
Published as a conference paper at ICLR 2025

LOIRE: LIFELONG LEARNING ON INCREMENTAL
DATA VIA PRE-TRAINED LANGUAGE MODEL GROWTH
EFFICIENTLY

Xue Han ∗, Yitong Wang ∗, Junlan Feng †, Wenchun Gao, Qian Hu & Chao Deng
JIUTIAN Team
China Mobile Research Institute
Beijing, China
{hanxueai, wangyitongyjy, fengjunlan, gaowenchun, huqianai, dengchao}@chinamobile.com

ABSTRACT

Large-scale pre-trained language models (PLMs) require significant computa-
tional resources to train from scratch on large volumes of data. But in the real
world, emerging data from diverse sources may not be initially available for pre-
training. Recent studies on lifelong learning have tried to solve this problem
by exploring the use of model growth techniques to effectively incorporate new
knowledge without the need for complete re-training. However, model growth
approaches utilized have issues with growth operators that do not ensure strict
function preservation or growth schedules that only include a few growth dimen-
sions, reducing lifelong learning’s effect. Furthermore, existing approaches often
assume that emerging data has the same distribution as pre-training data, causing
catastrophic forgetting of previously acquired knowledge. To address the afore-
mentioned issues, we introduce LOIRE, a framework for lifelong learning that
enables PLMs to effectively grow their capacity using incremental data. LOIRE
employs growth operators for all feasible dimensions and a growth schedule to
generate the optimal expansion sequence in the field of lifelong learning. Specifi-
cally, we present a novel plug-in layer growth operator with residual connections
that skip the newly added layer during initial training while ensuring function
preservation. We additionally propose an iterative distillation strategy for LOIRE
that allows an intermediate model in the growth stages to switch between being
a student and a teacher, reducing catastrophic forgetting during growth. Exper-
iments show that LOIRE can reduce computational expenses by an average of
29.22% while retaining equivalent or better downstream performance.

1 INTRODUCTION

Large-scale pretrained language models (PLMs), such as GPT, BERT, and T5 (Devlin et al., 2018;
Brown et al., 2020; Achiam et al., 2023; Raffel et al., 2020), have demonstrated impressive perfor-
mance across various tasks. Large PLMs can require a long time and a lot of computation resources
to train from scratch on huge amounts of data. However, when used in practice, PLM’s performance
may decline since new data from other sources frequently comes in that was not previously available
for training. This alters the domain of data distribution (Guo & Yu, 2022). The mismatch hinders the
widespread use of PLMs in real life. However, training from scratch is time and computation inten-
sive, particularly if the PLM is large. Although researchers investigated involving lifelong learning
(Mehta et al., 2023) for the PLM pre-training phase to prevent periodic re-training of PLMs from
scratch for new data, which has the potential to reduce computing and time needs, there still re-
mains an efficient problem unsolved. Recent research (Jin et al., 2021; Chen et al., 2023; Qin et al.,
2022) have developed effective lifelong learning pipelines for PLMs by employing model growing
approaches (Chen et al., 2021; Wang et al., 2023; Yao et al., 2023) to gradually increase model ca-
pacity, thereby enhancing PLMs’ ability to quickly adapt to new knowledge. SOTA model growth

∗These authors contributed to the work equally.
†Corresponding author.

1

Published as a conference paper at ICLR 2025

strategies rely on sequential training with scaling parameters. During growth, each larger model
inherits knowledge from the preceding smaller model by reusing its parameters to initialize.

Despite their success, the model growth strategies adopted for lifelong learning continue to face chal-
lenges. 1) Growth schedules, which specify when and where to expand the model structure, have
mostly been examined for Transformer considering the number of layers and the width of the Feed-
Forward Network (FFN) (Gong et al., 2019; Gu et al., 2020). However, devising an effective sched-
ule that includes all possible growth dimensions remains a difficulty. 2) Growth operators, which
refer to the steps taken during growth to inherit knowledge from the previous model, have to assure
function preservation. Function preservation is a theoretically essential property for growth oper-
ators since it ensures that the initialized larger model behaves identically to the preceding smaller
model (Chen et al., 2015). This property has proven beneficial for both knowledge inheritance (Chen
et al., 2015; 2021; Shen et al., 2022) and training stability (Yao et al., 2023). Existing efforts that
merely aim for non-strict function preservation may not inherit all relevant information, resulting
in inadequate growth. This, in turn, has an impact on the lifelong learning effect because it creates
a wide function gap during rapid growth, preventing further gains in training dynamics. 3) In a
lifelong learning scenario, the data distribution is constantly shifting as new domains keep emerging
(Ke et al., 2023). Existing model growth methods frequently assume that pretraining follows the
same data distribution, resulting in catastrophic forgetting of previously learned knowledge.

We propose the LOIRE (Lifelong learning framewOrk on Incremental data via PLMs gRowth
Efficiently) to address these issues. Our contributions are listed as below:

(1) We present a novel plug-in layer growth operator that replicates the selected layers and inserts
them between the original layer and the subsequent layer. This design is inspired by recent research
findings that show similarity in pattern classes between neighboring Transformer layers (Delétang
et al., 2023). We adopt the concept of residual connection by introducing a set of gates to intention-
ally skip the newly added layer in the initial training, thus ensuring the function-preserving property.
We also show that this layer growth is theoretically function-preserving.

(2) In addition to the proposed layer operator, we provide a systematic definition for multi-
dimensional operators that includes the hidden dimension, the FeedForward Network dimension,
and the number of heads in the multi-head attention. Next, we build a growth schedule that gener-
ates an optimal growth sequence by combining multi-dimensional operators in the field of lifelong
learning, allowing for efficient PLM training.

(3) Finally, we suggest an iterative distillation warmup strategy for LOIRE. According to a previ-
ous study, the difference in model size between a teacher and a student can affect the distillation
performance (Mirzadeh et al., 2020). In our case, the difference in growth dimensions during every
stage of growth results in a similar phenomenon. We suggest allowing an intermediate model cre-
ated throughout the growth steps to switch between being a student and a teacher during the iterative
distillation process. According to the iterative distillation warmup, LOIRE could accommodate the
new data distribution without forgetting earlier distributions during model growth.

2 METHODOLOGY

Fig 1 is an overview of the whole paradigm. LOIRE combines multi-dimensional function-
preserving growth operators with an optimized growth schedule. Each forward pass in the growth
schedule yields a larger model by increasing the capacity of the previous smaller one and training
on newly acquired data. To reduce the disparity between the data distribution before and after model
growth, we use an iterative distillation strategy to warm up the larger model generated after each
growth step.

2.1 PRELIMINARY

In this study, we focus on the Transformer architecture (Vaswani et al., 2017) that is prevalent in
existing PLMs.

Hidden states H l−1 represents the input for the Transformer layer l, which is a bi-dimensional
tensor with s and h being the sequence and hidden dimension. When the h changes, it affects every
module of the Transformer structure. We overlook the position embedding in this work as it does

2

Published as a conference paper at ICLR 2025

Growth
Operators

Schedule

Layer_1

��

��

......

Layer_L

��−�

��

Layer
growth

......

Layer_L

Layer_CL

��(�−�)

��

���

Layer_1

Layer_C1

��

��

���

Layer Input embedding Input embedding

...

Multi-head
attention

FFN

GELU

Linear

Linear

GELU

Linear

Linear

Hidden
dimension

Input embedding Input embedding

multi-stages :

...

�1

�2

...

...

...

...
...

��

Data Stream

......
Iterative

distillation

......

Initial ⇒ Hidden dimension ⇒ FFN ⇒ Multi-head attention ⇒ Layer

��
�

��
�

��
�

�a
�

�a
�

�a
�

�1

�2

��

Figure 1: The overall framework of the proposed LOIRE. (a) Illustrates the growth operators and
schedules over all four possible Transformer dimensions, including multi-head attention, hidden
dimension, FFN, and plug-in layer growth operators. (b) Describes the multi-stage model growth
procedure with an interactive distillation approach over emerging datasets.

not affect the expansion process. The hidden states are iteratively passing through the Transformer
layers: H l

s×h
= Transl(H

l−1

s×h
), l ∈ [1, L], where L denotes the total number of the layers.

Each Transformer layer l contains the modules that are important for the growth approach, which
are described below:
Multi-head attention (MHA): Multiple parallel self-attention heads make up MHA. The input H
of each layer is fed into the MHA mechanism, which can be formulated as follows:

Ki
s×d

/Qi
s×d

/ Vi
s×d

= H
s×h

× W
K/Q/V
headi
h×d

Hheadi
s×d

= Attention(Qi, Ki, Vi) = softmax(
1
√
d

× Qi × K
T
i) × Vi

H
MHA

s×h
= MHA(H) = [Hhead1

, ..., Hheada] × W
O

(a×d)×h

(1)

where H is applied to linear projection for generating queries, keys and values(Q/K/V), utilizing
different weights(WK/Q/V) for each transformation respectively. Hheadi signifies the output of the
i-th attention head with a being the total number of heads. The output linear matrix WO generates
the final result HMHA, which is then delivered to the Feed-forward network.

Feed-forward network (FFN) is a Multi-Layer Perceptron responsible for applying a non-linear
transformation to HMHA (f is FFN’s dimension of its internal representation):

H
FFN

s×h
= FFN(H

MHA
) = GELU(H

MHA

s×h
× W

l1

h×f
+ b

l1

s×f
) × W

l2

f×h
+ b

l2

s×h
(2)

Layer normalization (NORM) and residual connections are interconnected, facilitating the miti-
gation of internal covariate shift and enhancing gradient flow in both MHA and FFN.

H
NORMMHA

= Layer norm(H + H
MHA

) H
NORMFFN

= Layer norm(H
MHA

+ H
FFN

) (3)

where HNORMMHA

is the normalization output of HMHA, the same for FFN module.

2.2 PROBLEM FORMULATION

Lifelong learning involves training an initial PLM M (1) on corpus D1 and then updating it to M (t)

with each Dt ∈ D={D1, ...Dt,DT } to learn new knowledge while retaining old knowledge.
D = {D1, ..., DT } is an incremental data stream that consists of corpus from different stages T .
For each Dt, there may contain data from multiple domains. We aim to efficiently initiate M (t),
reducing the gap with earlier M (t−1) in acquired knowledge.

Lifelong learning with an efficient model growth strategy can be further formulated as below.
Growing the M (t−1) to M (t) is a process with multi-stages, which means M (t−1) needs go through

3

Published as a conference paper at ICLR 2025

K stages to eventually grow into M (t): M (t)
1 ⇒ M

(t)
2 ... ⇒ M

(t)
K . Let L be the target loss function

while T be the total pre-training time, the optimized objective of lifelong training can be defined as:
argMin

ε
{L(ε), T (ε)}

s.t.

{
ε = {Mk(x; θk)}Kk=1

θk = φ(θ+k) + θk−1, φ ∈ ψ

(4)

where ε is the multi-stage growth schedule. ψ is the growth operator set with ψ as an operator for
one dimension, which we will introduce in subsections 2.5 and 2.3 separately.

2.3 GROWTH OPERATORS WITH STRICT FUNCTION PRESERVING

We introduce the growth operator set ψ defined in equation 4. The term ”growth operator” φ denotes
the actions performed during the growth phase to transfer knowledge from the prior model. The
growth operator set consists of several growth operators φ, defined as ψ = {φ|φ ∈ ψ}. In this
work, we consider all four Transformer dimensions for growth, including layer, multi-head attention,
feed-forward network, and hidden states, defined with ψ = {φlayer, φmha, φffn, φhidden}.

Function preservation is a critical property for each growth operator φ because it ensures that the
initialized larger model performs exactly the same as the preceding smaller model (Chen et al.,
2015).

Specifically, suppose a PLM trained from the previous stage is represented as Mk−1(x; θk−1) with
input x and parameters θk−1. The growth operator φ constrains the larger model’s increased param-
eters θ+k . This is achieved by choosing a new collection of parameters θk for the larger model Mk
that satisfy specific criteria defined as below:

∀x,Mk(x; θk) =Mk(x;φ(θ
+
k) + θk−1) =Mk−1(x; θk−1) (5)

Next, we elaborate on all four growth operators ψ = {φlayer, φmha, φffn, φhidden} and demon-
strate the validity of strict function-preserving transformations for each.

We first introduce φmha, φffn, φhidden, leaving the layer operator φlayer introduced in the next
subsection. φmha, φffn, and φhidden are defined according to Gesmundo & Maile (2023)’s work.
We simplify each layer’s initial input into H . Due to space limitations, we only present the con-
straints of growth operators with strict function preservation on the parameters of each module and
provide proofs of function preservation in the appendix G.

MHA growth operator φmha refers to the act of introducing new heads within the multi-head
attention module. As mentioned in equation 1, the hyper-parameter a controls the scaling of the
multi-head attention dimension. When the head number increases from a1 to a2, we keep the weights
of the former heads fixed while assigning random values to the weights of the new heads.

W
K/Q/V
i =

{
W

K/Q/V
i i ≤ a1

any value ai < 1 ≤ a2
(6)

As the number of heads increases, alterations are also observed in the size of the corresponding
weight matrix WO in equation 1. We set the expanded portion of WO to be a zero matrix N as:

W
O

(a1×d)×h
⇒ (W

O
)
′

(a2×d)×h

=

 WO

(a1×d)×h

N
((a2−a1)×d)×h

 (7)

FFN growth operator φffn can be scaled up by increasing its internal representation’s dimension-
ality. In equation 2, the scaling of FFN expansion is controlled by the hyper-parameter f . Given
a Transformer layer as an example, when the FFN’s hidden dimension is increasing from f1 to f2,
we set the weights of extended W l2 to be N , while the extended part of W l1 and bl1 are initialized
arbitrarily, written as R:

W
l1

h×f1
⇒ (W

l1

h×f2
)
′
=

[
W l1
h×f1

R
Wl1

h×(f2−f1)

]
b
l1

s×f1
⇒ (b

l1

s×f2
)
′
=

[
bl1

s×f1
R

Wl1
s×(f2−f1)

]

W
l2

f1×h
⇒ (W

l2

f2×h
)
′
=

 W l2
f1×h

N
(f2−f1)×h

 (8)

4

Published as a conference paper at ICLR 2025

Hidden dimension growth operator φhidden is used to expand the dimension of the representation,
which is originally sent into the Transformer layers. The scaling of hidden dimension expansion is
controlled by the hyper-parameter h. When the hidden dimension of the representation is increasing
from h1 to h2, we set the extended portion of H to be N :

H
s×h1

⇒ H
′

s×h2
=

[
H

s×h1
N

s×(h2−h1)

]
(9)

Then each module in Transformer exhibits variations in the scaling for the parameters with hidden
dimension expansion.

In the MHA module, we set the extended portion of WO to be N , and the extended weight matrices
of K, Q, and V for each head are initialized randomly:

W
K/Q/V

h1×d
⇒ (W

K/Q/V
)
′

h2×d

=

WK/Q/V

h1×d

R
(h2−h1)×d


W

O

(a×d)×h1

⇒ (W
O

(a×d)×h2

)
′
=

[
WO

(a×d)×h1

N
(a×d)×(h2−h1)

] (10)

In the FFN module, we set the extended portion of W l2 and bl2 to be N , while the extended W l1 is
initialized randomly:

W
l1

h1×f
⇒ (W

l1

h2×f
)
′
=

 W l1
h1×f

R
(h2−h1)×f


W

l2

f×h1
⇒ (W

l2

f×h2
)
′
=

[
W l2
f×h1

N
f×(h2−h1)

]
b
l2

s×h1
⇒ (b

l2

s×h2
)
′
=

[
bl2

s×h1
N

s×(h2−h1)

] (11)

According to (Gesmundo & Maile, 2023), with an expansion of the above four dimensions, the
outputs of these modules remain unchangeable, given the same input. The detailed proofs are listed
in Appendix G.

2.4 LAYER GROWTH OPERATOR

Typically, mainstream layer growth operators in the depth dimension stack the entire Transformer
layer on itself until they achieve the target layer number, breaking the integrity of full-dimensional
function-preserving (Gesmundo & Maile, 2023). On the other hand, recent studies have demon-
strated that adjacent Transformer layers have similar pattern classes (Delétang et al., 2023), which
are overlooked by existing growth operators.

Considering the factors mentioned above, LOIRE employs an optimized plug-in layer depth growth
operator φlayer that replicates the selected layer and inserts it between the original layer and the
subsequent layer. Motivated by the advantages of residual connections in improving the model’s
representation and learning capabilities, we include them in the layer growth operator to deliberately
skip the newly added layer during initial training, ensuring function preservation.

For a model with L layers, as illustrated in Fig.1(a), we replicate the selected layer and place it
between Layer l and Layer (l + 1), recognizing it as Layer Cl. The output of each duplicated
Layer Cl is computed as follows:

HCl = λlH
l + (1− λl)Transl(H

l), l ∈ [1, L] (12)

In equation 12, we simulate the process of residual connections using the hyper-parameters λ =
{λ1, ..., λL} to assure function preservation in the layer operator. As a result, the newly added
layers have the least impact on the model during the initial training phase following expansion.
With λl ∈ λ setting to 1, the lth layer is skipped to achieve function-preserving transformation
leveraging the residual connection, as proven below. Noticing that we simplify f [2](x) = f(f(x))
to express nested formula and H l is the input of layer l defined in 2.1.


HCL = HL

HC(L−1) = H(L−1)

...

HC1 = H1

⇒

H
CL

= Trans(H
C(L−1)

) = Trans(H
L−1

)

= Trans
[2]

(H
C(L−2)

) = Trans
[2]

(H
L−2

)

...

= Trans
[L−1]

(H
C1

) = Trans
[L−1]

(H
1
)

(13)

5

Published as a conference paper at ICLR 2025

During training, λl eventually drops to 0, and residual connections vanish, resulting in the same
structure as vanilla Transformers. Practically, duplicating all layers is unnecessary. You can repeat
any of the layers depending on the model’s growth requirements.

2.5 OPTIMIZED MULTI-STAGE GROWTH SCHEDULE

We introduce the details of the growth schedule ε defined in equation 4. ε consists of multiple stages
of sequentially growing the model in different dimensions. As we focus on the Transformer-based
architecture, dimensions include layers, MHA, FFN, and hidden states, as described in Section2.1.
Previous studies on lifelong learning have not fully explored the impact of growing sequentially
throughout multiple stages(Qin et al., 2022). In order to enhance efficiency, it is advisable to create
a well-optimized growth schedule that involves a sequence of gradual growth stages, each of which
demonstrates rapid learning skills. This approach avoids the immediate expansion of all dimensions
simultaneously.

According to Yao et al. (2023), growing the layers and heads in later stages and having a larger
hidden dimension in earlier stages can lead to better model performance. Based on this finding, the
ε is formulated as follows, where K is set to 5 in this situation. We present an empirical optimiza-
tion approach with ablation studies illustrated in Subsection 3.3, deferring the determination of a
theoretically optimal growth schedule to future research.

ε = {M1(x; θ1),M2(x; θ2),M3(x; θ3),M4(x; θ4),M5(x; θ5)}
θ1 ⇒ θ2[φhidden(θ

+
2) + θ1] ⇒ θ3[φffn(θ

+
3) + θ2] ⇒ θ4[φmha(θ

+
4) + θ3] ⇒ θ5[φlayer(θ

+
5) + θ4]

(14)

2.6 ITERATIVE DISTILLATION WARMUP

LOIRE also designed a re-training process after each growth stage that used an iterative distillation
warmup strategy to prevent catastrophic forgetting of previously learned knowledge and overfitting
new data. According to a previous study, the difference in model size between a teacher and a student
can affect the distillation performance (Mirzadeh et al., 2020). A similar phenomenon also holds
for our model growth scenario. We propose allowing intermediary models generated throughout the
growth stages to switch between student and teacher roles during the iterative distillation process.
For the current interation output model M (t), there exists a teacher model set Mteacher consisting
of previously generated models Mteacher = {M (1), ...,M (t−1)}. It should be noted that each M (t)

consists of K intermediate growth models. Distillation aims to minimize the weighted sum of the
difference between the distributions of each model in Mteacher and the current student model M (t)

at the token level through Kullback-Leibler divergence. For each M (j) ∈ Mteacher(j ≤ t− 1) and
an input sequence X = {x1, ..., xm}, the knowledge distillation loss between M (t) and M (j) is
calculated as:

Ldistill = −
m∑
i

∑
vn∈V

P (vn|xi<m, θj)log
P (vn|xi<m, θj)

P (vn|xi<m, θt)
, j ≤ t − 1 (15)

where xi<m is from the ground truth sequence. V denotes the vocabulary set and vn is the n th
word in V . θj and θt are parameters of the teacher M (j) ∈ Mteacher and student model M (t)

respectively.

The final loss function Lfinal is a combination of normal language modeling and distillation loss:
Lfinal = LLM +

∑
j≤t−1

βjLdistill j , where βj ∈ β and β = {β1, ..., βt−1} is a set of hyper-

parameters to control the contribution of each teacher model to the final loss. After the warmup, we
obtain the M (t)+, which successfully inherits the knowledge from D = {D1, ..., Dt} and is also
well-prepared to be the teacher for the next model growth stage.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Pre-training Dataset. We use five different domain datasets for growth pre-training, including the
combination of Wikipedia & Book Corpus (WB)(Zhu et al., 2015), Realnews(NEWS)(Zellers et al.,
2019), Amazon Reviews (REV)(He & McAuley, 2016), Biomedical papers (BIO)(Lo et al., 2019),

6

Published as a conference paper at ICLR 2025

and Computer science papers (CS)(Lo et al., 2019), publicly available on HuggingFace Hub1. In
each domain, we sample out 10 GB of data and divide it into pre-training and recovery memory data
for distillation in a 9:1 ratio. Fig. 2 shows the correlations among these five datasets. We also use
Redpajama(Weber et al., 2025) to generate initial version models for further evaluation, and then
use the five domain datasets to proceed with training during lifelong learning.

Figure 2: Vocabulary overlap (%) between
five domains. Vocabularies for each do-
main are created by sampling the top 10K
most frequent words from each domain.

Baseline models. We compare different kinds
of baselines for both of the commonly utilized
GPT-style (decoder-only) and BERT-style (encoder-
decoder) PLM architectures. 1)GPT-style baselines in-
clude GPT S and GPT L that we train from scratch
using the same 5 domain pretraining dataset mentioned
before with different parameters (small: 27.59M,
large: 104.78M). GPT R shares settings with GPT L
incorporating a recovering period via retraining on re-
served data for each model growth stage. We compare
with other lifelong learning methods ELLE (Qin et al.,
2022), distillation methods Token-KD(Cappellazzo
et al., 2023) and ER (Chaudhry et al., 2019), which
are also GPT-based. 2)BERT-style baselines include
model growth methods LiGO(Wang et al., 2023).

Variations of LOIRE. There are three variations of
LOIRE. LOIRE-GPT1 and LOIRE-GPT2 are both GPT-based models. We multi-stage train
LOIRE-GPT1 using our suggested model operators and schedules on five domains of pre-training
data. The difference between LOIRE-GPT1 and LOIRE-GPT2 is that for the initial stage, M (1)

of LOIRE-GPT1 is trained from scratch. M (1) of LOIRE-GPT2 is initialized from a PLM starting
point, which we train using Redpajama(Weber et al., 2025) following the data mixing strategy of
LLAMA2(Touvron et al., 2023b). LOIRE-Bert shares the same initialization strategy as LOIRE-
GPT2, just with a different architecture. The English wiki dataset is then utilized for growth training
to ensure compliance with LIGO.

More detailed settings for both the baselines and LOIRE variations are provided in Appendix D.

Model growth schedule setting: Based on Subsection 2.2, we illustrate in Table 1 the growth
schedule ε for both GPT and BERT-based models.

Table 1: The initial PLM M1 is around 27.59M parameters training from scratch. (384,1024,6,6)
corresponds to the following 4 dimensions: hidden dimension, ffn dimension, head number, and
layer number. Growth schedules expand one dimension at a time, as illustrated in red.

M1 M2 M3 M4 M5

Model size 27.59M 62.25M 71.69M 71.69M 104.78M
Growth schedule (384,1024,6,6) (768,1024,6,6) (768,2048,6,6) (768,2048,12,6) (768,2048,12,12)
Growth operator ⇒ φhidden ⇒ φffn ⇒ φmha ⇒ φlayer

3.2 RESULTS AND ANALYSIS

We design a set of experiments to validate LOIRE. To begin, we evaluate LOIRE’s performance
on the pre-training and downstream tasks. We also evaluate the function-preserving effect using
the pre-training findings. Next, we compare FLOPS and wall time costs to determine training effi-
ciency. Finally, we conducted ablation studies to investigate the separate impact of growth operators,
schedules, and distillation.

Performance on the pre-training. We adopt AP(Average Perplexity) and AP+(Average Increased
Perplexity) following (Chaudhry et al., 2019) to evaluate the pre-training performance, the lower the
better. The details of metric implementations are listed in Appendix D.3.

The results are illustrated in Table 2 and Figure 3. The following insights can be drawn from Table
2: compared to all baselines, LOIRE considerably surpasses others by achieving the lowest AP+,

1https://huggingface.co/datasets

7

Published as a conference paper at ICLR 2025

Table 2: AP represents the model’s ability to learn from emerging data. AP+ represents the model’s
capacity to maintain old knowledge, i.e. not forget it. M1-M5 are models trained at multiple stages
with the five-domain pre-training data. Init denotes the initial ppl after growth, while Final means
the ppl before the next growth.

Schedule M1 M2 M3 M4 M5

Metrics AP AP+ AP AP+ AP AP+ AP AP+ AP AP+
Growing M1 to M5 from scratch

GPT S 38.69 - 48.83 23.44 82.15 96.61 82.30 117.04 59.59 83.25
GPT L 22.43 - 27.69 12.86 48.87 55.50 47.75 64.3 36.01 48.88
GPT R 22.43 - 23.78 3.42 25.92 6.37 22.61 9.14 20.66 8.58

Token KD 38.69 - 48.48 22.93 56.94 90.15 80.53 112.19 56.77 78.35
ER 38.69 - 42.28 9.87 45.30 14.45 40.24 21.67 35.94 19.22

ELLE 38.69 - 34.33 -0.79 31.72 1.21 25.595 4.3 21.75 3.13
LOIRE-GPT1 38.69 - 31.72 -5.32 29.18 -2.68 24.63 -0.94 19.19 -3.84
Growing M1 to M5 from loading an PLM
LOIRE-GPT2 32.39 - 26.60 -5.79 25.55 -3.95 25.28 -2.90 23.24 -4.22
Growing M1 to M5 from loading an PLM

PPL Init Final Init Final Init Final Init Final Init Final
LOIRE-Bert 457.41 6.72 7.48 5.68 5.9 4.98 5.18 4.7 4.79 3.91

suggesting that LOIRE retains prior knowledge while acquiring new knowledge through lifelong
learning. Specifically, the AP+ score decreases by 6.97 when compared to the Sota lifelong learning
method, ELLE. Figure 3 provides additional evidence that LOIRE shows the most rapid decline
in AP+, suggesting superior model performance under comparable training settings. It is noticed
that baselines with more parameters (GPT L and GPT R) have a smaller AP in the early stages of
training. This shows that big PLMs are extremely effective at generalization. As the training data
grows, LOIRE gradually shows that it is better at keeping information from being forgotten and
ultimately outperforming other baselines.

50

100

150

200

250

Av
er

ag
e

Pe
rp

le
xi

ty
 (A

P)

M1 M2 M3 M4 M5

20

25

30

35

40

GPT_L
GPT_S
ELLE
GPT_R
ER
LOIRE

(a) AP

0

50

100

Av
er

ag
e

in
cr

ea
se

d
Pe

rp
le

xi
ty

 (A
P+

)

M1 M2 M3 M4 M5

GPT_large
GPT_small
ELLE
GPT_replay
ER
LOIRE

(b) AP+

Figure 3: The multi-stage pre-training trends curve over AP&AP+ on GPT from scratch.

LOIRE-GPT2 and LOIRE-Bert load the checkpoint trained from scratch on Redpajama to continu-
ally grow training. As shown in Table 2, experiments prove that LOIRE works both on pre-training
from scratch and continually training from loading the checkpoint.

To get closer to the parameter scale of LLM models now in use in industry, particularly on the ter-
minal side, we expand the model parameters from 177.45 M to 1.11B on the GPT structure known
as LOIRE-1.1B. Specifically, we use the CC dataset2 to train an initial 177.45 M base model for
growth. Then use the same five domain datasets mentioned above to proceed with the lifelong learn-
ing. In contrast, we train a 1.11B GPT structure model (GPT-1.1B) from scratch with no growth.
The other settings of GPT-1.1B are the same as LOIRE-1.1B. Table 3 shows the AP and AP+ corre-
sponding to each expansion of LOIRE-1.1B. In the last round of expansion, the AP of LOIRE-1.1B
decrease by about 6.22% compared to GPT-1.1B (same configuration as M5). Experimental results
show that our method is still applicable for larger models and can effectively reduce catastrophic
forgetting even as the model grows.

2https://commoncrawl.org/

8

Published as a conference paper at ICLR 2025

Table 3: AP & AP+ of LOIRE-1.1B, compared to the baseline with fixed 1.1B parameters.

M1 M2 M3 M4 M5

Size 177.45M 455.52M 606.57M 606.57M 1.11B
Schedule (1024,3072,16,12) (2048,3072,16,12) (2048,6144,16,12) (2048,6144,32,12) (2048,6144,32,24)

Metric AP AP+ AP AP+ AP AP+ AP AP+ AP AP+
GPT-1.1B 14.06 - 18.06 9.73 27.74 21.50 34.70 57.38 20.51 19.52

LOIRE-1.1B 16.76 - 21.68 12.93 33.33 32.62 30.59 36.97 14.29 3.49

Empirical evaluation for function preservation.We empirically evaluate the function preservation
effect over ppl of LOIRE-Bert. To the best of our knowledge, other works only prove function
preservation theoretically without experiments. For LOIRE-Bert, which is growth trained using the
English wiki data for all the expansion stages, we listed the ppl trends at the bottom of Table 2.
The M1 to M2 stage implements the growth operator φhidden, resulting in a 0.76 ppl difference
between the initial M2 and final M1. Similarly, our proposed novel growth operator φlayer has
the best function preservation with only a 0.09 ppl difference between the initial M5 and final M4.
This observation reveals that, while all of the growth operators have been theoretically proven to be
stringently function-preserving, there are still deviations in the outcomes of the experiment.

Table 4: For the GPT style models, we compare the ratio of the computational costs (FLOPs) of
LOIRE-GPT1 to GPT L and GPT R on the 5-domain dataset’s pre-training. For the BERT structure,
we compare the train wall time with LIGO.

GPT base BERT base
FLOPs(%) Method Wall TimeSchedule M1 M2 M3 M4 AVG

LOIRE
GPT L

21.20 78.42 85.69 85.69 76.20 LIGO 48h,25min
LOIRE
GPT R

19.08 70.58 77.12 77.12 70.78 LOIRE-Bert 28h,48min

Training efficiency. From a computational cost viewpoint on GPT structure, as seen in Table 4,
LOIRE achieves an average decrease of 29.22% compared to GPT R. This leads to substantial sav-
ings in computational resources and greatly enhances efficiency. For the BERT structure, we list
the train wall times of LIGO and LOIRE. LOIRE saves around 40% wall time during training. The
results demonstrate that LOIRE can effectively save training time and improve training efficiency.

Table 5: The final PLMs performance after multistage model growth pre-training on representa-
tive downstream tasks including MNLI & QNLI, Hyperpartisan& Ag news, HELPNESS & IMDB,
CHEMPROT & RCT, ACL-ARC & SCIERC for domains WB, NEWS, REV, BIO, and CS respec-
tivelyGururangan et al. (2020).

Domain WB NEWS REV BIO CS
Avg

Task MNLI QNLI Hyper Ag news HELPNESS IMDB CHEM RCT ACL-ARC SCIERC
GPT S 73.39 80.79 77.08 92.51 86.16 91.58 78.01 86.99 69.53 80.00 81.61
GPT L 78.69 81.23 75.76 93.02 86.41 92.09 79.74 87.23 70.31 82.91 82.74
GPT R 79.53 82.35 76.38 93.33 86.93 93.08 80.57 87.36 69.53 82.70 83.18

Token KD 75.58 80.61 75.16 92.67 86.32 91.55 76.12 86.91 69.53 78.54 81.30
ER 77.05 80.94 78.24 92.61 87.57 91.52 77.98 87.13 70.31 82.70 82.61

ELLE 78.12 83.77 78.75 93.21 86.59 92.81 79.98 87.00 73.43 79.79 83.35
LOIRE-GPT1 79.60 84.34 81.68 93.12 87.16 93.57 81.27 87.40 78.13 82.08 84.84

Performance on the downstream tasks. As shown in Table 5, we present the final performance
of PLMs on representative downstream tasks. It can be observed that LOIRE achieves the highest
performance across almost all downstream tasks, suggesting that the knowledge acquired during
model growth can be effectively utilized and leveraged for downstream tasks. To further validate
the capabilities of LOIRE, we proceed with fine-tuning BERT-style models. In Table 6, we list
the performance on downstream tasks of GLUE and SAQuAD according to LIGO(Wang et al.,
2023). To be noticed that the LIGO’s performance is from their paper. Although we recreated
LIGO using the same training data as LOIRE, the results were not comparable to their original

9

Published as a conference paper at ICLR 2025

work. Performance demonstrates that our method achieves comparable performance while saving
computational costs.

Table 6: Downstream tasks performance on GLUE and SQuAD.

GLUE tasks SQuAD tasks Avg.

Method SST-2 MNLI MRPC CoLA QNLI QQP v2.0 GLUEAcc. F1/EM
LIGO 88.42 79.29 84.31 62.09 88.07 88.81 71.24/67.17 81.83

LOIRE-Bert 92.07 82.88 86.7 81.22 90.03 76.98 79.08/75.61 86.60

3.3 ABLATION STUDIES

Growth schedule: To validate our method’s growth schedule, we reverse the partial expansion
order. This involved converting the order of the dimensions from (hidden⇒ffn⇒head⇒layer) to
(layer⇒ffn⇒head⇒hidden). We refer to this growth schedule as SCHL-Reverse and compare the
performance between SCHL-Reverse and LOIRE after training on five domains in sequence. As
shown in Table 7, our model, outperforms the schedule of SCHL-Reverse with growth in all dimen-
sions, supporting the optimum sequence schedule in our design.

Table 7: The pretraining and downstream performance of SCHL-Reverse after 5 domains’ multi-
stage growth training, compared to our method.

Schedule M1 M2 M3 M4 M5

Pre-training
AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

SCHL-Reverse 38.69 - 34.64 -3.62 32.47 -0.32 28.43 1.69 22.23 -2.05
LOIRE-GPT1 38.69 - 31.72 -5.32 29.18 -2.68 24.63 -0.94 19.19 -3.84

Downstream

Metric acc. acc. acc. acc. acc. acc. acc. acc. acc. acc.
Task MNLI QNLI Hyper Ag news HELP IMDB CHEM RCT ACL-ARC SCIERC

SCHL-Reverse 76.85 82.76 82.06 92.25 86.89 91.27 82.48 87.36 77.34 83.12
LOIRE-GPT1 79.60 84.34 81.68 93.12 87.16 93.57 81.27 87.40 78.13 82.08

M2 M3 M4 M5
0

10

20

30

40

50

Av
er
ag
e
Pe
rp
le
xi
ty
 (
AP
)

Zero

Random

LOIRE

(a) AP
M2 M3 M4 M5

0

10

20

30

40

Av
er
ag
e
Pe
rp
le
xi
ty
 p
lu
s(
AP
+)

Zero

Random

LOIRE

(b) AP+

Figure 4: AP and AP+ at the initial loading on the
validation set for each seen domain after expansion.

Growth operators: We present the impact of
growth operators, replacing MHA,FFN,and
hidden state growth operators by the below
two methods: Random and Zero. Random
refers to randomly initializing the extended
portion of the parameters while keeping the
remaining settings the same. Zero is identical
to Random, except that it uses zero initializa-
tion rather than random initialization. From
Figure 4, after initial loading, we can see that
LOIRE’s AP and AP+ are significantly lower
than those of zero and random, proving that
our operators are superior to zero and random
in terms of function preservation. We leave
the analysis of scheduling and distillation to
a separate section in AppendixF.1 & F.2.

4 CONCLUSION

In this study, we investigated methods of lifelong learning that incorporate current advances in the
model growth field. We provide a novel plug-in layer growth operator with residual connections
that skips the newly added layer during initial training, ensuring function preservation. We also
introduced an iterative distillation strategy that allows a model in the growth stages to switch between
being a student and a teacher, hence reducing catastrophic forgetting during dynamic learning after
growth. Experiments show that LOIRE reduces computational costs by an average of 29.22% while
retaining equivalent or superior downstream performance.

10

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Umberto Cappellazzo, Muqiao Yang, Daniele Falavigna, and Alessio Brutti. Sequence-level knowl-
edge distillation for class-incremental end-to-end spoken language understanding. arXiv preprint
arXiv:2305.13899, 2023.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and Claire Cui.
Lifelong language pretraining with distribution-specialized experts. In International Conference
on Machine Learning, pp. 5383–5395. PMLR, 2023.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, 44(7):3366–3385, 2021.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, et al.
Language modeling is compression. arXiv preprint arXiv:2309.10668, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Andrea Gesmundo and Kaitlin Maile. Composable function-preserving expansions for transformer
architectures. arXiv preprint arXiv:2308.06103, 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive bert training. arXiv preprint arXiv:2010.12562, 2020.

Xu Guo and Han Yu. On the domain adaptation and generalization of pretrained language models:
A survey. arXiv preprint arXiv:2211.03154, 2022.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on
world wide web, pp. 507–517, 2016.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

11

Published as a conference paper at ICLR 2025

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora.
arXiv preprint arXiv:2110.08534, 2021.

Zixuan Ke, Yijia Shao, Haowei Lin, Hu Xu, Lei Shu, and Bing Liu. Adapting a language model
while preserving its general knowledge. arXiv preprint arXiv:2301.08986, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quanti-
zation for vision transformer. Advances in Neural Information Processing Systems, 34:28092–
28103, 2021.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S Weld. S2orc: The semantic
scholar open research corpus. arXiv preprint arXiv:1911.02782, 2019.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investi-
gation of the role of pre-training in lifelong learning. Journal of Machine Learning Research, 24
(214):1–50, 2023.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191–5198, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019.

Abhishek Panigrahi, Nikunj Saunshi, Kaifeng Lyu, Sobhan Miryoosefi, Sashank Reddi, Satyen Kale,
and Sanjiv Kumar. Efficient stagewise pretraining via progressive subnetworks. arXiv preprint
arXiv:2402.05913, 2024.

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. arXiv preprint arXiv:2203.06311, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged training
for transformer language models. In International Conference on Machine Learning, pp. 19893–
19908. PMLR, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

12

Published as a conference paper at ICLR 2025

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset
for training large language models. Advances in Neural Information Processing Systems, 37:
116462–116492, 2025.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang Li, Guilin Qi, and Gholamreza Haffari. Pre-
trained language model in continual learning: A comparative study. In International conference
on learning representations, 2021.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. 2x faster language model pre-training via
masked structural growth. arXiv preprint arXiv:2305.02869, 2023.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Advances in neural information processing
systems, 32, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

A LIMITATIONS

First, we wish to explore the potential for large-scale PLMs, although the largest models in our
experiments have 114 million parameters because of limited computing capacity and budget, which
has a gap with existing PLMs with parameters up to 65 billion, such as llama2(Touvron et al.,
2023b). According to our knowledge, this constraint exists in the vast majority of research projects.

Second, although our method theoretically proves strict function preservation, there are still some
deviations from the theory in the actual experimental results. Additionally, the existing research
lacks empirical verification of function preserving theory, leaving us to explore and analyze this
issue in the future.

Third, LOIRE performs worse on a few downstream tasks than other baselines, necessitating more
analysis from the perspective of training data sample methodologies. In addition, we repeat the
baselines in our experiment settings to confirm that the training procedures and data are consistent.
Some of the work, such as MSG(Yao et al., 2023), has not been properly reproduced, leaving room
for future research.

A further limitation is that we focus mainly in pre-training language models. Investigating tech-
niques for other data-driven modalities, such as images and video, is also attractive.

B RELATED WORKS

Efficient Pretraining attempts to reduce FLOPs while pretraining. A few recent works focus on
stagewise efficient pretraining (Panigrahi et al., 2024), progressive pretraining, or model reusing
(Chen et al., 2015; 2021; Wang et al., 2023; Yao et al., 2023) by keeping the function of a pre-
trained model while growing the model size. This gives a compatible larger model a starting state

13

Published as a conference paper at ICLR 2025

with great performance. Net2Net (Chen et al., 2015) is the first to propose the concept of function-
preserving transforms by expanding the width dimension by splitting neurons and growing depth
by adding identity layers. bert2BERT (Chen et al., 2021) applies function-preserving concepts to
the Transformer, extending Net2Net. LiGO (Wang et al., 2023) recently employs a trainable linear
operator to acquire an efficient expansion strategy. Unlike other studies, our method attempts to
build a full-dimension transfer that makes use of the entire smaller model.

Lifelong learning, also known as continuing learning(De Lange et al., 2021), has gained massive
popularity in recent years. According to Gururangan et al. (2020), a second phase of in-domain pre-
training (domain-adaptive pretraining) improves performance in both high and low-resource con-
texts. The studies conducted by Jin et al. (2021) and Wu et al. (2021) evaluate several continual
learning algorithms on large PLMs using standard parameters. These studies also track the perfor-
mance of these algorithms on downstream tasks. Another potential approach for continuing learning
is the utilization of key-value methods derived from computer vision(Van Den Oord et al., 2017; Liu
et al., 2021; Ramesh et al., 2022). The most similar work to ours is ELLE (Qin et al., 2022), which
uses function-preserved model expansion and pre-trained domain prompts to efficiently pre-train for
emerging data over time. The main difference is that we use a strict function preservation model
growth method for all feasible domains, whereas ELLE only grows in limited domains with non-
strict function preservation.

The model growth schedule and the growth operator are two crucial areas of research for model
reuse or progressive pre-training. The growth schedule tells the model when and where to add more
parameters, and the growth operator describes the steps that are taken during growth to get knowl-
edge from the prior model. Gong et al. (2019) proposes growth schedules that stack the Transformer
layers to transfer knowledge from a shallow model to a deep model. The setups that are most similar
to ours are msg(Yao et al., 2023) and the work conducted by GoogleGesmundo & Maile (2023).
MSG incorporates growth schedules that encompass all possible dimensions and growth operators
while strictly preserving their functional integrity. Google proposes six composable transformations
for gradually increasing the scale of Transformer-based neural networks while preserving function-
ality. However, MSG does not provide a uniform framework for the optimal integration of opera-
tors and schedules, and Google’s work is lacking in schedule studies, allowing more space for our
method’s innovation in the field of lifelong learning.

C ALGORITHM

Algorithm 1 summarizes LOIRE for growing Transformer in lifelong learning.

D EXPERIMENTAL SETTINGS

D.1 IMPLEMENTATION DETAILS

For GPT-based model growth, we begin by training a starting point model for 20,000 steps in the
WB domain. During each model growth stage, we train the expanded model for 20,000 steps using
incremental domain data. For the Bert-based structure, we train for 20,000 steps in each expansion
stage, totaling 100,000 training steps on the Wiki Dataset. The initial models of both GPT and Bert
are trained for 20,000 steps on the Redpajama dataset. Prior to each model growth stage, we employ
a warmup strategy to retrain the model in 5,000 steps. For Bert-style structure, we train for 20,000
steps in each expansion stage, totaling 100,000 training steps on the RoBERTa structure (Liu et al.,
2019) model.

For hyper-parameters, we linearly increase the λi ∈ λ value in the layer growth operator from 0 to 1
in 5000 steps per growth stage. During the iterative distillation in the warmup period, the best β ∈ β
is set to 0.1 and vanishes after 1,000 steps. Adam is chosen as the optimizer. Our setup consists of
a four-core CPU and eight NVIDIA Tesla A100 GPUs.

We list the hyper-parameters used in the GPT architecture’s domain downstream experiments in
Table 8. The GLUE benchmarks for downstream tasks, such as MNLI and QNLI, are based on Ott
et al. (2019). SQuAD benchmarks are based on Rajpurkar et al. (2016). More downstream tasks are
implemented, as detailed in Gururangan et al. (2020).

14

Published as a conference paper at ICLR 2025

Algorithm 1 LOIRE on Transformer with Growth Operators and Schedule.
Input: An initial Transformer M (t−1) trained on Dt−1, with Multi-head attention number being a1, FFN’s
hidden dimension being f1, Hidden dimension of input being h1, and number of layers L1.
Output: An larger Transformer M (t), with Multi-head attention number being a2, FFN’s hidden dimension
being f2, Hidden dimension of input being h2, and number of layers L2.

1: Operators: ψ = {φhidden, φffn, φmha, φlayer}

2: Schedule:

{
ε = {Mk(θk)}5k=1

θk = φ(θ+k) + θk−1, φ ∈ ψ

3: for i = 1 to k − 1 (M (t)
1 to M (t)

5) do
4:
5: if ψ == φhidden then
6: Hidden dimension growth: φhidden : h1 → h2

7: end if
8:
9: if ψ == φffn then

10: FFN hidden dimension growth: φffn : f1 → f2
11: end if
12:
13: if ψ == φmha then
14: Multi-head attention number growth: φmha : a1 → a2
15: end if
16:
17: if ψ == φlayer then
18: Layer number growth: φmha : L1 → L2

19: end if
20: end for
21: M (t−1)(θt−1) ⇒M (t)(θt)

22: Train the larger model M (t) on new Data Dt

23: Utilize the iterative distillation to generate M (t)+ in the warmup period

Table 8: Hyper-parameters used in the GPT architecture’s downstream experiments.

Tasks MNLI Hyper HELPNESS CHEM ACL-ARC
Learning Rate 1e− 5 2e− 5 2e− 5 2e− 5 2e− 5

Batch Size 32 256 256 256 256
Weight Decay 0.1 0.1 0.1 0.1 0.1

Max Epochs 10 10 10 10 10
Learning Rate Decay Linear Linear Linear Linear Linear

Warmup Ratio 0.06 0.06 0.06 0.06 0.06

D.2 DETAILED SETTINGS FOR BASELINE MODELS AND LOIRE VARIATIONS

We conduct the validation to show the training acceleration on both GPT-style (decoder-only) and
BERT-style (encoder-decoder) model structures. It should be noticed that all the experimental results
including baselines are executed by our work.

GPT-style baselines:

GPT S takes parameters of 27.59 million and then pretrains on each new domain data Dt to learn
new knowledge while maintaining the parameters invariant without a growth schedule.

GPT L is similar to GPT S but shares the same scale of parameters as our final extended model,
which is 104.78 million parameters and trains from scratch over the same 5-domain pre-training
dataset.

GPT R is the same as GPT L, but recovering the PLM using the subset of previously conserved
corpora.

15

Published as a conference paper at ICLR 2025

Token-KD is a knowledge distillation method we implemented according to (Cappellazzo et al.,
2023) and continually train it while preventing forgetting from the previous model using the data
from prior stages.

ER (Chaudhry et al., 2019) alleviates forgetting by recovering the PLM on samples from the previ-
ous training data set Dt−1 after training the PLM on the domain data Dt. We set the sample ratio of
Dt and Dt−1 to 9:1, which is consistent with our approach.

ELLE (Qin et al., 2022) is derived from bert2BERT, and flexibly expands an existing PLM’s width
and depth to improve the efficiency of knowledge acquisition using a function-preserving method,
while proposing a domain prompt to stimulate the needed knowledge for downstream tasks. Differ-
ent from ELLE, LOIRE employs a different function preserving method, further adopting iterative
distillation to consolidate knowledge.

LOIRE-GPT1 is trained from scratch using our suggested model operators and schedules on five
domains of pre-training data.

LOIRE-GPT2: We initialed and pre-trained a GPT-based small PLM with 27.59M parameters
from scratch using around 24GB of data sampled from Redpajama(Weber et al., 2025). The sam-
ple weights for different domains follow LLAMA2(Touvron et al., 2023b)’s data mixing strategy.
LOIRE-GPT2’s M (1) is initiated using the above-trained PLM.

BERT-style baselines:

LiGO(Wang et al., 2023) is an efficient data-driven method to map the weights between small and
large models, which improves the training dynamics by learning to initialize. We re-produce this
work leveraging the LIGO open-source code3 to first train from scratch using the Redpajama dataset.

LOIRE-Bert shares the same training strategy as LOIRE-GPT2, just with a different architecture.
LOIRE-bert is growth trained using the English Wikipedia corpus, to keep aligned with the LIGO
experiment setting.

D.3 METRICS

We utilize two metrics to evaluate how PLMs perform on the learned domains for the pre-training
period, following (Chaudhry et al., 2019). Average Perplexity (AP) is used to measure the av-
erage perplexity of the current checkpoint M (t) on the validation set for each seen domain data
Domainj(j ≤ J). Average Increased Perplexity (AP+) measures the influence of current data
Domainj on previous learned knowledge. Lower AP represents the model’s ability to learn from
emerging data. Lower AP+ represents the model’s capacity to maintain old knowledge,i.e.not forget
it.

For an intermediate PLM model M (t) during the growth stages, when learning the j th domain, we
measure the M (t)’s perplexity PPL(t),j on the validation set of each seen Domainj . Let PPLj,j

be the perplexity on the j th domain when the PLM finishes training on the j th domains, the above
metrics are calculated as follows:

AP = EXP (
1

J

J∑
j=1

logPPL(t),j)

AP+ =
1

J − 1

J−1∑
j=1

(PPL(t),j − PPLj,j)

(16)

D.4 MODEL GROWTH SETTINGS

All of the models in our studies use vannila decode-only Transformer architectures. During model
growth, we adhere to a few simple constraints contained in the existing LLM structure, as detailed
in their published technical report, such as llama (Touvron et al., 2023a), qwen (Yang et al., 2024),
baichuan (Yang et al., 2023), and mistral (Jiang et al., 2023). The constraints include: 1) The hidden

3https://vita-group.github.io/LiGO/

16

Published as a conference paper at ICLR 2025

dimension size is a multiple of 128. 2) The hidden dimension is either 8/3 or 4 times the ffn dimen-
sion. 3) The number of attention heads should be divisible by the hidden dimension; nevertheless,
this has no effect on the model’s size. With these constraints, we set the initial beginning point
model with the structure (384, 1024,6 6), and the final model to be (768, 2048, 12, 12) in the main
experiments.

E SUPPLEMENTARY EXPERIMENTS

E.1 VISUALIZATION OF THE ATTENTION PATTERNS DURING THE MODEL GROWTH

We visualize the evolving attention patterns of a stream of interminate PLMs that are trained during
the multi-stage model growth procedure. We take intermediate checkpoints after completing a phase
of model growth in each domain. Next, we input the same domain data into these checkpoints to
deduce the respective attention patterns. Figure 5 shows that a descendant PLM’s attention patterns
closely resemble those of its ”ancestors,” despite the model’s growth and continuous training on new
data. The picture’s similarity demonstrates that our method successfully allows interminate PLMs
to inherit and preserve the knowledge of their ”ancestors.”

Layer0 Head0 Layer1 Head3

Layer1 Head3

Layer3 Head5

Layer3 Head5

Layer5 Head4

Layer5 Head4Layer0 Head0

Layer0 Head0

Layer0 Head0

Layer1 Head0

Layer1 Head3

Layer1 Head3

Layer3 Head3

Layer2 Head1

Layer2 Head1

Layer2 Head1

Layer2 Head1

Layer5 Head1

Layer3 Head5

Layer3 Head5

Layer7 Head5

Layer4 Head2

Layer4 Head2

Layer4 Head2

Layer4 Head2

Layer9 Head2

Layer5 Head4

Layer5 Head4

Layer11 Head4

1M

2M

3M

4M

5M

Figure 5: The visualization of the attention patterns of different attention heads in M1 −M5 after
finishing training on the corresponding corpus.

E.2 TRAINING EFFICIENCY OF LARGER PARAMETERS

We conduct experiments on the efficiency of LOIRE-1.1B mentioned in Table 3 by measuring its
FLOPs and training time, and compare it with GPT-1.1B and ELLE-1.1B. As shown in the Table
9, with the increase of model parameters in lifelong stages, LOIRE-1.1B reduces FLOPs by 36.9%
compared to GPT-1.1B specifically. Additionally, as illustrated in Table 3, LOIRE-1.1B does not
hurt the model’s performance. Therefore, with the increase of model parameters in lifelong stages,
the proposed method demonstrates superiority in saving computational resources and greatly en-
hancing efficiency when scaling up to varying sizes.

17

Published as a conference paper at ICLR 2025

Table 9: For the 1.1B GPT style models, we compare the FLOPs and train wall time of LOIRE-1.1B
to GPT-1.1B and ELLE-1.1B on the 5-domain dataset’s pre-training.

M1 M2 M3 M4 M5 Avg.
Metrics FLOPs(e18)/wall time(h)

(2048,6144,32,24) (2048,6144,32,24) (2048,6144,32,24) (2048,6144,32,24) (2048,6144,32,24)GPT-1.1B 34.07/23.66 34.07/23.66 34.07/23.66 34.07/23.66 34.07/23.66 34.07/23.66

(1024,3072,16,12) (1280,3840,20,15) (1536,4608,24,18) (1792,5376,28,21) (2048,6144,32,24)ELLE-1.1B 8.68/6.03 13.66/9.48 20.03/13.91 27.93/19.39 37.47/26.03 21.56/14.97

(1024,3072,16,12) (2048,3072,16,12) (2048,6144,16,12) (2048,6144,32,12) (2048,6144,32,24)LOIRE-1.1B 8.68/6.03 20.18/14.02 20.53/14.26 20.53/14.26 37.48/26.03 21.48/14.92

E.3 INDIVIDUAL PPL OF LOIRE-GPT1 FOR EACH DOMAIN

Table 10, which lists the individual PPL of LOIRE-GPT1 for each domain as the model grows, better
provides clearer insights into any knowledge degradation specific to earlier domains, and illustrates
the effectiveness of our proposed lifelong method in terms of knowledge preservation.

Table 10: The individual PPL of LOIRE-GPT1 for each domain as the model grows.

WB NEWS REV BIO CS
M1 38.69 - - - -
M2 33.37 30.16 - - -
M3 32.03 31.45 24.67 - -
M4 33.01 30.55 27.13 13.45 -
M5 28.71 27.60 24.27 11.03 12.28

F ABLATION STUDY

The models that appeared in this section are all trained from scratch, employing GPT structure.

F.1 LAYER OPERATOR

We propose a novel approach that increases the layer dimension by introducing a plug-in Trans-
former layer growth operator. This operator is designed using residual connections and is specif-
ically optimized to maintain function-preserving quality. In order to assess its efficacy, instead of
placing the duplicated layer between the original layer and the subsequent one, we replace it with a
layer-stack method, which involves immediately stacking the duplicated layers on top of the existing
layers, as depicted in Figure 6. Other components remain the same.

Transformer
block

Transformer
block

existing
Transformer

layers

Transformer
block

Transformer
block

new added
Transformer

layers

Figure 6: Layer-stack: an alternative way to replicate the existing layers.

As shown in Table 11, the AP and AP+ of our layer operator have significantly decreased, while the
results of our downstream tasks are also significantly better than those of the layer-stack method.
These results clearly demonstrate the ability and novelty of our proposed plug-in Transformer layer
depth growth operator to preserve old knowledge.

18

Published as a conference paper at ICLR 2025

Table 11: The pretraining performance before each expansion and the downstream performance
after 5 domains’ training of Layer-stack, compared to our method

Schedule M1 M2 M3 M4 M5

Pre-training

AP AP+ AP AP+ AP AP+ AP AP+ AP AP+
Layer-stack 38.69 - 31.72 -5.32 29.18 -2.68 24.63 -0.94 62.64 157.39

LOIRE-GPT1 38.69 - 31.72 -5.32 29.18 -2.68 24.63 -0.94 19.19 -3.84

Downstream

Metric acc. acc. acc. acc. acc. acc. acc. acc. acc. acc.
Task MNLI QNLI Hyper Ag news HELP IMDB CHEM RCT ACL-ARC SCIERC

Layer-stack 77.13 82.48 79.03 92.87 86.20 82.31 81.18 87.36 75.78 84.79
LOIRE-GPT1 79.60 84.34 81.68 93.12 87.16 93.57 81.27 87.40 78.13 82.08

F.2 EFFECT OF RECOVERING WARMUP VIA ITERATIVE DISTILLATION

In order to investigate the efficiency of the iterative distillation component, we design two compara-
tive models. 1) Memory: takes out the knowledge distillation part of the model architecture directly
and uses the subset of corpora D to get back the old knowledge. 2) Single KD: In contrast to the
iterative distillation used in LOIRE, single distillation is performed using only one previous model,
while the remaining components are consistent with LOIRE.

Table 12: AP and AP+ of Single KD, Memory and LOIRE with the same train wall time, we evaluate
the performance after completing multi-stage training on each domain.

Schedule M1 M2 M3 M4 M5

AP AP+ AP AP+ AP AP+ AP AP+ AP AP+
Memory 38.69 - 33.83 -1.37 33.46 3.78 29.95 11.34 22.85 5.35

Single KD 38.69 - 32.81 -2.67 32.50 3.02 29.41 11.07 22.19 4.86
LOIRE-GPT1 38.69 - 31.72 -5.32 29.18 -2.68 24.63 -0.94 19.19 -3.84

As listed in Table 12, the performance of LOIRE surpasses Single KD and Memory. These results
indicate that without the interactive distillation-based recovery warmup period, LOIRE’s ability to
retain old knowledge diminishes. Furthermore, the innovative iterative distillation method has the
superior ability to incorporate previous knowledge compared to a single distillation procedure.

G FUNCTION PRESERVING PROOFS

The following proofs are sourced from (Gesmundo & Maile, 2023). Our work differs from (Ges-
mundo & Maile, 2023) in that we proposes an extra-optimized layer growth operator, which we
prove in Section 2. In addition, we design a growth schedule and perform experiments to verify the
function preservation empirically, which (Gesmundo & Maile, 2023) only has theories.

G.1 MHA GROWTH OPERATOR

The proof for the function-preserving transformation of head addition is as follows:

[Hhead1

s×d

..., Hheada2

s×d︸ ︷︷ ︸
s×(a2×d)

]× (WO)
′

(a2×d)×h

= [Hhead1

s×d

..., Hheada1

s×d︸ ︷︷ ︸
s×(a1×d)

, ..., Hheada2

s×d︸ ︷︷ ︸
s×((a2−a1)×d)

]×

 WO

(a1×d)×h

N
((a2−a1)×d)×h


= [Hhead1

s×d

, ...,Hheada1

s×d

]× WO

(a1×d)×h
+ N

s×h

= [Hhead1

s×d

..., Hheada1

s×d︸ ︷︷ ︸
s×(a1×d)

]× WO

(a1×d)×h

(17)

19

Published as a conference paper at ICLR 2025

Based on the settings of the above parameters, we have:

[Hhead1

s×d

..., Hheada2

s×d︸ ︷︷ ︸
s×(a2×d)

]× (WO)
′

(a2×d)×h

= [Hhead1

s×d

..., Hheada1

s×d︸ ︷︷ ︸
s×(a1×d)

]× WO

(a1×d)×h (18)

G.2 FFN GROWTH OPERATOR

The proof for the function-preserving transformation of FFN expansion is as follows:

GELU(HMHA

s×h
× (W l1

h×f2
)
′
+ (bl1

s×f2
)
′
)× (W l2

f2×h
)
′
+ bl2

s×h

= GELU(HMHA

s×h
×
[
W l1

h×f1
RWl1

h×(f2−f1)

]
+
[
bl1
s×f1

Rbl1
s×(f2−f1)

]
)×

 W l2

f1×h

N
(f2−f1)×h

+ bl2
s×h

= GELU(

[
HMHA ×W l1 + bl1︸ ︷︷ ︸

s×f1

HMHA ×RWl1 +Rbl1︸ ︷︷ ︸
s×(f2−f1)

]
)×

 W l2

f1×h

N
(f2−f1)×h

+ bl2
s×h

= GELU(HMHA

s×h
×W l1

h×f1
+ bl1

s×f1
)×W l2

f1×h
+ bl2

s×h
= HFFN

(19)

Based on the initialization of the above parameters, we have:

GELU(HMHA

s×h
× (W l1

h×f2
)
′
+ (bl1

s×f2
)
′
)× (W l2

f2×h
)
′
+ bl2

s×h

=GELU(HMHA

s×h
×W l1

h×f1
+ bl1

s×f1
)×W l2

f1×h
+ bl2

s×h
= HFFN

(20)

G.3 HIDDEN DIMENSION GROWTH OPERATOR

The proof for the function-preserving transformation of hidden dimension expansion for the MHA
module is as follows:

H
′

s×h2

× (WK/Q/V)
′

h2×d

=
[
H

s×h1

NH

s×(h2−h1)

]
×

WK/Q/V

h1×d

R
(h2−h1)×d

 = H
s×h1

×WK/Q/V

h1×d

[Hhead1

s×d

, ...,Hheada

s×d︸ ︷︷ ︸
s×(a×d)

]×
[

WO

(a×d)×h1

N
(a×d)×(h2−h1)

]

=

[
[Hhead1

, ...,Hheada︸ ︷︷ ︸
s×(a×d)

]× WO

(a×d)×h1

N
s×(h2−h1)

]
=

[
HMHA

s×h1

N
s×(h2−h1)

]

(21)

20

Published as a conference paper at ICLR 2025

The proof for the function-preserving transformation for the FFN module is as follows:

GELU((HMHA

s×h2

)
′
× (W l1

h2×f
)
′
+ bl1

s×f
)× (W l2

f×h2

)
′
+ (bl2

s×h2

)
′

=GELU(
[
HMHA

s×h1

N
s×(h2−h1)

]
×

 W l1

h1×f

R
(h2−h1)×f

+ bl1
s×f

)× (W l2

f×h2

)
′
+ (bl2

s×h2

)
′

=GELU(HMHA

s×h1

× W l1

h1×f
+ bl1

s×f︸ ︷︷ ︸
s×f

)×
[
W l2

f×h1

N
f×(h2−h1)

]
+

[
bl2

s×h1

N
s×(h2−h1)

]

=

GELU(HMHA

s×h1

× W l1

h1×f
+ bl1

s×f
)× W l2

f×h1

+ bl2
s×h1︸ ︷︷ ︸

s×h1

N︸︷︷︸
s×(h2−h1)


=
[
HFFN

s×h1

N
s×(h2−h1)

]

(22)

In the Layer normalization layer, when the hidden dimension expands, we have:

(HNORMMHA

)
′
=Layer norm(H

′

s×h2

+ (HMHA)
′

s×h2

)

=Layer norm(
[
H

s×h1

N
s×(h2−h1)

]
+
[
HMHA

s×h1

N
s×(h2−h1)

]
)

=
[
Layer norm(H

s×h1

+HMHA

s×h1

) N
s×(h2−h1)

]
=
[
HNORMMHA

N
s×(h2−h1)

]
(23)

Based on the settings of the above parameters, we have:[
(HMHA/FFN

s×h2

)
′]

=
[
HMHA/FFN

s×h1

N
s×(h2−h1)

]
(HNORMMHA/FFN

)
′

s×h2

=

[
HNORMMHA/FFN

s×h1

N
s×(h2−h1)

] (24)

The normalization of FFN layer is in a similar way. Thus, LOIRE is strictly function-preserving
with LN layers.

21

	Introduction
	Methodology
	Preliminary
	Problem Formulation
	Growth operators with strict function preserving
	Layer growth operator
	Optimized multi-stage growth schedule
	Iterative distillation warmup

	Experiments
	Experimental Setup
	Results and Analysis
	Ablation studies

	Conclusion
	Limitations
	Related works
	Algorithm
	Experimental settings
	Implementation details
	Detailed settings for baseline models and LOIRE variations
	Metrics
	Model growth settings

	Supplementary experiments
	Visualization of the attention patterns during the model growth
	Training efficiency of larger parameters
	Individual ppl of LOIRE-GPT1 for each domain

	Ablation Study
	Layer operator
	Effect of recovering warmup via iterative distillation

	Function preserving proofs
	MHA growth operator
	FFN growth operator
	Hidden dimension growth operator

