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Abstract

This paper proposes and studies for the first time the problem of combinatorial
multi-armed bandits with linear long-term constraints. Our model generalizes and
unifies several prominent lines of work, including bandits with fairness constraints,
bandits with knapsacks (BwK), etc. We propose an upper-confidence bound LP-
style algorithm for this problem, called UCB-LP, and prove that it achieves a
logarithmic problem-dependent regret bound and zero constraint violations in
expectation. In the special case of fairness constraints, we further provide a sharper
constant regret bound for UCB-LP. Our regret bounds outperform the existing
literature on BwK and bandits with fairness constraints simultaneously. We also
develop another low-complexity version of UCB-LP and show that it yields Õ(

√
T )

problem-independent regret and zero constraint violations with high-probability.
Finally, we conduct numerical experiments to validate our theoretical results.

1 Introduction

In this paper, we study the problem of combinatorial bandits with long-term linear constraints. Our
model captures important application scenarios like ad placement in online advertising systems [41],
real-time traffic scheduling in wireless networks, and task assignment in crowdsourcing platforms
[29], etc. Although being studied for the first time, our model subsumes several well-known problems
in the Constrained Multi-Armed Bandit (CMAB) literature, including bandits with knapsacks, bandits
with fairness constraints, etc. Details about these problems and how they fit into our framework are
provided in Section 1.1.

Specifically, we consider an agent’s online decision problem faced with a fixed finite set of N arms
labelled 1, 2, ..., N , within the time horizon T . At each round t (1 ≤ t ≤ T ), every arm i ∈ [N ] is
associated with a random reward fi(t) ∈ [0, 1] sampled from a time-invariant distribution Pi. The
reward fi(t) and its distribution Pi are unknown to the agent a priori. The mean reward of distribution
Pi is denoted as µi ∈ [0, 1]. We denote µ = (µ1, ..., µN )⊤ ∈ [0, 1]N the mean reward vector, and
define µ∗ := maxi∈[N ] µi as the maximum mean reward value of all arms. At the beginning of
each round t, the agent is allowed to pull multiple, but no more than m arms. At round t, the
action taken by the agent is represented by an action vector a(t) = (a1(t), ..., aN (t))⊤ ∈ {0, 1}N ,
where ai(t) = 1 if and only if arm i is pulled. The set of all feasible action vectors is defined as
A = {a|a ∈ {0, 1}N , ||a||1 ≤ m}. After taking action a(t), the agent can observe reward from each
pulled arm. Summing up the reward from the pulled arms, at round t, the agent receives a total reward
of Rt :=

∑N
i=1 fi(t)ai(t).
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Beyond the standard combinatorial bandit setting above, we consider that the agent is subject to
some constraints g(·) at every round t, defined as g(a(t)) := [g1(a(t)), g2(a(t)), ..., gK(a(t))]⊤, where
g1, g2, . . . , gK : RN → R are linear functions. The goal of the agent is to maximize the accumulated
expected reward up to the time horizon T , while satisfying the constraints in the long term, i.e.,

max

T∑
t=1

Rt , s.t.
T∑

t=1

g(a(t)) ≤ 0. (1)

(The comparison operator ≤ is coordinate-wise) Define OPT(T) as the expected accumulated reward
in T rounds of the optimal policy satisfying the long term constraints. The agent’s performance is
measured in terms of regret and constraint violations defined respectively as

RegretT = OPT(T )− E[
T∑

t=1

Rt], Vio(T ) =
T∑

t=1

g(a(t)),

where the expectation is taken w.r.t. the randomness of the reward and algorithm’s internal randomness.
Consider the following linear programming problem (LP):

OPTLP = max
x∈RN

µ⊤x s.t. g(x) ≤ 0, 0 ≤ x ≤ 1, ||x||1 ≤ m. (2)

[4] showed that OPT(T ) ≤ T · OPTLP. We denote the set of optimal solutions to LP (2) as X ∗, and
define x∗ ∈ X ∗ as one of these optimal solutions. Following a common approach, we use the optimal
randomized policy x∗ as the benchmark in the regret:

RegretT ≤ T · OPTLP − E[
T∑

t=1

Rt] = T ⟨µ,x∗⟩ − E[
T∑

t=1

Rt]. (3)

1.1 Representative problems and related works

In this section, we outline several motivating and representative problems which fit into our general
formulation and review the literature closely related to them (listed in Table 1). Problem-dependent
parameters ∆min and ∆ will be formally defined in Section 2.1.
Table 1: The comparison between our results and prior closely-related works. In this table, rmin =
mini ri. “Single-arm” means m = 1. “LP” means the algorithm should solve a linear program.
“Complexity” refers to the computational-complexity of the algorithm at each round.

ALGORITHM SETTING ASSUMPTIONS REGRET VIOLATION COMPLEXITY

[18] SINGLE-ARM, KNAPSACKS N/A O
(
min{N,K}

(
N+K

K

)
log T
∆min

)
0 LP

[18] SINGLE-ARM, KNAPSACKS |X ∗| = 1 O((min{N,K})3 log T/∆2
min) 0 LP

[42] SINGLE-ARM, KNAPSACKS ONE RESOURCE (K = 2) O(N log T/G2
LAG) 0 LP

"BEST-ARM-OPTIMALITY"
[40] SINGLE-ARM, KNAPSACKS |X ∗| = 1, PRIOR KNOWLEDGE O(N log T/∆min) 0 LP
[15] COMBINATORIAL, KNAPSACKS ONE RESOURCE (K = 2) O(log2T ) 0 LP

[29] COMBINATORIAL, FAIRNESS N/A O(
√
mNT log T ) o(T ) Õ(N)

[20] COMBINATORIAL, FAIRNESS N/A O(
√
mNT log T ) o(T ) Õ(N)

[48] COMBINATORIAL, FAIRNESS N/A O(
√
mNT log T ) O(

√
mNT log T ) Õ(N2)

[39] SINGLE-ARM, FAIRNESS maxi∈[N ] ri < 1/N O(N∆(1 + [8 lnT/∆2 − rminT ]
+)) O(1) Õ(N)

[12] SINGLE-ARM, FAIRNESS N/A O(N log T/∆) N/A Õ(N)

(THIS WORK) UCB-LP COMBINATORIAL, LINEAR N/A O(mN log T/∆min) 0 LP
(THIS WORK) UCB-LP COMBINATORIAL, FAIRNESS N/A O(1) 0 Õ(N)

(THIS WORK) UCB-PLLP COMBINATORIAL, LINEAR N/A O(m
√
T log T ) 0 (HIGH-PROB) Õ(N)

Bandits with knapsacks. The BwK (Bandits with Knapsacks) problem with deterministic costs
studied in [18, 42, 40] assumes that there are K resources consumed over time, each with budgets
B1, B2, . . . , BK respectively. Every resource i ∈ [K] is associated with a fixed consumption vector
λi = (λi,1, λi,2, . . . , λi,N ) ∈ RN

≥0. The agent maximizes the accumulated reward subject to the
budget constraints

∑
i∈[T ] λ

⊤
i a(t) ≤ Bi, ∀i ∈ [K]. One can see that, this problem is equivalent

with the special case of our setting where the linear constraint functions have the form g(a(t)) =
(λ⊤

1 a(t)−B1/T, . . . ,λ
⊤
Ka(t)−BK/T ).

The existing BwK literature [1, 4, 17] has derived algorithms that achieve the problem-independent
regret bounds of the similar order Õ(

√
KNT ). Such order of the regret bound is also obtained
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by [41, 42, 28] for combinatorial setting. However, the problem-dependent regret of BwK with
deterministic costs is less explored. [18] achieved one regret bound of O

(
min{N,K}

(
N+K

K

)
log T
∆min

)
with unsatisfying exponential dependence on K and N . They also provide another regret bound of
O((min{N,K})3 log T

∆2
min

) with polynomial dependence on N,K but require an additional assumption

of the optimal solution of LP (2) being unique. Later [40] improves this regret to O(N log T
∆min

) also
under the assumption that LP (2) has an unique optimal solution. But their algorithm requires the
knowledge of some parameters of the problem instance a priori (characterized by ∆min and µ∗),
which is unpractical. With the “best-arm-optimality” assumption, i.e., there is an optimal policy that
only pulls one arm, [42] achieved the regret of O(N · log T/G2

LAG) (GLAG is their defined Lagrangian
gap) when there is only one resource (K = 2), whose practicability is also restricted. Very recently,
[15] derives a regret bound of O(log2T ) for combinatorial setting and one resource constraint, which
is the best so far in the area of combinatorial BwK but still sub-optimal in terms of T .

For BwK problems with stochastic costs, [18, 47, 46, 42, 30, 7] obtained logarithmic regrets under
different restrictive assumptions, e.g., non-degeneracy of (2), K = 2 (single source) or “best-arm-
optimality”. [18, 42] showed that it is impossible to achieve any problem-dependent regret bound of
o(
√
T ) without additional assumptions in general.

Bandits with fairness constraints. Recently, [29, 48, 39] studied the problem of bandits with
fairness constraints. Under their setting, the agent maximizes the cumulative expected reward, and
needs to ensure that each arm i ∈ [N ] is pulled for at least ri ∈ (0, 1) fraction of times at the end of
T rounds. In our model, such fairness constraints are equivalent with the following special kind of
linear long-term constraints: g(a(t)) = −a(t) + r, where r = (r1, r2, . . . , rN )⊤.

[29] first studied the combinatorial (sleeping) bandits with fairness constraints. Their algorithm
LFG combines virtual queue technique and UCB learning. LFG yields Õ(

√
T ) regret and sublinear

(o(T )) constraint violations. [20] replaced the UCB learning with Thompson Sampling in LFG and
obtained performance guarantees with the same order. Later [48] improved the constraint violations
bound to O(

√
T ) with the same regret order by using online convex optimization techniques and

RRS rounding. A big advancement is made by recent works [12, 39] that they achieve O(log T ) and
o(log T ) regret bounds, respectively, for MAB (m = 1) with fairness constraints based on the modified
UCB1 algorithm. And [16] achieved a "penalized" regret bound of O(log T ) in the single-arm setting.

Bandits with group fairness. In scenarios like ad-display optimization, the agent is subject to the
group fairness constraint, e.g., arms belonging to one group should be pulled more frequently than
arms belonging to another group [36], or the arm with higher average reward should be pulled more
times than the arm with lower average reward [23], etc. This problem also fits into our formulation of
linear constraints. Only problem-dependent regrets of Õ(

√
T ) are obtained in related works.

Other related literature. A large body of literature (e.g., [10, 45]) derived O(log T ) regret bounds
for unconstrained combinatorial bandits. [22, 24] studied the BwK problem under the adversarial
setting. [2, 38, 3, 35] studied constrained linear bandits. Our framework is also related to online
convex optimization with long-term constraints (e.g., [33, 11, 51, 50]), where the agent faces several
convex constraints and these constraints need to be satisfied in the long term. We remark that, in this
setting, the full reward function at each round would be revealed after the decision making, which is
in contrast to our setting that we do not have such observation due to the semi-bandit feedback.

1.2 Discussion: significance of linear constraints

In this section, we discuss the significance of generalization to linear constraints. Previous literature
on constrained bandits only studies constraints with specific forms, namely, the fairness constraint and
the knapsacks constraint, etc. As we only require g(·) to be linear, our model not only subsumes both
of them as its special cases, but also solves a larger group of constraints, enabling broader applications.
For example: 1. Our model for the first time addresses scenarios where both fairness and knapsack
constraints exists simultaneously. 2. Our model solves the case of weighted fairness constraints, i.e.,
weighted sums of pulls of each arm are required to be larger than a threshold:

∑N
i=1 κijhi(T ) ≥ rjT,

where κij is the j th weight of the ith arm. In contrast, traditional fairness constraints treat each arm as
unweighted and could be seen as a special case of weight fairness constraints.

In fact, there are many applications where combinatorial bandits with various complicated linear
constraints are required. We show some concrete examples as follows. (a) In crowdsourcing, where a
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group of workers are assigned with tasks to achieve high accuracy, a set of complex linear constraints
occurs: each tasks should have enough workers, while each worker should have a fair workload. (b)
In network routing where multiple paths (each path consists of a series of links) needs to be selected
to send the traffic within the time budget and the bandwidth constraints. (c) Case of Internet of Things
where a set of sensors need to be selected at each round to guarantee the QoS requirement [21] (e.g.,
throughout, mean-delay) under budget constraint on data collection cost (e.g., energy consumption).

1.3 Our contributions

Our main contributions are summarized below.

(a) We define a general formulation termed combinatorial bandits with linear long-term constraints.
In contrast to previously outlined pieces of work, we consider the problem in its full generality and do
not assume or require any prior knowledge of the problem instance. We design an upper-confidence
bound LP-style algorithm named UCB-LP, and develop a novel analytical technique to build a
relationship between LP solution (distribution support over arms) and "reward allocation", with which
we show that UCB-LP guarantees a problem-dependent regret of O(mN log T

∆min
) and no constraint

violation in expectation. To the best of our knowledge, this is the first logarithmic regret bound for
bandits with long term linear constraints under the combinatorial setting.

(b) For the special case of fairness constraints, we show that UCB-LP achieves O(1) regret and
guarantees zero expected constraint violation at the same time. To the best of our knowledge, both
the regret and the constraint violations outperform all existing works on combinatorial bandits with
fairness constraints. We also show that UCB-LP has a low running time of Õ(N) in this special case.

(c) To overcome the potentially time-consuming LP in UCB-LP, we further develop a low-complexity
version of UCB-LP, called UCB-PLLP, since it builds on the Lagrangian (L) of UCB-LP and pes-
simistically (P) tracks the constraint violations. We show that it yields Õ(

√
T ) problem-independent

regret and guarantees zero constraint violations for any τ ≤ T with high-probability. The computa-
tional complexity of UCB-PLLP is Õ(N).

2 Main results

In this section, we present our algorithm and corresponding performance analysis for our general
formulation. All the proofs of listed lemmas, propositions and corollaries are deferred to the
supplementary material. Our experimental results are given in the suppmetary material.

2.1 Preliminary: notations and existing techniques

Notations. For every arm i, define hi(t) :=
∑t−1

τ=1 ai(τ) as the number of pulls of it at the beginning
of round t, and µ̄i(t) :=

1
hi(t)

∑t−1
τ=1 ai(τ)fi(τ) as its empirical reward estimate at round t. Denote the

feasible region of LP (2) as D := {x|x ∈ [0, 1]N , ||x||1 ≤ m, g(x) ≤ 0}. In this paper, for any vector
v, we use vi to denote its ith coordinate. For any event E, we use E to denote its negation.

Extreme points and general sub-optimality measure. Note that the feasible region D to LP (2) is a
convex polytope, and we let B be the set of its extreme points. An extreme point of D is a point in D
which does not lie in any open line segment joining two points of D. It is well-known in the theory
of LP that extreme points and basic feasible solutions are equivalent, and any LP attains its optimal
value at an extreme point [6]. Recall that x∗ is an optimal solution to LP (2), and we define the
sub-optimality gap for any x ∈ B as ∆x := ⟨µ,x∗⟩ − ⟨µ,x⟩. Define ∆min := minx∈B\X∗ ∆x. Since
B is finite, ∆min is well-defined and strictly positive. The same definition of the sub-optimality gap is
also used in [18]. We note that ∆min can be seen as a generalization of the minimum sub-optimality
gap in standard MAB problem defined as ∆ := mini:µi ̸=µ∗ |µ∗ − µi|. Specifically, under the standard
MAB setting, m = 1,B = {a|a ∈ {0, 1}N , ||a||1 ≤ 1}, ∆min coincides with ∆. In this paper, we will
state our problem-dependent regret bounds in terms of ∆min.

2.2 The general algorithm UCB-LP and its performance analysis

Now we introduce our algorithm UCB-LP for combinatorial bandits with long-term linear constraints.
UCB-LP is a generalization of SemiBwK algorithm [41] to the general linear constraints setting which
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chooses arms through randomized policy. In our setting, one main challenge is that no super-arm
is optimal across all rounds, but there exists an optimal sampling distribution over arms and the
intuition behind UCB-LP is to identify such distribution and sampling arms based on it. At each
round, UCB-LP consists of two stages. In the first stage, we first compute the truncated UCB estimate
vector µ̂(t) ∈ RN defined as µ̂i(t) = min

{
µ̄i(t) +

√
2 ln t
hi(t)

, 1
}
,∀i ∈ [N ]. Then we solve the following

LP and get an optimal solution x(t) ∈ B:
max
x∈RN

⟨µ̂(t),x⟩ s.t. g(x) ≤ 0, 0 ≤ x ≤ 1, ||x||1 ≤ m. (4)

(Note that LP (2) and LP (4) have the same feasible region D, hence the same set of extreme points
B.) Here we require the solved optimal solution x(t) to be an extreme point of LP (4), i.e., x(t) ∈ B.
In fact, this is naturally satisfied by many LP algorithms, e.g., Simplex Method. Even if the optimal
solution of LP is not an extreme point, it can be efficiently converted to one by tightening some slack
constraints in (4) [37, 19].

The second stage is to construct a distribution πt(·) over A with expectation x(t), i.e.,∑
a∈A πt(a) · a = x(t), and sample super-arm a(t) ∼ πt. Since x(t) ∈ D ⊆ Conv(A), such πt

exists and can be generated via a convex decomposition of x(t). Although there are many random-
ized rounding methods with O(N2) running time to achieve this, we show in the supplementary
material that computing πt and sampling a(t) can be finished in O(N logN) time. The idea of
sampling arms maintaining the marginal distribution are also used in [13, 52]. Finally, we pull the
arms according to a(t), observe the reward value of pulled arms, and update the statistics.

Although motivated by SemiBwK algorithm [41], UCB-LP deals with general linear constraint
function without any assumptions and our goal is to derive a problem-dependent regret bound.
Therefore, new techniques have to be developed for the analysis of UCB-LP.

The following theorem provides the generic bounds of regret and constraint violations for UCB-LP.

Theorem 1 UCB-LP satisfies

RegretT = O

(
mN log T

∆min

)
, (5)

E[Vio(T )] ≤ 0. (6)
Proof sketch of Theorem 1: Note that (6) is straightforward from LP (4) and the fact that g(·)
is linear. Now we present the main idea of proving (5). To obtain the regret bound, we cannot
directly apply the traditional analysis from bandit community here as we cannot bound hi(t) and the
algorithm might favor sub-optimal arms even if they have already been pulled for Ω(log T ) times due
to the structural property of the LP. Instead, we bound the number of times UCB-LP fails to yield
the optimal policy, i.e., x(t) /∈ X ∗. The most natural idea to achieve this is to bound the number of
times x(t) = x for every sub-optimal policy x ∈ B \ X ∗. However, such an idea fails in the sense
that the resulting bound would scale with |B|, which is exponentially large. Addressing this technical
challenge is nontrivial and previous works circumvented this problem by assuming special structures
(e.g., [18] and [40] assumed |X ∗| = 1, [42] assumed only one resource and ||x∗||0 = 1, etc) or using
the prior knowledge of some problem-dependent parameters [40]. In our proof, we overcome this
difficulty directly by handling the case x(t) /∈ X ∗ with the idea of "regret allocation".

Define w(t) = (
√

2 ln t
hi(t)

, ..,
√

2 ln t
hN (t)

)⊤. Since the regret only occurs when x /∈ X ∗, we claim that
⟨µ,x∗⟩ ≤ ⟨µ̂(t),x(t)⟩, ⟨µ̂(t),x(t) ≥ ⟨µ(t),x(t)⟩ + ∆x(t) and ⟨w,x(t)⟩ ≥ ∆x(t)/2 all hold with
high probability in such case since ⟨µ̂(t),x(t)⟩ ≥ (LP property)⟨µ̂(t),x∗⟩ ≥ (high-prob)⟨µ,x∗⟩ ≥
⟨µ,x(t)⟩ + ∆x(t) ⇒ ⟨µ̂(t) − µ,x(t)⟩ ≥ (high-prob)∆x(t) ⇒ ⟨2w,x(t)⟩ ≥ (high-prob)∆x(t) ⇒
⟨w,x(t)⟩ ≥ (high-prob)∆x(t)/2. With these properties, when x /∈ X ∗, we could allocate the in-
curred regret Rt = E[⟨µ,x∗⟩ − ⟨µ,x(t)⟩] = ∆x(t) to every base arm in the following way, and we
will argue that this allocation is correct since:

Rt = E[⟨µ,x∗⟩ − ⟨µ,x(t)⟩] = ∆x(t) = E[⟨µ̂(t)− µ,x(t)⟩]− E[⟨µ,x∗⟩ − ⟨µ̂(t),x(t)⟩]

≤ (high-prob)E[⟨µ̂(t)− µ,x(t)⟩] ≤ (high-prob)E[⟨2w,x(t)⟩] = 2E[
∑
i∈[N ]

xi(t)
√

2 ln t/hi(t)]

Thus each arm contributes 2xi(t)
√

2 ln t
hi(t)

to the regret ∆x(t). Next we claim that the sum above

regret allocation on all arms is dominated by the arms in the set V (t) = {i : hi(t) ≤ 32m2 ln t
∆2

min
}, i.e.,

1
2

∑
i∈[N ] 2xi(t)

√
2 ln t
hi(t)

≤
∑

i∈V (t) 2xi(t)
√

2 ln t
hi(t)

, which is derived by:
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∑
i∈[N ]/V (t) xi(t)

√
2 ln t
hi(t)

≤
∑

i∈[N ]/V (t) xi(t)
∆min
4m

≤
∑

i∈[N ] xi(t)
∆min
4m

≤ ∆min
4

≤ ∆x(t)

4
, and∑

i∈[N ] xi(t)
√

2 ln t
hi(t)

= ⟨w(t),x(t)⟩ ≥ ∆x(t)

2
.

Therefore, the following total regret decomposition holds with high-probability:

RegretT ≤ 2E[

T∑
t=1

∑
i∈[N ]

xi(t)
√

2 ln t/hi(t)I{x(t) /∈ X ∗}]

≤ 4E[

T∑
t=1

∑
i∈V (t)

xi(t)
√

2 ln t/hi(t)I{x(t) /∈ X ∗}] ≤ 4E[

T∑
t=1

∑
i∈V (t)

xi(t)
√

2 ln t/hi(t)].

(7)

Define G(i) = {t : i ∈ V (t)}, and Ti = argmaxτ∈G(i) τ . Continuing from (7) we obtain

RegretT ≤ 4E[

T∑
t=1

∑
i∈V (t)

xi(t)
√

2 ln t/hi(t)] = 4E[
∑
i∈N

∑
t∈G(i)

xi(t)

√
2 ln t

hi(t)
] ≤ 4E[

∑
i∈N

Ti∑
t=1

xi(t)

√
2 ln t

hi(t)
].

The remaining problem is to bound 4E[
∑

i∈N

∑Ti
t=1 xi(t)

√
2 ln t
hi(t)

], which is solved by the following
lemma.

Lemma 1 E[
∑t

τ=1 xi(τ)
√

ln τ/hi(τ)] ≤ 3
√
ln t · E[

√
hi(t) + 1].

Applying Lemma 1 yields 4E[
∑

i∈N

∑Ti
t=1 xi(t)

√
2 ln t
hi(t)

] ≤ 12
∑

i∈[N ]

√
2 lnTi(hi(Ti) + 1) ≤

12
∑

i∈[N ]

√
2 lnTi(

32m2 lnTi

∆2
min

+ 1) (Since Ti ∈ V (Ti)) ≤ 12
∑

i∈[N ]

√
2 lnT (32m2 lnT/∆2

min + 1) =

O( mN
∆min

lnT ). Putting all things together completes the proof of Theorem 1.

Proof of Lemma 1: Our proof idea is using the facts (a): 1/
√
x ≤ 3(

√
x+ 1 −

√
x), x ≥ 1;

(b): E[
√

hi(τ + 1)|Ft] = E[xi(τ)
√

hi(τ) + 1|Ft−1] + E[(1 − xi(τ))
√

hi(τ)|Ft−1], where Ft =

{x(τ)}tτ=1. Then E[
∑t

τ=1 E[xi(τ)
√

ln τ/hi(τ)|Fτ−1]] ≤
√
ln tE[

∑t
τ=1 E[xi(τ)

√
1/hi(τ)|Fτ−1]]

(a)

≤
3
√
ln tE[

∑t
τ=1 E[xi(τ)(

√
hi(τ) + 1 −

√
hi(τ))|Fτ−1]

(b)
= 3

√
ln tE[

∑t
τ=1 E[

√
hi(τ + 1)|Fτ ] −

E[
√

hi(τ)|Fτ−1]] ≤ 3
√
ln tE[E[

√
hi(t+ 1)|Ft]] ≤

√
ln tE[

√
hi(t+ 1)] ≤ 3

√
ln tE[

√
hi(t) + 1].

Comparison with previous results. Several previous works (e.g., [18, 42, 40, 39]) studying bandits
with long term constraints have also achieved O(log T ) regret bounds. Our regret bound has four
major improvements over theirs: (a) Our regret bound has a better dependence on ∆min and N . (b)
Previous regret bounds only apply to the single-armed setting, while ours applies to the combinatorial
setting. (c) Our regret bound is valid for all linear constraints, while theirs is only valid for specific
kind of constraints, either BwK with detereministic costs, or fairness constraints (which are the special
cases of linear constraints). (d) Almost all of them require additional assumptions or knowledge
of some parameters of the problem instance a prior. For example, [18] explicitly admitted that
their (poly-)logarithmic regret and the corresponding analysis only valid under the assumption of
|X ∗| = 1. (See Appendix A.1 and Assumption 9 in their arxiv version.) However, |X ∗| = 1 does not
always hold. When consider BwK problem with only one resource, if there exist arms p, q such
that µp

λp
=

µq

λq
, where λi is the amount of resource consumed by arm i if it gets pulled, then LP (2)

has non-unique optimal solution, i.e., |X ∗| ≠ 1. Even consider problem of bandits with fairness
constraints, if there exist two arms with the same required probability of being pulled, the optimal
solution to LP (2) also may not be unique. Beyond assuming |X ∗| = 1, the algorithms in [40] still
require some prior knowledge of the problem instance (characterized by µ∗ and ∆min). Substantial
assumptions including only one resource and “best-arm-optimality” are also required in [42]. On the
contrary, we do not require any assumptions and prior knowledge of the problem instance.

Reduction to unconstrained (combinatorial) bandits setting. When there are no constraints, i.e.,
g(t) = 0, UCB-LP reduces to the standard (Comb) UCB1 algorithm [25] and we could also recover
the results of [25] in such case. This further justifies the tightness of our regret bound.

2.3 Achieving constant regret for fairness constraints

In this section, we consider the special case of fairness constraints. Following the same setting
in the literature, e.g., [29, 48, 39], each arm i ∈ [N ] is required to be pulled at least ri ∈ (0, 1)
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fraction of times, and
∑

i∈[N ] ri < m. Namely, the agent has to satisfy hi(T ) ≥ riT,∀i ∈ [N ]. Define
r = (r1, r2, . . . , rN )⊤, then the equivalent linear long term constraint function g(·) under our setting
is g(a(t)) = −a(t) + r. In the fairness constraints setting, the main challenge is that the time horizon
T is unknown to the algorithm beforehand, and thus the “forced exploration” trick cannot be directly
applied here. A lot of work (See Table 1) has sprung up recently to tackle this difficulty, but the best
previous result is only Õ(

√
T ) under the combinatorial setting. The following theorem shows that

UCB-LP could guarantee a constant regret.

Theorem 2 Define rmin := min
i∈[N ]

ri. In the case of fairness constraints, UCB-LP guarantees that

RegretT ≤ 32mN2

r2min∆
2
min

ln2

(
32N2

r2min∆
2
min

)
+

mNπ2

2
.

Basic analysis of Theorem 2. To derive a constant regret, one natural idea is to show that the quantity
E[hi(T )]−ri ·T is bounded for every sub-optimal arm i (whose mean reward is not Top-m). However,
this is not the case in classic bandit analysis (e.g., for UCB-based algorithms) and thus cannot directly
apply here. Our main proof idea is to show that UCB-LP only chooses a sub-optimal distribution
over arms (i.e., x(t) /∈ X ∗) a limited number of times for fairness constraints. To achieve this, we first
transform the event of x(t) /∈ X ∗ to the events associated with arm’s UCB estimate error, i.e., we use
the following lemma to characterize the case of x(t) /∈ X ∗ by the sensitivity analysis of LP (4).

Lemma 2 If ||µ̂(t)− µ||1 < ∆min, then x(t) ∈ X ∗.

In other words, when x(t) /∈ X ∗ we have ||µ̂(t) − µ||1 > ∆min. And then we just have to prove
that ||µ̂(t)− µ||1 > ∆min ⇒ maxi∈[N ] |µ̂i(t)− µi| ≥ ∆min/N only happens a finite number of times.
This is a little counterintuitive for UCB-style algorithms, but it holds for UCB-LP in the fairness
setting as UCB-LP guarantees that every arm has a positive probability of being pulled at each round
which leads to the diminishing confidence width of all arms and the bonus of concentration inequality.
In particular, by martingale analysis and extending the concentration bound to a random process
that evolves over time, we prove that there exists a constant c > 0 (e.g., 32N2

r2min∆
2
min

ln2 32N2

r2min∆
2
min

)

such that hi(t) ≥ 8N2

∆2
min

ln t holds with high-probability for each arm i when t > c, which gives that
|µ̂i(t)− µi| ≤ ∆min/N holds with high-probability when t > c. It is worth noting that such properties
do not hold for classic bandit algorithms (e.g., algorithms based on the UCB1 framework). And to
the best of our knowledge there is no such results in the literature. Finally, to fit into our Lemma
2, we handle the regret as RegretT ≤ m

∑T
t=1 Pr[x(t) /∈ X ∗] ≤ mc + m

∑T
t=c+1 Pr[x(t) /∈ X ∗] ≤

mc+m
∑T

t=c+1 Pr[||µ̂(t)− µ||1 ≥ ∆min]. Put all things together then we complete the proof.

Breaking the Ω(log T ) lower bound. The constant regret bound given by Theorem 2 might seem
counter-intuitive at first glance, since the lower bound of regret under classical MAB setting is
Ω(log T ) [26]. However, note that the fairness level ri is required to be strictly positive, and the
benchmark policy in the regret also needs to satisfy the long term constraints. This distinguishes our
setting from the classical MAB setting. Thus, the traditional Ω(log T ) lower bound no longer applies.

The reason why UCB-LP achieves a constant regret is: UCB-LP guarantees that every arm has a
positive probability of being pulled at each round. This leads to more accurate reward estimates
of arms and a diminishing gap between µ̂(t) and µ, which makes UCB-LP output the sub-optimal
action distribution only a finite number of times. That said, it still requires non-trivial techniques to
establish a constant regret bound. In fact, even O(log T ) regret bound has not yet been achieved for
combinatorial setting in prior works.

Note that our regret bound has a quadratic dependence on 1/rmin, which goes to infinity as r → 0. In
fact, when r = 0, i.e., there are no fairness constraints, our problem degenerates to classical MAB
setting where achieving constant regret bound is impossible. This indicates that such dependence on
extra parameters is inevitable for any constant regret bound. Of course, the general O(log T ) regret
bound developed in Theorem 1 still applies when r → 0, since it does not depend on 1/rmin.

Õ(N) running time. The structural property of the fairness constraints allows us to obtain a closed
form solution to LP (4), as shown in the following proposition.

Proposition 1 For each round t, rearrange the coordinates of UCB estimate vector µ̂(t) in descend-
ing order such that µ̂σt

1
(t) ≥ µ̂σt

2
(t) ≥ · · · ≥ µ̂σt

N
(t), where σt

1, . . . , σ
t
N is a permutation of 1, . . . , N .

Then one of the optimal extreme points to LP (4) (denoted as x(t)) has the following form:
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xσt
i
(t) = 1, ∀i < kt; xσt

i
(t) = rσt

i
, ∀i > kt;xσt

kt
(t) = m+ 1− kt −

∑
i>kt

rσt
i
,

where kt = min{q ∈ Z+ |
∑q

i=1(1− rσt
i
) ≥ m−

∑N
i=1 ri}.

Proposition 1 immediately implies that UCB-LP is computationally efficient when dealing with
fairness constraints. To solve LP (4), one can simply sort all coordinates of µ̂(t) in O(N logN) time,
then compute kt and x(t) according to the closed form expression in proposition 1 (note that x(t) in
Proposition 1 also lies in B). Since the running time of computing distribution πt and sampling a(t) is
also O(N logN), we conclude that the time average complexity of UCB-LP is O(N logN) = Õ(N).

Another constant regret bound. Proposition 1 further provides two important implications:

(a) Since LP (2) has the same form with LP (4), the optimal solution x∗ to LP (2) can also be written
in closed form in the same manner to Proposition 1. Specifically, rearrange the coordinates of µ
in descending order as µσ1 ≥ µσ2 ≥ · · · ≥ µσN , and define k = min{q ∈ Z+ |

∑q
i=1(1 − rσi) ≥

m−
∑N

i=1 ri}. Then x∗ has the following form:

x∗
σi

= 1, ∀i < k; x∗
σi

= rσi , ∀i > k;x∗
σk

= m+ 1− k −
∑
i>k

rσi .

(b) The optimal solution x(t) to LP (4) only depends on the relative order, not the absolute value of
µ̂1(t), . . . , µ̂N (t). This motivates us to characterize the sensitivity of LP (4) from a new perspective.
Intuitively, if µ̂ and µ are close enough such that the relative order between the coordinates is (at
least partially) preserved, then the optimal solutions of LP (4) and LP (2) will coincide.

The above two implications motivate us to define a new parameter ϵ := minµi ̸=µσk
|µi − µσk |, and

propose the following corollary to characterize the sensitivity of LP (4).

Corollary 1 If ||µ̂(t)− µ||∞ < ϵ
2 , then x(t) ∈ X ∗.

Proof sketch of Corollary 1. Proposition 1 shows that when r is fixed, for ∀i ̸= σt
kt

, the value of
xi(t) only depends on whether µ̂i(t) < µ̂σt

kt
(t) or not. Similarly, for ∀i ̸= σk, the value of x∗

i only
depends on whether µi < µσk or not. This implies that, if kt = k, σt

kt
= σk, and µ̂i(t)− µ̂σt

kt
(t) have

the same sign with µi − µσk , then xi(t) = x∗
i . In other words, if µi > µσk ⇒ µ̂i(t) > µ̂σk (t) and

µi < µσk ⇒ µ̂i(t) < µ̂σk (t) holds for ∀i ∈ [N ], then x(t) = x∗. When ||µ̂(t) − µ||∞ < ϵ
2
, by the

definition of ϵ, for ∀i we have µi > µσk ⇒ µi ≥ µσk + ϵ ⇒ µ̂i(t) > µi − ϵ
2
≥ µσk + ϵ

2
> µ̂σk (t) and

µi < µσk ⇒ µi ≤ µσk − ϵ ⇒ µ̂i(t) < µi +
ϵ
2
≤ µσk − ϵ

2
< µ̂σk (t). Then x(t) = x∗.

With Corollary 1, we derive another constant regret bound of UCB-LP in the following theorem.

Theorem 3 UCB-LP also guarantees the following regret bound for fairness constraints,

RegretT ≤ 64m

r2minϵ
2
ln2

(
64

r2minϵ
2

)
+

mNπ2

2
.

In the supplementary material, we show that ∆min = ϵ = ∆ when our formulation reduces to the
classical MAB setting, which suggests that ∆min and ϵ are both reasonable generalizations of ∆.
Although ϵ and ∆min are generally incomparable, we believe that the regret bound given by Theorem
3 is tighter than Theorem 2. To provide evidences for this, in supplementary material, we investigate
the closed form expression of ∆min. We show that ϵ = ∆ ≥ ∆min = ∆(1−

∑
i ri) in the special case

of m = 1. Intuitively, ϵ characterizes the structural properties of fairness constraints, while ∆min is
more general and applies to all linear constraints.

Remark 1 LP-sensitivity arguments are not new in bandit analyses and was firstly shown in [42]
which used a technique based on LP-sensitivity to analyze the UcbBwK algorithm [1] for BwK
problem in the single-arm setting. Here we would like to point out that the technique based on
LP-sensitivity we used is completely different from theirs. Specifically, their analysis relies on the
assumptions of single resource and that the best distribution over arms reduces to the best fixed
arm, while we do not require any assumptions. Moreover, our technique is also non-standard as
our sensitivity analysis (Lemma 2, Corollary 1) takes full advantage of the fairness structure (e.g.,
closed-form solution of LP). Thus, our result is sharper than standard results about LP sensitivity
and leads to the O(1) regret bound.
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Algorithm 1 UCB-PLLP
1: Initialization: A = {x|x ∈ {0, 1}N , ||x||1 ≤ m}
2: for round t = 1, ...T − 1 do
3: Compute UCBs: µ̂i(t) = min{µi(t) +

√
2 ln t
hi(t)

, 1}, ∀i.

4: Update the primal iterate: a(t) = argmax
a∈A

⟨µ̂(t)− αt

∑K
k=1 ∇gk(a(t− 1))Qk(t),a⟩

5: Play arm i and receive fi(t) if ai(t) = 1.
6: Update the virtual queues: Q(t+ 1) = [Q(t) + g(a(t)) + ϵtI]

+.
7: Update the statistics: hi(t+ 1), µi(t+ 1), ∀i.
8: end for

Except [42] studies the BwK problem based on the LP methodology, [5] also develops an algorithm
based on LP methodology to track the (contextual) blocking bandit problem wherein once an arm
is pulled it cannot be played again for a fixed number of consecutive rounds. Here we argue that
their LP-sensitivity-based proof techniques cannot obtain our regret bounds. Specifically, [5] utilizes
techniques in [10] and [44], where [10] proposes the general CMAB framework and [44] improves
upon its regret bounds. The core of their techniques is to maintain a set of counters for every arm i
and allocate the regret to arms according to these counters. However, this regret allocation leads
to the arms in the support of LP solution associated with the same term while their probability of
being triggered by the LP-solution is different. This coarseness makes the final regret bound to scale
with the size of the support, transforming the regret bound from our result of Θ(mN lnT/∆min) to
Θ(N2 lnT/∆min). In contrast, our analysis is more fine-grained since we do not maintain a counter
for every arm i and allocate the regret according to the counter value, but allocate the regret to arm i
according to the number of times it is pulled directly. More specifically, we only allocate the regret
to arms in V (t) := {i : hi(t) ≤ 32m2 ln t

∆2
min

}, i.e., the “dominant arms” whose pulls is no more than
O(m2 ln t/∆2

min) times. Thus, each arm is bounded according to its probability of being triggered,
and one no longer needs to distinguish arms in the support and other arms.

Remark 2 When the long-term constraints only need to be satisfied in expectation, someone may
adopt the well-established linear bandit algorithms like LinUCB [14] to track and identify the optimal
sampling distribution over arms (optimal extreme point). We pointed out that applying LinUCB
to our model involves solving an NP-hard optimization problem and fails to achieve a logarithmic
regret bound of O(mN log T ) as our algorithm UCB-LP does. In contrast, UCB-LP has a much
lower computational complexity than the reduced LinUCB algorithm since it is polynomial-time
computable. Furthermore, UCB-LP can guarantee a bounded regret for fairness setting. The reason
why LinUCB produces sub-optimal results is that LinUCB ignores the structural properties of the
constraints (e.g., concentration property bonus caused by the fairness constraints) and observations
about each individual pulled arm.

2.4 Õ(N) running time version of UCB-LP and its theoretical performance

As mentioned earlier, UCB-LP might be computationally inefficient when constraint function g(·)
is complicated. In this section, we present the low computational-complexity version of UCB-LP,
the UCB-PLLP algorithm, for problems of combinatorial bandits with linear long-term constraint.
Note that the main computational bottleneck of UCB-LP is caused by the constraint g(x) ≤ 0. To be
computationally efficient, we optimize the (partial) Lagrangian of LP (4) at each round t:

max
x∈RN

Lt(x,λt) = ⟨µ̂(t),x⟩ − λT
t g(x) s.t. 0 ≤ x ≤ 1, ||x||1 ≤ m. (8)

In (8) λt is the Lagrange multiplier associated with the constraints at round t. The main challenge is
how to design λt to make a good balance between reward maximization and long-term constraints
satisfaction. To address this challenge, we construct a virtual queue Q(t) to keep track of the “debt”
of constraint violations up to round t, i.e., Q(t) = [Q(t − 1) + g(a(t − 1))]+, and let λt = αtQ(t),
where αt could be time-varying. However, this Lagrange multiplier deign may lead to large constraint
violations as g(·) becomes a “soft” constraint in LP (8) while in LP (4) it is a “hard” constraint.

To yield lower constraint violations, we incorporate the virtual queue update with “pessimistic”
mechanism [35] so that the virtual queues overestimate the constraint violations, which is a novelty
of our UCB-PLLP. Although the idea of using a “pessimistic” mechanism has been exploited in linear
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(contextual) bandits with safety constraints (e.g., [2, 38], etc), the pessimism in our algorithm
is achieved via adding a time-varying tightness constant to virtual queue update, i.e., Q(t) =
[Q(t − 1) + g(a(t − 1)) + ϵt−1I]

+, which is completely different from the pessimism in previous
works. Since g(·) is linear, the optimization problem (8) has an integral closed-form solution and is
equivalent to the following optimization problem:

max
x

⟨µ̂(t)− αt

∑
k∈[K]

∇gk(a(t− 1))Qk(t),x⟩ s.t. x ∈ [0, 1]N , ||x||1 ≤ m.

⇐⇒max
a

⟨µ̂(t)− αt

∑
k∈[K]

∇gk(a(t− 1))Qk(t),a⟩ s.t. a ∈ {0, 1}N , ||a||1 ≤ m.
(9)

We illustrate this algorithmic approach in Algorithm 1. Note that if we set αt = η and ϵt = 0, the
algorithm LBF in [29] is our special case as ∇gk(·) = −ek and K = N for fairness constraints
setting. Apparently, the computational-complexity of UCB-PLLP is essentially the same as choosing
the top m arms with maximum positive compound value, which is Õ(N).

Theoretical performance of UCB-PLLP. Here we present the regret bound and constraint violations
for UCB-PLLP. Our result relies on a mild assumption of Slater condition (Interior condition), i.e.,
there exists a δ > 0 and x̂ ∈ D such that g(x̂) ≤ −δI. Note that Slater condition automatically holds
for fairness constraints as ri < 1, ∀i, and

∑
i∈[N ] ri < m. It is also a default assumption in BwK

literature (They all assume the null arm denoted by 0 exists, i.e, λi,0 = 0, ∀i ∈ [K]).

Theorem 4 Set ϵt = O( δ√
t
) and αt = O( N

δ
√
t
), then UCB-PLLP achieves

RegretT ≤ Õ(m
√
T ), Pr[Viok(τ) > 0] ≤ O(e−δ

√
τ ), ∀k ∈ [K], τ ≤ T.

We give the proof of Theorem 4 in supplementary material. Our proof technique is based on the
Lyapunov-drift analysis for queueing systems. The bounds in Theorem 4 are sharp in the perspective
that the regret bound matches the problem-independent regret of UCB1 algorithm in standard MAB
setting, and the probability of constraints not being violated converges to 1, i.e, holds asymptotically
almost surely.

Intuition behind Theorem 4. Here we explain the intuition why UCB-PLLP has such performance
guarantees. Since α = O(1/

√
t), the reward term dominates the whole term in (9) when Qk(t) = o(

√
t).

If Qk(t) = ω(
√
t), the term containing virtual queues dominates the reward term, and UCB-PLLP

tends to reduce the virtual queues Qk(t). Slater’s condition implies that there exists a policy that can
reduce Qk(t) by a constant (related to δ) in each round. Therefore, the algorithm takes at most O(

√
t)

rounds to reduce Qk(t) to o(
√
t), which may lead to O(

√
t) increase of the regret. Thus, we could derive

that Qk(t) = O(
√
t). Recall that Qk(t+1) ≥

∑T
t=1 gk(a(t))+

∑T
t=1 ϵt ⇒ Viok(T ) =

∑T
t=1 gk(a(t)) ≤

Qk(T + 1)−
∑T

t=1 ϵt, we can obtain zero constraint violation via choosing proper ϵt. Then, the high
probability constraint violation guarantee is established by bounding the exponential moment of the
virtual queues since Pr(Viok(T ) ≥ 0) ≤ Pr(Qk(T + 1) ≥

∑T
t=1 ϵt) ≤ E[e||Q(T+1)||1 ]/e

∑T
t=1 ϵt .

Remark 3 Although the virtual queue techniques have been used for various constrained online
learning problems in the literature (e.g., [8, 9, 29, 43, 20, 49, 27, 35, 32, 31, 34]), our virtual queue
update rule differs from theirs in the pessimistic mechanism via adding a time-varying tightness
constant. Beyond the update rule of virtual queue, we also employ some new techniques in our
Lyapunov analysis. For example, we establish a bound on the exponential moment of the virtual queue
length (Lemma 6), which is the central focus of our high-probability guarantee on zero constraint
violations. We also establish an upper bound on the ϵt-tight term (incurred by our pessimistic
mechanism) via comparing the optimal solution to the original LP problem and that to its -tightened
version based on LP-sensitivity (lemmas 3 and 4). These analysis techniques are not present in these
works.

2.5 Experiments

The results of our numerical experiments are given in the supplementary material.
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