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ABSTRACT

The accurate prediction of changes in protein stability under multiple amino acid
substitutions is essential for realising true in-silico protein re-design. To this pur-
pose, we propose improvements to state-of-the-art Deep learning (DL) protein
stability prediction models, enabling first-of-a-kind predictions for variable num-
bers of amino acid substitutions, on structural representations, by decoupling the
atomic and residue scales of protein representations. This was achieved using
E(3)-equivariant graph neural networks (EGNNs) for both atomic environment
(AE) embedding and residue-level scoring tasks. Our AE embedder was used
to featurise a residue-level graph, then trained to score mutant stability (∆∆G).
To achieve effective training of this predictive EGNN we have leveraged the un-
precedented scale of a new high-throughput protein stability experimental data-
set, Mega-scale. Finally, we demonstrate the immediately promising results of
this procedure, discuss the current shortcomings, and highlight potential future
strategies.

1 INTRODUCTION

Protein stability is a crucial component of protein evolution (Godoy-Ruiz et al., 2004), it lies at the
root of our understanding of many human diseases (Peng & Alexov, 2016) and plays a major role
in protein design and engineering (Qing et al., 2022). Protein stability is typically represented as
the change in free energy, ∆G, between the unfolded and folded states (Matthews, 1993) and is a
global feature of a protein. A negative ∆G of folding indicates an energetically favourable protein
conformation; the greater the magnitude of a negative ∆G, the more stable the conformation. Mu-
tations can alter the favourability of a protein fold, with even single amino acid substitution events
potentially disturbing the native conformation of a protein (Stefl et al., 2013). For example, a substi-
tution from threonine to methionine in 12/15-Lipoxygenase is a cited potential cause of hereditary
cardiovascular diseases (Schurmann et al., 2011); the mutation disrupts a chain of stabilising hy-
drogen bridges, causing structural instability and reducing catalytic activity. The mutational effect
on protein stability is the difference in free energy of folding between the wild type (WT) and mu-
tant proteins, ∆∆G (Matthews, 1993). Mutagenic effects on protein stability can be determined
experimentally using thermostability assays, with ∆∆G being inferred from differences between
WT and mutant denaturation curves (Bommarius et al., 2006). However, these assays are labourious
and expensive; to adequately assess mutational effects at a higher throughput rate, researchers have
turned to computational methods. The established precedent for computational modelling of mutant
stability is empirical physics-informed energy functions, which rely on physical calculations to infer
∆∆G (Marabotti et al., 2021). For example, Rosetta (Kellogg et al., 2011; Das & Baker, 2008) em-
ploys Monte Carlo runs to sample multiple protein conformations and predicts folding free energy
from physical characteristics. These characteristics of Lennard-Jones interactions, inferred solva-
tion potentials, hydrogen bonding and electrostatics are common to other packages such as FoldX
(Schymkowitz et al., 2005). While Molecular Dynamics software, such as Amber (Case et al., 2005),
utilises these characteristics in force fields to explore protein conformational landscapes and calcu-
late potential energies by resolving classical physics calculations.
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These physics-based models can provide scoring for both protein stability or mutation-induced
change of protein stability, however, they are still not fully scalable to large data-sets given the
computational expense necessary for each simulated prediction. For example, conformation sam-
pling via Monte Carlo simulations in Rosetta requires extensive compute time. On the other hand,
machine learning-based predictors and, more recently, Deep learning (DL) approaches have shown
improved scalability and, in some cases, comparable accuracy with physics-based models (Iqbal
et al., 2021). This work will continue to explore the advantages of an entirely data-driven DL ap-
proach for predicting protein stability changes under multiple amino acid substitutions.

2 RELATED WORK

In moving away from established molecular modelling approaches, machine learning methods
EASE-MM (Folkman et al., 2016) and SAAFEC-SEQ (Li et al., 2021) leverage 1D sequences
and protein evolutionary information to predict ∆∆G with decision trees and Support Vector
Machines, respectively. While ACDC-NN-Seq (Pancotti et al., 2021) explored utilising DL by
applying Convolutional neural networks (CNNs) to protein sequences. As sequence data is more
widely available than experimental structures, it is probable that the insight of these models into
3D structural characteristics, such as free energy of folding, is limited by their 1D representation.
PON-tstab (Yang et al., 2018) implemented a combination of sequence and structure-based features
in tabular format with random forests. DeepDDG (Cao et al., 2019) relies on tabular empirical
features obtained from structure, such as solvent-accessible surface area, to predict stability with
neural networks. However, tabular features engineered from structure are a restrictive depiction
of protein geometry; graph-based approaches provide a promising alternative representation, with
encouraging results when applied to protein structure prediction (Delaunay et al., 2022).

In particular, three DL models; ThermoNet (Li et al., 2020); RASP Blaabjerg et al. (2022); and ProS-
GNN (Wang et al., 2021), have engaged in combining the two physico-scales involved in understand-
ing protein geometry: the atomic scale and the residue scale of interactions. Both ThermoNet and
RASP learn a representation of the atomic environment (AE) around the pertinent (mutated) residue
using 3D CNNs before passing this representation through a Multi-layer perceptron (MLP) to score
the mutational effect on protein stability. While obvious similarities exist between those two models,
they are very different at their core. ThermoNet determines the AE representations on the fly, utilis-
ing both WT and simulated mutant structures as inputs for the MLP in the same loop. RASP initially
trains a self-supervised AE embedder on a masked amino acid task, then uses this embedding as in-
put features for a coupled WT and mutant amino acid encoding to feed an MLP trained on stability
scoring. Moreover, ThermoNet is trained on a rather small experimental data-set (n ∼ 3, 500), while
RASP is trained on a large data-set (n ∼ 106 for the AE embedder and n ∼ 2.5× 105 for scoring) of
Rosetta simulated scores, making it an emulator of the physics-based scorer. The third DL approach,
ProS-GNN (Wang et al., 2021), replaced the CNN ThermoNet atomic environment embedding layer
with GNNs. ProS-GNN also shares with ThermoNet and other DL models like ACDC-NN the con-
straint of being antisymmetric to reversed mutation. The aforementioned state-of-the-art stability
prediction models in the literature share the following caveats:

1. Their underlying architecture allows only single amino acid substitutions.

2. Big experimental data-sets with the necessary structural data for these models are lacking.

Indeed, RASP is constrained to predicting on a fixed number of amino acid substitutions by the MLP
scorer, which requires a fixed input shape; additional mutations increase the dimensions of the AE
embedding to an incompatible size. In ThermoNet and ProS-GNN, the impossibility of decoupling
the atomic and residue scales prohibits multiple amino acid substitutions; the required size of voxel
or graph for multiple, even proximal, substitutions would be rapidly unmanageable.
A solution for both caveats exists. The self-supervised AE embedder of RASP already decouples
the atomic and residue scales, and GNNs allow for some flexibility in graph topology, enabling con-
sideration of multiple residues rather than only the embedding of the residue of interest. Integrating
the RASP AE embedder with a graph-based approach would enable scoring of multiple substitution
events. On the experimental data front, a new data-set, Mega-scale (Tsuboyama et al., 2022), based
on high-throughput protein stability measurements, was published in late 2022. With over 600,000
data points of single and double mutants spanning over 300 WT structures, it provides a consistent
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(in terms of experimental set-up) and large data-set, with the express purpose of training models to
score the effects of single or double mutations on protein stability. In light of these observations,
we contribute a JAX-implemented solution for resolving these constraints using two E(3) equivari-
ant graph neural networks (EGNNs) (Garcia Satorras et al., 2021). The first EGNN is trained in a
self-supervised way. The second is trained on the Mega-scale data set for scoring mutational effects
on protein stability.

3 METHOD

3.1 ATOMIC ENVIRONMENT (AE) EMBEDDER

We followed the RASP protocol to design and train our AE embedder in a self-supervised masked
amino acid manner, with two key differences:

1. We used an EGNN (Figure 2) with its own set of graph features describing the AE (Figure
1) instead of a CNN.

2. We used a macro averaged F1 score as our metric on the validation set to select model
parameters from the highest-performing epoch.

The training and the validation sets are from the same data-set described in RASP (Blaabjerg et al.,
2022). Our EGNN was built with layers described in Garcia Satorras et al. (2021), with an average
message aggregation strategy (Equation 1). Recalling from Garcia Satorras et al. (2021) that hl

are node embeddings at layer l and xl are coordinate embeddings at layer l (atoms coordinates),
we defined the equivariant graph convolutional layer (EGCL), as they do, up to the use of this

1

Nneighbors
i

coefficient which allows the re-scaling of different messages according to the node of

interest’s number of neighbors (hence the average). As with their implementation, ϕe, ϕx, ϕh are
MLPs, ai;j defines edge features between node i and j, and finally, N(i) is the set of neighbors of
node i.

mi,j = ϕe(h
l
i,h

l
j ,
∥∥xl

i − xl
j

∥∥2 , ai,j)
xl+1
i = xl

i +
1

Nneighbors
i

×
∑

j ̸=i,j∈N(i)

(xl
i − xl

j)ϕx(mi,j)

mi =
1

Nneighbors
i

×
∑

j ̸=i,j∈N(i)

mi,j

hl+1
i = ϕh(h

l
i,mi)

(1)

Node embeddings are passed sequentially through each N layer of the network. After each layer,
node embeddings are copied, aggregated with an average graph level readout (global mean pooling)
Equation 2, and saved. Finally, all the graph representations derived from the different layers are
concatenated, Equation 2, to form the graph-level embedding hG for the AE sub-graph of a residue
G, and processed through an MLP toward the desired prediction shape.

hG = Concat(Average({hl
i|i ∈ G})|l = 0, ..., N) (2)

For building the AE graph, we followed part of the RASP protocol:

• We considered only atoms within a 9Å radius of the Cα of interest.

• We removed the atoms that were part of the residue of interest.

Nodes are atoms featurised with a single number (atomic number). Edges are drawn between nodes
if two nodes are within a 4Å distance. Edges are featurised by a binary label distinguishing whether
the edge is intra- or inter-residue, as well as 2 numbers encoding a notion of the typical distance
between the two atoms linked by these edges:

• The sum over the two atoms involved in the edge, of their covalent radius.

• The sum over the two atoms involved in the edge, of their Van der Waals radius.

3



Published at the MLDD workshop, ICLR 2023

9Å

C𝛂 of residue i : not part of the cavity graph.

Atoms of residue i : not part of the cavity 
graph.

Atoms of residue j≠i : part of the cavity graph.
feature : 

● Atomic number

Edge between atoms from same residue 
(max size 4Å).
features : 

● Covalent bond distance
● Van der Waals distance

Edge between atoms from different 
residues (max size 4Å).
features : 

● Covalent bond distance
● Van der Waals distance

Max       = 500

Figure 1: Definition of the atomic environment (AE) graph.

Node 
features 
embedder :
MLP

Edge 
features 
embedder :
MLP

E(3) equivariant 
GNN layer

Graph level 
first layer 
representation

E(3) equivariant 
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E(3) equivariant 
GNN layer

E(3) equivariant 
GNN layer

Graph level 
second layer 
representation

- - - 
Graph level 
Nth layer 
representation

Concatenated 
graph 
representation

MLP pre 
scoring

Concatenation 
operation

Graph readout 
operation : mean

Linear layer + 
problem specific 
activation

N✕E(3) equivariant GNN layers

Figure 2: Backbone of the E(3) equivariant graph neural network (EGNN) used for both AE embed-
ding and scoring tasks. The EGNN layer is the EGCL taken from (Garcia Satorras et al., 2021).

In this particular instance of the model, distances between atoms are not directly encoded as an
edge feature, but given the use of an EGCL, this distance is present as a distance vector (Equation 1)
(rather than the usual scalar distance, hence the necessity of E(3) equivariance) by design. Finally,
we trained the model on a classification task consisting of retrieving the amino acid around which
the AE has been built. Model parameters were selected from the epoch with the best macro F1
scores on the validation set. A detailed description of the model in terms of its hyper-parameters is
provided in the Appendix (Table 6).

3.2 MUTANT STABILITY SCORING

We used the same model architecture as presented for the AE embedding (Figure 2), for the regres-
sion task of predicting ∆∆G. The set of hyper-parameters differs as described in the Appendix
(Table 7). For this task, the graph is built at the residue-level with additional atomic-level features to
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bridge the gap between the two fundamental scales. Indeed, in this representation nodes are residues
represented in terms of their spatial positioning by the residue mean atomic position coordinates.
Nodes are featurised with the vector output of the previously trained AE embedder. More node fea-
tures are included with an 11-dimensional representation of the physico-chemical properties of the
WT amino acid (Kawashima et al., 2007; Xu et al., 2020), concatenated to the same representation,
except for the mutated amino acid nodes. When a particular node is not mutated this concatenation
is just twice the WT physico-chemical 11-dimensional representation.
At the edge level, an edge is drawn between two nodes if the mean atomic position distance between
the two nodes is within 9Å. The graph is centered around the mutant residue and residues are added
given the distance threshold up to n (here 1) edges away from the mutant nodes. In the case of mul-
tiple mutants, we allow the different graphs centered around their mutant node, to be disconnected
from each other. Features for the edges follows a similar strategy to the atomic graph:

• A single number to stipulate if the two residues are linked by a backbone, bound or not.

• Two numbers to provide a specific scale for the distance between two WT residues: the
sum of the residue side chain sizes, defined as (i) the maximum distance between the Cα

and any atoms of the residue; (ii) the maximum distance between two atoms from the same
residue.

• The same two numbers are produced for mutants involved in the edges. When there are no
mutants involved then they are just duplicated from the WT numbers.

• The Cα/Cα distance and the mean atomic position/mean atomic position distance.

Finally, to help the training while homogenizing the ranges and variance of the target variable (here
the experimental ∆∆G) we used a Fermi transform, also as described in RASP (Blaabjerg et al.,
2022). Our loss function is a simple Root Mean Squared Error, and the best model as well as the
best epoch is chosen based on the spearman rank correlation coefficient on the validation set.

Mutated residues (Mean Atomic Position 
: MAP)
features : 

● Atomic embedding
● WT physico chemical embedding
● Mutant physico chemical embedding

Max 1 hop neighbour from mutated 
residues. Same features

Backbone edge: max length 9Å
features :

● Distance C𝛂-C𝛂
● Distance MAP-MAP
● Sum size C𝛂- all atoms side chain WT
● Sum size all- all atoms side chain WT
● Sum size C𝛂- all atoms side chain Mut
● Sum size all- all atoms side chain Mut

 

Other edge: max length 9Å . Same 
features

Figure 3: Definition of the residue sub-graph build around mutated residues.
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Figure 4: Evaluation of our scorer for differing numbers of mutations. Purple markers for Spearman
rank correlation p-value<0.05 else orange. Marker size is proportional to the number of mutations.

4 RESULTS

4.1 ATOMIC ENVIRONMENT EMBEDDER

With our AE implementation, we reached a macro averaged F1 score of 0.63 on the training set and
of 0.61 (accuracy = 0.65) on the validation set, which is comparable to the RASP 0.63 accuracy also
on a similar but different validation set (we shuffled the structures), full results in Appendix Table 4.
The confusion matrix on the validation set (Figure 9) is also provided in the Appendix and shows a
variable but strong ability of the model to match ground truth.

4.2 MUTANT STABILITY SCORER

Evaluation metrics for the different splits are available in Figure 10, as well as a description of
the Mega-scale data-set in the Appendix: A. Given the unique qualities of the Mega-scale data-set,
we decided to evaluate the model in what we believe is a more stringent way than simply looking
at the Mega-Scale test split (metrics are provided for the split too). Indeed, the Mega-scale data-
set only contains domains and not full proteins, and structures were resolved computationally using
AlphaFold (Jumper et al., 2021). The Mega-scale data-set also only contains up to double mutations.
Hence, we decided to evaluate our model on a more standard data-set with experimentally resolved
entire protein structures: ThermoMutDB (Xavier et al., 2021) (a description of the ThermoMutDB
data-set is also provided in the Appendix: A.3).
Over the pooled ThermoMutDB data-set our scorer achieved RMSE = 2.288; Spearmanr = 0.311;
Pearsonr = 0.251 Table 1. Interestingly the model seems to generalise well to structures with more
than two mutations (Figure 4), for which it has not been directly trained. Spearman correlation, for
example, spans a range between 0.159 and 0.381, for a number of mutations going from 1 to 3.
At the level of individual structures (Figure 5), model performances can also vary quite drastically
from WTs with at least 100 mutants(for an overview per pdbs see Figure 11).
Finally, we also compared, for a subset of one-point mutations, our work to RASP (Figure 12).
On pooled single mutations our proposed approach performs significantly worse (Pearsonr RASP
= 0.53; Pearsonr for this work = 0.42 ). Yet our approach outperforms RASP for some pdbs, and
suffers from the same drawbacks as RASP on some proteins; structures for which RASP poorly
predicts mutational effect are also, with a few exceptions, poorly predicted by our method. Yet,
overall our performance is still significant, even more so when put in perspective with the fact that
RASP regression is an ensemble model.
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Training Set Validation Set Test Set ThermoMutDB
Spearman r 0.754 0.518 0.442 0.311
Pearson r 0.758 0.562 0.412 0.251

RMSE 0.794 0.740 0.935 2.288

Table 1: Evaluation metrics for the ∆∆G scorer

Number of mutations 1 2 3 4 5 6 7 9
Spearman r 0.349 0.159 0.381 0.012 0.271 0.714 -0.500 1.000
Pearson r 0.342 0.077 0.346 0.079 0.202 0.613 -0.242 1.000

RMSE 2.109 2.571 2.378 1.972 2.448 1.965 1.588 0.810

Table 2: Metrics for our scorer across different numbers of mutations.

5 DISCUSSION

These preliminary results show that the combination of decoupling of the atomic and residue scales,
with the usage of an EGNN architecture, to allow flexibility on the number of mutations accessible
to score, is promising. In realising this exploratory work we faced two main challenges:

1. The scorer had a tendency to over-fit the Mega-scale data-set.

2. The current choice of a threshold for the residue graph is constrained. We ended up choos-
ing 9Å, where depending on the residues, a typical length for such interactions could go
to 16Å or more (for two tryptophans, given the max distance between their own atoms).
But such a threshold would lead to a hyper-connected graph that would hinder the train-
ing. Generally speaking the graph building hyper-parameters, for example, the number of
hops around the recovered nodes of interest (here one: neighbours one hop from the mutant
nodes), would influence hyper-connectivity and our ability to not over-fit.

We believe both of those problems, particularly the latter point, could be partially alleviated by find-
ing a better encoding of meaningful distances of interaction, as well as including a more appropriate
way to sum messages within the message passing loop (Ying et al., 2021).
In terms of evaluating scoring performance, when exploring the ThermoMutDB data-set as a po-
tential out-of-distribution test set, we realised that Mega-scale has a significant advantage compared
to all of the other available data-sets; it is experimentally consistent, both for ∆∆G measurement
and the use of AlphaFold for structure prediction. This is not the case for ThermoMutDB which
is an aggregate of results obtained with a variety of methods for both stability measurement and
structure determination, making it a challenge to understand why and how the model is failing to
give accurate predictions. Training on such a data-set which will, for example, not include certain
types of interactions, such as inter-domain interactions, as well as not containing the inherent real
noise of protein structure prediction, is advantageous for its consistency and an inconvenience for
its representational inaccuracies when compared to more ”realistic” data-sets. In terms of compu-
tational performance, as we are using GNNs, we recognize that we lose an important aspect of the
RASP model which is Rapid by naming. Yet, as the most time-consuming part is the construction
of the residue sub-graph (roughly 5 seconds for subgraphs of less than 96 nodes with 8 CPUs, an
A100 GPU and vectorization/jit features within JAX) saving it once and slightly modifying it to in-
clude the specific mutations later on, makes the model very efficient at assessing scores for multiple
combinations of mutants within a pre-defined set of positions.
Finally, since we decoupled the atomic and the residue scales, it is now possible to swap elements
from other successful models: for example ThermoNet. This exposes a new bottleneck, or rather
a new further challenge, as it implies the creation of a new data-set including structures for each
mutant present in the Mega-scale data-set. That would also have been the case if one wanted to
include anti-symmetry properties within the model.
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PDB ID 1BNI 1STN 1VQB 1RX4
Spearman r 0.503 0.462 0.519 0.479
Pearson r 0.456 0.456 0.523 0.453

RMSE 1.651 1.632 2.526 1.193

Table 3: Scorer performance metrics on proteins with over 100 data points, as shown in Figure 5.

6 CONCLUSION

In this work, we explored the possibility of using graph neural network models for scoring multiple
substitution effects on protein stability. Our approach, based on the decoupling of atomic and residue
scales by successively training two different scale-specific E-GNN models on massive experimental
data-sets, shows promising results. Indeed, the model demonstrates an ability to predict effects of a
variable number of mutations, even beyond what it has been trained on. Yet some key parameters
of this modelling still need to be better understood; for example, a biologically reasonable edge
distance threshold and an overall more appropriate way to handle connectivity in the created residue
sub-graph.

Figure 5: Evaluation of our scorer on individual structures, PDBs Burley et al. (2017), chosen with
at least 100 occurrences in the ThermoMutDB test data-set. All four structures have a significant
prediction correlation (p-value<0.05) and the marker size is proportional to the number of mutations
in the experiment. Further results breakdown in Table 3.
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land, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray

9

https://linkinghub.elsevier.com/retrieve/pii/S0958166906001455
https://linkinghub.elsevier.com/retrieve/pii/S0958166906001455
https://pubs.acs.org/doi/10.1021/acs.jcim.8b00697
https://onlinelibrary.wiley.com/doi/10.1002/jcc.20290
https://onlinelibrary.wiley.com/doi/10.1002/jcc.20290
https://www.annualreviews.org/doi/10.1146/annurev.biochem.77.062906.171838
https://www.annualreviews.org/doi/10.1146/annurev.biochem.77.062906.171838
https://www.mlsb.io/
https://linkinghub.elsevier.com/retrieve/pii/S0022283616000310
https://academic.oup.com/bib/article/doi/10.1093/bib/bbab184/6289890
https://academic.oup.com/bib/article/doi/10.1093/bib/bbab184/6289890


Published at the MLDD workshop, ICLR 2023

Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure pre-
diction with alphafold. Nature, 596(7873):583–589, Aug 2021. ISSN 0028-0836, 1476-
4687. doi: 10.1038/s41586-021-03819-2. URL https://www.nature.com/articles/
s41586-021-03819-2.

S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and M. Kanehisa.
Aaindex: amino acid index database, progress report 2008. Nucleic Acids Research, 36:
D202–D205, Dec 2007. ISSN 0305-1048, 1362-4962. doi: 10.1093/nar/gkm998. URL https:
//academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm998.

Elizabeth H. Kellogg, Andrew Leaver-Fay, and David Baker. Role of conformational sampling
in computing mutation-induced changes in protein structure and stability: Conformational sam-
pling in computing mutation-induced changes. Proteins: Structure, Function, and Bioinfor-
matics, 79(3):830–838, Mar 2011. ISSN 08873585. doi: 10.1002/prot.22921. URL https:
//onlinelibrary.wiley.com/doi/10.1002/prot.22921.

Bian Li, Yucheng T Yang, John A Capra, and Mark B Gerstein. Predicting changes in protein
thermodynamic stability upon point mutation with deep 3d convolutional neural networks. PLoS
computational biology, 16(11):e1008291, 2020.

Gen Li, Shailesh Kumar Panday, and Emil Alexov. Saafec-seq: A sequence-based method for pre-
dicting the effect of single point mutations on protein thermodynamic stability. International Jour-
nal of Molecular Sciences, 22(2):606, Jan 2021. ISSN 1422-0067. doi: 10.3390/ijms22020606.
URL https://www.mdpi.com/1422-0067/22/2/606.

Anna Marabotti, Bernardina Scafuri, and Angelo Facchiano. Predicting the stability of mu-
tant proteins by computational approaches: an overview. Briefings in Bioinformatics, 22(3):
bbaa074, May 2021. ISSN 1467-5463, 1477-4054. doi: 10.1093/bib/bbaa074. URL https:
//academic.oup.com/bib/article/doi/10.1093/bib/bbaa074/5850907.

Brian W. Matthews. Structural and genetic analysis of protein stability. Annual Review
of Biochemistry, 62(1):139–160, Jun 1993. ISSN 0066-4154, 1545-4509. doi: 10.
1146/annurev.bi.62.070193.001035. URL https://www.annualreviews.org/doi/
10.1146/annurev.bi.62.070193.001035.

Corrado Pancotti, Silvia Benevenuta, Valeria Repetto, Giovanni Birolo, Emidio Capriotti, Tiziana
Sanavia, and Piero Fariselli. A deep-learning sequence-based method to predict protein stability
changes upon genetic variations. Genes, 12(6):911, 2021.

Yunhui Peng and Emil Alexov. Investigating the linkage between disease-causing amino acid vari-
ants and their effect on protein stability and binding. Proteins: Structure, Function, and Bioinfor-
matics, 84(2):232–239, 2016. doi: 10.1002/prot.24968.

Rui Qing, Shilei Hao, Eva Smorodina, David Jin, Arthur Zalevsky, and Shuguang Zhang. Protein de-
sign: From the aspect of water solubility and stability. Chemical Reviews, 122(18):14085–14179,
2022. doi: 10.1021/acs.chemrev.1c00757.

Kathrin Schurmann, Monika Anton, Igor Ivanov, Constanze Richter, Hartmut Kuhn, and Matthias
Walther. Molecular basis for the reduced catalytic activity of the naturally occurring t560m
mutant of human 12/15-lipoxygenase that has been implicated in coronary artery disease.
Journal of Biological Chemistry, 286(27):23920–23927, Jul 2011. ISSN 00219258. doi:
10.1074/jbc.M110.211821. URL https://linkinghub.elsevier.com/retrieve/
pii/S0021925819487437.

J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, and L. Serrano. The foldx web
server: an online force field. Nucleic Acids Research, 33:W382–W388, Jul 2005. ISSN 0305-
1048, 1362-4962. doi: 10.1093/nar/gki387. URL https://academic.oup.com/nar/
article-lookup/doi/10.1093/nar/gki387.

Shannon Stefl, Hafumi Nishi, Marharyta Petukh, Anna R. Panchenko, and Emil Alexov. Molecular
mechanisms of disease-causing missense mutations. Journal of Molecular Biology, 425(21):
3919–3936, Nov 2013. ISSN 00222836. doi: 10.1016/j.jmb.2013.07.014. URL https://
linkinghub.elsevier.com/retrieve/pii/S0022283613004464.

10

https://www.nature.com/articles/s41586-021-03819-2
https://www.nature.com/articles/s41586-021-03819-2
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm998
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm998
https://onlinelibrary.wiley.com/doi/10.1002/prot.22921
https://onlinelibrary.wiley.com/doi/10.1002/prot.22921
https://www.mdpi.com/1422-0067/22/2/606
https://academic.oup.com/bib/article/doi/10.1093/bib/bbaa074/5850907
https://academic.oup.com/bib/article/doi/10.1093/bib/bbaa074/5850907
https://www.annualreviews.org/doi/10.1146/annurev.bi.62.070193.001035
https://www.annualreviews.org/doi/10.1146/annurev.bi.62.070193.001035
https://linkinghub.elsevier.com/retrieve/pii/S0021925819487437
https://linkinghub.elsevier.com/retrieve/pii/S0021925819487437
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gki387
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gki387
https://linkinghub.elsevier.com/retrieve/pii/S0022283613004464
https://linkinghub.elsevier.com/retrieve/pii/S0022283613004464


Published at the MLDD workshop, ICLR 2023

Kotaro Tsuboyama, Justas Dauparas, Jonathan Chen, Elodie Laine, Yasser M Behbahani, Jonathan J
Weinstein, Niall M Mangan, Sergey Ovchinnikov, and Gabriel J Rocklin. Mega-scale experimen-
tal analysis of protein folding stability in biology and protein design. bioRxiv, 2022.

Shuyu Wang, Hongzhou Tang, Peng Shan, and Lei Zuo. Pros-gnn: Predicting effects of mutations
on protein stability using graph neural networks. bioRxiv, pp. 2021–10, 2021.

Joicymara S Xavier, Thanh-Binh Nguyen, Malancha Karmarkar, Stephanie Portelli, Pâmela M
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A APPENDIX

A.1 DATA-SET FOR ATOMIC EMBEDDING (AE) TRAINING

As mentioned already we used the data-set provided by the RASP paper. We split the data by PDB
id, keeping 90% of the total pdbs for training and used the 10% left for validation.
The pdbs kept for validation are the following:
’3VUP’, ’1A79’, ’3TFI’, ’1UXY’, ’1GNT’, ’3ZYZ’, ’2DEI’, ’4U9S’, ’4WGX’, ’4BGV’, ’1V70’,
’2HPA’, ’1KT5’, ’1BKP’, ’1FN9’, ’1LJ5’, ’4JZC’, ’1IJB’, ’2OI0’, ’4OO4’, ’5DNL’, ’1YB6’,
’5UL9’, ’1R4C’, ’4LD6’, ’5D6O’, ’1ZZG’, ’2O6S’, ’1MUN’, ’3KAN’, ’4AC1’, ’1GU7’, ’1LKT’,
’1G2B’, ’4PGG’, ’4CNP’, ’4FD9’, ’3NO0’, ’4HFQ’, ’1LDD’, ’1KWF’, ’1ZK9’, ’4BK7’, ’4R01’,
’2JA9’, ’4QXE’, ’1QEX’, ’2DP9’, ’4WFQ’, ’2WCU’, ’2I4A’, ’5BQ1’, ’5E4X’, ’3HCN’, ’1DAB’,
’1HBK’, ’2GAS’, ’1GNY’, ’1HTW’, ’1AOL’, ’5ML3’, ’2GGO’, ’1C5E’, ’3K1D’, ’1H2W’, ’2FC3’,
’2NWF’, ’1OIO’, ’4LWU’, ’5CMO’, ’4IY8’, ’3SBM’, ’3ZK1’, ’3D4M’, ’2BPS’, ’2D3Y’, ’4FD2’,
’5EG7’, ’2QJL’, ’1UZB’, ’4REL’, ’1POY’, ’1PGW’, ’1HJS’, ’4WHI’, ’1JKE’, ’5KB3’, ’2IXK’,
’1GK2’, ’2IJX’, ’3C8Y’, ’3POR’, ’1NAA’, ’1C39’, ’4WTO’, ’3G4H’, ’1A3H’, ’5EUV’, ’1UKU’,
’3SEB’, ’5H9I’, ’5N20’, ’5FXS’, ’3A4C’, ’1MIX’, ’5A7I’, ’1XNI’, ’4YTE’, ’2QCP’, ’1A9T’,
’4MIY’, ’1TYJ’, ’4I9A’, ’2Z5W’, ’8OHM’, ’5LQA’, ’2QXU’, ’5GMD’, ’1NHP’, ’1B87’, ’2OV0’,
’5EMI’, ’4PS2’, ’3TTY’, ’3UFC’, ’1H2E’, ’4F8X’, ’1UD2’, ’1T77’, ’1MV8’, ’1F2D’, ’1KEW’,
’4XQM’, ’5AN4’, ’1QUA’, ’2EBO’, ’3PJU’, ’3ZK9’, ’4GOC’, ’2Q9V’, ’5GZC’, ’2NQL’, ’5WS7’,
’2QIA’, ’1RKB’, ’4NVB’, ’3WR7’, ’4YHE’, ’2D58’, ’3E4G’, ’2CZQ’, ’1H70’, ’2R2D’, ’4A02’,
’3E9U’, ’1DD3’, ’2GDM’, ’1G6X’, ’3G5P’, ’2ECU’, ’2RKQ’, ’3TK0’, ’4OM8’, ’1UTG’, ’2JL1’,
’5FJQ’, ’1W53’, ’1HUL’, ’2QY1’, ’2CVI’, ’3NU1’, ’3RJP’, ’1UOY’, ’3Q46’, ’4MHP’, ’5LN4’,
’5KY2’, ’1LSL’, ’2H0M’, ’1ITX’, ’2YCI’, ’2FYG’, ’1F00’, ’1HJZ’, ’2A28’, ’3PGL’, ’2Z51’,
’5JDT’, ’1IT2’, ’3TDT’, ’1PCF’, ’5GJ6’, ’4O0A’, ’1EU4’, ’2QHT’, ’3LE2’, ’3OQT’, ’1LBV’,
’3TM0’, ’1KQP’, ’1LWD’, ’3IPJ’, ’2DSX’, ’1TJY’, ’2W5Q’, ’3KJH’, ’4FAZ’, ’1UCD’, ’1AO3’,
’2W72’, ’4LH9’, ’2EK0’, ’4EQS’, ’5HZ7’, ’2BEZ’, ’5MF5’, ’1CMB’, ’4ZPC’, ’2GWM’, ’2E9U’,
’1KTA’, ’1D2C’, ’1DCI’, ’4F6T’, ’1K0F’, ’5HZ8’, ’1LXY’, ’1QZM’, ’2F4M’, ’2JLQ’, ’2VBT’,
’1CFZ’, ’1N81’
Overall we ended up with: 945497 data points (over 2100 pdbs) for training and 107477 for valida-
tion (over 233 pdbs). The distributions of residues in both training and validation sets are drawn in
Figure 6.
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RASP on This work on This work on
validation set validation set training set

F1 macro Average - 0.61 0.63
Accuracy 0.63 0.65 0.67

Table 4: Evaluation metrics for the AE embedder. Please note that the RASP validation set differs
from our validation set as we used a different random seed.

A] B]

Figure 6: Distribution of residue identities used to train our AE embedder.

# pdbs # single mutation # double mutations
Training set 215 284461 136018

Validation set 90 68050 322
Test set 6 3451 65

Table 5: Statistic for the Mega-scale data-set subset used for training our scorer.
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A.2 MEGA-SCALE DATA-SET USED

We split the Mega-scale data-set according to pdb ids (Table 5). The Mega-scale data-set has some
replica measurements in it (Figure 7), that we used as regularisation by including those different
replica values during training. In general, in this data-set, multiple measurements will be performed
at the same position but for different mutants (Figure 7).

The pdbs kept within the distribution test (Mega-scale test set) are the following:
’2M9I’, ’2N4T’, ’2YSC’, ’5AHT’, ’5XR0’, ’6YSE’.

The pdbs kept for validation are the following:

’EEHEE-rd3-0602’, ’EEHEE-rd4-0371’, ’HEEH-KT-rd6-1415’, ’EEHEE-rd4-0003’,
’EEHEE-rd4-0424’, ’HHH-rd4-0849’, ’HEEH-rd4-0097’, ’EEHEE-rd3-1702’,
’HHH-rd1-0335’, ’EEHEE-rd4-0256’, ’EEHEE-rd3-1049’, ’EEHEE-rd4-0794’,
’HEEH-rd4-0349’, ’HEEH-KT-rd6-0746’, ’EEHEE-rd4-0763’, ’EEHEE-rd3-1058’,
’HHH-rd4-0870’, ’EEHEE-rd4-0647’, ’HHH-rd4-0124’, ’EEHEE-rd3-1498’,
’HEEH-KT-rd6-0007’, ’HHH-rd1-0033’, ’HEEH-KT-rd6-0200’, ’HHH-rd2-0181’,
’HHH-rd1-0473’, ’EEHEE-rd4-0481’, ’2MWA’, ’HHH-rd1-0606’,
’EEHEE-rd4-0469’, ’EEHEE-rd4-0363’, ’HEEH-KT-rd6-3632’, ’HEEH-KT-rd6-0790’,
’HEEH-KT-rd6-0793’, ’HHH-rd1-0142’, ’HHH-rd1-0516’, ’EEHEE-rd4-0470’,
’6FVC’, ’HHH-rd4-0557’, ’EEHEE-rd3-1627’, ’HHH-rd1-0578’,
’HHH-rd2-0155’, ’HEEH-rd4-0094’, ’HHH-rd3-0008’, ’2M8E’,
’HHH-rd1-0196’, ’EEHEE-rd3-0094’, ’EEHEE-rd3-0146’, ’HHH-rd1-0598’,
’2M8J’, ’EEHEE-rd3-1817’, ’EEHEE-rd3-1558’, ’HHH-rd4-0613’,
’EEHEE-rd3-1367’, ’EEHEE-rd3-1587’, ’HEEH-rd3-0223’, ’EEHEE-rd4-0418’,
’EEHEE-rd3-0657’, ’5UYO’, ’EHEE-rd4-0300’, ’EEHEE-rd2-0770’,
’EHEE-rd4-0195’, ’HHH-rd4-0816’, ’EEHEE-rd4-0784’, ’EEHEE-rd3-1810’,
’EHEE-rd1-0101’, ’EHEE-rd2-0372’, ’EHEE-rd2-0196’, ’HHH-rd1-0756’,
’EHEE-rd4-0463’, ’EHEE-rd1-0407’, ’EHEE-rd4-0325’, ’2LX2’,
’EHEE-rd4-0098’, ’EHEE-rd3-0067’, ’2KCF’, ’EHEE-rd3-0053’,
’EHEE-rd3-0035’, ’2RRU’, ’EHEE-rd4-0340’, ’EHEE-rd4-0840’,
’EHEE-rd4-0726’, ’EHEE-rd4-0172’, ’EHEE-rd4-0086’, ’EHEE-rd2-1257’,
’EHEE-rd4-0394’, ’EHEE-rd2-0601’, ’EHEE-rd4-0044’, ’EHEE-rd2-0191’,
’EHEE-rd2-0751’, ’EHEE-rd4-0864’.

A.3 THERMOMUTDB DATA-SET USED

We selected data points for which pdbs were retrievable, WT position in pdbs matched variant
coding name, and ∆∆G was available. Whenever ThermoMutDB had replicates we merged them
to their average value. Finally, we removed pdbs that were shared with the Mega-scale data-set. We
thus ended up with 5514 data points over 322 pdbs and a range of multiple mutations as big as 15
(Figure 8).

A.4 FIGURES AND INFORMATION RELATED TO THE EMBEDDER MODEL

The architecture of the AE embedder is described in Table 6 and its training hyper-parameters in
Table 8.

A.5 FIGURES AND INFORMATION RELATED TO THE SCORER MODEL

The architecture of the scorer is described in Table ?? and its training hyper-parameters in Table 8.
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Figure 7: Overview of the structure of our Mega-scale subset, in terms of mutational multiplicity at
a given site as well as replica measurement consistency.

Figure 8: Distribution of the number of mutations in the subset of ThermomMutDB that we used
for testing.
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Outputs size Activation
Φe [24,64] Swish 4 EGCL layers

Haiku implemented
MLP net

Φx [32,1] Swish
Φh [24,64] Swish

Node features embedder [64] None Haiku implemented
MLP netEdge features embedder [64] None

Pre scoring [64] None

Output [20] None (softmax in-
cluded in loss func-
tion)

Haiku implemented
linear layer

Table 6: Detailed view of the architecture of our EGNN AE. In a very Haiku way, only the output
sizes of the different linear layers within the used MLP are presented. The naming of the modules
from the EGCL layers follows (Garcia Satorras et al., 2021) naming. Other naming follows Figure2.

Outputs size Activation
Φe [6,8] Swish 2 EGCL layers

Haiku implemented
MLP net

Φx [8,1] Swish
Φh [6,8] Swish

Node features embedder [8] None Haiku implemented
MLP netEdge features embedder [8] None

Pre scoring [10] None

Output [1] sigmoid (Data is
Fermi transformed)

Haiku implemented
linear layer

Table 7: Detailed view of the architecture of our EGNN scorer. In a very Haiku way, only the output
sizes of the different linear layers within the used MLP are presented. The naming of the modules
from the EGCL layers follows (Garcia Satorras et al., 2021) naming. Other naming follows Figure2

Embedder Scorer
Weight Decay (AdamW) 1e−6 1e−2

Learning rate 3e−4 3e−5

Batch Size 96 480
Max number of nodes 500 80

Max number of nodes in batch 500 ∗BatchSize 80 ∗BatchSize
Max number of edges in batch 5001.5∗BatchSize 801.5 ∗BatchSize

Table 8: Hyper-parameters used for both training our model and building the different graphs.
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Figure 9: Confusion matrix on the validation set for our embedder. Numbers inside the matrix
correspond to counts and the color gradient corresponds to the fraction of predicted labels within a
ground truth label category.

A] B] C]

Figure 10: Scorer model evaluation on training, validation and test set splits from Mega-scale. A]
Mega-scale training set. B] Mega-scale validation set. C] Mega-scale test set.
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A] B]

Figure 11: Overview of the scorer performance over all the pdbs of ThermoMutDB having more
than 15 data points. A] In this plot each point is a pair (Spearman r, Spearman p value) calculated
per pdbs. Each point is thus a different pdb. Vertical black line indicates p value =0.05. Marker size
is proportional to the number of points used in the correlation calculation B] Distribution of root
mean squared error (RMSE) per pdb.

A.6 THERMOMUTDB SUBSET FOR COMPARISON PERFORMANCE WITH RASP

The PDBs id used are : ’1rtb’, ’1dkt’, ’4lyz’, ’1ycc’, ’1thq’, ’1rx4’, ’1ttg’, ’1stn’, ’1aps’, ’1sak’,
’3bdc’, ’2trx’, ’1cun’, ’1amq’, ’1n88’, ’1bta’, ’5emz’, ’3mbp’, ’2abd’, ’2brd’, ’1cey’, ’1hfy’,
’1bni’, ’1ris’, ’1arr’, ’2lzm’, ’2jie’, ’2afg’, ’1fkj’, ’1g3p’, ’5azu’, ’2pr5’, ’1h7m’, ’1lz1’, ’4hxj’,
’1rn1’, ’1ftg’, ’1bvc’, ’1bpi’, ’1bnz’, ’1igv’, ’1fc1’, ’1tup’, ’1l63’, ’1wq5’, ’1vqb’, ’1div’, ’1ten’
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Figure 12: Comparison between RASP and our work predicting on a subset of the ThermoMutDB
data-set. Data points, and more specifically pdbs, were kept in the subset if a pdb had more than 15
data points with a single substitution mutation. Marker size is proportional to the number of points
used for calculating the coefficient of correlation. Figure title describes the coefficient of correlation
for the full subset : meaning without the breaking down by PDB ID.
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