ). In

short, LPDT is an efficient method with a small number of parameters.
Table 1: Comparison of complexities of LDP regression methods.

LPDT PHIST [9] DECONV [29]

Training Time Complexity O(n log nε2 + nqd log nε
2) O(nd log nε2) -

Testing Time Complexity O(log nε2) O(log nε2) O(nd)

Space Complexity O(
(
nε2/ log n

) d
2α+2d ) O(

(
nε2/ log n

) d
2α+2d ) O(nd)

We compare the complexities of LPDT with other LDP regression methods in Table 1. Notably,
[29] is inefficient due to its unacceptable test and space complexity. Also, the dominant term of
training complexity of [9] is O(nd log nε2). When d is large, we can choose a small nq such that
LPDT yields a strictly lower complexity than [9]. In addition, although [9] enjoys the same order
of space complexity as LPDT, the memory of histogram-based methods suffers from the curse of
dimensionality in practice. Since the storage of O(h−d) values is required, even h = 1/2 requires
allocating an array of size 2d, which is problematic for large d. In contrast, LPDT can resist the curse
of dimensionality by only splitting along the relevant features and keeping a small number of nodes.

4 Experiments

In the experiments, we first validate our theoretical findings with synthetic data in Section 4.1. Then,
in Section 4.2, we show the superior performance of LPDT on real-world datasets with identically
distributed public data. In Section 4.3, we apply LPDT to Chicago taxi data to show that LPDT
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performs well even with considerable differences between private and public data. Also, we analyze
the influence of the distribution shift between private and public data on LPDT.

Splitting rule Note that most tree methods design their partition rules based on the information
gained from the data. To boost the performance of LPDT, we also incorporate the variance reduction
scheme from the original CART [11] to the tree construction. We denote the LPDT estimator using the
max-edge partition rule with variance reduction in Section 2.3 as LPDT-M and denote the estimator
using the standard variance reduction rule in [11] as LPDT-V. Since Theorem 3.1 holds for any
partition, LPDT-V is also ε-LDP.

Experiment setup We choose the privacy budget ε ∈ [0.5, 8], covering commonly seen magnitudes
of privacy budgets from low to high privacy regimes. We compare LPDT-M and LPDT-V with the
following methods: (i) Private Histogram (PHIST) [9]. (ii) Adjusted Private Histogram (APHIST)
[33]. (iii) Deconvolution Kernel (DECONV) [29]. Introduction to the methods and all implementation
details are presented in Appendix D.1. We employ 5-fold cross-validation for parameter selection,
and techniques for tuning parameters under LDP are discussed in Section D.2. The evaluation metric
is the mean squared error (MSE).

4.1 Synthetic experiments

Necessity of public data To demonstrate intuitively why public data is essential for LPDT, we
first visualize its estimation on a synthetic model, Y = sin(16X) + ϵ where X ∼ N (0.5, 0.025)
and ε ∼ N (0, 1). In this case, the marginal distribution is highly imbalanced with the majority of
samples located in the middle part of [0, 1] and a few samples on the sides. For ϵ = 8, we fit two
LPDT models: one with 500 public data and 7,000 private data, and another with 8,000 private data.

0.0 0.2 0.4 0.6 0.8 1.0
x

-2.5

-1.0

0.5

2.0

3.5

y

Samples
f(x)
LPDT

(a) Without public data

0.0 0.2 0.4 0.6 0.8 1.0
x

-2.5

-1.0

0.5

2.0

3.5

y

Samples
f(x)
LPDT

(b) With public data

Figure 1: The estimated regression curve of LPDT with and
without public data. 1,000 samples are displayed in green.

As shown in Figure 1(a), without pub-
lic data, LPDT struggles with the
imbalanced marginal. The grids on
the side produce unstable predictions
since only a few samples fall into
them. As a result, LPDT tends to
decrease depth s to stabilize its esti-
mation. This leads to underfitting in
the middle so that the predicted curve
fails to capture the variation of the
ground truth. In contrast, with the aid
of public data, LPDT solves the issue
as shown in Figure 1(b). For the mid-
dle zone where samples are abundant, LPDT creates small grids to enlarge approximation capacity.
Meanwhile, it prunes the grids on the sides to ensure stability. Even with fewer private data, the
MSE of LPDT is reduced from 1.19 to 1.08 thanks to the additional public data. In summary, the
experiment provides empirical evidence supporting the theoretical findings in Theorems 3.4 and 3.5,
which highlight the necessity of public data for the effective performance of LPDT.

Parameter analysis of depth s We conduct experiments to investigate the selection of partition
depth s in terms of MSE. We generate 6,000 training samples, 2,000 test samples, and 2,000
public samples following the synthetic model described above. We pick ε ∈ {3, 4, 6, 8} and s ∈
{2, 3, 4, 5, 6}. For each pair of s and ε, we plot the 20 times averaged MSE versus s. The result is
displayed in Figure 2(a). Apparently, for each ε, as s increases, MSE first decreases until s reaches a
certain value. Then MSE begins to increase as s grows. This further confirms the trade-off observed
in Theorem 3.4. Moreover, the depth s at which the test error is minimized increases as ε increases.
This is compatible with theory since the optimal choice of s ≍ log nε2 is monotonically increasing
with respect to ε.

Parameter analysis of minimum leaf sample size nl We conduct experiments to investigate the
choice of nl in terms of MSE. Following the same generating scheme, we choose ε ∈ {3, 4, 6, 8} and
plot MSE of LPDT versus nl for nl ∈ {15, 25, · · · , 135}. In Figure 2(b), the relation between MSE
and nl is U-shaped under each ε, which indicates that a properly chosen nl is necessary as stated in
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Figure 2: Different parameters versus MSE.

Theorem 3.4. Furthermore, LPDT achieves the best MSE for nl ∈ [35, 75] when ε = 4, 6, 8, while
the minimum MSE occurred at nl = 125 when ε = 3. This finding is compatible with Theorem 3.4
which states that the optimal choice of nl is monotonically decreasing with respect to ε.

Our parameter analyses indicate that decreasing ε favors smaller values of s and larger values of nl.
These choices lead to a decision tree partition with fewer grids. In summary, when facing higher
levels of privacy demand, LPDT cuts down the number of grids to stabilize its estimation.

Privacy utility trade-off We analyze how privacy budget ε influences the quality of prediction.
Under the same setup, we evaluate LPDT and other methods for ε ∈ {0.5, 1, 2, 3, · · · , 10} with 50
repetitions. The results are displayed in Figure 2(c). To show significance, we plot the (0.1, 0.9)
quantiles as confidence intervals. When ε increases, the MSE of LPDT decreases much faster than
the other methods. Note that the MSE of both PHIST and APHIST remains high, suggesting that
their performances are limited by the histogram instead of the privacy mechanism.

4.2 Real data comparison with identically distributed public data

Experiment setup We conduct experiments on 12 real datasets, each repeated 50 times with a
ratio of 1:7:2 for public data, training data, and testing data in each trial. The dataset details and
pre-processing steps are summarized in Appendix D.3. To ensure significance, we adopt the Wilcoxon
signed-rank test [58] with a significance level of 0.05 to check if a result is significantly better. For
better comparison, we also train a decision tree (denoted as DT) on the original training data with no
privacy protection, whose result will serve as a lower bound.

Table 2: Average MSE over real data sets for LDP regression methods. The best results are bolded and the
second best results are underlined. The marked results with significance towards the rest results are marked with
∗. Due to memory limitation, PHIST and APHIST are corrupted on two datasets which are marked with -.

DT ε = 2 ε = 6
LPDT-M LPDT-V APHIST PHIST DECONV LPDT-M LPDT-V APHIST PHIST DECONV

ABA 5.67e+0 1.01e+1 1.01e+1 1.89e+1 1.06e+1 1.01e+7 8.38e+0* 7.34e+0* 2.05e+1 1.05e+1 1.09e+1
AIR 2.26e+1 4.80e+1* 4.69e+1* 1.31e+3 6.80e+1 3.00e+2 4.49e+1* 3.60e+1* 1.60e+3 4.98e+1 4.72e+1
ALG 2.12e-2 2.57e-1 2.43e-1 2.52e-1 2.52e-1 9.26e+4 2.44e-1 2.46e-1 2.63e-1 2.47e-1 3.14e-1
AQU 1.92e+0 2.99e+0* 2.99e+0* 4.01e+0 2.93e+0* 5.74e+3 2.73e+0* 2.67e+0* 4.75e+0 2.83e+0 2.96e+0
BUI 1.75e+5 1.50e+6* 1.64e+6* - - 1.20e+9 1.44e+6* 1.31e+6* - - 2.04e+7

CBM 4.08e-27 2.12e+0* 1.65e+0* 9.53e+0 6.97e+0 2.37e+3 7.62e-1* 1.23e-1* 4.94e+0 3.21e+0 1.23e+5
CCP 2.19e+1 1.50e+2* 1.06e+2* 2.07e+4 3.64e+2 3.03e+2 8.42e+1* 5.18e+1* 2.24e+4 3.28e+2 2.56e+2
CON 9.38e+1 2.94e+2* 2.89e+2* 3.81e+2 3.00e+2 2.24e+7 2.44e+2* 2.13e+2* 4.16e+2 2.96e+2 3.13e+2
CPU 2.15e+1 3.41e+2 9.00e+1* 9.26e+2 3.42e+2 2.15e+5 3.02e+2* 6.15e+1* 9.98e+2 3.40e+2 3.98e+2
FIS 1.07e+0 2.15e+0* 2.14e+0* 3.14e+0 2.22e+0 3.47e+3 1.65e+0* 1.76e+0* 3.60e+0 2.16e+0 2.21e+0

HOU 2.11e+1 8.10e+1* 8.22e+1* 1.06e+2 8.52e+1 1.92e+4 7.43e+1* 7.10e+1* 1.23e+2 8.21e+1 2.44e+2
MUS 3.00e+2 3.47e+2* 3.46e+2* - - 9.50e+3 3.27e+2* 3.27e+2* - - 8.09e+3
RED 4.76e-1 7.08e-1* 7.03e-1* 3.18e+0 7.57e-1 1.23e+8 6.75e-1* 6.12e-1* 3.80e+0 7.12e-1 8.66e-1
WHI 5.77e-1 8.30e-1 8.42e-1 4.01e+0 8.15e-1 1.64e+7 7.03e-1* 6.61e-1* 4.45e+0 8.03e-1 1.47e+0

Performance of accuracy and running time The representative results for ε = 2, 6 are displayed
in Table 2. Results of ε = 0.5, 1, 4, 8 is in Appendix D.4. It can be seen that LPDT-M and LPDT-V
both significantly outperform their competitors. All methods achieve a higher MSE than DT, while
the results for LPDT-M and LPDT-V are reasonably close to DT. Due to memory limitations, PHIST
and APHIST fail on two datasets. We also compare the total running time in Table 6 in Appendix
D.4. In general, both LPDT-M and LPDT-V achieve less running time than PHIST and APHIST, and
are significantly faster than DECONV.
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Table 3: Average MSE and standard deviation over Chicago taxi data.

DT LPDT-M PHIST APHIST
Public Private ε = 0.5 ε = 1 ε = 2 ε = 4 ε = 6 ε = 8 ε = 2 ε = 8 ε = 2 ε = 8

3.71 0.80
113.45
(14.23)

15.74
(2.20)

4.89
(0.54)

3.35
(0.33)

2.86
(0.10)

2.70
(0.10)

24.72
(0.02)

17.22
(0.00)

38.22
(0.01)

35.5
(0.01)
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Figure 3: Power of public data.

With the private and public distributions being identical, another
alternative is to use solely public data to fit a decision tree. We
train such decision trees on public data (nq = 0.1n). It is com-
pared with the decision tree trained on private data and LPDT
with ε = 6 in Table 7 in Appendix. The results show that when
nq ≪ n and ε is large, training a decision tree on public data is
worse than using LPDT on most of the datasets.

The power of public data We conduct experiments to show
the utility gain brought by public data. We take red wine dataset
as an example. With nq = 100 public data, we run LPDT (with
DP) and PHIST (without DP). For δ ∈ {0.2, 0.4, 0.6, 0.8, 1},
we train each model on δ ·n samples with 20 repetitions. The result is in Figure 3. PHIST with 1,100
samples achieves the same MSE as LPDT with 660 samples. The result shows that, with a small
amount of public data, LPDT achieves the same performance with much fewer samples.

4.3 Real data comparison with non-identically distributed public data

We apply LPDT to the Chicago Taxi Dataset, a collection of taxi trips in Chicago provided by the
Differential Privacy Temporal Map Challenge and contains sensitive information [21]. We use the
fare of each trip as labels and other information as features. Then we regard trips paid by PR card
and credit card as public data and private data, respectively. In Appendix D.5, we show the two parts
are distributed differently. After preprocessing, the dataset has 101 features with 2,150,565 samples
in private data and 24,436 samples in public data.

Performance We report the averaged MSE of LPDT over 20 repetitions for ε = 0.5, 1, 2, 4, 6, and
8. As a comparison to LPDT, we train two decision trees separately using the public and private
datasets with no privacy protection. As for the comparison methods, DECONV fails due to the large
sample size while PHIST and APHIST fail due to the dimensionality. However, after reducing the
dimensionality by retaining only the continuous features, we are able to apply PHIST and APHIST.
The results are displayed in Table 3. A first observation is that the decision tree trained on public
data yields considerably worse results than the decision tree trained on private data. This suggests
that relying solely on public data leads to biased predictions. Learning solely from public data
achieves an MSE higher than LPDT for all three values of ε. Even for ε = 2, LPDT significantly
outperforms histogram-based methods with ε = 8. This indicates that LPDT remains effective even
when substantial disparities exist between the distributions of public and private data.

How does non-identically distributed public data help? It is counterintuitive that non-identically
distributed public data can benefit private estimation. We show the logic behind using such public
data by investigating the first split feature in the tree partition. LPDT identifies whether a trip ends in
Zone 32 as an important feature for predicting fare and initiates the recursive partitioning process by
splitting along this feature. Figure 4 illustrates that trips ending in this zone generally have lower
fares for both public and private data, although the actual fares differ significantly between the two
datasets. This observation demonstrates that despite having different distributions, public and private
data may exhibit similar patterns, thereby allowing the partition created on public data to still be
effective on private data. Following this line of reasoning, to determine whether public data is suitable
for a specific private task, we can examine whether the qualitative relationships between labels and
features remain consistent across both datasets. Whether a dataset can be utilized as public data can
be of independent interest as in [32].

Analysis of distribution shift In Table 3, the MSE of LPDT reduces as ε increases but remains
higher than the MSE achieved by training a decision tree directly on private data. The performance
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Figure 5: Portion of public data versus MSE of LPDT.

gap can be attributed to the distribution shift between private data and public data. In the following,
we investigate how the difference between the two datasets affects the performance of LPDT. Besides
the Chicago taxi data, we also adopt White Wine and Red Wine data in Section 4.2 as private and
public data, respectively. The datasets contain the same variables but are distributed differently, as
is investigated in transfer learning literature [48]. On both datasets, we combine part of the private
samples with public data and perform the partition procedure on the combined dataset, with the
portion of public data denoted as δ. When δ is small, there is less difference between data used for
partition and training. We report the average MSE of LPDT for δ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} after 20
repetitions. Figure 5 shows that a small δ leads to a lower MSE for both datasets and all values of ε.
Thus, LPDT is more powerful when the public and private data are distributed similarly, which also
justifies the necessity of Assumption 3.3.

5 Conclusion

This paper addresses the challenge of effectively performing LDP regression given both public data
and private data by introducing the locally private decision tree. Due to the novel idea of leveraging
public data, LPDT is accurate, efficient, and interpretable. Theoretically, we establish the privacy
guarantee and optimal convergence rate of LPDT. In experiments, we show the superior performance
of LPDT regardless of the disparities between private and public data.

6 Limitations and broader impact

LPDT addresses the challenge of effectively performing LDP regression given both public data
and private data. Future work may explore methodologies for incorporating public data in private
learning using other models, such as linear models, and investigate the theoretical advantages of using
public data in private learning. One limitation of this paper is that the measure of similarity between
the public and private distribution considers only the marginal distribution. One may consider the
similarities with respect to the regression function, potentially following transfer learning literature
[13]. Moreover, in practice, public data may have a different distribution than private data, which is
damaging to the learning process. The drawback yields the significance of public data selection or
public data quality test such as [32, 60]. In addition, the theoretical analysis deal with nq ≳ n

d
2α+2d

and nq = 0, while the intermediate zone for nq remains unexplored.
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Appendix

In this appendix, we provide the detailed results for the additional methodology (Appendix A), the
error analysis of the main theoretical results (Appendix B), the full proof of all theoretical results
(Appendix C), and details as well as additional results of experiments (Appendix D).

A Methodology of locally differentially private decision tree

A.1 Algorithm of max-edge partition with variance reduction rule

Algorithm 2: Max-edge Partition Rule with Variance Reduction

Input: Public data Dpub, depth s, minimum leaf sample size nl.
Initialization: π0 = [0, 1]d.
for i = 1 to s do

πi = ∅
for j in Ii−1 do

Select ℓ as in (6).
if
∑n

i=1 1{X
pub
i ∈ Aj,k

i−1(ℓ)} ≤ nl for k = 0, 1 then
πi = πi ∪Aj

i−1

end
else

πi = πi ∪ {Aj,0
i−1(ℓ), A

j,1
i−1(ℓ)}

end
end

end
Output: Partition πs

B Error analysis

We rely on the following decomposition.

RL,P(f
DP
π )−RL,P(fπ) =RL,P(f

DP
π )−RL,P(fπ)︸ ︷︷ ︸

Privatized Error

+RL,P(fπ)−RL,P(fπ)︸ ︷︷ ︸
Sample Error

+RL,P(fπ)−RL,P(f
∗)︸ ︷︷ ︸

Approximation Error

. (7)

where fπ , fπ and fDP
π are defined in (1), (2), and (5), respectively. Loosely speaking, the first error

term quantifies the depravation brought by adding privacy noises to the estimator, which we call
the privatized error. The second term corresponds to the expected estimation error brought by the
randomness of the data, which we call the sample error. The last term is called approximation error,
which arises due to the limited approximation capacity of piecewise constant functions. The following
three lemmas provide bounds for each of the three errors.
Lemma B.1 (Bounding of Privatised Error). Let fDP

π be the LPDT estimator in Algorithm 1.
Suppose fπ is the decision tree regressor defined in (2). Suppose π is generated by Algorithm 2. Let
Assumption 3.2 and 3.3 hold. Then, if we take nl ≍ nq/2

s, there holds

RL,P(f
DP
π )−RL,P(fπ) ≲

22s · log n
nε2

with probability Pn ⊗Qnq ⊗ Rn at least 1− 1/n2
q − 4/n2.

Lemma B.2 (Bounding of Sample Error). Suppose fπ and fπ are the decision tree regressor and
the population decision tree regressor defined in (2) and (1), respectively. Let Assumption 3.2, and
3.3 hold. Then, if we take nl ≍ nq/2

s, there holds

RL,P(fπ)−RL,P(fπ) ≲
2s

n

with probability Pn ⊗Qnq at least 1− 1/n2
q − 1/n2.
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Lemma B.3 (Bounding of Approximation Error). Suppose fπ is the population decision tree
regressor defined in (1). Let Assumption 3.2 holds. Then there holds

RL,P(fπ)−RL,P(f
∗) ≤ 2c2L2

−(2αs/d)∧s.

C Proofs

C.1 Proof of Theorem 3.1

Proof of Theorem 3.1. For each conditional distribution R
(
Ũi, Ỹi|Xi = x, Yi = y

)
, we can com-

pute the density ratio as

sup
x,x′∈Rd, y,y′∈[−M,M ],S∈σ(S)

R
(
(Ũ , Ỹ ) ∈ S|Xi = x, Yi = y

)
R
(
(Ũ , Ỹ ) ∈ S|Xi = x′, Yi = y′

)
≤ sup

x,x′∈Rd

dR(Ũ |Xi = x)

dR(Ũ |Xi = x′)
· sup
y,y′∈[−M,M ]

dR(Ỹ |Yi = y)

dR(Ỹ |Yi = y′)
. (8)

(i) The first part is characterized by the random perturbation mechanism. Since the conditional density
is identical if x and x′ belongs to a same Aj , we have

sup
x,x′∈Rd

dR(Ũ |Xi = x)

dR(Ũ |Xi = x′)
= sup

u,u′∈{0,1}|I|

dR(Ũ |Ui = u)

dR(Ũ |Ui = u′)
.

The right-hand side can be computed as

dR(Ũ |Ui = u)

dR(Ũ |Ui = u′)
=

∏
j∈I P[Ũ j

i |U
j
i = uj ]∏

j∈I P[Ũ j
i |U

j
i = u′j ]

. (9)

By definition, u and u′ are one-hot vectors and differ at most on two entries. Without loss of
generality, assume they differ on the first two elements. Also, the procedure in (3) yields that
e−ε/4 ≤ P[Ũ j

i |U
j
i = 0]/P[Ũ j

i |U
j
i = 0] ≤ eε/4. As a result, (9) becomes

sup
u,u′∈{0,1}|I|

dR(Ũ |Ui = u)

dR(Ũ |Ui = u′)
= sup

u,u′∈{0,1}|I|

∏
j=1,2 P[Ũ

j
i |U

j
i = uj ]∏

j=1,2 P[Ũ
j
i |U

j
i = u′j ]

≤ eε/4+ε/4 = eε/2. (10)

(ii) For the second part, there holds

sup
y,y′∈[−M,M ]

dR(Ỹ |Yi = y)

dR(Ỹ |Yi = y′)
= sup

y,y′∈[−M,M ]

exp
(
− ε

4M |Ỹ − y|
)

exp
(
− ε

4M |Ỹ − y′|
)

≤ sup
y,y′∈[−M,M ]

exp
( ε

4M
|y − y′|

)
≤ eε/2. (11)

Bringing (10) and (11) into (8) yields the desired conclusion.

C.2 Proof of Theorem 3.4

Proof of Theorem 3.4. Bringing Proposition B.1, B.2, and B.3 into the decomposition (7), we have

RL,P(f
DP
π )−RL,P(fπ) ≲

22s · log n
nε2

+
2s

n
+ 2−(2αs/d)∧s

holds with probability Pn ⊗ Qnq ⊗ Rn at least 1 − 2/n2
q − 5/n2. When (2αs/d) ∧ p = 2αs/d,

by choosing 2s ≍ (nε2/ log n)d/(2α+2d), i.e. s ≍ log nε2, we obtain RL,P(f
DP
π ) − RL,P(fπ) ≲(

nε2/ log n
)− α

α+d . When (2αs/d) ∧ s = s, by choosing 2s ≍ (nε2/ log n)1/3, i.e. s ≍ log nε2, we

obtain RL,P(f
DP
π )−RL,P(fπ) ≲

(
nε2/ log n

)−1/3
. Note that 2αs/d ≥ s if and only if α

α+d ≥ 1/3.
As a result, we get

RL,P(f
DP
π )−RL,P(fπ) ≲

(
log n

nε2

) α
α+d∧

1
3

with probability Pn ⊗Qnq ⊗ Rn at least 1− 2/n2
q − 5/n2.
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C.3 Proof of Theorem 3.5

Proof of Theorem 3.5. We consider such Pc ∈ P such that for each dPc,X(x) = c for some constant
c and x ∈ [0, 1/2], and dPc,Y |X(0) = 1. Then for such Pc, the Bayes function is f(x) = 0 and
R∗

L,Pc
= 0. For the excess risk of fDP

π , we have

RL,P(f
DP
π ) =

∑
j∈I

∫
Aj

(∑n
i=1 Ỹi · Ũ j

i∑n
i=1 Ũ

j
i

)2

dPc,X(x)

=
∑
j∈I

16M2

ε2

(∑n
i=1 ξi · Ũ

j
i∑n

i=1 Ũ
j
i

)2 ∫
Aj

dPc,X(x). (12)

We first take expectation with respect to ξ. There holds

Eξ

( n∑
i=1

ξi · Ũ j
i

)2
 =

n∑
i=1

Eξξ
2
i (Ũ

j
i )

2. (13)

For standard Laplace random variable ξ, there holds Eξξ
2 = 2. Each Ũ j

i takes either 1− 1
eε/4+1

or

− 1
eε/4+1

, which implies (Ũ j
i )

2 ≥ 1
(eε/4+1)2

. Together, (13) becomes

Eξ

( n∑
i=1

ξi · Ũ j
i

)2
 ≥ 2n

(eε/4 + 1)2
.

Bringing this into (12) leads to

Eξ

[
RL,P(f

DP
π )

]
≥ 32M2n

ε2(eε/4 + 1)2

∑
j∈I

(
1∑n

i=1 Ũ
j
i

)2 ∫
Aj

dPc,X(x). (14)

Next, we take the expectation of Ũ j
i with respect to both P and PR. Specifically, we have

EŨ

[
1

(
∑n

i=1 Ũ
j
i )

2

]
=

∫ ∞

0

P

(
1

(
∑n

i=1 Ũ
j
i )

2
> t

)
dt

=

∫ ∞

0

P

(
− 1√

nt
≤ 1√

n

n∑
i=1

Ũ j
i ≤ 1√

nt

)
dt

≥
∫ 1/n

0

P

(
− 1√

nt
≤ 1√

n

n∑
i=1

Ũ j
i ≤ 1√

nt

)
dt (15)

For any n, there exists some Pc with c < 1/(2
√
n). For such Pc, we have

√
n

∫
Aj

dPc,X(x) =
√
n · 2−s · c ≤ 2−s−1

since when nl = 0, each grid has volumn 2−s. When t < 1/n, we have 1/
√
nt ≥ 1 ≥ 2 · 2−s−1 for

any s, which implies 1/
√
nt ≥ 2 ·

√
n
∫
Aj

dPc,X(x). Bring this into (15), we have

EŨ

[
1

(
∑n

i=1 Ũ
j
i )

2

]
≥
∫ 1/n

0

P

(
− 1

2
√
nt

≤ 1√
n

n∑
i=1

Ũ j
i −

√
n

∫
Aj

dPc,X(x) ≤ 1

2
√
nt

)
dt. (16)

Using the central limit theorem, we know

P

(
− 1

2
√
nt

≤ 1√
n

n∑
i=1

Ũ j
i −

√
n

∫
Aj

dPc,X(x) ≤ 1

2
√
nt

)
≳ 1

17



for t ≤ 1/n. Then, (16) becomes

EŨ

[
1

(
∑n

i=1 Ũ
j
i )

2

]
≳
∫ 1/n

0

dt =
1

n
.

This together with (14) yields

E
[
RL,P(f

DP
π )

]
≥ 32M2n

ε2(eε/4 + 1)2

∑
j∈I

EŨ

( 1∑n
i=1 Ũ

j
i

)2
∫

Aj

dPc,X(x)

≳n
∑
j∈I

1

n

∫
Aj

dPc,X(x) =
∑
j∈I

∫
Aj

dPc,X(x) = 1.

C.4 Proofs of results in Section B

To prove lemmas in Section B, we first present several technical results. Their proof will be found in
Section C.4
Lemma C.1. Suppose ζi, i = 1, · · · , n are independent random variables such that ai ≤ ζi ≤ bi.
Then there holds

P

[∣∣∣∣∣ 1n
n∑

i=1

ζi − E
1

n

n∑
i=1

ζi

∣∣∣∣∣ ≥ t

]
≤ 2e

− 2n2t2∑n
i=1

(bi−ai)
2

for any t > 0.
Lemma C.2. Suppose ξi, i = 1, · · · , n are independent standard sub-exponential random variables
with parameters (ν, β) [55, Definition 2.9]. Then there holds

P

[∣∣∣∣∣ 1n
n∑

i=1

ξi − E
1

n

n∑
i=1

ξi

∣∣∣∣∣ ≥ t

]
≤ 2e−

nt2

2ν2 .

for any t > 0. Moreover, a standard Laplace random variable is sub-exponential with parameters
(
√
2, 1).

Lemma C.3. Let π be a partition generated from Algorithm 2. Suppose Assumption 3.2 holds. Then
for any D = {(X1, Y1), · · · , (Xn, Yn)} drawn i.i.d. from P and any x ∈ X , there holds∣∣∣∣∣ 1n

n∑
i=1

1{Xi ∈ A(x)} −
∫
A(x)

dPX(x′)

∣∣∣∣∣ ≤
√

c · 21−s(4d+ 5) log n

n
+

2(4d+ 5) log n

3n
+

4

n

with probability Pn at least 1− 1/n2.
Lemma C.4. Let π be a partition generated from Algorithm 2. Suppose Assumption 3.2 holds. Then
for any D = {(X1, Y1), · · · , (Xn, Yn)} drawn i.i.d. from P and any x ∈ X , there holds∣∣∣∣∣ 1n

n∑
i=1

Yi1{Xi ∈ A(x)} −
∫
A(x)

f∗(x′)dPX(x′)

∣∣∣∣∣
≤M

√
c · 21−s(4d+ 5) log n

n
+

2M(4d+ 5) log n

3n
+

4M

n

with probability Pn at least 1− 1/n2.

Lemma C.5. Let π be a partition generated from Algorithm 2 using public data set Dpub =

{(Xpub
1 , Y pub

1 ), · · · , (Xpub
nq

, Y pub
nq

)}. Suppose Assumption 3.2 and 3.3 hold. Suppose n ≥ nq ≥
2s log2 n. If we take nl = nq/2

s, there holds∫
A(x)

dPX(x′) ≍ 2−s
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with probability 1− 1/n2
q . Moreover, the analogous conclusion holds for the empirical probability

measure, i.e.

1

n

n∑
i=1

1{Xi ∈ A(x)} ≍ 2−s.

with probability 1− 1/n2
q − 1/n2.

Lemma C.6. Let π :=
{
Aj

i , i ∈ {1, · · · , p}, j ∈ {1, · · · , 2s}
}

= {Aj , j ∈ I} be the variance

reduction decision tree partition generated by Algorithm 2. Then for any Aj
i := ×d

i=1[ai, bi] ∈ π,
denote the depth of Aj

i as depth(Aj
i ) = i. Then for any Aj

i ∈ π, there holds

2−1
√
d · 2−i/d ≤ diam(Aj

i ) ≤ 2
√
d · 2−i/d

This implies that for any Aj ∈ π, we have

2−1
√
d · 2−depth(Aj)/d ≤ diam(Aj) ≤ 2

√
d · 2−depth(Aj)/d.

Lemma C.7. Let π :=
{
Aj

i , i ∈ {1, · · · , p}, j ∈ {1, · · · , 2s}
}

= {Aj , j ∈ I} be the variance

reduction decision tree partition generated by Algorithm 2. Then for any Aj
i ∈ π, denote the depth of

Aj
i as depth(Aj

i ) = i. Then there holds∑
j∈I

2p−depth(Aj) = 2s.

Proof of Lemma B.1. We intend to bound

RL,P(f
DP
π )−RL,P(fπ) =

∫
X

∣∣fDP
π (x)− fπ(x)

∣∣2 dPX(x)

=

∫
X

∣∣∣∣∣
∑

i,j 1{x ∈ Aj}Ỹi · Ũ j
i∑

i,j 1{x ∈ Aj}Ũ j
i

−
∑

i,j 1{x ∈ Aj}Yi · U j
i∑

i,j 1{x ∈ Aj}U j
i

∣∣∣∣∣
2

dPX(x).

For each j ∈ I and any x ∈ Aj , the point-wise error can be decomposed as∣∣∣∣∣
∑

i,j 1{x ∈ Aj}Ỹi · Ũ j
i∑

i,j 1{x ∈ Aj}Ũ j
i

−
∑

i,j 1{x ∈ Aj}Yi · U j
i∑

i,j 1{x ∈ Aj}U j
i

∣∣∣∣∣
2

≤3 ·

(∣∣∣∣∣
∑n

i=1(Ỹi − Yi)Ũ
j
i∑n

i=1 Ũ
j
i

∣∣∣∣∣
2

︸ ︷︷ ︸
(I)

+

∣∣∣∣∣∣
eε/4+1
eε/4−1

∑n
i=1 YiŨ

j
i

∑n
i=1 U

j
i −

∑n
i=1 YiU

j
i

∑n
i=1 U

j
i

eε/4+1
eε/4−1

∑n
i=1 Ũ

j
i

∑n
i=1 U

j
i

∣∣∣∣∣∣
2

︸ ︷︷ ︸
(II)

+

∣∣∣∣∣∣
∑n

i=1 YiU
j
i

∑n
i=1 U

j
i − eε/4+1

eε/4−1

∑n
i=1 YiU

j
i

∑n
i=1 Ũ

j
i

eε/4+1
eε/4−1

∑n
i=1 Ũ

j
i

∑n
i=1 U

j
i

∣∣∣∣∣∣
2

︸ ︷︷ ︸
(III)

)

using triangular inequality. We bound the three parts separately.

(i) For the numerator of (I), note that Ỹi − Yi =
4M
ε ξi and Ũ j

i ∈ [−1, 1], Lemma C.2 yields that,
(Ỹi − Yi)Ũ

j
i are sub-exponential random variables with parameter ( ε

2
√
2M

, 1) and consequently∣∣∣∣∣ 1n
n∑

i=1

(Ỹi − Yi)Ũ
j
i

∣∣∣∣∣ ≤
√

128M2 · log n
nε2

(17)

with probability at least 1− 1/n2. For the denominator, applying Lemma C.1 yields∣∣∣∣∣ 1n eε/4 + 1

eε/4 − 1

n∑
i=1

Ũ j
i − 1

n

n∑
i=1

U j
i

∣∣∣∣∣ ≤
√

log n

n
(18)

19



with probability at least 1− 2/n2. Moreover, by Lemma C.5, we have

1

n

n∑
i=1

U j
i =

n∑
i=1

1{Xi ∈ Aj} ≳
1

2s

holds with probability at least 1− 1/n2
q − 1/n2. Then, we can guarantee that∣∣∣∣∣ 1n

n∑
i=1

Ũ j
i

∣∣∣∣∣ ≥
∣∣∣∣∣eε/4 − 1

eε/4 + 1

1

n

n∑
i=1

U j
i

∣∣∣∣∣−
∣∣∣∣∣ 1n

n∑
i=1

Ũ j
i − eε/4 − 1

eε/4 + 1

1

n

n∑
i=1

U j
i

∣∣∣∣∣ (19)

≳
1

2s
− eε/4 − 1

eε/4 + 1

√
log n

n
≳

1

2s
(20)

with probability 1− 1/n2
q − 3/n2. This together with (17) yields

(I) ≲
22s · log n

nε2
. (21)

(ii) For (II), we first cancel the
∑n

i=1 U
j
i on both the numerator and the denominator. Then, applying

Lemma C.1, we get ∣∣∣∣∣ 1n eε/4 + 1

eε/4 − 1

n∑
i=1

YiŨ
j
i − 1

n

n∑
i=1

YiU
j
i

∣∣∣∣∣ ≤
√

M · log n
n

with probability 1− 2/n2 since |Yi| ≤ M . Combining this with (19), we get

(II) ≲
22s · log n

n
. (22)

(iii) For (III), note that U j
i ∈ {0, 1}, we have

∑n
i=1 YiU

j
i ≤ M

∑n
i=1 U

j
i . Thus,∣∣∣∣∣∣

∑n
i=1 YiU

j
i

∑n
i=1 U

j
i − eε/4+1

eε/4−1

∑n
i=1 YiU

j
i

∑n
i=1 Ũ

j
i

eε/4+1
eε/4−1

∑n
i=1 Ũ

j
i

∑n
i=1 U

j
i

∣∣∣∣∣∣
2

≤M2

∣∣∣∣∣∣
∑n

i=1 U
j
i − eε/4+1

eε/4−1

∑n
i=1 Ũ

j
i

eε/4+1
eε/4−1

∑n
i=1 Ũ

j
i

∣∣∣∣∣∣
2

≲M2 2
2s · log n

n

where the last inequality follows from (18) and (19). Combining this with (21) and (22), we have∣∣∣∣∣
∑

i,j 1{x ∈ Aj}Ỹi · Ũ j
i∑

i,j 1{x ∈ Aj}Ũ j
i

−
∑

i,j 1{x ∈ Aj}Yi · U j
i∑

i,j 1{x ∈ Aj}U j
i

∣∣∣∣∣
2

≲
22s · log n

nε2

with probability Pn ×Qnq × R at least 1− 4/n2 − 1/n2
q for any x ∈ X . This directly implies the

desired bound of RL,P(f
DP
π )−RL,P(fπ).

Proof of Lemma B.2. We intend to bound

RL,P(fπ)−RL,P(fπ) =

∫
X

∣∣fDP
π (x)− fπ(x)

∣∣2 dPX(x)

=

∫
X

∣∣∣∣∣
∑

i,j 1{x ∈ Aj}YiU
j
i∑

i,j 1{x ∈ Aj}U j
i

−
∑

j∈Ip
1{x ∈ Aj}

∫
Aj

f∗(x′)dPX(x)∑
j∈Ip

1{x ∈ Aj}
∫
Aj

dPX(x)

∣∣∣∣∣
2

dPX(x).
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For any fixed j, we have

∣∣fDP
π (x)− fπ(x)

∣∣2 ≤

∣∣∣∣∣ 1n
∑n

i=1 YiU
j
i

1
n

∑n
i=1 U

j
i

−

∫
Aj

f∗(x′)dPX(x′)∫
Aj

dPX(x)

∣∣∣∣∣
2

≤

∣∣∣∣∣
1
n

∑n
i=1 YiU

j
i

∫
Aj

dPX(x′)−
∫
Aj

f∗(x′)dP(x′)
∫
Aj

dPX(x′)

1
n

∑n
i=1 U

j
i

∫
Aj

dPX(x)

∣∣∣∣∣
2

︸ ︷︷ ︸
(I)

+

∣∣∣∣∣
∫
Aj

f∗(x′)dP(x′)
∫
Aj

dPX(x′)− 1
n

∑n
i=1 U

j
i

∫
Aj

f∗(x′)dPX(x′)

1
n

∑n
i=1 U

j
i

∫
Aj

dPX(x)

∣∣∣∣∣
2

︸ ︷︷ ︸
(II)

We bound two terms separately. For (I), Lemma C.5 yields

1

n

n∑
i=1

U j
i

∫
Aj

dPX(x) ≳ 2−2s (23)

with probability 1− 1/n2
q − 1/n2. For the numerator, Lemma C.4 yields∣∣∣∣∣

n∑
i=1

YiU
j
i −

∫
Aj

f∗(x′)dPX(x′)

∣∣∣∣∣
2 ∣∣∣∣∣
∫
Aj

dPX(x′)

∣∣∣∣∣
2

≲
1

2s · n
· 2−2s.

Together, we get (I) ≲ 2s/n. Analogously, by Lemma C.3, we have∣∣∣∣∣
∫
Aj

dPX(x′)−
n∑

i=1

U j
i

∣∣∣∣∣
2 ∣∣∣∣∣
∫
Aj

f∗(x′)dPX(x′)

∣∣∣∣∣
2

≤ 1

2p · n
·M2 · 2−2s.

This together with (23) yields (II) ≲ 2s/n. The bound of (I) and (II) together yields the desired
conclusion.

Proof of Lemma B.3. We intend to bound

RL,P(fπ)−RL,P(f
∗) =

∫
x∈X

(∫
A(x)

f(x′)dPX(x′)∫
A(x)

dPX(x′)
− f(x)

)2

dPX(x).

For each x, if Assumption 3.2 holds, the point-wise error can be bounded by∫
A(x)

f(x′)dPX(x′)∫
A(x)

dPX(x′)
− f(x) ≤

∫
A(x)

|f(x′)− f(x)|dPX(x′)∫
A(x)

dPX(x′)

≤

∫
A(x)

cL∥x′ − x∥αdPX(x′)∫
A(x)

dPX(x′)
≤ cLdiam(A(x))α

Then we can bound the integral of point-wise error by the sum of the integral of errors on each Aj ,
namely ∫

x∈X

(∫
A(x)

f(x′)dPX(x′)∫
A(x)

dPX(x′)
− f(x)

)2

dP(x) ≤
∑
j∈I

c2Ldiam(Aj)
2α

∫
Aj

dPX(x). (24)

Apply Lemma C.5 and C.6, we have∑
j∈I

c2Ldiam(Aj)
2α

∫
Aj

dPX(x) ≤
∑
j∈I

2c2L
√
d2−2α·depth(Aj)/d−s

=
∑
j∈I

2c2L
√
d2s−depth(Aj) · 2−2α·depth(Aj)/d+depth(Aj)−2s. (25)
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For each j, we can guarantee

2−2α·depth(Aj)/d+depth(Aj) ≤ 2(1−(2α/d)∧1)depth(Aj) ≤ 2(1−(2α/d)∧1)s (26)

since (2α/d) ∧ 1 ≤ 1. Bringing (26) into (25), we get∑
j∈I

c2Ldiam(Aj)
2α

∫
Aj

dP(x) ≤ 2−s−(2αs/d)∧s
∑
j∈I

2c2L
√
d2s−depth(Aj)

By applying Lemma C.7, we immediately have∑
j∈I

c2Ldiam(Aj)
2α

∫
Aj

dP(x) ≤ 2c2L2
−(2αs/d)∧s.

This together with (24) yields the desired conclusion.

C.5 Proofs of results in Section C.4

Proof of Lemma C.1. The conclusion follows from Example 2.4 and Proposition 2.5 in [55].

Proof of Lemma C.2. The conclusion follows from (2.18) in [55].

In the subsequent proof, we define the empirical measure D := 1
n

∑n
i=1 δ(Xi,Yi) given samples

D = {(X1, Y1), · · · , (Xn, Yn)}, where δ is the Dirac function. To conduct our analysis, we first
need to recall the definitions of VC dimension (VC index) and covering number, which are frequently
used in capacity-involved arguments and measure the complexity of the underlying function class
[54, 40, 31].
Definition C.8 (VC dimension). Let B be a class of subsets of X and A ⊂ X be a finite set. The
trace of B on A is defined by {B ∩ A : B ⊂ B}. Its cardinality is denoted by ∆B(A). We say
that B shatters A if ∆B(A) = 2#(A), that is, if for every A′ ⊂ A, there exists a B ⊂ B such that
A′ = B ∩A. For n ∈ N, let

mB(n) := sup
A⊂X ,#(A)=n

∆B(A). (27)

Then, the set B is a Vapnik-Chervonenkis class if there exists n < ∞ such that mB(n) < 2n and the
minimal of such n is called the VC dimension of B, and abbreviate as VC(B).

Since an arbitrary set of n points {x1, . . . , xn} possess 2n subsets, we say that B picks out a certain
subset from {x1, . . . , xn} if this can be formed as a set of the form B ∩ {x1, . . . , xn} for a B ∈ B.
The collection B shatters {x1, . . . , xn} if each of its 2n subsets can be picked out in this manner.
From Definition C.8 we see that the VC dimension of the class B is the smallest n for which no set of
size n is shattered by B, that is,

VC(B) = inf
{
n : max

x1,...,xn

∆B({x1, . . . , xn}) ≤ 2n
}
,

where ∆B({x1, . . . , xn}) = #{B ∩ {x1, . . . , xn} : B ∈ B}. Clearly, the more refined B is, the
larger is its index.

To further bound the capacity of the function sets, we need to introduce the following fundamental
descriptions of covering number which enables an approximation of an infinite set by finite subsets.
Definition C.9 (Covering Number). Let (X , d) be a metric space and A ⊂ X . For ε > 0, the
ε-covering number of A is denoted as

N (A, d, ε) := min

{
n ≥ 1 : ∃x1, . . . , xn ∈ X such that A ⊂

n⋃
i=1

B(xi, ε)

}
,

where B(x, ε) := {x′ ∈ X : d(x, x′) ≤ ε}.

To prove Lemma C.10, we need the following fundamental lemma concerning with the VC dimension
of random partitions in Section 2.3, which follows the idea put forward by [30] of the construction of
random forest. To this end, let p ∈ N be fixed and πp be a partition of X with number of splits s and
π(p) denote the collection of all partitions πp.
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Lemma C.10. Let Ã be the collection of all cells ×d
i=1[ai, bi] in Rd. The VC index of Ã equals

2d+ 1. Moreover, for all 0 < ε < 1, there exists a universal constant C such that

N (1Ã, ∥ · ∥L1(Q), ε) ≤ C(2d+ 1)(4e)2d+1(1/ε)2d.

Proof of Lemma C.10. The first result of VC index follows from Example 2.6.1 in [54]. The second
result of covering number follows directly from Theorem 9.2 in [40].

Before we proceed, we list the well-known Bernstein’s inequality that will be used frequently in the
proofs. Lemma C.11 was introduced in [8] and can be found in many statistical learning textbooks,
see e.g., [42, 19, 51].
Lemma C.11 (Bernstein’s inequality). Let B > 0 and σ > 0 be real numbers, and n ≥ 1 be
an integer. Furthermore, let ξ1, . . . , ξn be independent random variables satisfying EP ξi = 0,
∥ξi∥∞ ≤ B, and EP ξi

2 ≤ σ2 for all i = 1, . . . , n. Then for all τ > 0, we have

P

(
1

n

n∑
i=1

ξi ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ e−τ .

Proof of Lemma C.3. Let Ã be the collection of all cells ×d
i=1[ai, bi] in Rd. Applying Lemma C.10

with Q := (DX + PX)/2, there exists an ε-net {Ãk}Kk=1 ⊂ Ã with

K ≤ C(2d+ 1)(4e)2d+1(1/ε)2d (28)

such that for any j ∈ Ip, there exist some k ∈ {1, . . . ,K} such that

∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1((DX+PX)/2) ≤ ε,

Since

∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1((DX+PX)/2)

=1/2 · ∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1(DX) + 1/2 · ∥1{x ∈ Aj

p} − 1{x ∈ Ãk}∥L1(PX),

we get

∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1(DX) ≤ 2ε, ∥1{x ∈ Aj

p} − 1{x ∈ Ãk}∥L1(PX) ≤ 2ε. (29)

Consequently, by the definition of the covering number and the triangle inequality, for any j ∈ Ip,
there holds∣∣∣∣ 1n

n∑
i=1

1{x ∈ Aj
p}(Xi)−

∫
Ãj

p

dPX(x′)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

1{x ∈ Ãk}(Xi)−
∫
Ãk

dPX(x′)

∣∣∣∣+ ∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1(DX)

+ ∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1(PX) ≤

∣∣∣∣ 1n
n∑

i=1

1{x ∈ Ãk}(Xi)−
∫
Ãk

dPX(x′)

∣∣∣∣+ 4ε.

Therefore, we get

sup
j∈I

∣∣∣∣ 1n
n∑

i=1

1{x ∈ Aj
p}(Xi)−

∫
Ãj

p

dPX(x′)

∣∣∣∣ ≤ sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1{x ∈ Ãk}(Xi)−
∫
Ãk

dPX(x′)

∣∣∣∣+ 4ε.

(30)

For any fixed 1 ≤ k ≤ K, let the random variable ξi be defined by ξi := 1{Xi ∈ Ãk}−
∫
Ãk

dPX(x′).
Then we have EPX

ξi = 0, ∥ξ∥∞ ≤ 1, and EPX
ξ2i ≤

∫
Ãk

dPX(x′). According to Assumption 3.2,
there holds EPX

ξ2i ≤ c · 2−s. Applying Bernstein’s inequality in Lemma C.11, we obtain∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ Ãk} −
∫
Ãk

dPX(x′)

∣∣∣∣ ≤
√

c · 21−s · τ
n

+
2τ log n

3n
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with probability Pn at least 1 − 2e−τ . Then the union bound together with the covering number
estimate (28) implies that

sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ Ãk} −
∫
Ãk

dPX(x′)

∣∣∣∣ ≤
√

c · 21−s(τ + log(2K))

n
+

2(τ + log(2K)) log n

3n

with probability Pn at least 1− e−τ . Let τ = 2 log n and ε = 1/n. Then for any n > N1 := (2C)∧
(2d+1)∧(4e), we have τ+log(2K) = 2 log n+log(2C)+log(2d+1)+(2d+1) log(4e)+2d log n ≤
(4d+ 5) log n. Therefore, we have

sup
1≤k≤K

∣∣∣∣ 1n
n∑

i=1

1{Xi ∈ Ãk} −
∫
Ãk

dPX(x′)

∣∣∣∣ ≤
√

c · 21−s(4d+ 5) log n

n
+

2(4d+ 5) log n

3n

(31)

with probability Pn at least 1− 1/n2. This together with (30) yields that

sup
j∈I

∣∣∣∣ 1n
n∑

i=1

1{x ∈ Aj
p} −

∫
Ãj

p

dPX(x′)

∣∣∣∣ ≤
√

c · 21−s(4d+ 5) log n

n
+

2(4d+ 5) log n

3n
+

4

n
.

Proof of Lemma C.4. Let Ã be the collection of all cells ×d
i=1[ai, bi] in Rd. Then there exists

an ε-net {Ãk}Kk=1 ⊂ Ã with K bounded by (28) such that for any j ∈ I, (29) holds for some
k ∈ {1, . . . ,K}. Consequently, by the definition of the covering number and the triangle inequality,
for any j ∈ Ip, there holds∣∣∣∣ n∑

i=1

1{Xi ∈ Aj
p}Yi −

∫
Aj

p

f∗(x′)dPX(x′)

∣∣∣∣
≤
∣∣∣∣ n∑
i=1

1{Xi ∈ Ãk}Yi −
∫
Ãk

f∗(x′)dPX(x′)

∣∣∣∣
+

∫
Rd

∣∣1{x′ ∈ Aj
p} − 1{x′ ∈ Ãk}

∣∣∣∣f∗(x′)
∣∣dPX(x′) +

n∑
i=1

∣∣1{Xi ∈ Ãk} − 1{Xi ∈ Aj
p}
∣∣∣∣Yi

∣∣
≤
∣∣∣∣ n∑
i=1

1{Xi ∈ Ãk}Yi −
∫
Ãk

f∗(x′)dPX(x′)

∣∣∣∣
+ max

1≤i≤n
|Yi| · ∥1{x ∈ Aj

p} − 1{x ∈ Ãk}∥L1(DX) +M · ∥1{x ∈ Aj
p} − 1{x ∈ Ãk}∥L1(PX)

≤
∣∣∣∣ n∑
i=1

1Ãk
(Xi)Yi −

∫
Ãk

f∗(x′)dPX(x′)

∣∣∣∣+ 4Mε. (32)

where the last inequality follow from the condition Y ⊂ [−M,M ].

For any fixed 1 ≤ k ≤ K, let the random variable ξ̃i be defined by ξ̃i := 1{Xi ∈ Ãk}Yi −∫
Ãk

f∗(x′) dPX(x′). Then we have EPξ̃i = 0, ∥ξ∥∞ ≤ 1, and EPξ̃
2
i ≤ M2

∫
Ãk

dP(x′). According
to Assumption 3.2, there holds EPξ̃

2
i ≤ M2 · c · 2−s. Applying Bernstein’s inequality in Lemma

C.11, we obtain∣∣∣∣ n∑
i=1

1{Xi ∈ Ãk}Yi −
∫
Ãk

f∗(x′)dPX(x′)

∣∣∣∣ ≤
√

M2 · c · 21−s · τ
n

+
2Mτ log n

3n

with probability Pn at least 1− 2e−τ . Similar to the proof of Lemma C.3, one can show that for any
n ≥ N1, there holds

sup
1≤k≤K

∣∣∣∣ n∑
i=1

1{Xi ∈ Ãk}Yi −
∫
Ãk

f∗(x′)dPX(x′)

∣∣∣∣ ≤ M

√
c · 21−s · τ

n
+

2Mτ log n

3n
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with probability Pn at least 1− 1/n2. This together with (32) yields that∣∣∣∣ n∑
i=1

1{Xi ∈ Aj
p}Yi −

∫
Aj

p

f∗(x′)dPX(x′)

∣∣∣∣ (33)

≤M

√
c · 21−s(4d+ 5) log n

n
+

2M(4d+ 5) log n

3n
+

4M

n
. (34)

Proof of Lemma C.5. Since π is generated by Algorithm 2, the number of public samples in each of
its leaf cell Aj , j ∈ Ip is no fewer than nl, i.e.

n∑
i=1

1{Xpub
i ∈ Aj} ≥ nl, j ∈ Ip

which implies n−1
q

∑n
i=1 1{X

pub
i ∈ Aj} ≥ 2−s Hence, by Lemma C.3, there holds∫

Aj

dQX(x′) ≥ 1

nq

n∑
i=1

1{Xpub
i ∈ Aj} −

√
c · 21−s(4d+ 5) log nq

nq
− 2(4d+ 5) log nq

3nq
− 4

nq

≥ 1

2s
−

√
c · 21−s(4d+ 5) log nq

nq
− 2(4d+ 5) log nq

3nq
− 4

nq

with probability Qnq at least 1 − 1/n2
q . By Assumption 3.3, for sufficiently large n with log n ≥

12 ·max(c, 1) · (4d+ 5), there holds∫
Aj

dPX(x′) ≥ 1

τ

∫
Aj

dQX(x′) ≥ 1

τ

(
1

2s
− 3 · 1

6 · 2s

)
=

1

2τ · 2s
(35)

where we used condition nq ≥ 2s log2 n. For the opposite direction, notice that by Assumption 3.3
and 3.2, there holds ∫

Aj

dPX(x′) ≤ τ

∫
Aj

dQX(x′) ≤ c · τ
2s

. (36)

(35) and (36) together yields the first conclusion. For the second conclusion, again by Lemma C.3,
we have∣∣∣∣∣ 1n

n∑
i=1

1{Xi ∈ Aj} −
∫
Aj

dPX(x′)

∣∣∣∣∣ ≤
√

c · 21−s(4d+ 5) log n

n
+

2(4d+ 5) log n

3n
+

4

n

≲
1

2s log n
. (37)

for j ∈ Ip with probability Pn at least 1− 1/n2. Consequently, there holds

1

n

n∑
i=1

1{Xi ∈ Aj} ≥
∫
Aj

dPX(x′)− 1

2s log n
≥ 1

2τ · 2s
− 1

4τ · 2s
=

1

4τ · 2s

for sufficiently large n. Also,

1

n

n∑
i=1

1{Xi ∈ Aj} ≤
∫
Aj

dPX(x′) +
1

2s log n
≤ c · τ

2s
+

c · τ
2s

=
2c · τ
2s

for large n. In conclusion, we have

1

n

n∑
i=1

1{Xi ∈ Aj} ≍ 1

2s
. (38)

(38) holds when the first conclusion and (37) both hold, which yields a probability Qnq × Pn at least
1− 1/n2

q − 1/n2.
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Proof of Lemma C.6. According to the max-edge partition rule, when the depth of the tree i is a
multiple of dimension d, each cell of the tree partition is a high-dimensional cube with a side length
2−i/d. On the other hand, when the depth of the tree s is not a multiple of dimension d, we consider
the max-edge tree partition with depth ⌊i/d⌋ and ⌈i/d⌉, whose corresponding side length of the
higher dimensional cube is 2−⌊i/d⌋ and 2−⌈i/d⌉. Note that in the splitting procedure of max-edge
partition, the side length of each sub-rectangle decreases monotonically with the increase of s, so the
side length of a random tree partition cell is between 2−⌈i/d⌉ and 2−⌊i/d⌋. This implies that

√
d · 2−⌈i/d⌉ ≤ diam(Aj

i ) ≤
√
d · 2−⌊i/d⌋

Since i/d − 1 ≤ ⌊i/d⌋ ≤ ⌈i/d⌉ ≤ i/d + 1, we immediately get 2−1
√
d · 2−i/d ≤ diam(Aj

i ) ≤
2
√
d · 2−i/d.

Proof of Lemma C.7. For binary tree partition π, we can grow π to a perfect binary tree π with
depth s, meaning that all interior nodes have two children and all leaf nodes have the same depth
s. Then, we can compute the number of leaf nodes on π. On one hand, a depth-s perfect binary
tree has 2s leaf nodes [17]. On the other hand, consider the perfect tree grown by π. Each leaf
node Aj , when grown to depth s, is the root node of a depth-(s − depth(Aj)) perfect binary tree.
Thus, the node Aj with induce 2s−depth(Aj) leaf nodes. Immediately, the total number of π can be
computed as

∑
j∈I 2s−depth(Aj). Matching the results of these two computations yields the desired

conclusion.

C.6 Derivation of removing the range parameter

At present, we assume that PX = QX , but the analogous conclusion holds as long as their density
ratio is bounded. Let X be scaled to X̆ . The excess risk can be decomposed by

RL,P

(
fDP
π

)
−R∗

L,P =

∫
[0,1]d

L(x, y, fDP
π (x))dP(x, y)−

∫
[0,1]d

L(x, y, f∗(x))dP(x, y)

+

∫
[0,1]dc

L(x, y, fDP
π (x))dP(x, y)−

∫
[0,1]dc

L(x, y, f∗(x))dP(x, y)

≲

(
log n

nε2

) α
α+d∧

1
3

+M2P(X̆ /∈ ×d
j=1[0, 1]).

Note that

P(X̆ /∈ ×d
j=1[0, 1]) = P(X /∈ ×d

j=1[â
j , b̂j ]) ≤

d∑
j=1

P(Xj /∈ [âj , b̂j ]).

Denote the CDF of Xj as F j . Since

P
(∣∣∣F j(âj)− F j(aj)

∣∣∣ > 2 log nq

nq

)
= P

(
F j(âj) >

2 log nq

nq

)
=

(
1− 2 log nq

nq

)nq

=
1

n2
q

and similar result holds for bj , we have P(Xj /∈ [âj , b̂j ]) ≲ lognq

nq
with probability 1− 1/n2

q . Thus,

there holds P(X /∈ ×d
j=1[â

j , b̂j ])) ≲ lognq

nq
with probability 1 − d/n2

q . Note that if we restrict

nq ≳ (nε2)
d∨2α
2α+2d (instead of nq ≳ n

d
2α+2d as in the paper, which is a minor change), there holds

P(X̆ /∈ ×d
j=1[0, 1]) ≲ (nε2)−

α
α+d ·log n. Thus, up to a log factor, Theorem 3.4 holds with probability

1− d/n2
q .
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D Experiment details

D.1 Implementation details

All experiments are conducted on a machine with 72-core Intel Xeon 2.60GHz and 128GB of main
memory. The code of LPDT is available on GitHub2. Each round of training and testing of LPDT
may take less than a second for small data with thousands of samples. For large datasets such as
Chicago taxi data, it may take minutes.

• For LPDT-M and LPDT-V, we choose nl ∈ {2, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160}
and s ∈ {1, 2, 3, 4} in Section 4.2. For large data in Section 4.3, we let s ∈ {4, 6, 8, 10}. In
addition, we add one more parameter adjusting the allocation of the privacy budget on the
numerator and denominator. Specifically, let (3) and (4) be

Ũ j
i =

{
U j
i − 1

1+eρε/2
with probability 1

1+eρε/2

1− U j
i − 1

1+eρε/2
with probability 1

1+eρε/2
.

as well as

Ỹi = Yi +
2M

(1− ρ)ε
ξi

for ρ ∈ [0, 1]. In this case, the mechanisms are respectively ρε-LDP and (1 − ρ)ε-LDP,
which means the hybrid mechanism is still ε-LDP. We select ρ ∈ {0.3, 0.5, 0.7}.

• Decision Tree (DT): For standard non-private decision trees, we use the implementation
by Scikit-Learn [47]. We select max_depth in {1, 2, 3, 4} in Section 4.2. For large data in
Section 4.3, we let max_depth ∈ {4, 6, 8, 10}.

• Private Histogram (PHIST): We implement the Private Histogram proposed by [9] in Python.
PHIST applies the Laplacian mechanism to privatize the estimation of marginal and joint
probabilities for a cubic histogram partition with bandwidth h. In cells with a marginal
probability less than t, estimation is truncated to 0. We let h ∈ {1/4, 1/3, 1/2, 1}, resulting
in the number of grids in each feature to be {4, 3, 2, 1}. Due to memory limitations, we set
h = 1 for datasets with d > 21. We set the truncation parameter t ∈ {0.01, 0.05}.

• Adjusted Private Histogram (APHIST): We implement the Adjusted Private Histogram
proposed by [33] in Python. APHIST modifies PHIST by replacing the privatized marginal
probability with an average of marginal probability and volume of the cell. In cells with an
averaged probability less than t, estimation is truncated to 0. We let h ∈ {1/4, 1/3, 1/2, 1},
resulting in the number of grids in each feature to be {4, 3, 2, 1}. Due to memory limitations,
we set h = 1 for datasets with d > 21. We set the truncation parameter t ∈ {0.01, 0.05}.

• Deconvolution kernel (DECONV): DECONV imposes noise to (Xi, Yi) directly to provide
privacy. It then treats the regression procedure as a measurement error problem and solves it
conventionally using a deconvolution kernel. We implement DECONV proposed by [29] in
Python. We set the bandwidth h ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 5}.

D.2 Parameter tuning strategy

To disentangle the parameter tuning problem under local differential, we propose to leave part of the
private data as a validation set, whose sample size is nv . For each set of parameters on the parameter
grid, the model is partitioned on Xpub and trained on X . Then the model is passed to each data holder
in the validation set. The data holder computes the point-wise error |f̂(x)− f(x)|2 for each model
and returns a privatized value to the curator. By advanced composition [26, 39], for k parameter grids,
we can guarantee the ε- privacy of x with a noise M2

√
k ξ/ε where ξ is a standard Laplace random

variable. Then, the estimated validation mean squared error is 1
nv

∑nv

i=1

(
f̂(Xi)− f∗(Xi)

)2
+

M2
√
k ξi/ε. As long as

√
kn−1

v ε−1 are sufficiently small, the validation procedure can be well
conducted. As a result, the capacity of parameter grids is restricted by o(nvε). In many cases, a large
amount of data can be acquired if LDP is posed. In such a scenario, we can assure nv to be large
enough to cover the desired parameter grid.

2https://github.com/Karlmyh/LPDT
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D.3 Details of real data sets

We summarize the details of real data sets in Table 4, with the number of instances and features
after pre-processing reported. Each feature is min-max scaled to the range [0, 1] individually. We
also present additional information of the data sets including the data source and the pre-processing
details.

Table 4: Description of real datasets

DATASET n d DATASET n d

ABA 4177 8 CPU 8192 12
AIR 1503 6 FIS 908 6
ALG 244 12 HOU 506 13
AQU 546 8 MUS 1059 68
BUI 372 105 WHI 4898 12
CBM 11934 16 RED 4898 12
CCP 9568 4 CON 1030 8

ABA: The Abalone dataset originally comes from biological research [44] and now it is accessible on
UCI Machine Learning Repository [22]. ABA contains 4177 observations of one target variable and
8 attributes related to the physical measurements of abalone.

AIR: The Airfoil Self-Noise dataset on UCI Machine Learning Repository records the result of a
series of aerodynamic and acoustic tests of airfoil blade sections conducted in an anechoic wind
tunnel [12]. It comprises 1503 instances of 6 attributes including wind tunnel speeds and angles of
attack.

ALG: The Algerian Forest Fires dataset on UCI Machine Learning Repository contains 244 instances
of 11 attributes and 1 output attribute. The task is to predict the condition of forest fires in Algeria
[2]. The attribute date is omitted when conducting regression in our experiments.

AQU: The QSAR aquatic toxicity dataset was used to develop quantitative regression QSAR models
to predict acute aquatic toxicity towards the fish Pimephales promelas (fathead minnow) on a set of
908 chemicals. It contains 546 instances of 8 input attributes and 1 output attribute.

CON: The Concrete Compressive Strength dataset on UCI Machine Learning Repository contains
1030 instances of 8 input attributes and 1 output attribute. The task is to predict the concrete
compressive strength which is a regression problem.

BUI: The Residential Building Data Set Data Set dataset on UCI Machine Learning Repository
includes construction cost, sale prices, project variables, and economic variables corresponding to
real estate single-family residential apartments in Tehran, Iran. It contains 372 instancesa of 103
input attributes and 2 output attributes.

CBM: The Condition Based Maintenance of Naval Propulsion Plants dataset [5] on UCI Machine
Learning Repository was generated from a sophisticated simulator of Gas Turbines. It contains 11934
instances of 16 features.

CCP: The Combined Cycle Power Plant Data Set dataset [53] on UCI Machine Learning Repository
contains 9568 data points. There are 4 features that can be used to predict the net hourly electrical
energy output of the power plant.

CPU: The cpusmall dataset is from LIBSVM [16]. It contains 8192 instances, each with 12 attributes.

FIS: The QSAR fish toxicity dataset on UCI Machine Learning Repository was used to develop
quantitative regression QSAR models to predict acute aquatic toxicity towards the fish Pimephales
promelas (fathead minnow) on a set of 908 chemicals. It contains 908 instances of 7 features.

RED: This dataset contains the information on red wine of the Wine Quality dataset [18] on UCI
Machine Learning Repository. There are 11 input variables to predict the output variable wine quality.
4898 instances are collected in the dataset.
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WHI: This dataset also originates from the Wine Quality dataset [18] on UCI Machine Learning
Repository. There are 11 features related to white wine to predict the corresponding wine quality.

HOU: The Housing-Boston dataset can be acquired from LIBSVM datasets of NTU, which is comprised
of 506 observations with 13 features. The dataset is used to predict the price of a house in Boston.

MUS: The Geographical Original of Music dataset was built from a personal collection of 1059
tracks covering 33 countries/areas. The program MARSYAS [64] was used to extract audio features
from the wave files. We used the default MARSYAS settings in single vector format (68 features) to
estimate the performance with basic timbal information covering the entire length of each track.

D.4 Additional result of the real data experiment

We present the additional result of the real data experiment omitted in the main text due to page
limitation.

Table 5: Additional results for average MSE over real data sets for LDP regression methods. The best results
are bolded and the second best results are underlined. The marked results with significance towards the rest
results are marked with ∗. Due to exceeding the memory limit, PHIST and APHIST are corrupted on two data
sets which are marked with -.

DT ε = 0.5 ε = 1
LPDT-M LPDT-V APHIST PHIST DECONV LPDT-M LPDT-V APHIST PHIST DECONV

ABA 5.67e+0 1.10e+1 1.07e+1 1.12e+1 1.16e+1 1.05e+7 1.06e+1 1.01e+1* 1.06e+1 1.07e+1 3.06e+6
AIR 2.26e+1 3.79e+2 1.29e+2* 2.10e+2 * 3.10e+2 1.19e+6 1.67e+2 1.17e+2* 9.25e+1* 1.26e+2 5.64e+7
ALG 2.12e-2 2.59e-1* 2.59e-1* 2.74e-1 2.83e-1 8.81e+2 2.40e-1* 2.40e-1* 2.56e-1 2.59e-1 1.73e+2
AQU 1.92e+0 1.35e+1 3.01e+0* 3.68e+0* 4.06e+0 6.02e+4 3.06e+0 3.63e+0 2.99e+0* 3.11e+0 9.55e+3
BUI 1.75e+5 3.54e+6* 1.70e+6* - - 1.20e+9 2.46e+6* 1.54e+6* - - 3.30e+9

CBM 4.08e-27 6.96e+0 6.64e+0* 6.96e+0* 6.99e+0 9.69e+6 2.46e+0 * 1.90e+0* 6.91e+0 6.92e+0 1.58e+6
CCP 2.19e+1 4.52e+2* 4.89e+2* 6.79e+2 9.31e+2 1.23e+10 4.72e+2 4.72e+2 4.15e+2* 4.82e+2 1.43e+7
CON 9.38e+1 4.56e+2 4.56e+2 3.24e+2* 3.38e+2* 3.33e+8 3.08e+2 3.42e+2 2.99e+2 3.03e+2 3.18e+7
CPU 2.15e+1 3.56e+2 3.56e+2 3.56e+2 3.68e+2 6.61e+7 3.41e+2 9.37e+1* 3.41e+2 3.43e+2 9.37e+7
FIS 1.07e+0 3.66e+0 3.66e+0 2.62e+0* 2.81e+0* 1.68e+5 2.48e+0 2.48e+0 2.24e+0* 2.30e+0 1.57e+4

HOU 2.11e+1 1.05e+2* 1.04e+2 1.08e+2 1.17e+2 2.34e+5 8.56e+1* 8.56e+1* 9.00e+1* 9.32e+1 1.55e+7
MUS 3.00e+2 6.21e+2* 6.21e+2* - - 2.18e+5* 4.26e+2* 4.26e+2* - - 1.29e+6*
RED 4.76e-1 8.78e-1* 8.94e-1* 1.09e+0 1.30e+0 2.74e+6 7.67e-1* 7.04e-1* 8.01e-1 8.69e-1 1.15e+5
WHI 5.77e-1 8.77e-1* 8.69e-1* 9.45e-1 1.03e+0 1.28e+9 8.68e-1 8.48e-1 8.32e-1* 8.56e-1 1.58e+6

DT ε = 4 ε = 8
LPDT-M LPDT-V APHIST PHIST DECONV LPDT-M LPDT-V APHIST PHIST DECONV

ABA 5.67e+0 9.46e+0* 9.54e+0* 2.00e+1 1.05e+1 1.14e+1 7.96e+0* 6.94e+0* 2.07e+1 1.05e+1 1.05e+1
AIR 2.26e+1 4.67e+1* 4.15e+1* 1.52e+3 5.28e+1 4.85e+1 4.45e+1* 3.47e+1* 1.64e+3 4.87e+1 4.71e+1
ALG 2.12e-2 2.40e-1* 2.42e-1* 2.59e-1 2.48e-1 2.03e+3 2.43e-1 2.46e-1 2.64e-1 2.46e-1 2.54e-1
AQU 1.92e+0 2.81e+0 2.77e+0* 4.54e+0 2.85e+0 5.23e+0 2.71e+0* 2.63e+0* 4.86e+0 2.83e+0 2.85e+0
BUI 1.75e+5 1.49e+6* 1.35e+6* - - 3.90e+7 1.40e+6* 1.28e+6* - - 1.38e+7

CBM 4.08e-27 9.34e-1* 5.10e-1* 7.45e+0 6.48e+0 1.41e+5 7.08e-1* 3.77e-2* 4.49e+0 2.00e+0 6.44e+0
CCP 2.19e+1 9.08e+1* 6.78e+1* 2.20e+4 3.34e+2 2.86e+2 8.22e+1* 4.76e+1* 2.26e+4 3.26e+2 2.10e+2
CON 9.38e+1 2.70e+2* 2.54e+2* 4.06e+2 2.97e+2 3.93e+2 2.34e+2* 2.04e+2* 4.21e+2 2.96e+2 2.91e+2
CPU 2.15e+1 3.05e+2* 8.36e+1* 9.65e+2 3.40e+2 3.93e+5 3.01e+2* 4.85e+1* 1.02e+3 3.40e+2 3.42e+2
FIS 1.07e+0 1.90* 2.07e+0 3.47e+0 2.17e+0 2.40e+0 1.55e+0* 1.65e+0* 3.67e+0 2.15e+0 2.17e+0

HOU 2.11e+1 7.80e+1* 7.37e+1* 1.18e+2 8.27e+1 1.31e+3 7.32e+1* 7.02e+1* 1.26e+2 8.19e+1 1.27e+2
MUS 3.00e+2 3.33e+2* 3.46e+2* - - 8.03e+4 3.21e+2* 3.26e+2* - - 2.25e+4
RED 4.76e-1 7.13e-1 6.92e-1 3.63e+0 7.19e-1 4.03e+2 6.14e-1* 5.79e-1* 3.88e+0 7.09e-1 6.94e-1
WHI 5.77e-1 7.39e-1* 7.50e-1* 4.34e+0 8.05e-1 1.88e+4 6.93e-1* 6.40e-1* 4.50e+0 8.02e-1 8.21e-1

D.5 Details of Chicago taxi dataset

The dataset used in this study was obtained from the Differential Privacy Temporal Map Challenge
(DeID2), which aims to develop algorithms that preserve data utility while guaranteeing individual
privacy protection. The dataset contains quantitative and categorical information about taxi trips in
Chicago, including time, distance, location, payment, and service provider. These features include
the identification number of taxis (taxi_id), time of each trip (seconds), the distance of each trip
(miles), index of the zone where the trip starts (pca), index of the zone where the trip ends (dca),
service provider (company), the method used to pay for the trip (payment_type), amount of tips
(tips), and amount of fares (fare).

To preprocess the data, we selected locations in the central region of the map data to ensure sufficient
passenger pick-up and drop-off orders, and we chose the top 10 taxi companies with the highest
number of orders. We then divided the dataset based on the payment feature to distinguish between
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Table 6: Average time over real data sets for LDP regression methods. Due to exceeding the memory
limit, PHIST and APHIST are corrupted on two data sets which are marked with -.

DT LPDT-M LPDT-V APHIST PHIST DECONV
ABA 5.34e-3 1.78e-2 3.23e-2 2.70e-2 2.71e-2 1.47e+0
AIR 2.63e-3 1.13e-2 1.76e-2 9.68e-3 9.58e-3 1.29e-1
ALG 1.79e-3 2.02e-3 2.81e-3 6.10e-3 5.55e-3 1.17e-2
AQU 2.21e-3 3.38e-3 5.21e-3 7.17e-3 5.62e-3 3.12e-2
BUI 3.87e-3 4.09e-3 2.61e-2 - - 1.35e-1

CBM 2.58e-2 8.98e-2 1.23e-1 1.04e-1 1.04e-1 2.76e+1
CCP 8.11e-3 6.28e-2 6.98e-2 4.65e-2 4.70e-2 4.42e+0
CON 3.28e-3 6.38e-3 1.01e-2 7.45e-3 7.14e-3 9.06e-2
CPU 1.52e-2 3.99e-2 6.40e-2 5.86e-2 5.80e-2 9.75e+0
FIS 3.00e-3 4.53e-3 7.63e-3 6.64e-3 6.01e-3 5.53e-2

HOU 2.52e-3 3.37e-3 5.30e-3 5.21e-3 5.54e-3 5.03e-2
MUS 6.24e-3 6.64e-3 4.94e-2 - - 6.49e-1
RED 3.49e-3 9.01e-3 1.41e-2 1.17e-2 1.18e-2 2.65e-1
WHI 7.16e-3 1.68e-2 4.26e-2 3.29e-2 3.29e-2 2.70e+0

Table 7: Additional results for average MSE over real data sets for decision trees. The best results are bolded.

DT DT-pub PDT-M PDT-V
ABA 5.67e+0 7.93e+0 8.38e+0 7.34e+0
AIR 2.26e+1 4.28e+1 4.49e+1 3.60e+1
ALG 2.12e-2 2.59e-1 2.44e-1 2.46e-1
AQU 1.92e+0 2.42e+0 2.73e+0 2.67e+0
BUI 1.75e+5 1.39e+6 1.44e+6 1.31e+6

CBM 4.11e-27 1.57e+0 7.62e-1 1.23e-1
CCP 2.19e+1 7.21e+1 8.42e+1 5.18e+1
CON 9.38e+1 2.21e+2 2.44e+2 2.13e+2
CPU 2.10e+1 2.92e+2 3.02e+2 6.15e+1
FIS 1.07e+0 1.48e+0 1.65e+0 1.76e+0

HOU 2.11e+1 5.58e+1 7.43e+1 7.10e+1
MUS 3.00e+2 3.38e+2 3.27e+2 3.27e+2
RED 4.76e-1 5.69e-1 6.75e-1 6.12e-1
WHI 5.76e-1 7.10e-1 7.03e-1 6.61e-1

private and public data, which is in accordance with the fact that we only had access to specific data
holders. Additionally, we converted all categorical features, including pca, dca, and company, into
one-hot values, resulting in a 102-dimensional feature vector. Ultimately, we made predictions for
the fares of the entire trip.

Figure 6 shows a boxplot of the prediction feature in the Chicago taxi dataset. As we can see from
the plot, the public data and private data differ in distribution, which we referred to as a distribution
shift in the main text.
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Figure 6: Boxplot of fare in Chicago taxi dataset
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