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ABSTRACT

Overestimation in the temporal-difference single-agent reinforcement learning has
been widely studied, where the variance in value estimation causes overestimation
of the maximal target value due to Jensen’s inequality. Instead, overestimation in
multiagent settings has received little attention though it can be even more severe.
One kind of pioneer work extends ensemble methods from single-agent deep re-
inforcement learning to address the multiagent overestimation by discarding the
large target values among the ensemble. However, its ability is limited by the
ensemble diversity. Another kind of work softens the maximum operator in the
Bellman equation to avoid large target values, but also leads to sub-optimal value
functions. Unlike previous works, in this paper, we address the multiagent overes-
timation by analyzing its underlying causes in an estimation-optimization iteration
manner. We show that the overestimation in multiagent value-mixing Q-learning
not only comes from the overestimation of target Q-values but also accumulates
in the online Q-network’s optimization step. Therefore, first, we integrate the ran-
dom ensemble and in-target minimization into the estimation of target Q-values to
derive a lower update target. Second, we propose a novel hypernet regularizer on
the learnable terms of the online global Q-network to further reduce overestima-
tion. Experiments on various kinds of tasks demonstrate that the proposed method
consistently addresses the overestimation problem while previous works fail.

1 INTRODUCTION

Overestimation is a serious challenge for reinforcement learning that stems from the maximum op-
eration when bootstrapping the target Q-value (Thrun & Schwartz, 1993). This overestimation can
be continually accumulated during learning, leading to sub-optimal policy updates and behaviors,
causing instability and significantly impeding the quality of the learned policy of deep reinforcement
learning (DRL) algorithms (Lan et al., 2020; Pan et al., 2021; Liang et al., 2022). A lot of repre-
sentative works have been proposed to address the overestimation in single-agent DRL, including
Double DQN (Hasselt et al., 2016), Averaged-DQN (Anschel et al., 2017), TD3 (Fujimoto et al.,
2018), Minmax Q-learning (Lan et al., 2020), and MeanQ (Liang et al., 2022) etc. Although over-
estimation in single-agent DRL has been widely studied, overestimation in multiagent settings has
received little attention though it can be even more severe (Pan et al., 2021; Gan et al., 2021).

To address the overestimation problem in the multiagent setting, Ackermann et al. (2019) introduce
the TD3 technique to reduce the overestimation bias by using double centralized critics. Sarkar &
Kalita (2021) extend the multiagent TD3 with a weighted critic update scheme to further stabilize
learning. Recently, Wu et al. (2022) use an ensemble of the target multiagent Q-values to derive
a lower update target by discarding the larger previously learned action values and averaging the
retained ones. Besides the above ensemble methods, there are a few works focusing on the soft ver-
sions of the Bellman operator. For example, Gan et al. (2021) extend the soft Mellowmax operator
into the field of multiagent reinforcement learning to tackle the overestimation. At the same time,
Pan et al. (2021) use the softmax Bellman operator on the global Q-value’s joint action space to
avoid large target Q-values. To speed up the softmax computation on the large action space, Pan
et al. (2021) approximate the softmax Bellman operator by sampling actions around the maximal
joint action. Although the above works try to solve the multiagent overestimation problem by in-
troducing the ensemble technique or softening the Bellman operator, they neglect the underlying
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causes that lead to overestimation in the multiagent value-mixing Q-learning, thus are hard to fully
handle the multiagent tasks where the environment contains high uncertainty such as the noise.

In this work, we detailedly analyze the overestimation in the multiagent value-mixing Q-learning,
which shows that it not only comes from the overestimation of the target individual and global
Q-values (Gan et al., 2021), but also accumulates in the online Q-network during the estimation-
optimization iterations. To address the multiagent overestimation, we propose the Dual Ensembled
MUltiagent Q-learning with hypernet REgularizer (DEMURE) algorithm. First, we integrate the
random ensemble and in-target minimization (Chen et al., 2021) into the estimation of the target
individual and global Q-values to derive a lower update target. Besides, to prevent the online global
Q-network from accumulating the overestimation to an extreme during the iterative optimization,
we propose a novel hypernet regularizer to regularize the hypernet weights and biases for further
reducing multiagent overestimation. To validate the proposed method, we conduct the experiments
on the classical multiagent particle environment and a noisy version of the StarCraft II microman-
agement platform. The extensive experiments show that the proposed method consistently solves
various tasks with the overestimation problem while outperforming previous methods.

2 BACKGROUND

2.1 OVERESTIMATION IN Q-LEARNING

Q-learning (Watkins & Dayan, 1992) learns the optimal value of each state-action via stochastically
updating a tabular representation of Q by

Q(s,a)← Q(s,a)+α(r+ γ max
a′

Q(s′,a′)−Q(s,a)) (1)

to minimize the temporal-difference error between the estimates and the bootstrapped targets. Deep
Q-Networks (DQN) (Mnih et al., 2015), which creatively combine deep learning and reinforcement
learning to achieve human-level control in Atari 2600 games, learn a parametrized Qθ value function
by minimizing the squared error loss between Qθ and the target value estimate as

L(s,a,r,s′;θ) = (r+ γ max
a′

Qθ̄ (s′,a′)−Qθ (s,a))2, (2)

where Qθ̄ is a lagging version of the current value function and is updated periodically. The max
operator in the noisy target value estimate has been shown to introduce an overestimation bias (Thrun
& Schwartz, 1993) due to Jensen’s inequality

E[max
a′

Q(s′,a′)]≥max
a′

E[Q(s′,a′)]. (3)

Since the update is applied repeatedly through bootstrapping, it can iteratively increase the bias of
the estimated Q-values before convergence, and introduce instability into temporal-difference learn-
ing algorithms (Liang et al., 2022). To reduce overestimation, Double DQN (Hasselt et al., 2016) is
proposed to decompose the max operation in the target into action selection and action evaluation.
Specifically, Double DQN evaluates the greedy policy according to the online network, while uses
the target network to estimate its value. Similarly, TD3 (Fujimoto et al., 2018) proposes a clipped
Double Q-learning variant for the actor-critic methods, which takes the minimum between the two
critics’ estimates to calculate the target Q-value. At the same time, Averaged-DQN (Anschel et al.,
2017), Minmax Q-learning (Lan et al., 2020), REDQ (Chen et al., 2021) and MeanQ (Liang et al.,
2022) exhibit the similar idea of using an ensemble of Q-value networks to reduce the overestima-
tion with a lower approximation variance. On the other hand, Song et al. (2019) revisit the softmax
Bellman operator and show that it can consistently outperform its max and double Q-learning coun-
terparts on several Atari games despite its sub-optimal value function concern. Furthermore, Gan
et al. (2021) propose a Soft Mellowmax operator for both the single-agent reinforcement learning
and multiagent reinforcement learning, which has a provable performance guarantee while preserv-
ing the advantages of the standard Mellowmax operator (Asadi & Littman, 2017).

2.2 MULTIAGENT VALUE-MIXING Q-LEARNING

We use the Markov games as our setting, which are a multiagent extension of Markov Decision
Processes (Littman, 1994). They are described by a state transition function, T : S×A1× ...×AN →
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P(S), which defines the probability distribution over all possible next states, P(S), given the current
global state S and the action Ai produced by the i-th agent. Note that the reward is usually given based
on the global state and actions of all agents Ri : S×A1× ...×AN →R. If all agents receive the same
rewards, i.e. R1 = ...= RN , Markov games are fully-cooperative: a best-interest action of one agent
is also a best-interest action of others (Matignon et al., 2012). The Markov games can be partially ob-
servable, in which each agent i receives a local observation oi : Z(S, i)→Oi. Thus, each agent learns
a policy πi : Oi→ P(Ai), which maps each agent’s observation to a distribution over its action set,
to maximize its expected discounted returns, Ji(πi) = Ea1∼π1,...,aN∼πN ,s∼T [∑

∞
t=0 γ tri(st ,a1,t , ...,aN,t)]

with γ ∈ [0,1) as the discounted factor. Many multiagent reinforcement learning algorithms have
been proposed to solve tasks that can be modeled as partially observable Markov games.

The multiagent value-mixing algorithms represent the global Q-value as an aggregation of the indi-
vidual Q-values such as VDN with the additive formation (Sunehag et al., 2018), QMIX with the
non-linear formation (Rashid et al., 2018) and Qatten with the agent-wise linear formation (Yang
et al., 2020). As the most representative method, QMIX performs the implicit credit assignment by
learning a non-linear monotonic mixing network with the hypernetwork (Ha et al., 2017).

2.3 OVERESTIMATION IN MULTIAGENT Q-LEARNING

In a single-agent setting, if the estimated action values contain independent noise uniformly dis-
tributed in [−ε,ε] (for some ε > 0), we have the expected overestimation of the target value

E[Zs] = E[r+ γ max
a′

Q(s′,a′)− (r+ γ max
a′

Q∗(s′,a′))] ∈ [0,γε
m−1
m+1

], (4)

where m is the action space size and Q∗ is the target optimal Q-value (Thrun & Schwartz, 1993).

Overestimation in multiagent reinforcement learning is more sophisticated as it increases with the
number of agents (Pan et al., 2021). Furthermore, Gan et al. (2021) show that the multiagent Q-
learning algorithms with the monotonic value-mixing global Q-network such as VDN (Sunehag
et al., 2018), QMIX (Rashid et al., 2018), and Qatten (Yang et al., 2020) obtain the overestimation
raised by the maximization of individual Q-values with the noise over its action space.
Lemma 1. Let Qtot is a function of s and Qi, for i = 1,2, ...,N. And Qi is a function of s and ai,
for ai ∈ Ai. Assuming l ≤ ∂Qtot

∂Qi
≤ L, i = 1,2, ...,N where l ≥ 0 and L > 0, and Qi(s,ai) is with an

independent noise uniformly distributed in [−ε,ε] on each action ai given a state s. Then
LNE[Zs

i ]≥ E[r+ γ max
a

Qtot(s,Qi)− (r+ γ max
a

Qtot(s,Q∗i ))]≥ lNE[Zs
i ], (5)

where E[Zs
i ] = E[maxai Qi(s,ai)−maxai Q∗i (s,ai)] and Q∗i are the target optimal values.

The proof is provided in Appendix A. As Eq. (5) shows, when computing the target global Q-
value, the overestimation is raised by the maximization of Qi over its action space. However, pre-
vious works ignore the fact that the overestimation can also accumulate throughout the estimation-
optimization iterations of Qtot , and thus cannot fully tackle the multiagent overestimation prob-
lem. Next, we analyze the underlying causes of multiagent value-mixing Q-learning overestimation
throughout the Qtot ’s estimation-optimization iterations and derive our method correspondingly.

3 DEMURE FOR MULTIAGENT OVERESTIMATION

3.1 MULTIAGENT OVERESTIMATION IN ESTIMATION-OPTIMIZATION ITERATIONS

Recall that the global Q-network approximates the computed target global Q-value. First, Eq. (5)
indicates that the computed target Qtot and Qis have the overestimation raised by the maximization
of Qi over its action space. Once the overestimated target Qtot is computed, the online network of
the global Q-value approximates the target Qtot value. Here we expand the formation of Qtot as

Qtot(s,Q1, ...,QN) = fmix(s,Q1, ...,QN)+ c(s), (6)

where fmix is the monotonic mixing function that ∂Qtot
∂Qi
≥ 0.

We analyze each term’s behavior of the online global Q-value network in the optimization step.
Surprisingly, we found that the term ∂Qtot

∂Qi
exacerbates the overestimation of the target Qtot by a

squared multiple after the online Qtot network’s optimization.
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Theorem 1. Assuming the learned Qtot network approximates the optimal function Q∗tot(·) where
Qtot(·) = Q∗tot(·) and the learned Qi network approximates the optimal function Q∗i (·) where Qi(·) =
Q∗i (·) with l ≤ ∂Qtot

∂Qi
≤ L, i = 1,2, ...,N where l ≥ 0 and L > 0, then estimated target value ytot will be

biased from the optimal value y∗tot with ∆y > 0 given the individual Q-value is with an independent
noise uniformly distributed in [−ε,ε] on each action. If we continue to train the online Qi network
by the L2 norm Lmix = ∥ytot −Qtot∥2, the updated network Q̂i will be biased from optimal Q∗i as

Q̂i = Q∗i +∆Qi, (7)
where ∆Qi ≥ 2αl∆y for some α > 0. After the feedforward even without considering the updated
Qtot network, the bias of the new Qtot value Q̂tot from the optimal value Q∗tot will become

Q̂tot ≥ Q∗tot +2αNl2
∆y. (8)

Proof. We apply the gradient method to minimize Lmix, the independent Qi is updated as follows,

Q̂i = Q∗i −α
∂ (ytot −Qtot(s,Q1, . . . ,QN))

2

∂Qi

= Q∗i −α
∂ (y∗tot +∆y−Qtot(s,Q1, . . . ,QN))

2

∂Qi

= Q∗i +2α(y∗tot +∆y−Qtot(s,Q1, . . . ,QN))
∂Qtot(s,Q1, . . . ,QN)

∂Qi
.

(9)

Compared with updating with the ground-truth target global Q-value y∗tot , Qi is biased with ∆Qi ≥
2αl∆y. Such bias ∆Qi will be propagated through the global Q-network’s feedforward process to
increase the overestimation of the new global Q-value Q̂tot as

Q̂tot = Qtot(s, Q̂1, . . . , Q̂N) = Qtot(s,Q1 +∆Q1, . . . ,QN +∆QN)

≈ Qtot(s,Q1, . . . ,QN)+
N

∑
i=1

∂Qtot(s,Q1, . . . ,QN)

∂Qi
∆Qi

= Qtot(s,Q1, . . . ,QN)+2α∆y
N

∑
i=1

(
∂Qtot(s,Q1, . . . ,QN)

∂Qi
)2

= Q∗tot +2α∆y
N

∑
i=1

(
∂Qtot(s,Q1, . . . ,QN)

∂Qi
)2 ≥ Q∗tot +2αNl2

∆y,

(10)

where the second approximation comes from Taylor expansion. Thus, Qi’s overestimation causes
more severe overestimation for Qtot even if we only update the online Qi network in one optimization
step. Furthermore, in the repeated estimation-optimization iterations, such bias can accumulate.
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Figure 1: Overestimation analysis.

We could find that, when forwarding the updated biased
Qi to compute the new global Q-value, the term ∂Qtot

∂Qi
exacerbates the overestimation of the Qtot value by a
squared multiple. Moreover, Pan et al. (2021) empiri-
cally show that ∂Qtot

∂Qi
continually increases while learn-

ing, which makes the overestimation of Qtot much more
severe. Based on the above reasons, we are motivated to
regularize ∂Qtot

∂Qi
to prevent the severe overestimation of

Qtot . Meanwhile, another learnable term c(s) in Eq. 6
can also accumulate overestimation when updating net-
work parameters in the iterative estimation-optimization
loop, which is further demonstrated in the experiments
such as in Figure 6(d). Thus, we also regularize the term
c(s) in case that c(s) increases extremely large to cause
Qtot ’s severe overestimation. In summary, we are moti-
vated to control the overestimated Qtot and Qi in the tar-
get Qtot value’s estimation, as well as to regularize ∂Qtot

∂Qi
and c(s) in the online Qtot network’s optimization.
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3.2 DUAL ENSEMBLED MULTIAGENT Q-LEARNING

Using ensemble to reduce the overestimation in Q-learning is widely studied in single-agent DRL
(Anschel et al., 2017; Peer et al., 2021; Lee et al., 2021; Chen et al., 2021; Liang et al., 2022). The
statistics of the ensemble can be used to assess model uncertainty or to produce a lower-variance
estimate compared to a single estimator (Liang et al., 2022). These benefits have been utilized in
DRL for alleviating estimation bias by pessimistically estimating the target as the minimum over
ensemble predictions (Chen et al., 2021; Liang et al., 2022).

In this paper, we integrate REDQ (Chen et al., 2021), a state-of-the-art ensemble method in the
single-agent DRL domain, into the multiagent value-mixing Q-learning algorithms. REDQ uses an
in-target minimization across a random subset of Q-functions from the ensemble of Q-networks to
control the overestimation. We incorporate this idea into the computation of the target Q-values to
address the overestimated target Qi and Qtot . Next, we explain the details of the dual ensemble.

Algorithm 1 Dual Ensembled Multiagent Q-learning
1: Initialize individual Q-value network parameters θ1,1, ...,θ1,K , ...,θN,1, ...,θN,K , global Q-value

network parameters φ1,φ2, ...,φH and empty replay buffer D. Set target parameters θ̄i,k ← θi,k
for i = 1,2, ...,N, k = 1,2, ...,K and φ̄h← φh for h = 1,2, ...,H.

2: for Episode 1,2,3... do
3: Each agent i takes action ai,t ∼ πθi(·|oi,t). Step into new state st+1. Receive new reward rt

and new observation oi,t+1.
4: Add data to buffer: D← D∪{(st ,ot ,at ,rt ,st+1,ot+1)}.
5: Sample a mini-batch B = {(s,o,at ,r,s′,o′)} from D.
6: Sample a set K of NK distinct indices from {1,2, ...,K}.
7: Sample a set H of NH distinct indices from {1,2, ...,H}.
8: Compute the Q target ytot (same for all of the N critics):

ytot = r+ γ(min
h∈H

Qφ̄h
tot(s

′,Q1(o′1,a
′
1), ...,QN(o′N ,a

′
N)),

Qi(o′i,a
′
i) = max

a′i
min
k∈K

Q
θ̄i,k
i (o′i,a

′
i).

9: for h = 1, ...,H do
10: Update φh,θ1,1, ...,θN,K with gradient descent

∇φh,θ1,1,...,θN,K Lmix(φh,θ1,1, ...,θN,K), where

Lmix(φh,θ1,1, ...,θN,K) =
1
|B| ∑

(s,o,a,r,s′,o′)∈B
[Qφh

tot(s,Q1(o1,a1), ...,QN(oN ,aN))− ytot ]
2, and

Qi(oi,ai) = meanK
k=1Q

θi,k
i (oi,ai).

11: end for
12: Update target networks φ̄1← φ1, ..., φ̄H← φH and θ̄1,1← θ1,1, ..., θ̄N,K← θN,K every C times.
13: end for

When computing the target global Q-value, we have

ytot = r+ γ max
a′

Qφ̄

tot(Qi)(s′,a′)

= r+ γQφ̄

tot(max
a′1

Qθ̄1
1 , ...,max

a′N
Qθ̄N

N )(s′,a′)

= r+ γQφ̄

tot(s
′,max

a′1
Qθ̄1

1 (o′1,a
′
1), ...,max

a′N
Qθ̄N

N (o′N ,a
′
N)),

where φ̄ and θ̄ are the parameters of the target global Q-value network and target individual Q-value
networks respectively. As shown in Eq. (5), the overestimation in the target Qi causes the overesti-
mation of the target Qtot . Therefore, we first apply the random in-target minimization technique of
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REDQ to the target Qi’s estimation. Then the target individual Q-value is computed as

Qi = min
k∈K

Q
θ̄i,k
i , (11)

where K is a subset with size NK randomly sampled from {1,2, ...,K} and θ̄i,k is agent i’s target
individual Q-network. Similarly, the target global Q-values estimation is also computed with the
random in-target minimization technique to further reduce the multiagent overestimation as

Qφ̄

tot = min
h∈H

Qφ̄h
tot , (12)

where H is a subset with size NH randomly sampled from {1,2, ...,H} and φ̄h is the target centralized
global Q-network. As shown in Theorem 1 of REDQ (Chen et al., 2021), by changing the subset
size of the random minimization, we are able to control the overestimation of target Qtot and Qi.

The dual ensembled multiagent Q-learning algorithm is shown in Algorithm 1. Line 1 initializes the
empty replay buffer, the online and target individual Q-value networks for each agent, as well as the
online and target global Q-value networks. Line 3-4 interact with the environment based on agent
policies and store the transition into the replay buffer. Line 5 samples a mini-batch of transitions
from the replay buffer for updating. Line 6-7 samples the indices for selecting instances from Qi
network ensemble and Qtot network ensemble respectively. Line 8 computes the target Qtot value
with in-target minimization across the selected network subsets. Line 9-11 update all online Qi and
Qtot networks with respect to the loss function Lmix. Line 12 updates the network parameters of all
target individual and global Q-value networks by copying from their online versions periodically.

3.3 HYPERNET REGULARIZER

The analysis and empirical findings indicate that ∂Qtot
∂Qi

and c can accumulate and exacerbate the
multiagent overestimation in the estimation-optimization iterations. To tackle this issue, we propose
a novel hypernet regularizer to restrict the learnable terms in the online global Q-network. Specifi-
cally, we propose to use the L1 regularization to restrict ∂Qtot

∂Qi
and c as

Lhyper = ∑W+∑ |B|+ |c|, (13)

where W≥ 0 and B are the hypernet weights and biases from the hypernets respectively. The term
c is also from a hypernet. The proof is shown in Appendix C.

Then the final loss function for the proposed DEMURE becomes

L = Lmix +αhyper
1
|B|

1
H ∑

(s,o,a,r,s′,o′)∈B

H

∑
h=1

Lhyper(s|φh), (14)

where αhyper is the coefficient of the hypernet regularization loss.

4 EXPERIMENTS

In this section, we conduct the experiments in the multiagent particle environment (MPE) (Lowe
et al., 2017) and in the noisy version of the StarCraft multiagent challenge (SMAC) (Samvelyan
et al., 2019) environment to validate the effectiveness of DEMURE when facing the multiagent
overestimation problem compared with various baselines. We also conduct the ablation study and
analysis to validate the effectiveness of dual ensemble and hypernet regularizer techniques.

4.1 EXPERIMENTS ON MPE

We first conduct the experiments in the multiagent particle environment including simple tag, sim-
ple world, and simple adversary. The simple tag is a predator-prey task where 3 slower predators
coordinate to capture a faster prey. The simple world involves 4 slower agents to catch 2 faster
adversaries that desire to eat food. The simple adversary involves 2 cooperating agents and 1 ad-
versary. The agents need to reach a single target landmark from a total of two landmarks while the
adversary is unaware of the target. We follow the setting in RES (Pan et al., 2021) that these tasks
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Figure 2: Results on different Multiagent Particle Environment scenarios.

are fully cooperative and the adversaries are pre-trained by MADDPG (Lowe et al., 2017) for 104

episodes. The training and evaluation settings are also kept unchanged.

We compare the proposed method with QMIX (Rashid et al., 2018), S-QMIX (Pan et al., 2021) (For
a fair comparison, we use RES without the N-step return regularization and focus on the one-step
temporal-difference technique.), SM2-QMIX (Gan et al., 2021), TD3-QMIX (Ackermann et al.,
2019) and WCU-QMIX (Sarkar & Kalita, 2021). We implement the proposed method based on the
pymarl framework (Samvelyan et al., 2019), and the detailed implementation of each baseline is
provided in Appendix B. For each method, we run 5 independent trails with different random seeds
and the resulting plots include the mean performance as well as the shaded 95% confidence interval.
Besides, we plot the estimated Qtot of each method in the log scale to show the overestimation status.

As shown in Figure 2, the proposed method learns stably and achieves superior performance on all
three tasks. At the same time, QMIX fails on all tasks as it gets the most severe overestimation.
While some baselines such as TD3-QMIX and WCU-QMIX could control the overestimation in the
simple tag and simple world, they cannot tackle the simple adversary scenario where the overesti-
mation on this task is much severer than the other two tasks. Meanwhile, although the soft Bellman
operator (S-QMIX) and soft Mellowmax operator (SM2-QMIX) could tackle the simple tag task,
they fail on the two other tasks. Overall, the proposed method demonstrates its capability to address
the multiagent overestimation problem and stabilizes the learning process.

4.2 EXPERIMENTS ON NOISE SMAC

Then we conduct the experiments on the well-known StarCraft II platform, which has become a
commonly-used benchmark for evaluating state-of-the-art multiagent reinforcement learning algo-
rithms. Here we use a noisy version of SMAC, where the noise is added into the sensors of each
agent’s observation and the global state (see Appendix for the detailed noise setting). The noise
increases the variances of the individual Q-value and global Q-value, and thus raises the overesti-
mation problem for the multiagent Q-learning algorithms. We conduct the experiment on 4 tasks
including 5m vs 6m, 2s3z, 3s5z, and 10m vs 11m. In 5m vs 6m, there are 5 allied marines against
6 marine enemies. For map 2s3z, both sides have 2 Stalkers and 3 Zealots. For map 3s5z, both
sides have 3 Stalkers and 5 Zealots. In 10m vs 11m, there are 10 allied marines against 11 ma-
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Figure 3: Results on different StarCraft Multi-Agent Challenge scenarios.

rine enemies. Training and evaluation schedules such as the testing episode number and training
hyperparameters are kept unchanged (Samvelyan et al., 2019). The version of StarCraft II is 4.6.2.

We compare the proposed method with QMIX, SM2-QMIX, TD3-QMIX, WCU-QMIX and Sub-
Avg-QMIX (Wu et al., 2022). Here we omit S-QMIX as it collapses while training. The reason is
that its softmax implementation does not well support the action space with varying legal actions at
each timestep. Instead, we add a new baseline Sub-Avg-QMIX as it exhibits excellent performance
in the standard SMAC tasks (Wu et al., 2022). Results are averaged over 6 independent training trails
with different random seeds, and the resulting plots include the median performance as well as the
shaded 25-75% percentiles. We also report the estimated Qtot . As shown in Figure 3 and Figure 4,
in the noisy setting, QMIX suffers from severe overestimation and cannot learn stably in the noisy
environment. At the same time, in these four maps, the proposed method successfully addresses the
overestimation to stabilize learning while other baselines cannot consistently tackle all the tasks.
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Figure 4: Overestimation on different StarCraft Multi-Agent Challenge scenarios.

4.3 ABLATION STUDY

In this section, we perform the ablation study of each technique of our method. We compare DE-
MURE, DEMURE without the ensemble (w/o ensemble), and DEMURE without the hypernet reg-
ularizer (w/o hyper). If DEMURE is without both techniques, it degenerates to vanilla QMIX.
Figure 5 shows the results. As we can see, each component is essential for addressing the multia-
gent overestimation problem. Especially, in 5m vs 6m, neither the dual ensemble nor the hypernet
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regularizer addresses the overestimation alone. Only the combined techniques, which jointly ad-
dress the underlying causes, can avoid the overestimation and successfully stabilize learning. The
ablation study validates the importance of each technique of the proposed method.
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Figure 5: Results of the ablation study.

4.4 EXPERIMENTAL ANALYSIS OF OVERESTIMATION’S CAUSES

As the proposed method is designed to control each overestimation cause, we report Qi and Qtot

in the target Q-value estimation as well as ∂Qtot
∂Qi

and c in the online Q-network optimization to
visually show how it works. Here we run the simple adversary task as its overestimation is the most
severe among all tasks and the results are shown in Figure 6(a)-6(d). We could see that each term
in QMIX has higher values than the proposed method. Especially, ∂Qtot

∂Qi
contributes much to the

overestimation problem of the vanilla QMIX as the value of ∂Qtot
∂Qi

is much larger than the proposed

method by orders of magnitude. Differently, the proposed method successfully prevents Qi, ∂Qtot
∂Qi

, c
and thus Qtot from becoming extreme large to avoid the multiagent overestimation problem.
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Figure 6: Experimental analysis of each cause.

5 CONCLUSION

In this paper, we propose DEMURE to address the multiagent overestimation problem. The analysis
of the multiagent value-mixing Q-learning shows that the overestimation falls into the overestimated
target Qi and Qtot in the target Qtot value’s estimation, as well as the learnable terms in the online
Qtot network’s optimization. Motivated by this analysis, we propose to utilize the dual ensemble
and hypernet regularizer to address these underlying causes that previous works neglect. Extensive
experiments show that the proposed method successfully addresses the multiagent overestimation
and achieves superior performance on the MPE and the noisy version of SMAC environments when
compared with various baselines. Furthermore, the ablation study and experimental analysis demon-
strate the effectiveness and importance of each technique of the proposed method.

For future work, on the one hand, it is potential to further scale the proposed method into realistic
large-scale multiagent settings where noise is common and learning stability is required for tasks. On
the other hand, reducing the network parameters of the ensemble model while keeping the ensemble
diversity could also bring a lot of benefits. To achieve it, our method is promising to be combined
with advanced techniques in deep learning such as the dropout and network pruning.
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A PROOF OF OVERESTIMATION IN VALUE-MIXING Q-LEARNING

Gan et al. (2021) show that if the assumption that l ≤ ∂Qtot
∂Qi
≤ L, i = 1,2, ...,N where l ≥ 0 and L > 0

satisfies, multiagent Q-learning algorithms with the monotonic value-mixing global Q-network such
as VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and Qatten (Yang et al., 2020) obtain
the overestimation

LNE[Zs
i ]≥ E[r+ γ max

a
Qtot(s,Qi)− (r+ γ max

a
Qtot(s,Q∗i ))]≥ lNE[Zs

i ], (15)

where E[Zs
i ] = E[maxai Qi(s,ai)−maxai Q∗i (s,ai)] and Q∗i are the target values.

Proof.

E[r+ γ max
a

Qtot(s,Qi)− (r+ γ max
a

Qtot(s,Q∗i ))]

= γE[Qtot(s,max
a

Qi)−Qtot(s,max
a

Q∗i )]

= γE[Qtot(s,max
a1

Q1, ...,max
aN

QN)

−Qtot(s,max
a1

Q∗1, ...,max
aN

Q∗N)]

≥ γE[
N

∑
i

l(max
ai

Qi(s,ai)−max
ai

Q∗i (s,ai))]

= γlNE[max
ai

Qi(s,ai)−max
ai

Q∗i (s,ai)]

= lNE[Zs
i ],

(16)

where the estimated Qi is assumed with an independent noise uniformly distributed in [−ε,ε]
on each action ai given s. Similarly, we can also get E[r + γ maxa Qtot(s,Qi) − (r +
γ maxa Qtot(s,Q∗i ))]≤ LNE[Zs

i ].

B THE IMPLEMENTATION DETAILS OF BASELINES

B.1 S-QMIX

S-QMIX use the softmax Bellman operator to compute the estimation of the target global Q-value

softmaxβ ,U(Qtot(s, ·)) = ∑
u∈U

eβQtot (s,u)

∑u′∈U eβQtot (s,u′)
Qtot(s,u), (17)

where β ≥ 0 is the inverse temperature parameter. However, computation of Equation (17) in the
multiagent setting can be computationally intractable as the size of the joint action space grows
exponentially with the number of agents. Therefore, Pan et al. (2021) use an alternative joint action
set Û to replace the joint action space U. First, the maximal joint action û is obtained by û =
argmaxu Q(s,u). Next, for each agent i, K joint actions are considered by changing only agent i’s
action while keeping the other agents’ actions u−i fixed and the resulting action set of agent i is
Ui = {(ui, û−i)|ui ∈U}. Finally, the joint action subspace Û =Ui∪· · ·∪UN is obtained and used to
calculate the softmax version of the global Q-value.

B.2 SM2-QMIX

SM2-QMIX uses the soft Mellowmax operator to compute the estimation of the target individual
Q-value and thus avoids the explosion problem of the joint action space in S-QMIX.

smω Qi(s, ·) =
1
ω

log[∑
a∈A

eαQi(s,a)

∑a′∈A eαQi(s,a′)
eωQi(s,a)], (18)

where ω > 0 and α ∈ R, which can be viewed as a particular instantiation of the weighted quasi-
arithmetic mean (Beliakov et al., 2015).
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B.3 TD3-QMIX

TD3-QMIX takes the minimum between the two critics’ estimations to calculate the target global
Q-value.

ytot = r+ γ min
h∈{1,2}

Qφ̄h
tot(s

′,Q1(o′1,a
′
1), ...,QN(o′N ,a

′
N)),

Qi(o′i,a
′
i) = max

a′i
Qθ̄i

i (o
′
i,a
′
i).

(19)

B.4 WCU-QMIX

WCU-QMIX propose a weighted critic updating scheme of TD3. It updates the critic networks
with the loss function that is calculated using the weighted Q-values obtained from the two critic
networks. The target is calculated using the rewards and the minimum of the target Q-values.

L(φh,θ1, ...,θN) =
1
|B|∑b

(yb− (wQφh
tot(sb,Q1, ...,QN)+(1−w)Qφp

tot(sb,Q1, ...,QN))|p ̸=h),

Qi = max
ai

Qθi
i (oi,b,ai).

(20)

B.5 SUB-AVG-QMIX

The Sub-Avg-QMIX keeps multiple target networks to maintain various action values of different
periods, and discards the larger action values of them to eliminate the excessive overestimation error.
Thereby, Sub-Avg-QMIX gets an overall lower maximum action value, then obtain an overall lower
update target. Specifically, Sub-Avg-QMIX discards the action values above the average. Here we
apply the Sub-Avg operator in the mixing network as it shows the better performance compared with
the version of applying the Sub-Avg operator in the agent network (Wu et al., 2022).

ytot = r+ γ max
a′

(
∑

K
k=1 ckQ

θ̄i,t−k+1
tot (s′,a′)

∑
K
k=1 ck

). (21)

with
ck = max(0,sign(Q̄φ̄

tot(s
′,a′)−Qφ̄t−k+1

tot (s′,a′))), (22)
where ck determines whether the global action value should be preserved if it is below average or
discarded otherwise. Q̄φ̄

tot(s′,a′) is the average of the last K global action values.

C PROOF OF HYPERNET REGULARIZER WITH ∂Qtot
∂Qi

AND c

First, we show the relation between ∂Qtot
∂Qi

and the hypernet weights and biases. For the most repre-
sentative QMIX (Rashid et al., 2018), the global Q-value is calculated as follows

Qtot = fmix(s,Q1, ...,QN)+ c(s) = elu(Q1×N
i WN×Lh

1 +B1×Lh
1 )WLh×1

2 + c1×1
1 , (23)

where WN×Lh
1 , WLh×1

2 , B1×Lh
1 and c1×1

1 are weights and biases generated from the corresponding
hypernets, and Lh is the hidden unit number. Then

∂Qtot

∂Qi
=

∂elu(Q1×N
i WN×Lh

1 +B1×Lh
1 )WLh×1

2 + c1×1
1

∂Qi

=
∂elu(Q1×1

i W1×Lh
1,i +B1×Lh

1 )WLh×1
2

∂Qi

=
Lh

∑
lh=1

Qiw1,i,lh
+b1,lh

≥0

w1,i,lhw2,lh +
Lh

∑
lh=1

Qiw1,i,lh
+b1,lh

<0

αw1,i,lhw2,lheQiw1,i,lh
+b1,lh

≤
Lh

∑
lh=1

Qiw1,i,lh
+b1,lh

≥0

w1,i,lhw2,lh +
Lh

∑
lh=1

Qiw1,i,lh
+b1,lh

<0

αw1,i,lhw2,lh ,

(24)
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where w1,i,lh ≥ 0 and w2,lh ≥ 0, and elu is the Exponential Linear Unit activation function, and α > 0
is a scalar (Clevert et al., 2016). Therefore, if we use

Lhyper = ∑W+∑ |B|+ |c|= ∑w1 +∑w2 +∑ |b1|+ |c1| (25)

as the regularization term in the loss function, we can restrict both the terms of ∂Qtot
∂Qi

and c.

Furthermore,
∂

∂Qi
(

∂Qtot

∂Qi
) =

Lh

∑
lh=1

Qiw1,i,lh
+b1,lh

<0

αw2
1,i,lhw2,lheQiw1,i,lh

+b1,lh ≥ 0. (26)

Therefore, in QMIX, ∂Qtot
∂Qi

increases with Qi if Qiw1,i,lh +b1,lh < 0 for some lh and the overestimation
can be bootstrapped to an extreme, which is also observed from the experiments (Pan et al., 2021).

For the linear value-mixing algorithms such as Qatten (Yang et al., 2020), the global Q-value is
calculated as follows

Qtot =
N

∑
i=1

wiQi + c, (27)

where wi ≥ 0, the following simply holds as

∂Qtot

∂Qi
= wi. (28)

The hypernet regularizer to restrict both the terms of ∂Qtot
∂Qi

and c is

Lhyper = ∑W+∑ |B|+ |c|= ∑w+ |c|. (29)

D NOISY SMAC SETTINGS

In this noisy SMAC environment, we add a random noise for each feature of both the observation
and global state, which is common in the realistic tasks. The random noise is uniformly distributed
and its range is [0,0.02). Although the noise is small, it dramatically raises the overestimation
problem for QMIX and seriously impedes the quality of the learned policies.

E HYPERPARAMETER SETTINGS

Table 1: Hyperparamters of algorithms on MPE.
DEMIX simple tag simple world simple adversary

H 3 10 10
NH 3 6 4
K 1 1 10

NK 1 1 4
αhyper 0.002 0.02 0.05

S-QMIX simple tag simple world simple adversary
β 0.05 0.5 0.005

SM2-QMIX simple tag simple world simple adversary
α 0.1 10.0 0.1
ω 5.0 0.05 0.5

WCU-QMIX simple tag simple world simple adversary
w 0.75 0.75 0.75

As different tasks have different levels of overestimation, we adjust the hyperparameters of
each method on each task. To make a fair comparision, we perform the grid search for all
baselines around their tuned default values which perform best in their original papers. Specifi-
cally, for S-QMIX, we search β ∈ {50.0,5.0,0.5,0.05,0.005}. For SM2-QMIX, we search (α,ω)∈
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Table 2: Hyperparamters of algorithms on SMAC.
DEMIX 5m vs 6m 2s3z 3s5z 10m vs 11m

H 3 3 10 4
NH 2 2 6 3
K 1 1 1 1

NK 1 1 1 1
αhyper 0.002 0.002 0.001 0.01

SM2-QMIX 5m vs 6m 2s3z 3s5z 10m vs 11m
α 1.0 10.0 10.0 1.0
ω 0.5 0.05 5.0 5.0

WCU-QMIX 5m vs 6m 2s3z 3s5z 10m vs 11m
w 0.75 0.75 0.75 0.75

Sub-Avg-QMIX 5m vs 6m 2s3z 3s5z 10m vs 11m
K 10 3 3 3

{(10.0,5.0),(10.0,0.5),(10.0,0.05),(1.0,5.0),(1.0,0.5),(1.0,0.05),(0.1,5.0),(0.1,0.5),(0.1,0.05)}.
For WCU-QMIX, we search w ∈ {0.25,0.5,0.75}. Here are the tuned hyperparameter parameters
of each method on each task of MPE as shown in Table 1.

We also use the grid search on eahc of the SMAC tasks. For SM2-QMIX, we search (α,ω) ∈
{(10.0,5.0),(10.0,0.5),(10.0,0.05),(1.0,5.0),(1.0,0.5),(1.0,0.05),(0.1,5.0),(0.1,0.5),(0.1,0.05)}.
For WCU-QMIX, we search w ∈ {0.25,0.5,0.75}. For Sub-Avg-QMIX, we search K ∈ {3,5,10}.
Here are the methods’ tuned hyperparameter parameters on each task of SMAC as shown in Table 2.
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