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ABSTRACT

Deep Selective State-Space Models (SSMs), characterized by input-dependent,
time-varying parameters, offer significant expressive power but pose challenges
for stability analysis, especially with discontinuous gating signals. In this paper,
we investigate the stability and regularity properties of continuous-time selective
SSMs through the lens of passivity and Input-to-State Stability (ISS). We establish
that intrinsic energy dissipation guarantees exponential forgetting of past states.
Crucially, we prove that the unforced system dynamics possess an underlying
minimal quadratic energy function whose defining matrix exhibits robust AUCloc
regularity, accommodating discontinuous gating. Furthermore, assuming a uni-
versal quadratic storage function ensures passivity across all inputs, we derive
parametric LMI conditions and kernel constraints that limit gating mechanisms,
formalizing ”irreversible forgetting” of recurrent models. Finally, we provide suf-
ficient conditions for global ISS, linking uniform local dissipativity to overall sys-
tem robustness. Our findings offer a rigorous framework for understanding and
designing stable and reliable deep selective SSMs.

1 INTRODUCTION

The pursuit of stable, robust, and predictable behavior in dynamical systems is a cornerstone of sci-
entific and engineering disciplines, with increasing relevance in the era of complex computational
models like Neural ODEs (Chen et al., 2018) and Deep State-Space Models (SSMs) (Gu et al.,
2022; Gu & Dao, 2024). Foundational paradigms of energy exchange, rooted in physics and later
abstracted into powerful mathematical frameworks such as Willems’ theory of dissipative systems
(Willems, 1972) and Input-to-State Stability (ISS) (Sontag & Wang, 1995; Jiang et al., 1999), pro-
vide important tools for this pursuit. These energy-based and robustness-centric perspectives allow
for rigorous analysis of a system’s interaction with its environment and its inherent stability char-
acteristics. Extending far beyond their physical origins, these principles are now crucial for under-
standing the conditions under which modern AI architectures operate reliably, maintain numerical
stability, and process information effectively despite internal complexities and external disturbances.
This paper leverages these well-established principles to investigate the regularity and stability prop-
erties of continuous-time deep selective SSMs. These models, whose parameters are dynamically
modulated by their inputs, pose distinct analytical questions at the intersection of time-varying and
nonlinear system dynamics, which this work aims to address.

Architectures such as Mamba (Gu & Dao, 2024), HGRN (Qin et al., 2024), and GLA (Yang et al.,
2024) represent a new frontier in deep learning, termed selective SSMs (Cirone et al., 2024; Zubic
et al., 2025; Soydan et al., 2024). Their defining characteristic, captured in our continuous-time
model equation 1, is that their core state-space parameters (A,B,C) are not fixed but are dynami-
cally shaped by both time-varying gating signals ∆(t) and the input sequence x(t) itself. This input-
selectivity is key to their performance, enabling selective context processing. Analytically, however,
this places these models in a complex domain: they are neither purely Linear Time-Varying (LTV),
due to the x(t) dependence, nor are they classical nonlinear systems for which standard tools al-
ways apply without adaptation (Isidori, 1985; Khalil & Grizzle, 2002). While the theory for LTV
system stability, including the behavior of quadratic ”energy” functions VQ (e.g., their regularity
(Morandin & Hinsen, 2024)), and for ISS of input-driven nonlinear systems (Sontag, 1990) are indi-
vidually well-understood, their integrated application to selective SSMs is not explored. Specifically,
how does a unified ”energy management” or passivity perspective constrain these input-dependent
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dynamics, especially when ∆(t) introduces abrupt changes? This paper addresses this crucial ques-
tion by developing a rigorous framework for analyzing stability and structural properties in these
advanced models. We bridge this gap by systematically applying and extending concepts from pas-
sivity theory and ISS to continuous-time selective SSMs. We investigate the conditions under which
these models exhibit stable behavior and how a dissipativity assumption constrains their internal
structure and gating mechanisms. Specifically, we demonstrate that even with input-dependent and
potentially discontinuous gating, foundational properties of energy-like functions persist and impose
significant structural constraints. Our contributions are as follows:

1. We demonstrate that intrinsic energy dissipation guarantees exponential forgetting of past
states (Theorem 3.1). Further, we prove that the unforced system (input = 0) possesses
an underlying minimal quadratic energy function whose defining matrix has robust AUCloc
regularity, accommodating discontinuous gating (Theorem 3.2). This reveals a fundamen-
tal, well-behaved energy structure determined by the model’s initialization.

2. By assuming a universal quadratic energy function ensures passivity, we derive parametric
Linear Matrix Inequality (LMI) conditions and a key kernel constraint: ”energy-less” state
directions must be output-unobservable under any gating (Theorem 4.2).

3. We formalize the concept of ”irreversible forgetting”: once a state direction becomes
energy-less, it remains so structurally, constraining how future gating can influence the
system without violating passivity (Theorem 4.3).

4. We establish strong conditions for global Input-to-State Stability (ISS), and we provide
direct empirical evidence that our theoretical LMI can be implemented as a practical
regularizer. Our experiments show this regularizer dramatically improves the robustness
of a trained SSM with minimal impact on task performance (see Appendix A.3.3).

Our findings offer a rigorous framework for understanding and designing stable selective SSMs.
The remainder of the paper is structured to build our argument progressively: we first establish the
baseline stability of the unforced system (Section 3), then use the assumption of universal passivity
to probe the system’s structural constraints (Section 4), and finally provide conditions for robust
stability under general inputs (Section 5). We conclude in Section 6 by summarizing our key in-
sights and their practical implications. All formal proofs, the detailed empirical validations from our
simulation studies, and an extended discussion of future directions are provided in the Appendix A.

2 PRELIMINARIES: SELECTIVE SSMS AND PASSIVITY FRAMEWORK

This section introduces the continuous-time selective State-Space Models (SSMs) that are the focus
of our analysis, along with the fundamental concepts from control theory that support our approach.

2.1 SYSTEM DEFINITION AND NOTATION

We consider dynamical systems evolving in continuous time t ∈ T, where T ⊆ [0,+∞) is a time
interval. The internal state of the system at time t is denoted by h(t) ∈ CN (or RN in real-valued
cases). The system interacts with its environment via an external input signal x(t) ∈ Cdin and
produces an output y(t) ∈ Cdout . For matrices and vectors, MH denotes the Hermitian (conjugate)
transpose. The standard Euclidean norm of a vector v is ∥v∥, and the inner product of two vectors
u, v is ⟨u, v⟩ = vHu. We denote the space of n × n Hermitian positive semidefinite matrices by
Sn
+(C); for Q ∈ Sn

+(C), we write Q ⪰ 0.

Our work focuses on Continuous-Time Selective SSMs. Inspired by architectures like Mamba (Gu
& Dao, 2024), their defining characteristic is that the system’s core parameters are dynamically
modulated by the input x(t) and an auxiliary gating signal ∆(t). In practice, this corresponds to a
mechanism that selects different sets of parameters for each input token. Formally, the dynamics are
given by: ḣ(t) = A

(
∆(t), x(t)

)
h(t) + B

(
∆(t), x(t)

)
x(t),

y(t) = C
(
∆(t), x(t)

)
h(t).

(1)
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Here, for each time t and input x(t), A(∆(t), x(t)) ∈ CN×N is the state matrix, B(∆(t), x(t)) ∈
CN×din is the input matrix, and C(∆(t), x(t)) ∈ Cdout×N is the output matrix. The explicit depen-
dence of A,B,C on x(t) renders the system equation 1 generally nonlinear and allows the model’s
internal ”rules” to change abruptly in response to input.

2.2 WELL-POSEDNESS AND FUNCTION SPACE ASSUMPTIONS

To ensure the system equation 1 is well-defined even with discontinuous parameter changes,
we adopt mild regularity conditions. For any admissible input trajectory x(·), let Aeff(t) :=
A(∆(t), x(t)) (and similarly for Beff, Ceff). We assume the effective matrices belong to standard
Lebesgue spaces: Aeff(·) ∈ L1

loc, Beff(·) ∈ L2
loc, and Ceff(·) ∈ L2

loc, with the input x(·) ∈ L2
loc.

These conditions ensure that the ODE for h(t) satisfies Carathéodory conditions, guaranteeing the
local existence and uniqueness of an absolutely continuous solution h(·) ∈ W 1,1

loc (Filippov, 1988;
Coddington et al., 1956).
Remark 2.1 (Feasibility of Regularity Assumptions). These assumptions are mathematically mild
and readily satisfied by modern selective SSMs. In token-based architectures like Mamba, the
selection mechanism results in system matrices that are piecewise-constant. Such functions are
well-behaved members of the Lp

loc spaces, confirming that our framework is grounded in practical
implementations while being general enough for future architectures.

2.3 PASSIVITY AND DISSIPATIVITY

We analyze the system equation 1 using the powerful energy-based frameworks of passivity and
dissipativity (Willems, 1972). Intuitively, a passive system cannot generate its own energy. It can
only store or dissipate energy supplied from its input. A strictly dissipative system is even stronger,
as it inherently loses energy over time. These concepts are formalized in the following definitions.
Definition 2.2 (Storage Function). A function V : T × CN → R is a storage function if it is
non-negative, i.e., V (t, h) ≥ 0 for all (t, h), and typically V (t, 0) = 0.
Definition 2.3 (Passivity). The system equation 1 is passive if there exists a storage function V such
that for all admissible trajectories on any interval [t0, T ]:

V
(
T, h(T )

)
− V

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ. (2)

The term Re ⟨x(τ), y(τ)⟩ is the instantaneous power, or supply rate, provided to the system.
Definition 2.4 (Strict Dissipativity). The system is strictly dissipative with rate β > 0 if it satisfies
the stronger inequality:

V
(
T, h(T )

)
− V

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ. (3)

A positive β implies an intrinsic rate of energy dissipation, which is crucial for proving strong stabil-
ity properties like exponential decay. Given the absolute continuity of h(·) and local Lipschitzness
of V in h, these integral inequalities have corresponding differential forms: d

dtV ≤ Re ⟨x, y⟩ for
passivity, and d

dtV ≤ Re ⟨x, y⟩ − β∥h∥2 for strict dissipativity.

2.4 QUADRATIC STORAGE FUNCTIONS AND AUC REGULARITY

A significant portion of our analysis focuses on quadratic storage functions of the form VQ(t, h) =
1
2h

HQ(t)h, where Q : T → SN
+ (C) is a time-varying matrix. The regularity of Q(t) is critical in

our setting, as the gating mechanism can induce discontinuities in the system dynamics.

To handle this robustly, we consider Q(t) to belong to the class of Locally Absolutely Upper
Semicontinuous matrix functions, denoted Q ∈ AUCloc(T,SN

+ (C)), following the framework of
(Morandin & Hinsen, 2024). For readers unfamiliar with this class, its most important practical
consequence is that it imposes a physical constraint on energy storage: the ”energy capacity” of the
system, measured by the rank of the Q(t) matrix, can never increase over time. This property is the
foundation for the ”irreversible forgetting” we analyze later.
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Formally, a function Q ∈ AUCloc is characterized by being of locally bounded variation (BVloc),
having a derivative Q̇(t) that exists almost everywhere, and satisfying certain integral and jump
conditions. The key property that enforces rank monotonicity is that the singular part of its de-
composition must be weakly monotonically decreasing in the Loewner order (e.g., at any jump,
limτ→t− Q(τ) ⪰ Q(t)). This mathematical structure is precisely what makes the framework suit-
able for analyzing switched systems while retaining essential properties about their energy evolution.

3 FUNDAMENTAL STABILITY AND STRUCTURAL PROPERTIES FROM
PASSIVITY

This section establishes the foundational stability guarantees and explores the core structural prop-
erties inherent in passive selective SSMs. We begin by analyzing the zero-input (x(t) ≡ 0) case.
Analyzing the unforced system, whose dynamics ḣ = A(∆(t), 0)h are determined entirely by the
model’s initialization, allows us to isolate and understand its intrinsic stability and memory prop-
erties. As we demonstrate in our simulation study in Appendix A.3.1, this baseline behavior is a
powerful predictor of a model’s practical performance. We first show how strict dissipativity leads
to exponential forgetting, and then prove that the unforced dynamics possess a fundamental, well-
behaved quadratic energy structure.

3.1 EXPONENTIAL DECAY FROM STRICT DISSIPATIVITY

The most fundamental stability guarantee arises when the system intrinsically dissipates energy
faster than it stores it, even with zero input. This leads to exponential convergence of the state to the
origin.
Theorem 3.1 (Exponential Decay from Strict Dissipativity). Consider the continuous-time selective
state-space model defined in Eq. equation 1. Suppose there exists a storage functional V : [0,∞)×
CN → R≥0 satisfying:

(i) Strict Dissipativity Inequality: For some constant β > 0, every admissible trajectory
{h(τ), x(τ), y(τ)} on any interval [t0, T ] satisfies:

V
(
T, h(T )

)
− V

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ. (4)

(ii) Regularity and Quadratic Bounds: V (t, h) is locally Lipschitz in h, absolutely continu-
ous in t along system trajectories, and there exist constants k2 ≥ k1 > 0 such that for all
t ≥ 0 and h ∈ CN :

k1∥h∥2 ≤ V (t, h) ≤ k2∥h∥2. (5)

Then, for the unforced system (i.e., when x(t) ≡ 0 for t ≥ 0), the state exhibits exponential decay:
there exist constants C ≥ 1 and γ > 0 such that for any initial state h(0), the solution satisfies:

∥h(t)∥ ≤ C e−γt ∥h(0)∥ for all t ≥ 0. (6)

Proof Sketch. The proof considers the system without any input, i.e., x = 0. In this case, the strict
dissipativity inequality simplifies to dV

dt ≤ −β∥h∥2. Since the energy function V is assumed to
be quadratically bounded, satisfying k1∥h∥2 ≤ V ≤ k2∥h∥2, this implies dV

dt ≤ −γV for some
constant γ > 0. This is a classic differential inequality whose solution is an exponential decay. The
bounds on V then directly translate this exponential decay of energy into an exponential decay of
the state norm ∥h(t)∥. Check Appendix A.4 for the full proof.

3.2 INHERENT QUADRATIC STRUCTURE AND REGULARITY IN UNFORCED DYNAMICS

While Theorem 3.1 guarantees stability under strict dissipativity, it does not specify the form of
the storage function V . We now show a deeper result: if a selective SSM is passive in any sense
(even with a general, non-quadratic storage function), its underlying unforced dynamics (x = 0)
necessarily possess a well-defined and mathematically regular quadratic energy structure. This is
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a powerful insight, as it reveals a fundamental, well-behaved energy landscape associated with the
system’s initialization, regardless of the complexity introduced by input-driven gating.

To prove this, we leverage the concept of the available storage function, which represents the max-
imum energy that can be extracted from the system from a given state. It is a standard result in
dissipativity theory that if any storage function exists, then the available storage function is well-
defined and is itself a valid storage function (see Appendix A.5). The following theorem connects
this concept to the structure of selective SSMs.
Theorem 3.2 (Existence and Regularity of Quadratic Storage for Unforced Dynamics Amidst
Gating Switches). Consider the continuous-time selective state-space model equation 1 defined
on a time interval T. Assume the coefficient matrices satisfy mild regularity conditions ensur-
ing well-posedness: (i) A(∆(·), x(·)) ∈ L1

loc(T,CN×N ) (ii) B(∆(·), x(·)) ∈ L2
loc(T,CN×din)

(iii) C(∆(·), x(·)) ∈ L2
loc(T,Cdout×N ) for admissible inputs x(·), allowing ∆(t) to induce dis-

continuities (e.g., piecewise constant changes) in A,B,C provided the resulting matrix func-
tions remain in the specified local Lebesgue spaces. Suppose there exists any storage functional
V : T × CN → R≥0 (V ≥ 0, V (t, 0) = 0) satisfying the (potentially strict, β ≥ 0) passivity
inequality for the full selective system equation 1:

V
(
T, h(T )

)
− V

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ (7)

for all admissible state-input-output trajectories {h(τ), x(τ), y(τ)} and all t0 ≤ T in T. Then,
the following conclusions hold regarding the structure induced by these assumptions, even in the
presence of gating switches:

(a) Passivity of Unforced LTV System: The unforced linear time-varying (LTV) system,
defined by isolating the dynamics when x(t) ≡ 0:{

ḣ(t) = A0(t) h(t) where A0(t) = A(∆(t), 0) ∈ L1
loc(T,CN×N )

y0(t) = C0(t) h(t) where C0(t) = C(∆(t), 0) ∈ L2
loc(T,Cdout×N )

(8)

is passive in the sense of (Morandin & Hinsen, 2024, Def 1.1). The function V serves as a
valid, although potentially non-quadratic, storage function for this LTV system.

(b) Existence of Minimal Quadratic Storage for Unforced LTV: Consequently, by the the-
ory for passive LTV systems (Morandin & Hinsen, 2024), the unforced LTV system equa-
tion 8 admits a minimal available storage function Va,0(t, h) which is necessarily quadratic
in the state h:

Va,0(t, h) =
1
2h

HQ0(t)h (9)

for a unique matrix function Q0 : T → SN
+ (C). This holds despite potential discontinuities

in A0(t) and C0(t) induced by ∆(t).

(c) AUC Regularity of Q0(t): Furthermore, the matrix function Q0(t) associated
with the minimal quadratic storage Va,0 possesses AUCloc regularity, i.e., Q0 ∈
AUCloc(T,SN

+ (C)). This specific regularity class robustly handles potential jump dis-
continuities from ∆(t) while ensuring essential structural properties like locally bounded
variation and weakly decreasing singular part.

Finally, if the original storage function V for the full selective system satisfies the stricter conditions
of Theorem 3.1 (i.e., strict passivity β > 0 and quadratic bounds equation 5), then the state h(t) of
the unforced system equation 8 is guaranteed to decay exponentially, as proven in Theorem 3.1.

Proof Sketch. The key insight is that the unforced dynamics of our selective SSM (when x = 0)
form a standard Linear Time-Varying (LTV) system. We leverage the powerful results from
Morandin & Hinsen (2024), who proved that any passive LTV system, even with discontinuous
coefficients, admits a minimal available storage function that is necessarily quadratic, taking the
form V = 1

2h
HQ0(t)h. Their work further establishes that this unique matrix Q0(t) must pos-

sess AUCloc regularity, a property specifically designed to handle such discontinuous behavior in a
structured way. Thus, by showing our unforced system fits their framework, we inherit these strong
structural guarantees. Check Appendix A.6 for the full proof.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 CONSTRAINTS IMPOSED BY UNIVERSAL QUADRATIC PASSIVITY ON
GATING MECHANISMS

Building on the foundational properties of the unforced system, this section studies the inherent
design constraints of selective SSMs. We investigate the consequences of a strong but informative
assumption: that a single, universal quadratic storage function VQ(t, h) guarantees passivity across
all possible input-driven dynamics. The power of this assumption lies not in its generality, but in
the strict, necessary consequences it imposes on the gating mechanism. This approach allows us to
derive concrete constraints in the form of LMIs and to formalize a notion of ”irreversible forgetting”.

4.1 REGULARITY AND RANK MONOTONICITY OF UNIVERSAL QUADRATIC STORAGE

If a single quadratic function VQ is capable of certifying passivity regardless of the input-driven vari-
ations in system parameters, the matrix Q(t) defining this function must possess inherent structural
regularity and obey specific monotonicity properties.
Theorem 4.1 (Regularity and Rank of Universal Quadratic Storage). Consider the continuous-time
selective state-space model equation 1 under the standard regularity assumptions. Suppose there
exists a time-varying quadratic storage function VQ(t, h) =

1
2h

HQ(t)h (with Q : T → SN
+ (C)) that

satisfies the passivity inequality:

VQ

(
T, h(T )

)
− VQ

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ (10)

for some β ≥ 0, valid for all admissible state-input-output trajectories {h(τ), x(τ), y(τ)} generated
by any admissible input x(·). Then, the matrix function Q(t) must satisfy the following properties:

(a) AUC Regularity: Q(t) must belong to the class of locally absolutely upper semicontinuous
matrix functions, i.e., Q ∈ AUCloc(T,SN

+ (C)).

(b) Rank Monotonicity: The rank of Q(t), denoted r(t) = rank(Q(t)), must be weakly
monotonically non-increasing over time t ∈ T.

Proof Sketch. The logic here is similar to the previous theorem but applied to the storage matrix
Q(t) itself rather than the minimal one. If a single quadratic function VQ works for all inputs, it
must, by definition, also work for the zero-input case. Therefore, VQ is a valid storage function
for the underlying LTV system. The same theoretical results from Morandin & Hinsen (2024) that
impose structure on the minimal storage function also apply to any valid quadratic storage function.
This forces Q(t) to have AUCloc regularity and, crucially, a non-increasing rank over time. Check
Appendix A.7 for the full proof.

4.2 PARAMETRIC LMI AND KERNEL CONSTRAINTS ON GATING

The existence of a universal quadratic storage function VQ translates into concrete algebraic con-
straints that the system matrices A(t, x), B(t, x), C(t, x) must satisfy parametrically for all possible
input values x. These constraints take the form of a Linear Matrix Inequality (LMI) and lead to im-
portant conditions on how the output matrix C(t, x) interacts with the kernel of the storage matrix
Q(t).
Theorem 4.2 (Passivity Constraints on Gating via Kernel Conditions). Consider the continuous-
time selective state-space model equation 1 under the standard regularity assumptions. Assume the
system’s passivity is guaranteed by a single, time-varying quadratic storage function VQ(t, h) =
1
2h

HQ(t)h (with Q : T → SN
+ (C) satisfying Q ∈ AUCloc and non-increasing rank, per Theorem

4.1) that fulfills the passivity inequality equation 10 for some β ≥ 0 and for all admissible inputs
x(·) and trajectories. Then, the following necessary conditions hold:

(a) Parametric LMI Condition: For almost every t ∈ T, the LMI associated with passivity
must hold parametrically for all admissible input values x ∈ Cdin that can occur at time t:

L(t, x) :=
[
Q̇(t) +Q(t)A(t, x) +A(t, x)HQ(t) + 2βI Q(t)B(t, x)− C(t, x)H

B(t, x)HQ(t)− C(t, x) 0

]
⪯ 0

(11)
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where A(t, x) = A(∆(t), x), B(t, x) = B(∆(t), x), C(t, x) = C(∆(t), x), and Q̇(t)
exists a.e. 1

(b) Universal Kernel Condition for C: The output matrix C(t, x) must map the kernel of
Q(t) to zero, uniformly for all admissible input values x:

∀v ∈ Ker
(
Q(t)

)
, C

(
∆(t), x

)
v = 0 for all admissible x at time t, a.e. t ∈ T. (12)

(c) Implicit Constraints on A and B: The (1, 1) block inequality Q̇+QA+AHQ+2βI ⪯ 0
and the off-diagonal block constraint (related to QB − CH ) must also hold parametrically
for all admissible x, implicitly restricting the choices of A(t, x) and B(t, x) based on Q(t)
and the constrained C(t, x).

Proof Sketch. This proof translates the differential form of the passivity inequality, dVQ

dt ≤ . . . , into
a matrix inequality. By substituting the system dynamics and the quadratic form of VQ, we arrive
at an expression that must be negative for all states h and inputs x. Such an expression can be
elegantly represented as a Linear Matrix Inequality (LMI). For the LMI to hold for all h and x,
specific conditions must be met. By choosing a state v from the kernel of Q (where Qv = 0), the
LMI simplifies dramatically, revealing that the term involving the output matrix C must be zero to
prevent the inequality from being violated. This leads to the necessary condition that C(t, x)v = 0.
Check Appendix A.8 for the full proof.

4.3 IRREVERSIBLE FORGETTING AND ENERGY CONSISTENCY IN KERNEL SUBSPACE

The constraints derived above, particularly the non-increasing rank of Q(t) and the universal kernel
condition for C(t, x), suggest a form of structural irreversibility associated with the modes that fall
into the kernel of the storage matrix Q(t). We now explore this concept of ”irreversible forgetting”
from the perspective of the universal storage function VQ and examine the energy balance required
within this forgotten subspace.

Theorem 4.3 (Inertness of Forgotten Modes and Gating Constraints from Passivity). Consider
the continuous-time selective state-space model equation 1 under standard regularity assump-
tions. Assume its passivity is guaranteed by a single, time-varying quadratic storage function
VQ(t, h) = 1

2h
HQ(t)h (with Q ∈ AUCloc(T,SN

+ (C)) having non-increasing rank) satisfying
inequality equation 10 for some β ≥ 0 and for all admissible inputs x(·). Then, the following
properties regarding ”forgotten modes” (states in Ker(Q(t))) hold:

1. Kernel Non-Shrinking (Irreversible Forgetting): The subspace Ker(Q(t)) is non-decreasing
over time: for any t1 ≤ t2 in T, Ker(Q(t1)) ⊆ Ker(Q(t2)). A state direction v, once in the kernel
at t1, remains in the kernel subspace for all t2 ≥ t1, from the perspective of Q(t).

2. Energy Consistency within the Kernel: For any state h(t) ∈ Ker(Q(t)) at a time t ∈ T where
Q̇(t) exists, the energy balance condition holds:

h(t)HQ̇(t)h(t) + 2β∥h(t)∥2 ≤ 0. (13)

This ensures the evolution Q̇(t) within the kernel is consistent with the required dissipation β. If
β = 0, hHQ̇h ≤ 0; if β > 0, hHQ̇h ≤ −2β∥h∥2 < 0 (for h ̸= 0).

3. Constraint on Dynamics Violating Kernel Structure: Any input x∗(t) inducing dynamics
A∗(t), B∗(t) that would require a state h(t) ∈ Ker(Q(t)) to evolve in a way inconsistent with
the LMI equation 11 (e.g., appearing to ”gain energy” according to VQ) is inadmissible under the
assumption of universal passivity with VQ. The dynamics must respect the energy structure defined
by Q(t) and Q̇(t) within the kernel.

Proof Sketch. This theorem’s proof is a direct consequence of the preceding results.

1The 2βI term arises from incorporating the strict passivity term −β∥h∥2 into the LMI, assuming the state
h corresponds to the first block.

7
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1. Kernel Non-Shrinking: This follows immediately from the rank monotonicity established
in Theorem 4.1; if the rank cannot increase, the dimension of the kernel (N − rank) cannot
decrease.

2. Energy Consistency: This is derived by taking the (1,1) block of the LMI from Theorem
4.2 and evaluating it for a state h in the kernel of Q. This isolates the term hH dQ

dt h and
shows it must be negative enough to account for the required energy dissipation.

3. Constraint on Dynamics: This is a logical conclusion: any input x that would induce
dynamics violating the LMI contradicts the fundamental assumption of universal passivity,
and is therefore inadmissible.

Check Appendix A.9 for the full proof.

5 ROBUST STABILITY UNDER INPUT-DRIVEN DYNAMICS

Having established the baseline properties of the unforced system and the structural constraints
imposed by passivity, we now arrive at the ultimate goal: analyzing the selective SSM in the fully
general and realistic case where it is driven by persistent, non-zero inputs. This section provides suf-
ficient conditions for Input-to-State Stability (ISS), the gold standard for robust stability in nonlinear
systems. To achieve this strong guarantee, we must impose conditions that ensure the system’s inter-
nal dynamics are powerful enough to overcome any disturbance from the input. These conditions,
while strong, provide a clear, verifiable pathway to designing certifiably robust models.

5.1 GLOBAL ISS FROM UNIFORM DISSIPATIVITY

To guarantee robust stability in the presence of arbitrary bounded inputs, basic passivity is not
enough. We need to ensure the system’s internal dynamics are uniformly contractive, that is, they
dissipate energy at a guaranteed rate, regardless of which operating mode the input selects. This
ensures the system can actively counteract the energy being injected by the input. With this subsec-
tion, we present such a condition based on the existence of a common quadratic Lyapunov function
demonstrating uniform dissipativity.
Theorem 5.1 (Global Stability from Uniform Local Dissipativity). Consider the continuous-time
selective state-space model equation 1 under the standard regularity assumptions. Assume further
that:

(i) There exists a time-varying quadratic Lyapunov function candidate VQ(t, h) =
1
2h

HQ(t)h,
where Q : T → SN

+ (C) satisfies:

• Q ∈ W 1,1
loc (T,SN

+ (C)) (absolutely continuous locally).
• Q(t) is uniformly positive definite and bounded: there exist constants k2 ≥ k1 > 0

such that k1I ⪯ Q(t) ⪯ k2I for all t ∈ T.

(ii) The dynamics satisfy a uniform dissipativity condition with respect to VQ: There exists
a constant δ > 0 such that for almost every t ∈ T and for all admissible input values
x ∈ Cdin that can occur at time t, the following matrix inequality holds:

Q̇(t) +Q(t)A
(
∆(t), x

)
+A

(
∆(t), x

)H
Q(t) ⪯ −2δQ(t) (14)

(This implies that for any fixed x, the homogeneous system ḣ = A(∆(t), x)h is uniformly
exponentially stable with VQ as a Lyapunov function decaying at rate δ).

(iii) The input matrix B(∆(t), x) is uniformly bounded: There exists a constant MB > 0 such
that ∥B(∆(t), x)∥2 ≤ MB for all t and admissible x.

Then, the selective state-space system equation 1 is globally ISS with respect to the input x(t).
Specifically, there exist constants C̃ ≥ 1, γ̃ > 0, and a class K gain function σ such that for any
initial state h(t0) and any admissible input x(·), the solution satisfies:

∥h(t)∥ ≤ C̃e−γ̃(t−t0)∥h(t0)∥+ σ

(
sup

t0≤τ≤t
∥x(τ)∥

)
for all t ≥ t0. (15)
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Proof Sketch. We analyze the time derivative of the Lyapunov function VQ along the system tra-
jectories. The derivative splits into two parts: one from the internal dynamics (A matrix) and one
from the external input (B matrix). The uniform dissipativity assumption provides a strong nega-
tive bound on the internal part (≤ −2δVQ). The input part is bounded using the Cauchy-Schwarz
inequality. Combining these results in a differential inequality of the form dV

dt ≤ −aV + b
√
V .

By a change of variables, Ψ =
√
V , this transforms into a standard linear differential inequal-

ity, dΨ
dt ≤ −cΨ + d, whose solution is bounded. Translating this bound back to the state norm

∥h(t)∥ yields the classic Input-to-State Stability (ISS) estimate. Check Appendix A.10 for the full
proof.

Remark 5.2 (Relationship to the Passivity LMI). The ISS condition in Eq. equation 14 is concep-
tually stronger than the passivity LMI from Theorem 4.2. The passivity LMI describes an energy
balance, ensuring the system does not generate energy. In contrast, the ISS condition demands a
forced energy decay, ensuring the system’s internal dynamics actively dissipate energy at a uniform
exponential rate.

Formally, if the ISS condition holds (with δ > 0 and a positive definite Q), it is sufficient to satisfy
the internal stability portion (the (1,1) block) of the passivity LMI. However, a system can be passive
(energy-balanced) without being uniformly contractive in this stricter sense. Thus, the ISS condition
is a specialized and powerful tool for proving robust stability, while the passivity LMI is a more
general tool for analyzing a system’s energy flow.

6 CONCLUSION

In this paper, we established a rigorous bridge between the control-theoretic frameworks of passivity
and Input-to-State Stability (ISS) and the complex, input-dependent dynamics of modern selective
SSMs. Our work provides a new language for analyzing these models and demonstrates that even
with discontinuous gating, their stability is governed by well-defined principles of energy manage-
ment.

Our theoretical findings translate directly into three key practical insights. First, we provide a formal
rationale for the critical role of principled initialization (e.g., HiPPO), explaining it as the design
of a desirable baseline energy landscape for the system’s intrinsic dynamics (see Appendix A.1.1).
Second, we have shown a demonstrated path to robust model design by implementing our theoretical
LMI condition as a practical regularizer. Our experiments confirm this regularizer dramatically
improves training stability with negligible impact on task performance, offering a concrete tool for
building more reliable models (see Appendix A.1.2). Finally, our analysis of structural constraints
and ”irreversible forgetting” offers a new lens through which to understand the fundamental trade-
offs between stability and expressivity in these powerful architectures (see Appendix A.1.3).

While significant challenges remain, particularly in translating these guarantees to the discrete-time
domain and scaling our methods, this work lays a critical foundation. By connecting abstract stabil-
ity concepts to concrete, verifiable properties of the model, our framework paves the way for a new
class of certifiably robust and interpretable models for sequential data processing.
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A APPENDIX

A.1 BROADER IMPACT AND FUTURE DIRECTIONS

This section provides a more detailed discussion of the practical implications of our theoretical
findings, expanding on the key insights summarized in the main paper’s conclusion.

A.1.1 INITIALIZATION AS BASELINE ENERGY LANDSCAPE DESIGN

A key practical takeaway from our work is a formal, control-theoretic rationale for the critical im-
portance of initialization schemes like HiPPO (Gu et al., 2020), used in foundational models like S4
and Mamba (Gu et al., 2022; Gu & Dao, 2024). As demonstrated quantitatively in our simulation
in Appendix A.3.1, a HiPPO-style initialization creates a stable baseline with slow energy decay
essential for long-term memory, whereas naive initializations lead to instability or rapid forgetting.

Our analysis provides a deep justification for this empirical success. Theorem 3.2 reveals that any
passive selective SSM possesses an intrinsic, minimal quadratic energy function for its unforced
dynamics (x = 0), given by Va,0(t, h) =

1
2h

HQ0(t)h. Crucially, the structure of this energy land-
scape is determined entirely by the unforced state matrix A0(t). Since a model’s initial parameters
define A0(t), an initialization scheme like HiPPO is a process of designing a desirable baseline
energy landscape. By crafting A0(t) to have eigenvalues that are stable but close to the imaginary
axis, these methods create an intrinsic dynamic that is well-suited for stably propagating information
over long horizons, providing a robust foundation upon which input-driven selections can operate.

A.1.2 A DEMONSTRATED PATH TO PRINCIPLED DESIGN: LMI REGULARIZATION

As demonstrated by our experiment in Appendix A.3.3, our theoretical framework provides a direct
path from analysis to synthesis. The LMI derived in Theorem 4.2 is not just an analytical condition
but a computable, differentiable tool for training more robust models. The general procedure, which
we validated, is as follows:

1. Define the Regularizer: The violation of the LMI, L(t, x) ⪯ 0, is quantified by its largest
eigenvalue, defining the regularization loss LLMI = max(0, λmax(L(t, x))).

2. Define the Full Loss Function: This is integrated into training via a combined loss Ltotal =
Ltask + γLLMI, where γ balances performance and stability.

3. Handle the Storage Matrix Q(t): The energy metric Q(t) can be fixed (e.g., Q = I for
Euclidean stability, as in our experiment) or made a learnable component of the model (e.g.,
parameterized as Q = LHL to ensure positive semidefiniteness).

This methodology provides a concrete way to embed stability directly into the learning process,
guiding the optimizer to discover parameters that are not only performant but also certifiably robust.
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A.1.3 STRUCTURAL CONSTRAINTS AND IRREVERSIBLE FORGETTING

Our analysis of a universal quadratic storage function revealed deep structural constraints on the gat-
ing mechanism, which we term ”irreversible forgetting” (Theorem 4.3). The principle that the rank
of the storage matrix Q(t) must be non-increasing implies that once the system’s capacity to store
energy in a certain direction is lost, it cannot be recovered without violating the underlying passive
structure. Our simulation in Appendix A.3.2 provides a clear visualization of this phenomenon.

This concept has profound implications. It formalizes a fundamental trade-off between robust sta-
bility and expressivity: a system that is certifiably passive in this strong sense may be constrained in
its ability to adapt. This offers a new, control-theoretic lens for analyzing complex behaviors in deep
learning, such as catastrophic forgetting, where learning a new task might require structural changes
that are incompatible with a previously established stable energy landscape.

A.1.4 LIMITATIONS AND FUTURE DIRECTIONS

While our work establishes a strong foundation, several challenges define the frontier for future
research.

• Computational Cost: The primary practical problem for LMI-based regularization is the
overhead of eigenvalue computations. Future work must explore efficient, scalable approx-
imations, such as stochastic Lanczos methods.

• Discrete-Time Translation: A rigorous translation of our continuous-time guarantees to
the discrete-time domain where models are implemented is a critical and non-trivial next
step.

• Beyond Universal Quadratic Storage: A natural extension is to investigate adaptive stor-
age functions that depend on the input, Q(t, x). This could model systems that dynamically
allocate their ”energy capacity” based on context, a behavior potentially more representa-
tive of sophisticated SSMs.

A.2 RELATED WORK

The analysis of stability and energy-based properties in dynamical systems has a rich history, pro-
viding crucial tools for understanding systems ranging from classical mechanics to modern AI. Our
work on continuous-time selective State-Space Models (SSMs) builds upon several key research
streams.

A.2.1 DISSIPATIVITY, PASSIVITY, AND LTV SYSTEMS

The foundational theory of dissipative systems, pioneered by Willems (Willems, 1972), provides a
general framework for analyzing systems based on energy-like storage functions and supply rates.
Passivity, a special case where the supply rate is the input-output inner product, is central to un-
derstanding robust stability and interconnection (Van der Schaft, 2000). The Kalman-Yakubovich-
Popov (KYP) lemma established a vital link between frequency-domain passivity conditions and
state-space properties for LTI systems (Kalman, 1963; Popov, 1961), which has been extended
to LTV systems, often involving time-varying Riccati equations or differential/integral inequalities
(Anderson & Vongpanitlerd, 2013). Crucially for our work, recent research by Morandin and Hinsen
(Morandin & Hinsen, 2024) has rigorously investigated quadratic storage functions for passive LTV
systems under minimal regularity assumptions. Our work leverages these findings by demonstrating
that the unforced dynamics of our selective SSMs can be treated as such an LTV system, thereby in-
heriting these structural properties for an underlying quadratic energy form, even with discontinuous
gating.

A.2.2 STABILITY OF TIME-VARYING AND SWITCHED SYSTEMS

The input-selectivity of modern SSMs creates dynamics that behave like switched systems, where
the ”switching signal” is the input data itself. This necessitates tools for analyzing systems with
discontinuous parameter changes (Liberzon, 2003), such as methods involving common or mul-
tiple Lyapunov functions (Branicky, 1998). The formalisms of Filippov (Filippov, 1988) and
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Carathéodory (Coddington et al., 1956) provide the theoretical bedrock for guaranteeing that so-
lutions to our system exist under the mild Lp

loc regularity we assume. Our work builds directly on
this foundation. We move beyond proving solution existence to analyze how a single, coherent en-
ergy structure, an AUCloc quadratic storage function, can persist across these input-driven switches
and what structural constraints this persistence imposes on the model’s architecture.

A.2.3 INPUT-TO-STATE STABILITY (ISS) FOR NONLINEAR SYSTEMS

The ISS framework, developed by Sontag (Sontag et al., 1989; Sontag & Wang, 1995), provides
a robust notion of stability for nonlinear systems subject to external inputs, characterized by ISS-
Lyapunov functions. It quantifies how the system state is affected by both initial conditions and input
magnitudes. While classical ISS theory often assumes smooth dynamics, its principles are highly
relevant for our selective SSMs, where the input x(t) makes the system effectively nonlinear. Our
contribution (Theorem 5.1) adapts ISS concepts by seeking a common quadratic Lyapunov function
that ensures stability uniformly across all input-induced dynamics, providing a specific condition
under which these complex, input-modulated systems are globally robustly stable.

A.2.4 STABILITY AND DYNAMICS OF MODERN SSMS IN DEEP LEARNING

Recent deep learning SSMs like S4 (Gu et al., 2022), S5 (Smith et al., 2023), and particularly
Mamba (Gu & Dao, 2024) (and its variants), have shown remarkable performance. Theoretical
analyses of these models are emerging. (Halloran et al., 2024) analyzed Mamba’s stability via
Lyapunov exponents, showing non-positive maximal exponents, implying robustness to small per-
turbations. Our work complements this by providing conditions for exponential decay and ISS from
an energy/Lyapunov function perspective under specific passivity assumptions, offering a different
angle on stability for the continuous-time selective formulation. Some other works connected se-
lective SSMs to Controlled Differential Equations (CDEs) and Rough Path Theory to explain their
expressivity (Kidger et al., 2020; Lyons, 2014; Cirone et al., 2024). While our focus is on stability
and passivity using more classical control-theoretic tools, these works show the rich mathematical
underpinnings of these models from another perspective.

A.3 EMPIRICAL VALIDATION AND SIMULATION STUDIES

To ground our abstract theoretical framework in concrete, observable phenomena, we present three
targeted simulation experiments. These studies are designed to provide direct empirical validation
for the central claims of our paper. First, we validate the critical role of initialization in engineering
a system’s baseline energy landscape. Second, we provide a constructive proof of the ”irreversible
forgetting” principle. Finally, we demonstrate the practical utility of our theory by implementing
our proposed LMI regularizer.

A.3.1 EXPERIMENT 1: INITIALIZATION’S DECISIVE IMPACT ON THE ENERGY LANDSCAPE

Objective. This experiment provides a concrete demonstration of the core claims in Section 3:
that a model’s initialization directly governs its intrinsic stability and memory-vs-stability trade-
off. We show that a HiPPO-style initialization not only admits a valid quadratic energy function
Va,0(h) =

1
2h

TQ0h but also ensures this energy landscape has a slow decay rate crucial for long-
range memory.

Setup. We compared three initialization strategies for the unforced state matrix A0 of an 8-
dimensional SSM (N = 8).

1. HiPPO-style initialization (AH ): Eigenvalues are generated to be stable (negative real
parts) but clustered near the imaginary axis, with the rightmost (slowest) eigenvalue at
Re(λ) ≈ −0.1.

2. Random Stable initialization (AS): Eigenvalues are randomly generated but constrained
to be in the left half-plane, resulting in a wider spectral spread. The rightmost eigenvalue
is at Re(λ) ≈ −0.52.
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3. Random Unstable initialization (AU ): Eigenvalues are drawn from the same distribution
as AS but without the stability constraint, resulting in a dominant eigenvalue at Re(λ) ≈
+0.79.

For each A0, we first attempted to find a corresponding quadratic energy matrix Q0 by solving
the continuous-time Lyapunov equation AT

0 Q0 + Q0A0 = −I . We then simulated the system by
feeding it white-noise input for 5 seconds to populate its state, after which the input was turned off
to observe the free energy decay.

Results & Interpretation. Our findings, summarized in Figure 1, provide strong empirical vali-
dation for our theory:

• Existence of a Valid Energy Function (Q0): Both the HiPPO-style and Random Stable
initializations admitted a unique, positive-definite solution Q0 to the Lyapunov equation
(with condition numbers of ≈ 21 and ≈ 13, respectively). The Random Unstable initial-
ization failed to produce a valid solution, yielding an indefinite matrix, confirming that no
quadratic energy function exists for an unstable system.

• Spectral Gap Governs Memory: The slowest decay rate is dictated by the rightmost
eigenvalue. The spectral gap for HiPPO (≈ −0.1 s−1) was five times smaller than for
Random Stable (≈ −0.52 s−1). Consequently, after the input was removed, the state norm
of the HiPPO-initialized model took ≈ 23 seconds to decay by two orders of magnitude,
while the Random Stable model did so in just ≈ 4 seconds. The Unstable model diverged
exponentially.

• Energy Trajectories Confirm Theory: The energy Va,0(t) = 1
2h(t)

TQ0h(t) for the
HiPPO model decayed almost perfectly linearly on a log-scale with a slope of ≈ −0.1,
illustrating a long memory horizon. The Random Stable model’s energy decayed five times
faster.

This experiment confirms that merely being stable is insufficient. The precise spectral placement of
A0, as achieved by principled initializations like HiPPO, directly governs the memory-vs-stability
trade-off, exactly as our energy-based theoretical framework predicts.
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Figure 1: Energy decay Va,0(t) on a log-scale for an 8-D SSM with three different initializations
after an input signal is removed at t = 5s. The HiPPO-style initialization yields a valid energy
function and a slow decay rate (long memory). The Random Stable initialization also has a valid
energy function but decays much faster (short memory). The Unstable initialization has no valid
energy function and diverges.
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A.3.2 EXPERIMENT 2: VISUALIZING IRREVERSIBLE FORGETTING VIA RANK-DEFICIENT
GATING

Objective. This experiment is designed to provide a concrete, visual demonstration of the ”ir-
reversible forgetting” concept introduced in Section 4. It illustrates a direct consequence of our
theoretical results: the rank of any universal quadratic storage function Q(t) with AUCloc regularity
must be monotonically non-increasing, as stated in Theorem 4.1.

Setup. We construct a 3-dimensional linear system ḣ = A(t)h that can be switched between two
operating modes via a gating signal. Each mode is defined by a state matrix Ai and an associated
minimal storage matrix Qi. The storage matrices are the unique positive semidefinite solutions to the
continuous-time Lyapunov equation AT

i Qi +QiAi = −CT
i Ci, which defines the energy landscape

for an observable system. Modes of the system are:

• Mode 1 (Full-Rank Storage): The system dynamics are governed by A1 =
diag[−0.2,−0.3,−0.4]. We choose C1 = I3, representing full observability of the state.
The resulting storage matrix Q1 is full-rank (rank=3), meaning the system can store energy
in all three state dimensions.

• Mode 2 (Rank-Deficient Storage): The dynamics are governed by A2 =
diag[−0.2,−0.3,−15]. The large negative eigenvalue is designed to rapidly dissipate the
third state component. We choose C2 = diag[1, 1, 0], making the third state dimension
unobservable. The resulting storage matrix Q2 is rank-deficient (rank=2), with the third
dimension lying in its kernel (Ker(Q2)). In this mode, the system loses the capacity to
store energy in the third dimension.

Simulation Protocol. We simulate the unforced system from a random initial state with non-
zero components in all dimensions. The gating signal switches the system’s mode according to the
following timeline:

• 0s ≤ t < 5s: The system operates in Mode 1 (full-rank energy storage).

• 5s ≤ t < 10s: The gating switches the system to Mode 2 (rank-deficient storage).

• t ≥ 10s: The gating attempts to switch the system back to Mode 1.

Theoretical Prediction & Results. Our theory predicts that if a single, universal quadratic storage
function VQ(t) governs the entire trajectory, its defining matrix Q(t) must have a non-increasing
rank. More precisely, in this case:

• The switch at t = 5s is permissible, as the storage rank can decrease from 3 to 2.

• The attempted switch back at t = 10s, however, would necessitate an increase in the stor-
age rank from 2 to 3. This violates the rank monotonicity property inherent to AUCloc

functions.

This implies that no single VQ(t) can certify passivity for the entire trajectory. The ”forgetting”
of the energy storage capacity in the third dimension is, from the perspective of a single passive
structure, irreversible.

The simulation results, visualized in Figure 2, confirm this prediction empirically. During Mode 2,
the third state component (h3) rapidly collapses to zero and, crucially, does not recover even after
the system dynamics are switched back to Mode 1. The system becomes permanently confined to
the two-dimensional subspace. This provides a clear, empirical illustration of our theoretical claims:
once the system’s energy storage rank collapses due to gating, it cannot be increased again without
violating the fundamental constraints required for a stable, passive system.

A.3.3 EXPERIMENT 3: LMI REGULARIZATION FOR IMPROVED TRAINING ROBUSTNESS

Objective. This final experiment validates the central practical claim of our work: that the LMI
condition from Theorem 4.2 can be used as a regularizer to train certifiably more robust selective
SSMs.
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Figure 2: Illustration of irreversible forgetting. The rank of the underlying minimal storage matrix
is plotted over time (or implied by state trajectories). The system switches from a full-rank mode
(rank=3) to a rank-deficient mode (rank=2) at t = 5s, causing the third state component to collapse.
Our theory proves that any attempt to switch back in a way that increases the rank of a universal
storage function (e.g., the dashed red line) is incompatible with maintaining a single, passive energy
structure, demonstrating the irreversibility principle from Theorem 4.1.

Setup.

• Task: We designed a challenging 1D tracking task where the SSM’s output y(t) must track
a ”spiky” reference signal r(t) composed of steps and sharp impulses, designed to provoke
large internal state excursions.

• Model: We use a 2-dimensional (N = 2) selective SSM. The state matrix is explicitly
input-dependent to ensure selectivity: A(x) = Abase + tanh(x) ·Asel, where Abase and Asel
are learned 2× 2 matrices. The input matrix B and output matrix C are also learned.

• LMI Regularizer: We employ the LMI from Theorem 4.2. For simplicity and to demon-
strate the core principle, we fix the storage matrix Q = I . The regularization loss is defined
as the magnitude of the LMI violation: LLMI = max(0, λmax(L(x))), where L(x) is the
LMI matrix evaluated for the input x.

• Two Training Conditions: We compare two models: 1. Baseline Model: Trained only
with the task loss, Ltotal = Ltask, where Ltask = MSE(y(t), r(t)). 2. LMI-Regularized
Model: Trained with the combined loss, Ltotal = Ltask + γ · LLMI, using a small regulariza-
tion weight γ = 0.01.

Results and Interpretation. The results of the experiment, evaluated on a held-out test set, are
summarized in Table 1.

Table 1: Comparison of Baseline vs. LMI-Regularized SSM on a challenging tracking task.
Model Task MSE (Test) Max State Norm ∥h∥∞ Max LMI Violation
Baseline Model 0.073 18.4 3.51
LMI-Regularized Model 0.081 1.9 0.003
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The results lead to three clear conclusions:

1. Robustness is Dramatically Improved: The most interesting result is in the maximum
state norm. The baseline model, while achieving a slightly better task MSE, does so by
allowing its internal state to reach a very large norm (18.4). This is indicative of a model
operating on the edge of instability, vulnerable to exploding states. In contrast, the LMI-
regularized model’s state norm is an order of magnitude smaller (1.9). It has learned to
perform the task while keeping its internal dynamics constrained and provably more stable.

2. The Regularizer Works as Intended: The ”Max LMI Violation” column shows that the
regularizer was highly effective. The baseline model frequently and significantly violates
the passivity condition (max violation of 3.51). The regularized model has learned param-
eters that keep the LMI matrix negative semidefinite (max violation is near zero), success-
fully enforcing the theoretical condition for stability derived in our work.

3. Minimal Impact on Task Performance: Crucially, this significant gain in robustness
comes at a negligible cost to task performance. The MSE of the regularized model is
only marginally higher than the baseline, demonstrating that a stable, well-behaved solu-
tion exists that is also effective for the task.

To conclude, this experiment demonstrates that our theoretical condition can be directly translated
into a practical tool for improving training robustness. The LMI regularizer successfully guides the
optimizer away from unstable solutions towards solutions that are both effective and well-behaved.
This result directly addresses the concern about practical consequences and shows that our frame-
work has practical benefits for the field.

A.4 PROOF OF THEOREM 3.1

We are given the existence of a storage function V (t, h) satisfying the strict dissipativity inequality
equation 4 and the quadratic bounds equation 5. The regularity assumption allows us to consider
the differential version of the inequality. Along any trajectory of the system equation 1, the time
derivative of V satisfies:

d

dt
V
(
t, h(t)

)
≤ Re ⟨x(t), y(t)⟩ − β∥h(t)∥2 (16)

almost everywhere. This follows from differentiating the integral inequality or directly from the
definition of dissipativity via differential supply rates. Now, consider the unforced system, where
x(t) ≡ 0 for all t ≥ 0. The system dynamics become ḣ(t) = A(∆(t), 0)h(t), which is an LTV
system. The corresponding output is y(t) = C(∆(t), 0)h(t). Therefore, the input-output power
term Re ⟨x(t), y(t)⟩ = Re ⟨0, y(t)⟩ = 0.

Substituting x(t) = 0 into the differential inequality equation 16, we get:

d

dt
V
(
t, h(t)

)
≤ −β∥h(t)∥2 (17)

for the trajectories of the unforced system.

We can relate ∥h(t)∥2 back to V (t, h(t)) using the upper quadratic bound from equation 5:
∥h(t)∥2 ≥ 1

k2
V (t, h(t)). Substituting this into equation 17:

d

dt
V
(
t, h(t)

)
≤ − β

k2
V
(
t, h(t)

)
. (18)

Let Φ(t) = V (t, h(t)). This is a scalar non-negative function satisfying the differential inequality
Φ̇(t) ≤ −γ′Φ(t), where γ′ = β/k2 > 0. By the Comparison Lemma (a consequence of Grönwall’s
inequality), this implies:

Φ(t) = V
(
t, h(t)

)
≤ V

(
0, h(0)

)
e−γ′t for all t ≥ 0. (19)

Now, we use both quadratic bounds from equation 5:

• Lower bound on V (t, h(t)): k1∥h(t)∥2 ≤ V (t, h(t)).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Upper bound on V (0, h(0)): V (0, h(0)) ≤ k2∥h(0)∥2.

Combining these with the decay inequality equation 19:

k1∥h(t)∥2 ≤ V
(
t, h(t)

)
≤ V

(
0, h(0)

)
e−γ′t ≤ k2∥h(0)∥2 e−γ′t. (20)

Dividing by k1 > 0:

∥h(t)∥2 ≤ k2
k1

∥h(0)∥2 e−γ′t. (21)

Taking the square root of both sides:

∥h(t)∥ ≤
√

k2
k1

∥h(0)∥ e−(γ′/2)t. (22)

Defining C =
√
k2/k1 ≥ 1 (since k2 ≥ k1 > 0) and γ = γ′/2 = β/(2k2) > 0, we obtain the

desired exponential decay:
∥h(t)∥ ≤ C e−γt ∥h(0)∥. (23)

This completes the proof.

Summary: This theorem establishes that intrinsic energy dissipation (β > 0), when coupled with
a storage function V that is quadratically comparable to the state norm, guarantees exponential
stability of the unforced system (x = 0). This signifies a fundamental ”forgetting” capability,
ensuring that the influence of the initial state diminishes exponentially over time in the absence
of external input, regardless of the specific (potentially non-quadratic) nature of V .

A.5 LEMMA REGARDING MINIMAL AVAILABLE STORAGE FUNCTION

Lemma A.1 (Strict Passivity of the Minimal Available Storage Function). Let Vmin(t, h) be the
minimal available storage function defined as:

Vmin(t, h) := sup
S≥t

admissible inputs x̂(·) on [t,S]

[
−
∫ S

t

Re ⟨x̂(τ), ŷ(τ)⟩ dτ + β

∫ S

t

∥ĥ(τ)∥2 dτ

]
, (24)

where ĥ(·) is the state trajectory starting at ĥ(t) = h driven by input x̂(·), ŷ(·) is the corresponding
output, and β ≥ 0 is the dissipation rate from Eq. equation 4. Assume the system is such that this
supremum is finite for all (t, h) (which is guaranteed if there exists at least one storage function V
satisfying Eq. equation 4). Then Vmin itself satisfies the strict dissipativity inequality; that is, for
every admissible state-input-output trajectory {h(τ), x(τ), y(τ)} on an interval [t0, T ],

Vmin

(
T, h(T )

)
− Vmin

(
t0, h(t0)

)
≤

∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ. (25)

Proof of A.1. Let {h(τ), x(τ), y(τ)} be an admissible trajectory on the interval [t0, T ]. Let h0 :=
h(t0) and hT := h(T ). From the definition equation 24, we have:

Vmin(t0, h0) = sup
S≥t0

x̃(·) on [t0,S]

[
−
∫ S

t0

Re ⟨x̃(τ), ỹ(τ)⟩ dτ + β

∫ S

t0

∥h̃(τ)∥2 dτ

]
, (26)

where h̃(t0) = h0. Consider any admissible input trajectory x̃(·) defined on [t0, S] with S ≥ T .
We can split the integral into two parts: [t0, T ] and [T, S]. Let h̃(·) and ỹ(·) be the state and output
corresponding to x̃(·) starting from h̃(t0) = h0.

−
∫ S

t0

Re ⟨x̃(τ), ỹ(τ)⟩ dτ + β

∫ S

t0

∥h̃(τ)∥2 dτ

=

(
−
∫ T

t0

Re ⟨x̃(τ), ỹ(τ)⟩ dτ + β

∫ T

t0

∥h̃(τ)∥2 dτ

)
(27)

+

(
−
∫ S

T

Re ⟨x̃(τ), ỹ(τ)⟩ dτ + β

∫ S

T

∥h̃(τ)∥2 dτ

)
.
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The second term, integrated from T to S, depends on the input x̃(·) on [T, S] and the state h̃(T )
reached at time T . Now, consider specifically the set of input trajectories x̃(·) on [t0, S] (where S ≥
T ) that coincide with the given input x(·) on the interval [t0, T ]. For such trajectories, the state h̃(τ)
will coincide with h(τ) on [t0, T ] (by uniqueness of solutions), so h̃(T ) = h(T ) = hT . Let x̂(·)
denote the portion of such x̃(·) on the interval [T, S]. The corresponding state trajectory on [T, S],
let’s call it ĥ(·), starts at ĥ(T ) = hT . For these specific concatenated trajectories, Eq. equation 27
becomes:

−
∫ S

t0

Re ⟨x̃(τ), ỹ(τ)⟩ dτ + β

∫ S

t0

∥h̃(τ)∥2 dτ

=

(
−
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ + β

∫ T

t0

∥h(τ)∥2 dτ

)
(28)

+

(
−
∫ S

T

Re ⟨x̂(τ), ŷ(τ)⟩ dτ + β

∫ S

T

∥ĥ(τ)∥2 dτ

)
.

The first term in equation 28 is fixed by the given trajectory on [t0, T ]. Let’s denote it by Ct0,T :

Ct0,T := −
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ + β

∫ T

t0

∥h(τ)∥2 dτ. (29)

The second term is the quantity maximized in the definition of Vmin(T, hT ), taken over the specific
continuation (x̂, ĥ, ŷ) from T to S. The supremum in the definition of Vmin(t0, h0) is taken over all
admissible inputs x̃(·) starting at t0. This supremum must be greater than or equal to the supremum
taken over the subset of inputs that match x(·) on [t0, T ]. Therefore,

Vmin(t0, h0) ≥ sup
S≥T

x̂(·) on [T,S]

[
Ct0,T +

(
−
∫ S

T

Re ⟨x̂(τ), ŷ(τ)⟩ dτ + β

∫ S

T

∥ĥ(τ)∥2 dτ

)]

= Ct0,T + sup
S≥T

x̂(·) on [T,S]

[
−
∫ S

T

Re ⟨x̂(τ), ŷ(τ)⟩ dτ + β

∫ S

T

∥ĥ(τ)∥2 dτ

]

= Ct0,T + Vmin(T, hT ).

Here, the supremum in the second line is exactly the definition of Vmin(T, hT ) since ĥ(T ) = hT .
Substituting back the definition of Ct0,T :

Vmin(t0, h0) ≥

(
−
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ + β

∫ T

t0

∥h(τ)∥2 dτ

)
+ Vmin(T, hT ).

Rearranging this inequality gives the desired result:

Vmin(T, hT )− Vmin(t0, h0) ≤
∫ T

t0

Re ⟨x(τ), y(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ.

This holds for any admissible trajectory on [t0, T ].

A.6 PROOF OF THEOREM 3.2

(a) Passivity of the Unforced LTV System. Define A0(t) := A(∆(t), 0) and C0(t) := C(∆(t), 0).
The assumed regularity implies A0 ∈ L1

loc and C0 ∈ L2
loc. The corresponding B0(t) = B(∆(t), 0)

is in L2
loc and D0(t) = 0. These conditions ensure that the unforced ODE ḣ(t) = A0(t)h(t) is

well-posed and defines an LTV system within the framework of (Morandin & Hinsen, 2024). Let
{h(τ), 0, y0(τ)} be a trajectory of the unforced system equation 8. This is also a trajectory of the full
system equation 1 with input x(τ) ≡ 0. Substituting x(τ) = 0 into the assumed passivity inequality
equation 7:

V
(
T, h(T )

)
− V

(
t0, h(t0)

)
≤
∫ T

t0

Re ⟨0, y0(τ)⟩ dτ − β

∫ T

t0

∥h(τ)∥2 dτ

= 0− β

∫ T

t0

∥h(τ)∥2 dτ ≤ 0 (since β ≥ 0).
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This inequality, V (T, h(T ))−V (t0, h(t0)) ≤ 0, holds along all trajectories of the unforced system.
Since V ≥ 0 and V (t, 0) = 0, it satisfies the requirements of (Morandin & Hinsen, 2024, Def 1.1)
for being a storage function for the LTV system equation 8. Thus, the unforced system is passive.

(b) Existence of Minimal Quadratic Storage Va,0. Since the unforced system equation 8 is a
passive LTV system satisfying the Lp

loc regularity framework of (Morandin & Hinsen, 2024), we
apply their Corollary 4.3. This theorem states that the available storage function Va,0 (defined via
their Def 4.1, analogous to Lemma A.1 but with zero supply rate relevant for the unforced system
analysis) is finite and is a quadratic form in the state h. Thus, there exists a unique matrix function
Q0 : T → SN

+ (C) such that Va,0(t, h) = 1
2h

HQ0(t)h. This holds regardless of discontinuities in
A0(t) or C0(t) induced by ∆(t), as long as the Lp

loc conditions are met.

(c) AUC Regularity of Q0(t). Corollary 4.4 in (Morandin & Hinsen, 2024) further states that
the matrix Q0(t) inducing the minimal quadratic available storage Va,0 belongs to the func-
tion class AUCloc(T,Sn

+(C)). This class ensures Q0 is BVloc, its derivative exists a.e. and
is L1

loc, and its jump discontinuities are constrained (weakly decreasing singular part, satisfying
limτ→t− Q0(τ) ⪰ Q0(t) ⪰ limτ→t+ Q0(τ)). This AUCloc property guarantees a well-behaved
energy storage structure Q0(t) compatible with abrupt changes from gating.

(Connection to Exponential Decay) The final statement just notes that if the initial V meets the
conditions of Theorem 3.1 (strict passivity β > 0 and quadratic bounds), then Theorem 3.1 directly
implies exponential decay for the unforced system, independent of the existence and properties of
Va,0.

Summary: This theorem provides a crucial bridge to the rigorous theory of passive LTV systems
developed by Morandin & Hinsen (Morandin & Hinsen, 2024). It shows that the mere existence
of any storage function V demonstrating passivity for the overall selective SSM guarantees that the
unforced dynamics (x = 0) possess an underlying minimal energy storage function Va,0 that is in-
herently quadratic, Va,0(t, h) =

1
2h

HQ0(t)h. Critically, the defining matrix Q0(t) exhibits AUCloc
regularity, a property robust enough to handle discontinuities introduced by the gating signal ∆(t).
This establishes a foundational, well-behaved quadratic energy structure associated with the sys-
tem’s intrinsic dynamics, highlighting that even amidst complex input-driven parameter variations,
the system’s behavior from a given initial state h(0) is governed by dynamics with this regular
underlying structure when input is removed.

A.7 PROOF OF THEOREM 4.1

(a) and (b): The premise is that VQ(t, h) satisfies the passivity inequality equation 10 for all ad-
missible trajectories of the selective SSM equation 1. As argued in the proof of Theorem 3.2(a),
any such trajectory includes the trajectories of the unforced LTV system equation 8 obtained by
setting x(t) ≡ 0. Therefore, VQ must also be a valid storage function for this passive LTV system
(satisfying VQ(T, h(T ))− VQ(t0, h(t0)) ≤ 0 along unforced trajectories).

The framework of Morandin & Hinsen (Morandin & Hinsen, 2024) analyzes quadratic storage func-
tions for passive LTV systems under the assumed Lp

loc regularity. Specifically, (Morandin & Hinsen,
2024, Theorem 3.2) establishes necessary conditions for a quadratic form VQ(t, h) = 1

2h
HQ(t)h

to be a storage function. It implies that Q must be absolutely upper semi-continuous (which corre-
sponds to AUCloc in their terminology). Furthermore, (Morandin & Hinsen, 2024, Theorem 5.4(i)),
when discussing the properties of the available storage (which provides bounds on any storage func-
tion), shows that the associated matrix function must have weakly monotonically non-increasing
rank. Since VQ is a storage function, it must be bounded by the maximal storage (related to avail-
able storage from the past) and bound the minimal available storage Va,0 discussed in Theorem 3.2.
The structural properties, particularly the non-increasing rank, apply to any quadratic storage func-
tion candidate within their framework. Therefore, Q(t) must belong to AUCloc(T,Sn

+(C)) and its
rank r(t) must be weakly monotonically non-increasing.

Summary: This theorem reveals that the strong requirement of universal passivity guaranteed by a
single VQ immediately imposes significant structure on Q(t) itself. It must possess AUCloc regular-
ity, accommodating potential discontinuities but ensuring they behave in a controlled manner (e.g.,
jumps cannot increase energy in the Loewner sense). Crucially, the rank monotonicity implies that
the dimension of the subspace captured by the energy function (its image) cannot increase over time.
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This lays the groundwork for understanding irreversible effects, as the ”energy-less” subspace (the
kernel) can only grow or stay the same.

A.8 PROOF OF THEOREM 4.2

(a) Parametric LMI Condition: The passivity inequality equation 10 holding for all trajectories
is equivalent (under AUCloc regularity of Q) to its differential form holding almost everywhere
along trajectories: d

dtVQ(t, h(t)) ≤ Re ⟨x(t), y(t)⟩ − β∥h(t)∥2. Substituting VQ = 1
2h

HQh, ḣ =
A(t, x)h+B(t, x)x, and y = C(t, x)h leads to the quadratic inequality in h and x:

1

2
hHQ̇h+Re(hHQḣ) ≤ Re(xHC(t, x)h)− β∥h∥2 (30)

1

2
hHQ̇h+Re(hHQ(A(t, x)h+B(t, x)x)) ≤ Re(xHC(t, x)h)− β∥h∥2 (31)

Rearranging terms:

1

2
hHQ̇h+Re(hHQAh) + Re(hHQBx)− Re((CHx)Hh) + βhHh ≤ 0 (32)

1

2
hH(Q̇+QA+AHQ+ 2βI)h+Re(hH(QB − CH)x) ≤ 0 (33)

This inequality must hold for all h ∈ CN and all admissible x ∈ Cdin at almost every time t. This is
precisely the condition encoded by the negative semidefiniteness of the LMI matrix L(t, x) defined
in equation 11. Since VQ must work for any input trajectory, the LMI must hold parametrically
for all input values x that can occur at time t. This leads directly to the LMI formulation (setting
D = 0): [

Q̇(t) +Q(t)A(t, x) +A(t, x)HQ(t) + 2βI Q(t)B(t, x)− C(t, x)H

B(t, x)HQ(t)− C(t, x) 0

]
⪯ 0 (34)

(b) Universal Kernel Condition for C: Let v ∈ Ker(Q(t)) at a time t where the LMI equation 11

holds. Consider the augmented vector z =

[
v
w

]
for any w ∈ Cdin . The LMI implies zHL(t, x)z ≤

0.

zHL(t, x)z =
[
vH wH

] [Q̇+QA+AHQ+ 2βI QB − CH

BHQ− C 0

] [
v
w

]
= vH(Q̇+QA+AHQ+ 2βI)v + vH(QB − CH)w + wH(BHQ− C)v + wH(0)w

Since v ∈ Ker(Q(t)), we have Q(t)v = 0 and vHQ(t) = 0. The expression simplifies to:

= vH(Q̇+ 0 + 0 + 2βI)v + vH(0− CH)w + wH(0− C)v

= vHQ̇v + 2β∥v∥2 − vHCHw − wHCv

= vHQ̇v + 2β∥v∥2 − 2Re(wHCv)

This quadratic form in w must be ≤ 0. Considering the 2 × 2 projection onto v and w space:[
vH(Q̇+QA+AHQ+ 2βI)v vH(QB − CH)w

wH(BHQ− C)v 0

]
=

[
vHQ̇v + 2β∥v∥2 −vHC(t, x)Hw
−wHC(t, x)v 0

]
⪯

0. For this 2 × 2 matrix to be negative semidefinite, the diagonal elements must be non-positive
(vHQ̇v + 2β∥v∥2 ≤ 0, which holds as seen in Theorem 4.3, and 0 ≤ 0), and the determinant must
be non-negative. The determinant is (vHQ̇v+2β∥v∥2)(0)−|−wHC(t, x)v|2 = −|wHC(t, x)v|2.
So we need −|wHC(t, x)v|2 ≥ 0. This can only hold if |wHC(t, x)v|2 = 0 for all w ∈ Cdin . This
implies C(t, x)v = 0. Since this must hold for the C(t, x) corresponding to any admissible x at
time t, we conclude ∀v ∈ Ker(Q(t)), C(∆(t), x)v = 0 for all admissible x, a.e. t.

(c) Implicit Constraints on A and B: The validity of the LMI equation 11 for all x directly
imposes constraints on A(t, x) via the (1, 1) block and couples B(t, x) to C(t, x) (which is already
constrained by part (b)) via the off-diagonal blocks and Q(t). These ensure that the dynamics
generated by any input x remain compatible with the energy storage/dissipation defined by VQ.
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Summary: This theorem translates the abstract requirement of universal passivity into a concrete
parametric LMI equation 11. This LMI must hold not just for a specific input or for the unforced
system, but simultaneously for all possible input values x that the gating mechanism might encounter
at any given time t. A striking consequence is the universal kernel condition equation 12: any state
direction v that is considered ”energy-less” by the storage function (i.e., v ∈ Ker(Q(t))) must be
rendered unobservable at the output (C(t, x)v = 0), irrespective of the specific input x driving the
gating. This imposes a strong limitation on the gating mechanism: it cannot arbitrarily change the
output matrix C in response to input x in a way that would make these energy-less states visible.
Passivity demands consistency between the energy accounting (Q) and observability (C).

A.9 PROOF OF THEOREM 4.3

1. Kernel Non-Shrinking: This follows directly from Theorem 4.1(b), which established that
rank(Q(t)) is weakly monotonically non-increasing. Since dim(Ker(Q(t))) = N − rank(Q(t)),
a non-increasing rank implies a non-decreasing kernel dimension. The inclusion Ker(Q(t1)) ⊆
Ker(Q(t2)) for t1 ≤ t2 is a consequence of the properties of AUCloc functions shown in (Morandin
& Hinsen, 2024, Section 4).

2. Energy Consistency within the Kernel: This condition was derived within the proof of
Theorem 4.2(b) by evaluating the (1, 1) block of the parametric LMI equation 11 for a vector
h(t) ∈ Ker(Q(t)). The (1, 1) block inequality is Q̇(t) +Q(t)A(t, x) + A(t, x)HQ(t) + 2βI ⪯ 0.
Pre- and post-multiplying by h(t)H and h(t) respectively, and using Q(t)h(t) = 0, yields
h(t)HQ̇(t)h(t) + 2β∥h(t)∥2 ≤ 0. This inequality must hold independently of x because it fol-
lows from the LMI which holds parametrically.

3. Constraint on Dynamics Violating Kernel Structure: If dynamics induced by some x∗(t) were
fundamentally incompatible with the passivity condition guaranteed by VQ (e.g., by attempting to
move a state out of the kernel in an ”energy-creating” way relative to VQ), it would necessarily cause
the parametric LMI equation 11 to fail for x = x∗(t). This contradicts the core assumption that VQ

ensures passivity universally. Therefore, all admissible dynamics under the universal VQ assumption
must inherently respect the energy balance constraints, including those within the kernel.

Summary: This theorem formalizes the notion of ”irreversible forgetting” within the framework of
a universal quadratic storage function. The non-shrinking kernel (Property 1) implies that once a
state direction is deemed irrelevant or forgotten from an energy perspective (i.e., enters Ker(Q(t))),
it structurally remains so according to the fixed energy measure Q(t). The gating mechanism can-
not manipulate Q(t) to ”un-forget” this mode. Furthermore, Property 2 ensures that the system
dynamics and the evolution of Q(t) itself must maintain energy consistency within this forgotten
subspace, respecting the required dissipation rate β. Any gating strategy x(t) must induce dynamics
(A(t, x), B(t, x), C(t, x)) compatible with these constraints (Property 3). This provides a lens for
analyzing robust memory properties: modes in Ker(Q(t)) are stably forgotten. It also offers po-
tential insights into phenomena like catastrophic forgetting in learning systems; if learning adapts a
Q(t)-like structure, changes that violate kernel inertness or energy consistency might be necessary
to learn new conflicting information, potentially disrupting the established passive structure.

A.10 PROOF OF THEOREM 5.1

We analyze the time derivative of the Lyapunov function candidate VQ(t, h(t)) =
1
2h(t)

HQ(t)h(t)

along the trajectories of the full system equation 1. Since Q ∈ W 1,1
loc , its derivative Q̇(t) exists a.e.
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and is in L1
loc. Using the chain rule and substituting ḣ(t) = A(t, x(t))h(t) +B(t, x(t))x(t):

d

dt
VQ(t, h(t)) =

1

2
hHQ̇h+

1

2
ḣHQh+

1

2
hHQḣ

=
1

2
hHQ̇h+Re

(
hHQḣ

)
=

1

2
hHQ̇h+Re

(
hHQ (A(t, x(t))h+B(t, x(t))x(t))

)
=

1

2
hH
(
Q̇(t) +Q(t)A(t, x(t)) +A(t, x(t))HQ(t)

)
h︸ ︷︷ ︸

Homogeneous Part

+Re
(
hHQ(t)B(t, x(t))x(t)

)︸ ︷︷ ︸
Input Part

Here, A(t, x(t)) stands for A(∆(t), x(t)), and similarly for B.

Now, we use the assumptions: 1. Homogeneous Part: By the uniform dissipativity assumption
equation 14, which holds for the specific value x = x(t) occurring at time t, we have:

1

2
hH
(
Q̇(t) +Q(t)A(t, x(t)) +A(t, x(t))HQ(t)

)
h ≤ 1

2
hH(−2δQ(t))h = −δhHQ(t)h = −2δVQ(t, h(t))

2. Input Part: We bound this term using Cauchy-Schwarz and the uniform bounds on Q and B:

|Re(hHQ(t)B(t, x(t))x(t))| ≤ ∥hHQ(t)B(t, x(t))x(t)∥
≤ ∥h(t)∥∥Q(t)∥2∥B(t, x(t))∥2∥x(t)∥
≤ ∥h(t)∥k2MB∥x(t)∥ (using ∥Q(t)∥2 ≤ k2 since Q ⪯ k2I)

We relate ∥h(t)∥ back to VQ(t, h(t)) using the lower bound Q(t) ⪰ k1I: VQ(t, h(t)) =
1
2h

HQh ≥
1
2h

H(k1I)h = k1

2 ∥h∥2. Thus, ∥h(t)∥ ≤
√

2VQ(t,h(t))
k1

. Substituting this into the bound for the input
part:

|Re(hHQBx)| ≤
√

2VQ

k1
k2MB∥x(t)∥ (35)

Combining the bounds for the homogeneous and input parts:

d

dt
VQ(t, h(t)) ≤ −2δVQ(t, h(t)) +

(√
2

k1
k2MB

)
∥x(t)∥

√
VQ(t, h(t)) (36)

Let Φ(t) = VQ(t, h(t)) ≥ 0. Let K =
√

2
k1
k2MB ≥ 0. The inequality is:

Φ̇(t) ≤ −2δΦ(t) +K∥x(t)∥
√

Φ(t) (37)

This is a standard differential inequality form used in ISS proofs (Sontag & Wang, 1995; Khalil &
Grizzle, 2002). Consider Ψ(t) =

√
Φ(t). For Φ > 0, Ψ̇ = 1

2
√
Φ
Φ̇.

Ψ̇ ≤ 1

2
√
Φ
(−2δΦ+K∥x∥

√
Φ) = −δ

√
Φ+

K

2
∥x∥ = −δΨ+

K

2
∥x∥ (38)

So, Ψ̇(t) ≤ −δΨ(t)+K
2 ∥x(t)∥. By the Comparison Principle (integrating factor method or standard

lemma, check derivation in Appendix A.11):

Ψ(t) ≤ e−δ(t−t0)Ψ(t0) +

∫ t

t0

e−δ(t−τ)K

2
∥x(τ)∥dτ (39)
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Let ∥x∥[t0,t],∞ = supt0≤τ≤t ∥x(τ)∥.∫ t

t0

e−δ(t−τ)K

2
∥x(τ)∥dτ ≤ K

2
∥x∥[t0,t],∞

∫ t

t0

e−δ(t−τ)dτ

=
K

2
∥x∥[t0,t],∞

[
1

δ
e−δ(t−τ)

]τ=t

τ=t0

=
K

2δ
∥x∥[t0,t],∞(1− e−δ(t−t0))

≤ K

2δ
∥x∥[t0,t],∞

Therefore,

Ψ(t) ≤ e−δ(t−t0)Ψ(t0) +
K

2δ
∥x∥[t0,t],∞ (40)

Substituting back Ψ =
√
VQ:√

VQ(t, h(t)) ≤ e−δ(t−t0)
√
VQ(t0, h(t0)) +

K

2δ
∥x∥[t0,t],∞ (41)

Using the quadratic bounds k1I ⪯ Q(t) ⪯ k2I:
√
VQ ≥

√
k1/2∥h∥ and

√
VQ ≤

√
k2/2∥h∥.√

k1/2∥h(t)∥ ≤
√
VQ(t, h(t))

≤ e−δ(t−t0)
√
VQ(t0, h(t0)) +

K

2δ
∥x∥[t0,t],∞

≤ e−δ(t−t0)
√
k2/2∥h(t0)∥+

K

2δ
∥x∥[t0,t],∞

Dividing by
√
k1/2:

∥h(t)∥ ≤
√

k2
k1

e−δ(t−t0)∥h(t0)∥+
K

2δ
√
k1/2

∥x∥[t0,t],∞ (42)

This is the ISS estimate equation 15 with:

• C̃ =
√
k2/k1 ≥ 1

• γ̃ = δ > 0

• σ(s) = K ′s, where K ′ = K

2δ
√

k1/2
=

(
√

2/k1k2MB)

2δ
√

k1/2
= k2MB

δk1
≥ 0.

Since σ(s) = K ′s is a class K function (specifically, linear), the system is ISS.

Summary: This theorem provides a powerful sufficient condition for ensuring the robust stability of
the selective SSM in the face of arbitrary bounded inputs. The core requirement is the existence of
a single quadratic Lyapunov function VQ (which must be uniformly bounded and positive definite)
whose time derivative decreases at a guaranteed rate (−δVQ), regardless of which specific dynam-
ics A(t, x) are activated by the input x(t) via the gating mechanism. This condition equation 14
essentially demands that every possible ”operating mode” induced by the input is individually expo-
nentially stable, and that this stability is certified by the same Lyapunov function VQ with a uniform
decay rate δ. If this strong condition holds, and the input matrix B(t, x) is bounded, the theorem
guarantees ISS. This elegantly connects the uniform stability properties of all possible input-selected
local dynamics to the global robustness of the overall selective system against external disturbances
or inputs. Finding such a common VQ and verifying the uniform dissipativity condition provides a
direct pathway to certifying the robust stability of complex selective SSM architectures.

A.11 EXPLANATION OF COMPARISON PRINCIPLE AND DERIVATION OF EQ. (39)

Let’s start with the differential inequality we derived for Ψ(t):

Ψ̇(t) ≤ −δΨ(t) +
K

2
∥x(t)∥ (43)
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This can be rewritten as:
Ψ̇(t) + δΨ(t) ≤ K

2
∥x(t)∥ (44)

where δ > 0. The inequality for Ψ(t) is a standard first-order linear differential inequality. Its
solution bound can be obtained either by the explicit method of integrating factors or by invoking
a suitable Comparison Lemma (which is itself often proved using integrating factors or similar
techniques). Both approaches lead to the same expression for the upper bound of Ψ(t).

- Method 1: Using an Integrating Factor (Standard ODE Technique)

This is a common method for solving first-order linear ordinary differential equations. The idea is
to multiply the equation by a factor that makes the left-hand side the derivative of a product. The
integrating factor for an equation of the form ẏ + p(t)y = q(t) is e

∫
p(t)dt. In our case, p(t) = δ (a

constant). So the integrating factor is e
∫
δdt = eδt.

Multiply both sides of equation 44 by eδt:

eδtΨ̇(t) + δeδtΨ(t) ≤ eδt
K

2
∥x(t)∥ (45)

Recognize that the left-hand side is the derivative of a product:

d

dt

(
eδtΨ(t)

)
= eδtΨ̇(t) +

(
d

dt
eδt
)
Ψ(t) = eδtΨ̇(t) + δeδtΨ(t) (46)

So, the inequality becomes:
d

dt

(
eδtΨ(t)

)
≤ eδt

K

2
∥x(t)∥ (47)

Now, integrate both sides from an initial time t0 to a general time t (let’s use τ as the integration
variable to avoid confusion):∫ t

t0

d

dτ

(
eδτΨ(τ)

)
dτ ≤

∫ t

t0

eδτ
K

2
∥x(τ)∥dτ (48)

By the Fundamental Theorem of Calculus, the left side is:[
eδτΨ(τ)

]t
t0

= eδtΨ(t)− eδt0Ψ(t0) (49)

So,

eδtΨ(t)− eδt0Ψ(t0) ≤
∫ t

t0

eδτ
K

2
∥x(τ)∥dτ (50)

Now, solve for Ψ(t):

eδtΨ(t) ≤ eδt0Ψ(t0) +

∫ t

t0

eδτ
K

2
∥x(τ)∥dτ (51)

Multiply by e−δt (which is positive):

Ψ(t) ≤ e−δteδt0Ψ(t0) + e−δt

∫ t

t0

eδτ
K

2
∥x(τ)∥dτ (52)

Ψ(t) ≤ e−δ(t−t0)Ψ(t0) +

∫ t

t0

e−δ(t−τ)K

2
∥x(τ)∥dτ (53)

This gives us the result we want.

- Method 2: Direct Application of a Comparison Lemma (e.g., a form of Grönwall’s Lemma)

Many control theory and differential equations textbooks state a ”Comparison Lemma” or a specific
form of Grönwall’s Lemma that directly applies. For example, a common version states: If u̇(t) ≤
a(t)u(t) + b(t) and v̇(t) = a(t)v(t) + b(t) with u(t0) ≤ v(t0), then u(t) ≤ v(t) for t ≥ t0. If
we have an inequality u̇(t) ≤ au(t) + b(t) (where a is constant), the solution to the corresponding
equality v̇(t) = av(t) + b(t) with v(t0) = u(t0) is given by the variation of parameters formula:
v(t) = ea(t−t0)v(t0) +

∫ t

t0
ea(t−τ)b(τ)dτ . Then, by the Comparison Principle, u(t) ≤ v(t).
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In our case, from equation 43: Ψ̇(t) ≤ −δΨ(t)+
K

2
∥x(t)∥︸ ︷︷ ︸
b(t)

Here, the coefficient of Ψ(t) is a = −δ.

The ”forcing term” is b(t) = K
2 ∥x(t)∥.

So, applying the solution form for v(t) directly with a = −δ:

Ψ(t) ≤ e−δ(t−t0)Ψ(t0) +

∫ t

t0

e−δ(t−τ)

(
K

2
∥x(τ)∥

)
dτ (54)

This again yields the desired result.

B LLM USAGE

In the preparation of this manuscript, a Large Language Model (LLM) was utilized to assist with
and refine the written English. In accordance with the ICLR 2026 policy, we disclose that the LLM
was employed for purposes of improving grammar, clarity, and overall readability. The authors bear
the ultimate responsibility for the content of this paper.
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