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Abstract

This paper focuses on reducing the communication cost of federated learning by exploring
generalization bounds and representation learning. We first characterize a tighter general-
ization bound for one-round federated learning based on local clients’ generalizations and
heterogeneity of data distribution (non-iid scenario). We also characterize a generalization
bound in R-round federated learning and its relation to the number of local updates (local
stochastic gradient descents (SGDs)). Then, based on our generalization bound analysis
and its interpretation through representation learning, we infer that less frequent aggrega-
tions for the representation extractor (typically corresponds to initial layers) compared to
the head (usually the final layers) leads to the creation of more generalizable models, par-
ticularly in non-iid scenarios. We design a novel Federated Learning with Adaptive Local
Steps (FedALS) algorithm based on our generalization bound and representation learning
analysis. FedALS employs varying aggregation frequencies for different parts of the model,
so reduces the communication cost. The paper is followed with experimental results showing
the effectiveness of FedALS. Our codes are available for reproducibility.

1 Introduction

Federated learning advocates that multiple clients collaboratively train machine learning models under the
coordination of a parameter server (central aggregator) (McMahan et al., 2016) by leveraging all clients’
computational capacities. Despite its promise, federated learning suffers from high communication costs
between clients and the parameter server. In particular, exchanging machine learning models between
clients and the parameter server is costly, especially for large models, which are typical in today’s machine
learning applications (Konecný et al., 2016; Zhang et al., 2013; Barnes et al., 2020; Braverman et al., 2015;
Zibaeirad et al., 2024). Furthermore, the uplink bandwidth of clients may be limited, time-varying and
expensive. Thus, there is an increasing interest in reducing the communication cost of federated learning via
(i) multiple local updates, also known as “Local SGD” (Stich, 2018; Stich & Karimireddy, 2019; Wang &
Joshi, 2018), (ii) pruning Wangni et al. (2017); Jiang et al. (2022), (iii) quantization Bernstein et al. (2018);
Reisizadeh et al. (2020), etc. In this paper, we take a dramatically different and complementary approach:
Aggregating the different parts of a machine learning model at different frequencies in a federated learning
setup.

The primary purpose of communication in federated learning is to periodically aggregate local models to
reduce the consensus distance among clients. This practice helps maintain the overall optimization process
on a trajectory toward global optimization. It is important to note that when the consensus distance among
clients becomes substantial, the convergence rate reduces. This occurs as individual clients gradually veer
towards their respective local optima without being synchronized with the models from other clients. This
issue is amplified when the data distribution among clients is non-iid. It has been demonstrated that the
consensus distance is correlated to (i) the randomness in each client’s own dataset, which causes variation
in consecutive local gradients, as well as (ii) the dissimilarity in loss functions among clients due to non-
iidness (Stich & Karimireddy, 2019; Gholami & Seferoglu, 2024). More specifically, the consensus distance
at iteration t is defined as 1

K

∑K
k=1 ∥θ̂t − θk,t∥2, where θ̂t = 1

K

∑K
k=1 θk,t, K is the number of clients, θk,t is

the local model at client k at iteration t, and ∥ · ∥2 is squared l2 norm. Note that the consensus distance goes
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to zero when global aggregation is performed at each communication round. This makes the communication
of models between clients and the parameter server crucial, but this introduces significant communication
overhead. This paper aims to reduce federated learning communication overhead through the following
contributions.

Contribution I: Improved Generalization Error Bound. The generalization error of a learning model is de-
fined as the difference between the model’s empirical risk and population risks. (We provide a mathematical
definition in Section 3). Existing approaches for training models mostly minimize the empirical risk or its
variants. However, a small population risk is desired, showing how well the model performs in the test
phase as it denotes the loss that occurs when new samples are randomly drawn from the distribution. Note
that a small empirical risk and a reduced generalization error correspond to a low population risk. Thus,
there is an increasing interest in establishing an upper limit for the generalization error and understanding
the underlying factors that affect the generalization error. The generalization error analysis is also impor-
tant to quantitatively assess the generalization characteristics of trained models, provide reliable guarantees
concerning their anticipated performance quality, and design new models and systems.

In this paper, we offer a tighter generalization bound compared to the state of the art Barnes et al. (2022);
Yagli et al. (2020); Sun et al. (2023) for federated learning, considering local clients’ generalizations and
non-iidness (i.e., heterogeneous data distribution across the clients).

Contribution II: Representation Learning Interpretation. Recent studies have demonstrated that the con-
cept of representation learning is a promising approach to reducing the communication cost of federated
learning (Collins et al., 2021). This is achieved by leveraging the shared representations in all clients’
datasets. For example, let us consider a federated learning application for image classification, where differ-
ent clients have datasets of different animals. Despite each client having a different dataset (one client has
dog images, another has cat images, etc.), these images usually have common features such as an eye/ear
shape. These shared features, typically extracted in the same way for different types of animals, require
consistent layers of a neural network to extract them, whether the animal is a dog or a cat. As a result,
these layers demonstrate similarity (i.e., less variation) across clients even when the datasets are non-iid.
This implies that the consensus distance for this part of the model (feature extraction) is likely smaller.
Based on these observations, our key idea is to reduce the aggregation frequency of the layers that show high
similarity, where these layers are updated locally between consecutive aggregations. This approach would
reduce the communication cost of federated learning as some layers are aggregated, hence their parameters
are exchanged, less frequently. The next example scratches the surface of the problem for a toy example.

Example 1. We consider a federated learning setup of five clients with a central parameter server to train a
ResNet-20 (He et al., 2015) on a heterogeneous partition of CIFAR-10 dataset (Krizhevsky, 2009). We use
Federated Averaging (FedAvg) (McMahan et al., 2016) as an aggregation algorithm since it is the dominant
algorithm in federated learning. We applied FedAvg with 50 local steps prior to each averaging step, denoted
as τ = 50. Non-iidness is introduced by allocating 2 classes to each client. Finally, we evaluate the quantity
of the average consensus distance for each model layer during the optimization in Fig. 1. It is clear that the
initial layers have smaller consensus distance as compared to the final layers. This is due to initial layers’
role in extracting representations from input data and their higher similarity across clients.

The above example indicates that initial layers show higher similarity, so they can be aggregated less fre-
quently. Additionally, several empirical studies (Reddi et al., 2021; Yu et al., 2020) show that federated
learning with multiple local updates per round learns a generalizable representation and is unexpectedly
successful in non-iid settings. These studies encourage us to delve deeper into investigating how local up-
dates and model aggregation frequency for the model’s representation extractor and the head affect model
generalization.

In this paper, based on our improved generalization bound analysis and our representation learning inter-
pretation of this analysis, we showed for the first time that employing different frequencies of aggregation,
i.e., the number of local updates (local SGDs), for the representation extractor (typically corresponding to
initial layers) and the head (final label prediction layers), leads to the creation of more generalizable models
particularly in non-iid scenarios.
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Figure 1: Average consensus distance over time for different layers during ResNet-20 training with FedAvg
on CIFAR-10 (5 clients, non-iid, 2 classes per client) shows that early layers have lower consensus distance.

Contribution III: Design of FedALS. We design a novel Federated Learning with Adaptive Local Steps
(FedALS) algorithm based on our generalization error bound analysis and its representation learning inter-
pretation. FedALS employs varying aggregation frequencies for different parts of the model.

Contribution IV: Evaluation. We evaluate the performance of FedALS using deep neural network model
ResNet-20 for CIFAR-10, CIFAR-100 (Krizhevsky, 2009), SVHN (Netzer et al., 2011), and MNIST (Lecun
et al., 1998) datasets. We also estimate the impact of FedALS on large language models (LLMs) in fine-tuning
OPT-125M (Zhang et al., 2022) on the Multi-Genre Natural Language Inference (MultiNLI) corpus (Williams
et al., 2018). We consider both iid and non-iid data distributions. Experimental results confirm that FedALS
outperforms the baselines in terms of accuracy in non-iid setups while also saving on communication costs
across all setups.

2 Related Work

There has been increasing interest in distributed learning recently, largely driven by Federated Learning.
Several studies have highlighted that these algorithms achieve convergence to a global optimum or a sta-
tionary point of the overall objective, particularly in convex or non-convex scenarios (Stich & Karimireddy,
2019; Stich, 2018; Gholami & Seferoglu, 2024; Lian et al., 2018; Kairouz et al., 2019). However, it is widely
accepted that communication cost is the major bottleneck for these techniques in large-scale optimization
applications (Konecný et al., 2016; Lin et al., 2017). To tackle this issue, two primary strategies are put
forth: the utilization of mini-batch parallel SGD, and the adoption of Local SGD. These approaches aim
to enhance the equilibrium between computation and communication. Woodworth et al. (2020b;a) attempt
to theoretically capture the distinction to comprehend under what circumstances Local SGD outperforms
minibatch SGD.

Local SGD appears to be more intuitive compared to minibatch SGD, as it ensures progress towards the
optimum even in cases where workers are not communicating and employing a mini-batch size that is too large
may lead to a decrease in performance (Lin et al., 2017). However, due to the fact that individual gradients
for each worker are computed at distinct instances, this technique brings about residual errors. As a result,
a compromise arises between reducing communication rounds and introducing supplementary errors into the
gradient estimations. This becomes increasingly significant when data is unevenly distributed across nodes.
There are several decentralized algorithms that have been shown to mitigate heterogeneity (Karimireddy
et al., 2019; Liu et al., 2023). One prominent example is the Stochastic Controlled Averaging algorithm
(SCAFFOLD) (Karimireddy et al., 2019), which addresses the node drift caused by non-iid characteristics
of data distribution. They establish the notion that SCAFFOLD demonstrates a convergence rate at least
equivalent to SGD, ensuring convergence even when dealing with highly non-iid datasets.

However, despite these factors, multiple investigations (Reddi et al., 2021; Yu et al., 2020; Lin et al., 2020;
Gu et al., 2023), have noted that the model trained using FedAvg and incorporating multiple Local SGD
per round exhibits unexpected effectiveness when subsequently fine-tuned for individual clients in non-iid
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Federated learning setting. This implies that the utilization of FedAvg with several local updates proves
effective in acquiring a valuable data representation, which can later be employed on each node for down-
stream tasks. Following this line of reasoning, our justification will be based on the argument that the Local
SGD component of FedAvg contributes to improving performance in heterogeneous scenarios by facilitating
the acquisition of models with enhanced generalizability.

An essential characteristic of machine learning systems is their capacity to extend their performance to novel
and unseen data. This capacity, referred to as generalization, can be expressed within the framework of
statistical learning theory. There has been a line of research to characterize generalization bound in FL
Wang & Ma (2023); Mohri et al. (2019). More recently Barnes et al. (2022); Sun et al. (2023); Yagli et al.
(2020); Sefidgaran et al. (2024) considered this problem and gave upper bounds on the expected generalization
error for FL in iid setting in terms of the local generalizations of clients. These studies demonstrate a 1

K
dependency on the number of nodes. Motivated by this, our research focuses on analyzing generalization
that improves the dependency to 1

K2 in iid setting. We then use the derived insights to introduce FedALS,
aiming to enhance generalization in non-iid setup.

Our work differentiates itself from personalized federated learning work Collins et al. (2021) in a way that
our work focuses on a general federated learning setup, where a global model is trained collectively while
personalized federated learning advocates training a model from each client’s perspective. Thus, the results
are strikingly different; They show that the heads should be trained locally, while our work FedALS shows
that heads should be aggregated more frequently. They also consider only linear models, while our work is
generic. Collins et al. (2022) analyze the behavior of FedAvg in multi-task linear regression with a common
representation, focusing on the convergence behavior of the algorithm. They prove a faster convergence rate
when more than one local step is deployed per round. However, they do not address generalization in the
context of statistical learning, which is a crucial aspect of our work.

3 Background and Problem Statement

3.1 Preliminaries and Notation

We consider that we have K clients/nodes in our system, and each node has its own portion of the dataset.
For example, node k has a local dataset Sk = {zk,1, ..., zk,nk

}, where zk,i = (xk,i, yk,i) is drawn from a
distribution Dk over X × Y , where X is the input space and Y is the label space. We consider X ⊆ Rd

and Y ⊆ R . The size of the local dataset at node k is nk. The dataset across all nodes is defined as
S = {S1, ..., SK}. Data distribution across the nodes could be independent and identically distributed (iid)
or non-iid. In iid setting, we assume that D1 = ... = DK = D holds. On the other hand, non-iid setting
covers all cases where this equality does not hold.

We assume that Mθ = A(S) represents the output of a possibly stochastic function denoted as A(S), where
Mθ : X → Y represents the learned model parameterized by θ. We consider a real-valued loss function
denoted as l(Mθ , z), which assesses the model Mθ based on a sample z.

3.2 Generalization Error

We first define an empirical risk on dataset S as

RS(Mθ)=Ek∼KRSk
(Mθ)=Ek∼K

1
nk

nk∑
i=1

l(Mθ , zk,i), (1)

where K is an arbitrary distribution over nodes to weight different local risk contributions in the global risk.
Specifically, K(k) represents the contribution of node k’s loss in the global loss. In the most conventional
case, it is usually assumed to be uniform across all nodes, i.e., K(k) = 1

K for all k. RSk
(Mθ) is the empirical

risk for model Mθ on local dataset Sk. We further define a population risk for model Mθ as

R(Mθ) = Ek∼K Rk(Mθ) = Ek∼K,z∼Dk
l(Mθ , z), (2)

where Rk(Mθ) is the population risk on node k’s data distribution.
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Now, we can define the generalization error for dataset S and function A(S) as

∆A(S) = R(A(S))−RS(A(S)). (3)

The expected generalization error is expressed as ES ∆A(S), where ES [·] = E{Sk∼Dnk
k

}K
k=1

[·] is used for the
sake of notation convenience.

3.3 Federated Learning

We consider a federated learning scenario with K nodes/clients and a centralized parameter server. The
nodes update their localized models to minimize their empirical risk RSk

(Mθ) on local dataset Sk, while the
parameter server aggregates the local models to minimize the empirical risk RS(Mθ). Due to connectivity
and privacy constraints, the clients do not exchange their data with each other. One of the most widely used
federated learning algorithms is FedAvg (McMahan et al., 2016), which we explain in detail next.

At round r of FedAvg, each node k trains its model Mθk,r
= Ak,r(Sk) locally using the function/algorithm

Ak,r. The local models Mθk,r
are transmitted to the central parameter server, which merges the received

local models to aggregated model parameters θ̂r+1 = Â(θ1,r, ..., θK,r), where Â is the aggregation function.
In FedAvg, the aggregation function calculates an average, so the aggregated model is expressed as

θ̂r+1 = Ek∼K θk,r. (4)

Subsequently, the aggregated model is transmitted to all nodes. This process continues for R rounds. The
final model after R rounds of FedAvg is A(S).

The local models are usually trained using stochastic gradient descent (SGD) at each node. To reduce the
communication cost needed between the nodes and the parameter server, each node executes multiple SGD
steps using its local data after receiving an aggregated model from the parameter server. To be precise, we
have the aggregated model parameters at round r as θ̂r. Specifically, upon receiving θ̂r, node k computes

θk,r,t+1 = θk,r,t −
η

|Bk,r,t|
∑

i∈Bk,r,t

∇l(Mθk,r,t
, zk,i) (5)

for t = 0, . . . , τ − 1, where τ is the number of local SGD steps, θk,r,0 is defined as θk,r,0 = θ̂r, η is the
learning rate, Bk,r,t is the batch of samples used in local step t of round r in node k, ∇ is the gradient, and
| · | shows the size of a set. Upon completing the local steps in round r, each node transmits θk,r = θk,r,τ to
the parameter server to calculate θ̂r+1 as in (4).

3.4 Representation Learning

Our approach for analyzing the generalization error bounds for federated learning, specifically focusing on
FedAvg, uses representation learning, which we explain next.

We consider a class of models that consist of a representation extractor (e.g., ResNet). Let θ be the model
Mθ ’s parameters. We can decompose θ into two sets: ϕ containing the representation extractor’s parameters
and h containing the head parameters, i.e., θ = [ϕ, h]. Mϕ is a function that maps from the original input
space to some feature space, i.e., Mϕ : Rd → Rd′ , where usually d′ ≪ d. The function Mh performs
a low complexity mapping from the representation space to the label space, which can be expressed as
Mh : Rd′ → R.

For any x ∈ X , the output of the model is Mθ(x) = (Mh ◦Mϕ)(x) = Mh(Mϕ(x)). For instance, if Mθ is a
neural network, Mϕ represents several initial layers of the network, which are typically designed to extract
meaningful representations from the neural network’s input. On the other hand, Mh denotes the final few
layers that lead to the network’s output.
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4 Improved Generalization Bounds

In this section, we derive generalization bounds for FedAvg based on clients’ local generalization performances
in a general non-iid setting for the first time in the literature. First, we start with one-round FedAvg and
analyze its generalization bound. Then, we extend our analysis to R−round FedAvg.

4.1 One-Round Generalization Bound

In the following theorem, we determine the generalization bound for one round of FedAvg.
Theorem 4.1. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ . Mθk

= Ak(Sk) represents the
model obtained from Empirical Risk Minimization (ERM) algorithm on local dataset Sk, i.e., Mθk

=
arg minM

∑nk

i=1 l(M, zk,i), and Mθ̂ = A(S) is the model after one round of FedAvg (θ̂ = Ek∼K θk). Then,
the expected generalization error, ES ∆A(S), is upper bounded with

Ek∼K

[
LK(k)2

µ
ESk

∆Ak
(Sk)︸ ︷︷ ︸

Expected local generalization

+2
√

L

µ
K(k)

(
ES δk,A(S)︸ ︷︷ ︸

Expected non-iidness

ESk
∆Ak

(Sk)︸ ︷︷ ︸
Expected local generalization

) 1
2
]
, (6)

where δk,A(S) = RSk
(A(S)) − RSk

(Ak(Sk)) shows the level of non-iidness at client k for function A on
dataset S.

Proof: The proof of Theorem 4.1 is in Appendix B. □
Remark 4.2. We note that this theorem and its proof assume that all clients participate in learning. The
other scenario is that not all clients participate in the learning procedure. We can consider the following two
cases when not all clients participate in the learning procedure.

Case I: Sampling K̂ clients with replacement based on distribution K, followed by averaging the local models
with equal weights.

Case II: Sampling K̂ clients without replacement uniformly at random, then performing weighted averaging
of local models. Here, the weight of client k is rescaled to K(k)K

K̂
.

The generalization error results in these cases are affected by substituting 1
K̂

and K(k)K

K̂
instead of K(k) in

(6) for cases I and II, respectively. The detailed proof is provided in Appendix D.

Discussion. Note that there are two terms in the generalization error bound: (i) local generalization of each
client that shows more generalizable local models lead to a better generalization of the aggregated model, (ii)
non-iidness of each client which deteriorates generalization. Theorem 4.1 reveals a factor of K(k)2 for the first
term, which is the sole term in the iid setting. For example, in the uniform case (K(k) = 1

K ), we will observe
an improvement with a factor of 1

K2 for the iid case. This represents an enhancement compared to the state
of the art (Barnes et al., 2022; Sun et al., 2023; Yagli et al., 2020), which only demonstrates a factor of 1

K . As
a result, after the averaging process carried out by the central parameter server, the generalization error is
reduced by a factor of 1

K2 in iid case. This is interesting because one would normally expect an improvement
of 1

K based on the linear increase in the collective dataset, but this shows an additional improvement of 1
K

as well.

On the other hand, we do not see a similar behavior in non-iid case. In other words, the expected general-
ization error bound does not necessarily decrease with averaging. These results show why FedAvg works well
in iid setup but not necessarily in non-iid setup. This observation motivates us to design a new federated
learning approach for non-iid setup. The question in this context is what the new federated learning design
should be. To answer this question, we analyze R−round generalization bound in the next section.

4.2 R−Round Generalization Bound

In this setup, after R rounds, there is a sequence of weights {θ̂r}R
r=1 and the final model is θ̂R. We consider

that at round r, each node constructs its updated model as in (5) by taking τ gradient steps starting from
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θ̂r with respect to τ random mini-batches Zk,r =
⋃
{Bk,r,t}τ−1

t=0 drawn from the local dataset Sk. For this
type of iterative algorithm, we consider the following averaged empirical risk

1
R

R∑
r=1

Ek∼K

[
1
|Zk,r|

∑
i∈Zk,r

l(Mθ̂r
, zk,i)

]
. (7)

The corresponding generalization error, ∆F edAvg(S), is

1
R

R∑
r=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|
∑

i∈Zk,r

l(Mθ̂r
, zk,i)

]
. (8)

Note that the expression in (8) differs slightly from the end-to-end generalization error that would be
obtained by considering the final model Mθ̂R

and the entire dataset S. More specifically, (8) is an average
of the generalization errors measured at each round, similar to Barnes et al. (2022)). We anticipate that
the generalization error diminishes with the increasing number of data samples, so this generalization error
definition yields a more cautious upper limit and serves as a sensible measure. The next theorem characterizes
the expected generalization error bounds for R−Round FedAvg in iid and non-iid settings.
Theorem 4.3. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ . Local models at round r are cal-
culated by doing τ local gradient descent steps (5), and the local gradient variance is bounded by σ2, i.e.,
Ez∼Dk

∥∇l(Mθ , z) − Ez∼Dk
∇l(Mθ , z)∥2 ≤ σ2. The aggregated model at round r, Mθ̂r

, is obtained by per-
forming FedAvg, and the data points used in round r (i.e., Zk,r) are sampled without replacement. Then the
average generalization error, ES ∆F edAvg(S), is upper bounded by

1
R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A +

√
8L

µ
K(k)(AB) 1

2

]
, (9)

where,

A = Õ

(√
C(Mθ)
|Zk,r|

+ σ2

µτ

)
,

B = Õ

(
E{Zk,r}K

k=1
δk,A({Zk,r}K

k=1) + σ2

µτ

)
.

Õ hides constants and poly-logarithmic factors, and C(Mθ) shows the complexity of the model class of Mθ .

Proof: The proof of Theorem 4.3 is in Appendix C. □

The generalization error bound in (9) depends on the following parameters: (i) number of rounds; R, (ii)
number of samples used in every round; |Zk,r|, (iii) the complexity of the model class; C(Mθ), non-iidness;
δk,A({Zk,r}K

k=1), number of local steps in each round; τ . We note that (9) also depends on K (more
specifically K), but this dependence is similar to the discussion we had for one-round generalization, so we
skip it here.

5 FedALS: Federated Learning with Adaptive Local Steps

The number of samples and local steps in each round are crucial for minimizing the generalization error
bound, particularly in non-iid scenarios, as described in (9), where the error bound is looser compared to
the iid setup. Our key insight in this paper is that reducing the aggregation frequency, which increases both
τ and |Zk,r|, can lead to a smaller generalization error bound according to (9).

Increasing τ also increases the non-iidness among nodes, defined as:

δk,A({Zk,r}K
k=1) = RZk,r

(Mh ◦Mϕ)−RZk,r
(Mhk

◦Mϕk
),

7
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Algorithm 1 FedALS
Input: Initial model {θk,0,0 = [ϕk,0,0, hk,0,0]}K

k=1, learning rate η, number of local steps for the head τ ,
adaptation coefficient α.

1: for Round r in 0, ..., R− 1 do
2: for Node k in 1, ..., K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1 = θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)
6: if mod (rτ + t, τ) = 0 then
7: Send hk,r,t to the server.
8: Receive the aggregated head: hk,r,t ← 1

K

∑K
k=1 hk,r,t

9: end if
10: if mod (rτ + t, ατ) = 0 then
11: Send ϕk,r,t to the server.
12: Receive the aggregated Representation extractor: ϕk,r,t ← 1

K

∑K
k=1 ϕk,r,t

13: end if
14: end for
15: θk,r+1,0 = θk,r,τ

16: end for
17: end for
18: return θ̂R = 1

K

∑K
k=1 θk,R,0

where Mh ◦Mϕ represents the aggregated model A({Zk,r}K
k=1), and Mhk

◦Mϕk
represents the local model

Ak(Zk,r). This happens because the model moves closer to the local optimum of node k’s loss, thereby
reducing RZk,r

(Mhk
◦Mϕk

).

In the context of representation learning, as discussed in the Introduction, the representation extractors Mϕ

and Mϕk
are much more similar compared to the task-specific heads Mh and Mhk

. Therefore, increasing
the number of local steps for the representation extractor does not significantly increase non-iidness, unlike
increasing local steps for the head.

The main idea behind FedALS is to improve generalization of the model by increasing the number of local
steps while maintaining a low level of non-iidness. This can be achieved if τMϕ

is set larger than τMh
, where

τMϕ
and τMh

are the corresponding number of local iterations for Mϕ and Mh , respectively. FedALS in
Algorithm 1 divides the model into two parts: (i) the representation extractor, denoted as Mϕ , and (ii) the
head, denoted as Mh . Additionally, we introduce the parameter α = τMϕ

τMh
as an adaptation coefficient, which

can be regarded as a hyperparameter for estimating the true ratio.

6 Experimental Results

In this section, we assess the performance of FedALS using ResNet-20 as a deep neural network architecture
and OPT-125M as a large language model. We treat the convolutional layers of ResNet-20 as the repre-
sentation extractor and the final dense layers as the model head. For OPT-125M, we consider the first 10
layers of the model as the representation extractor. We used the datasets CIFAR-10, CIFAR-100, SVHN,
and MNIST for image classification and the Multi-Genre Natural Language Inference (MultiNLI) corpus
for the LLM. The experimentation was conducted on a network consisting of five nodes alongside a central
server. For image classification, we utilized a batch size of 64 per node. SGD with momentum was employed
as the optimizer, with the momentum set to 0.9, and the weight decay to 10−4. For the LLM fine-tuning,
we employed a batch size of 16 sentences from the corpus, and the optimizer used was AdamW. In all the
experiments, to perform a grid search for the learning rate, we conducted each experiment by multiplying
and dividing the learning rate by powers of two, stopping each experiment after reaching a local optimum
learning rate. We repeat each experiment 20 times and present the error bars associated with the randomness
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Figure 2: Training ResNet-20 on SVHN.
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Figure 3: Fine-tuning OPT-125M on MultiNLI.

of the optimization. In every figure, we include the average and standard deviation error bars. Detailed
experimental setup is provided in Appendix E of the supplementary materials.

6.1 FedALS in non-iid Setting

In this section, we allocate the dataset to nodes using a non-iid approach. For image classification, we
initially sorted the data based on their labels and subsequently divided it among nodes following this sorted
sequence. In MultiNLI, we sorted the sentences based on their genre.

In this scenario, we can observe in Fig. 2a, 3a the anticipated performance improvement through the
incorporation of different local steps across the model. By utilizing parameters τ = 5 and α = 10 in FedALS,
it becomes apparent that aggregation and communication costs are reduced compared to FedAvg with the
same τ value of 5. This implies that the initial layers perform aggregation at every 50 iterations. This
reduction in the number of communications is accompanied by enhanced model generalization stemming
from the larger number of local steps in the initial layers, which contributes to an overall performance
enhancement. Thus, our approach in FedALS is beneficial for both communication efficiency and enhancing
model generalization performance simultaneously.

6.2 FedALS in iid Setting

The results for the iid setting are presented in Fig. 2b, 3b. In order to obtain these results, the data is
shuffled, and then evenly divided among nodes. We note that in this situation, the performance improvement
of FedALS is negligible. This is expected since there is a factor of 1

K2 in the generalization in this case,
ensuring that we will have nearly the same population risk as the empirical risk.

6.3 Compared to and Complementing SCAFFOLD

Karimireddy et al. (2019) introduced an innovative technique called SCAFFOLD, which employs some control
variables for variance reduction to address the issue of “client-drift” in local updates. This drift happens
when data is heterogeneous (non-iid), causing individual nodes/clients to converge towards their local optima
rather than the global optima. While this approach is a significant theoretical advancement in achieving
independence from loss function disparities among nodes, it hinges on the assumption of smoothness in the
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Table 1: Test Performance for 5 nodes FL; Accuracy after training ResNet-20 and test loss after fine-tuning
OPT-125M in iid and non-iid settings with τ = 5 and α = 10.

Model/Dataset FedAvg FedALS SCAFFOLD FedALS + SCAFFOLD

IID Non-IID IID Non-IID Non-IID Non-IID

ResNet-20/SVHN 0.948 ± 0.002 0.701 ± 0.033 0.954 ± 0.002 0.812 ± 0.021 0.718 ± 0.040 0.810 ± 0.027
ResNet-20/CIFAR-10 0.876 ± 0.009 0.465 ± 0.007 0.887 ± 0.002 0.522 ± 0.037 0.454 ± 0.071 0.512 ± 0.010
ResNet-20/CIFAR-100 0.600 ± 0.007 0.418 ± 0.014 0.612 ± 0.005 0.486 ± 0.022 0.412 ± 0.018 0.482 ± 0.013
ResNet-20/MNIST 0.991 ± 0.000 0.797 ± 0.064 0.991 ± 0.000 0.821 ± 0.036 0.812 ± 0.055 0.783 ± 0.118
OPT-125M/MultiNLI 1.250 ± 0.000 1.284 ± 0.002 1.248 ± 0.001 1.277 ± 0.002 1.284 ± 0.001 1.278 ± 0.002

Table 2: The accuracy and communication overhead per client after training ResNet-20 in non-iid setting
with τ = 5 and variable α.

Value of α
Dataset

# of communicated
SVHN CIFAR-10 parameters

1 0.7010± 0.0330 0.4651± 0.0071 2.344B

5 0.8107± 0.0278 0.5201± 0.0302 0.473B

10 0.8117± 0.0214 0.5224± 0.0365 0.239B

25 0.7201± 0.0549 0.3814± 0.0641 0.099B

50 0.6377± 0.0520 0.2853± 0.0641 0.052B

100 0.5837± 0.0715 0.2817± 0.032 0.029B

loss functions, which might not hold true for practical deep learning problems in the real world. Additionally,
since SCAFFOLD requires the transmission of control variables to the central server, which is of the same
size as the models themselves, it results in approximately twice the communication overhead when compared
to FedAvg.

Let us consider Fig. 2a, 3a to notice that in real-world deep learning situations, FedALS enhances per-
formance significantly, while SCAFFOLD exhibits slight improvements in specific scenarios. Moreover, we
integrated FedALS and SCAFFOLD to concurrently leverage both approaches. The results of the test
accuracy in different datasets are summarized in Table 1.

6.4 The Role of α and Communication Overhead

As shown in Table 2, it becomes evident that when we increase α from 1 (FedAvg), we initially witness an
enhancement in accuracy owing to improved generalization. However, beyond a certain threshold (α = 10),
further increment in α ceases to contribute to performance improvement. This is due to the adverse impact
of a high number of local steps on the non-iidness. The trade-off we discussed in the earlier sections is evident
in this context. We have also demonstrated the impact of FedALS on the communication overhead in this
table.

6.5 Different Combinations of ϕ, h

In Table 3, we have presented the results of our experiments, illustrating how different combinations of ϕ
and h influence the model performance in FedALS. The parameter L indicates the number of layers in the
model considered as the representation extractor (ϕ), while the remaining layers are considered as h. We
observe that for ResNet-20, choosing ϕ to be the first 16 layers and performing less aggregation for them
seems to be the most effective option.

7 Conclusion

In this paper, we characterized the generalization error bound for one- and R-round federated learning,
showing that the one-round bound is tighter than the current state of the art. Our analysis, combined
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Table 3: Different Combinations of ϕ, h for training ResNet-20 in non-iid setting with τ = 5, α = 10.

Value of L
Dataset

SVHN CIFAR-10 CIFAR-100

20 0.6991± 0.0160 0.4383± 0.0423 0.4781± 0.0123
16 0.7112± 0.0471 0.4687± 0.0111 0.4782± 0.0087
12 0.6760± 0.0474 0.4125± 0.0283 0.4249± 0.0143
8 0.6381± 0.0428 0.3779± 0.03451 0.4085± 0.0094
4 0.6339± 0.0446 0.3730± 0.0310 0.4183± 0.0108
1 0.6058± 0.0197 0.4013± 0.0308 0.3880± 0.0305

with a representation learning perspective, revealed that less frequent aggregations, resulting in more local
updates for the initial layers, lead to more generalizable models, especially in non-iid scenarios. This insight
inspired the development of the FedALS algorithm, which increases local steps for the initial layers while
performing more averaging for the final layers. Experimental results demonstrated FedALS’s effectiveness
in heterogeneous setups.
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A Appendix

B Proof of Theorem 4.1

We first state and prove the following lemma that will be used in the proof of Theorem 4.1.
Lemma B.1 (Leave-one-out). [Expansion of Theorem 1 in Barnes et al. (2022)]

Let S′
k = (z′

k,1, ..., z′
k,nk

), where z′
k,i is sampled from Dk. Denote S(k) = (S1, ..., S′

k, ..., SK). Then

E{Sk∼Dnk
k

}K
k=1

∆A(S) = Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (10)

Proof. We have

E{Sk∼Dnk
k

}K
k=1

R(A(S)) = Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1

l(A(S), z′
k,i). (11)

Also, observe that

E{Sk∼Dnk
k

}K
k=1
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k

}K
k=1

[
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nk

nk∑
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]

(12)
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k
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k

}K
k=1

[
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)

]
. (13)

Putting 11, and 13 together, and by the definition of the expected generalization error, we get

E{Sk∼Dnk
k

}K
k=1

∆A(S) = Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (14)

In the following lemma, we establish a fundamental generalization bound for a single round of ERM and
FedAvg. (Theorem 4.1).
Theorem B.2. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ , Mθk

= Ak(Sk) represents the
model obtained from Empirical Risk Minimization (ERM) algorithm on local dataset Sk, i.e., Mθk

=
arg minM

∑nk

i=1 l(M, zk,i), and Mθ̂ = A(S) is the model after one round of FedAvg (θ̂ = Ek∼K θk). Then,
the expected generalization error, E{Sk∼Dnk

k
}K

k=1
∆A(S), is bounded by

Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k
} ∆Ak
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Expected local generalization

+2

√
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µ
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√
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Root of expected non-iidness

√
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k
} ∆Ak
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Root of expected local generalization

]
,

(15)

where δk,A(S) =
[
RSk

(A(S)) − RSk
(Ak(Sk))

]
indicates the level of non-iidness for client k in function A

on dataset S.

14
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Proof. We again consider S′
k = (z′

k,1, ..., z′
k,nk

), where z′
k,i is sampled from Dk. Let also define S(k) =

(S1, ..., S′
k, ..., SK). Based on Lemma B.1, we can express the expected generalization error as

E{Sk∼Dnk
k

}K
k=1

∆A(S) = Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1

[
1

nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)]
. (16)

Based on L-smoothness of l(Mθ , z) in Mθ , we obtain

1
nk

nk∑
i=1

(
l(A(S), z′

k,i)− l(A(S(k)), z′
k,i)

)
≤ ⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩+ L

2 ∥A(S)−A(S(k))∥2,

(17)

where ⟨·, ·⟩, ∥ · ∥2 indicate Euclidean inner product, and squared L2-norm. Note that (17) holds due to

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2 ∥y − x∥2. (18)

We can bound expectation of the inner product term on the right-hand side of (17) using Cauchy–Schwarz
inequality as

Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1
⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩

≤ Ek∼K E{Sk,S′
k

∼Dnk
k

}K
k=1
|⟨∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i),A(S)−A(S(k))⟩| (19)

≤ Ek∼K

[
E{Sk,S′

k
∼Dnk

k
}K

k=1
||∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)|| ||A(S)−A(S(k))||

]
(20)

≤ Ek∼K

√√√√E{Sk,S′
k

∼Dnk
k

}K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k
∼Dnk

k
}K

k=1
∥A(S)−A(S(k))∥2, (21)

where (19) is true because on the right we have the absolute value. (20), and (21) are based on
Cauchy–Schwarz inequality.

Now Let’s find an upper bound for E{Sk,S′
k

∼Dnk
k

}K
k=1
∥A(S)−A(S(k))∥2 that appears on the right-hand side

of both (17), and (21). We obtain

E{Sk,S′
k

∼Dnk
k

}K
k=1
∥A(S)−A(S(k))∥2

= E{Sk,S′
k

∼Dnk
k

}K
k=1
K(k)2∥Ak(Sk)−Ak(S′

k)∥2 (22)

≤ E{Sk,S′
k

∼Dnk
k

}K
k=1

2K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(Ak(S′

k))
)

(23)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

2K(k)2

µ

1
nk

nk∑
j=1

(
l(Ak(Sk), z′

k,j)− l(Ak(S′
k), z′

k,j)
)

(24)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

2K(k)2

µ
∆Ak

(S′
k) (25)

= E{Sk∼Dnk
k

}K
k=1

2K(k)2

µ
∆Ak

(Sk), (26)

where (22) proceeds by observing that A(S(k,i)) varies solely in the sub-model derived from node k, diverging
from A(S), and this discrepancy is magnified by a factor of K(k) when averaging of all sub-models. (23)

15
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holds due to the µ-strongly convexity of l(Mθ , z) in Mθ which leads to µ-strongly convexity of RSk
(Mθ)

and the fact that Ak(S′
k) is derived from the local ERM, i.e., Ak(S′

k) = arg minM

( ∑nk

i=1 l(M, z′
k,i)

)
and

∇RS′
k
(Ak(S′

k)) = 0. Note that if f is µ-strongly convex, we get

f(x)− f(y) + µ

2 ∥x− y∥2 ≤ ⟨∇f(x), x− y⟩. (27)

(24), (25) are based on local empirical and population risk definitions.

Now we bound Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1
∥∇ 1

nk

∑nk

i=1 l(A(S(k)), z′
k,i)∥2 on the right-hand side of (21). Note that

∥∇ 1
nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 ≤ 2L

(
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)−

1
nk

nk∑
i=1

l(Ak(S′
k), z′

k,i)
)

(28)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S′

k))
)

, (29)

where 28 is obtained using the fact that for any L-smooth function f , we have

∥∇f(x)∥2 ≤ 2L(f(x)− f∗), (30)

and the fact that Ak(S′
k) is derived from the local ERM, i.e., Ak(S′

k) = arg minM

∑nk

i=1 l(M, z′
k,i). 29 is

based on the definition of local empirical risk.

Putting (17) into (16) and considering (21) we get

E{Sk∼Dnk
k

}K
k=1

∆A(S)

≤ Ek∼K

[
E{Sk,S′

k
∼Dnk

k
}K

k=1

L

2 ∥A(S)−A(S(k))∥2 (31)

+

√√√√E{Sk,S′
k

∼Dnk
k

}K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k
∼Dnk

k
}K

k=1
∥A(S)−A(S(k))∥2

]

≤ Ek∼K

[
E{Sk∼Dnk

k
}K

k=1

LK(k)2

µ
∆Ak

(Sk) (32)

+

√
E{Sk,S′

k
∼Dnk

k
}K

k=1
2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S′

k))
)
E{Sk∼Dnk

k
}K

k=1

2K(k)2

µ
∆Ak

(Sk)
]

≤ Ek∼K

[
E{Sk∼Dnk

k
}K

k=1

LK(k)2

µ
∆Ak

(Sk) (33)

+

√
E{Sk∼Dnk

k
}K

k=1
2L

(
RSk

(A(S))−RSk
(Ak(Sk))

)
E{Sk∼Dnk

k
}K

k=1

2K(k)2

µ
∆Ak

(Sk)
]

≤ Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k
}K

k=1
∆Ak

(Sk) + 2

√
L

µ
K(k)

√
E{Sk∼Dnk

k
}K

k=1
δk,A(S)E{Sk∼Dnk

k
}K

k=1
∆Ak

(Sk)
]
(34)

, (35)

where in (32) we have applied (26), and (29). (33) proceeds by considering that

E{Sk,S′
k

∼Dnk
k

}K
k=1

[
RS′

k
(A(S(k)))−RS′

k
(Ak(S′

k))
]

= E{Sk∼Dnk
k

}K
k=1

[
RSk

(A(S))−RSk
(Ak(Sk))

]
. (36)

16
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In (34) we have used the definition of δk,A(S) =
[
RSk

(A(S)) − RSk
(Ak(Sk))

]
. This completes the proof

and provides the following upper bound for E{Sk∼Dnk
k

}K
k=1

∆A(S),

Ek∼K

[
LK(k)2

µ
E{Sk∼Dnk

k
} ∆Ak

(Sk) + 2

√
L

µ
K(k)

√
E{Sk∼Dnk

k
}K

k=1
δk,A(S)E{Sk∼Dnk

k
} ∆Ak

(Sk)
]
. (37)

C Proof of Theorem 4.3

Here we provide an identical theorem as Theorem B.2, except that instead of ERM, multiple local stochastic
gradient descent steps are used as the local optimizer.
Theorem C.1. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ , Mθk

= Ak(Sk) represents the model
obtained by doing multiple local steps as in (5) on local dataset Sk, and Mθ̂ = A(S) is the model after one
round of FedAvg (θ̂ = Ek∼K θk). Then, the expected generalization error, E{Sk∼Dnk

k
}K

k=1
∆A(S), is bounded

by

Ek∼K

[
E{Sk∼Dnk

k
}K

k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)
)

(38)

+

√
8L

µ
K(k)

√
E{Sk∼Dnk

k
}K

k=1

(
δk,A(S) + ϵk(Sk)

)
E{Sk∼Dnk

k
}K

k=1

(
∆Ak

(Sk) + 2ϵk(Sk)
)]

,

where ϵk(Sk) = RSk
(Ak(Sk))−RSk

(A∗(Sk)).

Proof. All the steps are exactly the same as in the proof of theorem B.2 except for the two steps below:

First, we use a new upper bound for E{Sk,S′
k

∼Dnk
k

}K
k=1
∥A(S) − A(S(k))∥2 that appears on the right-hand

side of both (17), and (21). We have
E{Sk,S′

k
∼Dnk

k
}K

k=1
∥A(S)−A(S(k))∥2

= E{Sk,S′
k

∼Dnk
k

}K
k=1
K(k)2∥Ak(Sk)−Ak(S′

k)∥2 (39)

= E{Sk,S′
k

∼Dnk
k

}K
k=1
K(k)2∥Ak(Sk)−A∗(S′

k) +A∗(S′
k)−Ak(S′

k)∥2 (40)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

2K(k)2
(
∥Ak(Sk)−A∗(S′

k)∥2 + ∥A∗(S′
k)−Ak(S′

k)∥2
)

(41)

≤ E{Sk,S′
k

∼Dnk
k

}K
k=1

4K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(A∗(S′

k)) + RS′
k
(Ak(S′

k))−RS′
k
(A∗(S′

k))
)

(42)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

4K(k)2

µ

(
RS′

k
(Ak(Sk))−RS′

k
(Ak(S′

k)) + 2RS′
k
(Ak(S′

k))− 2RS′
k
(A∗(S′

k))
)

(43)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

4K(k)2

µ

(
1

nk

nk∑
j=1

(
l(Ak(Sk), z′

k,j)− l(Ak(S′
k), z′

k,j)
)

+ 2RS′
k
(Ak(S′

k))− 2RS′
k
(A∗(S′

k))
)

(44)

= E{Sk,S′
k

∼Dnk
k

}K
k=1

4K(k)2

µ

(
∆Ak

(S′
k) + 2RS′

k
(Ak(S′

k))− 2RS′
k
(A∗(S′

k))
)

(45)

= E{Sk∼Dnk
k

}K
k=1

4K(k)2

µ

(
∆Ak

(Sk) + 2RSk
(Ak(Sk))− 2RSk

(A∗(Sk))
)

, (46)

where in (40) A∗(Sk) is the ERM on Sk. (41) is based on the following inequality.

∥
n∑

i=1
ai∥2 ≤ n

n∑
i=1
∥ai∥2. (47)

17
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Secondly, we derive a new bound for Ek∼K,{Sk,S′
k

∼Dnk
k

}K
k=1
∥∇ 1

nk

∑nk

i=1 l(A(S(k)), z′
k,i)∥2 on the right hand

side of (21). We get

∥∇ 1
nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 ≤ 2L

(
1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)−

1
nk

nk∑
i=1

l(A∗(S′
k), z′

k,i)
)

(48)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(A∗(S′

k))
)

(49)

≤ 2L

(
RS′

k
(A(S(k)))−RS′

k
(Ak(S′

k)) + RS′
k
(Ak(S′

k))−RS′
k
(A∗(S′

k))
)

(50)

≤ 2L

(
δk,A(S(k)) + RS′

k
(Ak(S′

k))−RS′
k
(A∗(S′

k))
)

. (51)

Let’s define ϵk(Sk) = RSk
(Ak(Sk))−RSk

(A∗(Sk)). Putting (17) into (16) and considering (21) we get

E{Sk∼Dnk
k

}K
k=1

∆A(S) ≤ Ek∼K

[
E{Sk,S′

k
∼Dnk

k
}K

k=1

L

2 ∥A(S)−A(S(k))∥2

+

√√√√E{Sk,S′
k

∼Dnk
k

}K
k=1
∥∇ 1

nk

nk∑
i=1

l(A(S(k)), z′
k,i)∥2 E{Sk,S′

k
∼Dnk

k
}K

k=1
∥A(S)−A(S(k))∥2

]

≤ Ek∼K

[
E{Sk∼Dnk

k
}K

k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)
)

(52)

+

√
E{Sk,S′

k
∼Dnk

k
}K

k=1
2L

(
δk,A(S(k)) + ϵk(S′

k)
)
E{Sk∼Dnk

k
}K

k=1

4K(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)
)]

≤ Ek∼K

[
E{Sk∼Dnk

k
}K

k=1

2LK(k)2

µ

(
∆Ak

(Sk) + 2ϵk(Sk)
)

(53)

+

√
8L

µ
K(k)

√
E{Sk∼Dnk

k
}K

k=1

(
δk,A(S) + ϵk(Sk)

)
E{Sk∼Dnk

k
}K

k=1

(
∆Ak

(Sk) + 2ϵk(Sk)
)]

,

where in (52) we have applied (46), and (51). This completes the proof.

Now, we prove Theorem 4.3 as follows.

Theorem C.2. Let l(Mθ , z) be µ-strongly convex and L-smooth in Mθ . Local models at round r are
calculated by doing τ local gradient descent steps (5), and the local gradient variance is bounded by σ2,
i.e., Ez∼Dk

∥∇l(Mθ , z) − Ez∼Dk
∇l(Mθ , z)∥2 ≤ σ2. The aggregated model at round r, Mθ̂r

, is obtained by
performing FedAvg, and the data points used in round r (i.e., Zk,r) are sampled without replacement. The
average generalization error bound is

ES ∆F edAvg(S)≤ 1
R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
A +

√
8L

µ
K(k)(AB) 1

2

]

where A = Õ

(√
C(Mθ )
|Zk,r| + σ2

µτ

)
, B = Õ

(
E{Zk,r}K

k=1
δk,A({Zk,r}K

k=1) + σ2

µτ

)
, Õ hides constants and poly-

logarithmic factors, and C(Mθ) shows the complexity of the model class of Mθ .

18
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Proof. Based on the definition, we have

E{Sk∼Dnk
k

}K
k=1

∆F edAvg(S) = E{Sk∼Dnk
k

}K
k=1

1
R

R∑
r=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

]
(54)

= 1
R

R∑
r=1

E
{Zk,r∼D

|Zk,r|
k

}K
k=1

Ek∼K

[
Ez∼Dk

l(Mθ̂r
, z)− 1

|Zk,r|

K∑
i∈Zk,r

l(Mθ̂r
, zk,i)

]
(55)

= 1
R

R∑
r=1

E
{Zk,r∼D

|Zk,r|
k

}K
k=1

∆A({Zk,r}K
k=1) (56)

≤ 1
R

R∑
r=1

Ek∼K

[
E

{Zk,r∼D
|Zk,r|
k

}

2LK(k)2

µ

(
∆Ak

(Zk,r) + 2ϵk(Zk,r)
)

(57)

+

√
8L

µ
K(k)

√
E

{Zk,r∼D
|Zk,r|
k

}K
k=1

(
δk,A({Zk,r}K

k=1) + ϵk(Zk,r)
)
E

{Zk,r∼D
|Zk,r|
k

}

(
∆Ak

(Zk,r) + ϵk(Zk,r)
)]

≤ 1
R

R∑
r=1

Ek∼K

[
2LK(k)2

µ
Õ

(√
C(Mθ)
|Zk,r|

+ σ2

µτ

)
(58)

+

√
8L

µ
K(k)

√√√√Õ

(
E

{Zk,r∼D
|Zk,r|
k

}K
k=1

δk,A({Zk,r}K
k=1) + σ2

µτ

)
Õ

(√
C(Mθ)
|Zk,r|

+ σ2

µτ

)]
,

where in (56), A represents one-round FedAvg algorithm. In (57) we have used Theorem C.1. In (58) we
have used the conventional statistical learning theory originated with Leslie Valiant’s probably approximately
correct (PAC) framework Valiant (1984). We have also applied the optimization convergence rate bounds in
the literature Stich & Karimireddy (2019). Note that Õ hides constants and poly-logarithmic factors.

D Partial Client Participation Setting

We first define an empirical risk for the partial participation distribution K̂ on dataset S, where Supp(K̂) ̸=
{1, . . . , K} and |Supp(K̂)| = K̂ ≤ K, as

RK̂
S (Mθ) = Ek∼K̂ RSk

(Mθ) = Ek∼K̂
1

nk

nk∑
i=1

l(Mθ , zk,i), (59)

where K̂ is an arbitrary distribution on participating nodes that is a part of all nodes, and RSk
(Mθ) is the

empirical risk for model Mθ on local dataset Sk. We further define a partial population risk for model Mθ

as

RK̂(Mθ) = Ek∼K̂ Rk(Mθ) = Ek∼K̂,z∼Dk
l(Mθ , z), (60)

where Rk(Mθ) is the population risk on node k’s data distribution.

Now, we can define the generalization error for dataset S and function A(S) as

∆A(S) = R(A(S))−RK̂
S (A(S)) (61)

= R(A(S))−RK̂(A(S))︸ ︷︷ ︸
Participation gap

+ RK̂(A(S))−RK̂
S (A(S))︸ ︷︷ ︸

Out-of-sample gap

. (62)

The expected generalization error is expressed as ESk∼Dknk k=1K ∆A(S). Note that the second term in (62),
which is related to the difference between in-sample and out-of-sample loss, can be bounded in the same way
as in Theorem 4.1 and Theorem 4.3. The first term is associated with the participation of not all clients. In
the following, we demonstrate that under certain conditions, this term would be zero in expectation.

We assume there is a meta-distribution P supported on all distributions K̂.
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Lemma D.1. Let {xi}K
i=1 denote any fixed deterministic sequence. Assume P is derived by sampling K̂

clients with replacement based on distribution K followed by an equal probability on all sampled clients, i.e.,
K̂(k) = 1

K̂
. Then

EP Ek∼K̂ xk = Ek∼K xk,EP Ek∼K̂ K̂(k)xk = 1
K̂

Ek∼K xk,EP Ek∼K̂ K̂
2(k)xk = 1

K̂2
Ek∼K xk. (63)

Proof.

EP Ek∼K̂ xk = EP
1
K̂

K̂∑
i=1

xi = 1
K̂

K̂∑
i=1

EP xi = EP xi = Ek∼K xk (64)

EP Ek∼K̂ K̂(k)xk = EP
1

K̂2

K̂∑
i=1

xi = 1
K̂2

K̂∑
i=1

EP xi = 1
K̂

EP xi = 1
K̂

Ek∼K xk (65)

EP Ek∼K̂ K̂
2(k)xk = EP

1
K̂3

K̂∑
i=1

xi = 1
K̂3

K̂∑
i=1

EP xi = 1
K̂2

EP xi = 1
K̂2

Ek∼K xk (66)

Lemma D.2. Let {xi}K
i=1 denote any fixed deterministic sequence. Assume P is derived by sampling K̂

clients without replacement uniformly at random followed by weighted probability on all sampled clients as
K̂(k) = K(k)K

K̂
. Then

EP Ek∼K̂ xk = Ek∼K xk,EP Ek∼K̂ K̂(k)xk = K

K̂
Ek∼KK(k)xk,EP Ek∼K̂ K̂

2(k)xk = K2

K̂2
Ek∼KK2(k)xk. (67)

Proof.

EP Ek∼K̂ xk = EP
K

K̂

K̂∑
i=1
K(i)xi = K

K̂

K̂∑
i=1

EP K(i)xi = K EP K(i)xi = K
1
K

k∑
i=1
K(i)xi = Ek∼K xk

(68)

EP Ek∼K̂ K̂(k)xk = EP
K2

K̂2

K̂∑
i=1
K2(i)xi = K2

K̂2

K̂∑
i=1

EP K2(i)xi = K2

K̂
EP K2(i)xi = K2

K̂

1
K

k∑
i=1
K2(i)xi (69)

= K

K̂
Ek∼KK(k)xk

EP Ek∼K̂ K̂
2(k)xk = EP

K3

K̂3

K̂∑
i=1
K3(i)xi = K3

K̂3

K̂∑
i=1

EP K3(i)xi = K3

K̂2
EP K3(i)xi = K3

K̂2

1
K

k∑
i=1
K3(i)xi (70)

= K2

K̂2
Ek∼KK2(k)xk

So based on lemmas D.1, and D.2, it becomes evident that the expectation of the participation gap in (62)
becomes zero for both two methods, i.e.,

EP

[
R(A(S))−RK̂(A(S))

]
= 0. (71)

The expected generalization error, E{Sk∼Dnk
k

}K
k=1

∆A(S),will be just the expectation of the second term in
62 that can be bounded using Lemma B.2 by

Ek∼K̂

[
LK̂(k)2

µ
E{Sk∼Dnk

k
} ∆Ak

(Sk) + 2

√
L

µ
K̂(k)

√
E{Sk∼Dnk

k
}K

k=1
δk,A(S)E{Sk∼Dnk

k
} ∆Ak

(Sk)
]
. (72)
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If we take the expectation of (72) with respect to P, and taking into account Lemma D.1, we get the
generalization bound for method 1 as

Ek∼K

[
L

µK̂2
E{Sk∼Dnk

k
} ∆Ak

(Sk) + 2

√
L

µ

1
K̂

√
E{Sk∼Dnk

k
}K

k=1
δk,A(S)E{Sk∼Dnk

k
} ∆Ak

(Sk)
]
. (73)

For Scheme 2, we can obtain the generalization bound in the same way by taking the expectation of (72)
with respect to P and considering Lemma D.2. We get the generalization bound for Method 2 as:

Ek∼K

[
L

µ

K(k)2K2

K̂2
E{Sk∼Dnk

k
} ∆Ak

(Sk) + 2

√
L

µ

K(k)K
K̂

√
E{Sk∼Dnk

k
}K

k=1
δk,A(S)E{Sk∼Dnk

k
} ∆Ak

(Sk)
]
.

(74)

E Detailed Experimental Setup

E.1 Image Classification

The details are specified in Table 4.

Table 4: Default experimental settings for the image classification training

Dataset CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011),
MNIST (Lecun et al., 1998)

Architecture ResNet-20 He et al. (2015)
Training objective Cross entropy
Test objective Top-1 accuracy

Number of clients 5
Data distribution IID (shuffled and split),

Non-IID (sorted based on labels then split)
Local Steps τ 5 (unless explicitly specified)
Adaptation coefficient α 10 (unless explicitly specified)
Representation Extractor Convolutional layers

(unless explicitly specified)
Head Final dense layers

(unless explicitly specified)

Optimizer SGD with momentum
Batch size 64 per client
Momentum 0.9 (Nesterov)
Learning rate Constant η after tuning
Number of Iterations 104 for IID and 2× 104 for non-IID
Weight decay 10−4

Repetitions 20, with varying seeds
Reported metric Mean and standard deviation of the aggregated model’s test ac-

curacies over the last 5 rounds
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E.2 Large Language Model Fine-tuning

The details are specified in Table 5.

Table 5: Default experimental settings for the large language model fine-tuning

Dataset Multi-Genre Natural Language Inference (MultiNLI) corpus

Architecture OPT-125M He et al. (2015)
Training objective Cross entropy
Test objective Top-1 accuracy

Number of clients 5
Data distribution IID (shuffled and split),

Non-IID (sorted based on genre then split)
Local Steps τ 5
Adaptation coefficient α 10
Representation Extractor First 10 attention layers
Head Final 2 attention layers

Optimizer AdamW
Batch size 16 sentences per client
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

Learning rate Decaying as η
t

100 +10 where t is the iteration number and η is tuned
Number of Iterations 104 for IID and 2× 104 for non-IID
Weight decay 10−4

Repetitions 20, with varying seeds
Reported metric Mean and standard deviation of the aggregated model’s test ac-

curacies over the last 5 rounds

E.3 Hyper-parameters and tuning details

We independently tuned the learning rates for both image classification and large language model (LLM)
fine-tuning experiments for each dataset, algorithm, and data heterogeneity scenario (both iid and non-iid).
For image classification, the learning rate was tuned, while for LLM fine-tuning, we specifically tuned the
initial learning rate. The tuning process followed these steps:

• Begin with an initial value of 0.01 and perform the experiment several times, each time using a
different random seed.

• Perform a grid search to find the optimal learning rate. Start by multiplying or dividing the initial
value by powers of two. Test both larger and smaller learning rates, running the experiment multiple
times with different random seeds. The best learning rate is the one that, on average, produces the
best results. If this learning rate is between two others that give worse results, then you have found
the optimal value.
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E.4 Algorithms Used in the Experiments

In this section, we provide a detailed list of our implementation of

• FedAvg (Algorithm 2)

• SCAFFOLD Karimireddy et al. (2019) (Algorithm 3)

• Combined method FedALS+SCAFFOLD (Algorithm 4)

Algorithm 2 demonstrates the implementation of FedAvg. This is a widely used algorithm in federated
learning that performs model averaging after local updates from each client.

Moving on to Algorithm 3, we observe that SCAFFOLD introduces an additional mechanism beyond just
the model updates. Specifically, SCAFFOLD keeps track of a state that is specific to each client, referred
to as the client control variate, denoted by ck,r. This control variate is a key feature of SCAFFOLD, which
helps to correct the client drift by utilizing these client-specific states. It’s important to note that the
clients within SCAFFOLD maintain memory and persistently store the values of ck,r and

∑K
k=1 ck,r. This

stored information plays a crucial role in the algorithm’s functionality. Additionally, it is worth recognizing
that when the value of ck,r consistently remains at zero, the SCAFFOLD algorithm essentially reduces to
FedAvg. This highlights the close relationship between the two algorithms and emphasizes the special role
of the control variates in differentiating SCAFFOLD from FedAvg.

Finally, Algorithm 4 showcases the integration of FedALS with SCAFFOLD, presenting a hybrid approach.
It is important to observe that in this combined algorithm, the control variables are not handled in a uniform
manner but are instead fragmented according to the different partitions of the model. This fragmentation
occurs because there are distinct local step counts for different parts of the model, leading to a more complex
update mechanism compared to the standard SCAFFOLD approach.

Algorithm 2 FedAvg
Input: Initial model {θk,1,0}K

k=1, Learning rate η, and number of local steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ..., K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1 = θk,r,t − η

|Bk,r,t|
∑

i∈Bk,r,t
∇l(Mθk,r,t

, zk,i)
6: end for
7: θk,r+1,0 = 1

K

∑K
k=1 θk,r,τ

8: end for
9: end for

10: return θ̂R = 1
K

∑K
k=1 θk,R,τ
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Algorithm 3 SCAFFOLD
Input: Initial model {θk,1,0}K

k=1, Initial control variable {ck,1}K
k=1, learning rate η, and number of local

steps τ .
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ..., K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1 = θk,r,t − η

( 1
|Bk,r,t|

∑
i∈Bk,r,t

∇l(Mθk,r,t
, zk,i)− ck,r + 1

K

∑K
k=1 ck,r

)
6: end for
7: ck,r+1 = ck,r − 1

K

∑K
k=1 ck,r + 1

ητ (θk,r,0 − θk,r,τ )
8: θk,r+1,0 = 1

K

∑K
k=1 θk,r,τ

9: end for
10: end for
11: return θ̂R = 1

K

∑K
k=1 θk,R,τ

Algorithm 4 FedALS + SCAFFOLD
Input: Initial model {θk,1,0 = [ϕk,1,0, hk,1,0]}K

k=1, Initial control variable {ck,1 = [cϕ
k,1, ch

k,1]}K
k=1, learning

rate η, number of local steps for the head model τ , adaptation coefficient α.
Output: θ̂R

1: for Round r in 1, ..., R do
2: for Node k in 1, ..., K in parallel do
3: for Local step t in 0, ..., τ − 1 do
4: Sample the batch Bk,r,t from Dk.
5: θk,r,t+1 = θk,r,t − η

( 1
|Bk,r,t|

∑
i∈Bk,r,t

∇l(Mθk,r,t
, zk,i)− ck,r + 1

K

∑K
k=1 ck,r

)
6: if mod (rτ + t, τ) = 0 then
7: ch

k,r ← ch
k,r −

1
K

∑K
k=1 ch

k,r + 1
ητ (hk,r,0 − hk,r,t)

8: hk,r,t ← 1
K

∑K
k=1 hk,r,t

9: end if
10: if mod (rτ + t, ατ) = 0 then
11: cϕ

k,r ← cϕ
k,r −

1
K

∑K
k=1 cϕ

k,r + 1
ηατ (ϕl

k,⌊ rτ+t−ατ
τ ⌋, mod (rτ+t−ατ,τ) − ϕl

k,r,t)
12: ϕk,r,t ← 1

K

∑K
k=1 ϕk,r,t

13: end if
14: end for
15: ck,r+1 = ck,r

16: θk,r+1,0 = θk,r,τ

17: end for
18: end for
19: return θ̂R = 1

K

∑K
k=1 θk,R,τ
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