
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONSISTENT NEURAL EMBEDDINGS THROUGH FLOW
MATCHING ON ATTRACTOR-LIKE NEURAL MANI-
FOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

The primary objective of brain-computer interfaces (BCIs) is to establish a di-
rect connection between neural activity and behavioral actions through neural de-
coders. Consistent neural representation is crucial for achieving high-performance
behavioral decoding over time. Due to the stochastic variability in neural record-
ings, existing neural representation techniques yield embedding inconsistency,
leading to the failure of behavioral decoders in few-trial scenarios. In this work,
we propose a novel Flow-Based Dynamical Alignment (FDA) framework that
leverages attractor-like ensemble dynamics on stable neural manifolds, which fa-
cilitate a new source-free alignment through likelihood maximization. The consis-
tency of latent embeddings obtained through FDA was theoretically verified based
on dynamical stability, allowing for rapid adaptation with few trials. Further ex-
periments on multiple motor cortex datasets validate the superior performance of
FDA. The FDA method establishes a novel framework for consistent neural la-
tent embeddings with few trials. Our work offers insights into neural dynamical
stability, potentially enhancing the chronic reliability of real-world BCIs.

1 INTRODUCTION

Brain-computer Interfaces (BCIs) establish a direct link between the brain and external devices, pre-
senting great opportunities for improving neural rehabilitation in individuals with paralysis (Willett
et al., 2021; Metzger et al., 2023; Willett et al., 2023). However, sustaining long-term decoding
performance in chronic implantation is challenging due to non-stationary neural recordings result-
ing from behavioral variability (Truccolo et al., 2008), physiological changes (Athalye et al., 2017),
and device degradation (Woeppel et al., 2021). Addressing this issue requires understanding the
neural origin of behavior (Urai et al., 2022; Krakauer et al., 2017). This necessitates methods that
can consistently represent neural recordings with latent embeddings to achieve high-performance
behavioral decoding over time (Urai et al., 2022; Jazayeri & Ostojic, 2021).
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Figure 1: Illustration of attractor-like ensemble
dynamics within the neural manifold and raw neu-
ral signals with the stochastic variability.

Existing work on neural representa-
tion (Schneider et al., 2023; Dabagia et al.,
2023; Safaie et al., 2023) have focused on
neural latent embeddings, and aligned them
for stable long-term neural decoding. Linear
methods, such as principal component analysis
(PCA) (Degenhart et al., 2020; Yu et al.,
2008; Gallego et al., 2018), are used for
interpretable latent factors, but often at the cost
of performance (Urai et al., 2022). Non-linear
methods (Zhou & Wei, 2020; Pandarinath
et al., 2018; Prince et al., 2021) based on
low-dimensional neural manifolds usually
have explicit assumptions on the statistical
properties of dynamical latent variables. For
instance, NoMAD (Karpowicz et al., 2022)
and the source-free alignment (Vermani et al.,
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2024) based on seq-VAEs assume Gaussian posteriors for the closed-form calculation of distribution
divergences. However, the restrictive assumption does not guarantee consistent neural embeddings,
which may limit both their generalizability and interpretability (Schneider et al., 2023). Recently,
the pre-trained foundation models based on transformers have been leveraged for shared latent
embeddings across abundant sessions and modalities via scaling laws (Ye et al., 2023; Azabou
et al., 2023). But these foundation models usually demand extensive data and, more critically, lack
interpretability in neural dynamics.

In addition, these existing representation techniques aforementioned may yield inconsistent neural
embeddings (Karpowicz et al., 2022; Wang et al., 2023; Vermani et al., 2024) due to stochastic per-
turbations in neural recordings. Specifically, while they can achieve reasonable performance through
alignment with a substantial number of target samples (around 100 trials), their inconsistency can
lead to the failure of behavioral decoding over time in few-trial scenarios with no more than 5
target trials. This phenomenon has been empirically validated, as shown in Fig. S4. Hence, the
consistency of neural embeddings over time is essential for ensuring controllable deviations under
stochastic variability, especially in few-trial scenarios.

Despite the stochastic variability within neural recordings, regions like the motor cortex (Inagaki
et al., 2019; Finkelstein et al., 2021; Hira et al., 2013) exhibit a shared low-dimensional manifold
when similar tasks are performed. Within this manifold, latent states converge toward similar ones
over time, a property known as attractor-like ensemble dynamics (Gonzalez et al., 2019; Khona &
Fiete, 2022). This mechanism inspires us to leverage attractor-like ensemble dynamics, where the
final similar states serve as neural embeddings. As shown in Fig. 1, this dynamical property enables
the rapid adaptation of raw neural signals with stochastic variability, thereby achieving consistent
neural embeddings within the neural manifold.

In this work, based on the fact that attractor-like ensemble dynamics is a key property of dynami-
cally stable systems (Bhatia & Szegö, 2002), we propose a novel Flow-Based Dynamical Alignment
(FDA) framework to establish such systems with attractor-like dynamics and achieve consistent neu-
ral embeddings. Specifically, our FDA approach leverages recent advances in flow matching (Lip-
man et al., 2023), with the explicit likelihood maximization formulation provided by flows further
facilitating a new source-free unsupervised alignment. The consistency of FDA embeddings was
theoretically verified through the dynamical stability of neural manifolds, allowing for rapid adap-
tation with few target trials. Furthermore, extensive experiments on multiple motor cortex datasets
validate the superior performance of our FDA over existing approaches. The FDA approach intro-
duces an innovative framework for consistent neural latent embeddings and successfully achieves
unsupervised alignment in few-trial scenarios. Our FDA, based on attractor-like ensemble dynam-
ics, offers insights into neural dynamical stability, potentially improving the long-term reliability of
real-world BCIs (Dabagia et al., 2023; Fan et al., 2023; Karpowicz et al., 2024). The main contribu-
tions of this paper are summarized as follows:

• Consistent Neural Embeddings: Flow matching was initially employed on stable neural
manifolds using attractor-like ensemble dynamics to achieve consistent neural embeddings.
The explicit formulation of likelihood maximization from flow matching provides a novel
source-free unsupervised alignment. We establish a new neural representation character-
ized by consistent embeddings using the mechanism of attractor-like ensemble dynamics.

• Flow-Based Dynamical Alignment (FDA): We propose an innovative framework for
Flow-Based Dynamical Alignment (FDA) grounded in consistent neural embeddings. The
dynamical stability of FDA is theoretically validated and effectively applied to unsuper-
vised alignment in few-trial scenarios. Our approach has the potential to enhance the
chronic reliability of real-world BCIs in the presence of non-stationary neural signals.

• Experimental Validation: We extensively validated FDA on several motor cortex
datasets (Ma et al., 2023). Results demonstrate that FDA significantly enhances cross-
session decoding performance using few target trials. Furthermore, we numerically demon-
strate the dynamical stability of neural manifolds based on the Lyapunov exponents.

2 RELATED WORK

Neural Representation for Behavioral Decoding Previous representation researches have explored
various strategies for discovering shared latent neural embeddings over time. Linear dimensionality
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reduction methods, such as PCA (Degenhart et al., 2020; Yu et al., 2008; Gallego et al., 2018), were
leveraged for interpretable neural state spaces. Non-linear methods (Schneider et al., 2023; Cho
et al., 2023) were shown to be effective for representation across trials and sessions. For instance,
typical approaches included variational autoencoders (VAEs) with auxiliary variables (Zhou & Wei,
2020; Sani et al., 2021; Klindt et al., 2021) or self-supervised techniques (Liu et al., 2021). More-
over, low-dimensional neural dynamics (Pandarinath et al., 2018; Karpowicz et al., 2022), usually
assumed to exist within neural manifolds Gallego et al. (2017); Mitchell-Heggs et al. (2023), were
utilized as preserved variables under similar behaviors (Safaie et al., 2023). Recently, transformer-
based architectures (Liu et al., 2022; Le & Shlizerman, 2022) demonstrated effectiveness for the
unified and scalable neural representation. Pre-trained foundation models based on transformer
architectures (Azabou et al., 2023; Ye et al., 2023) also achieved desirable latent features across
various subjects and sessions. Nonetheless, existing neural representation approaches usually yield
dynamical instability due to non-stationary neural signals, resulting in unreliable long-term behav-
ioral decoding. Here, we propose a novel framework that leverages attractor-like ensemble dynamics
on neural manifolds, ensuring dynamical stability.

Alignment for Behavioral Decoding Unsupervised alignment of these neural representa-
tions (Dabagia et al., 2023) is crucial for behavioral decoding. Some works focused on directly
aligning raw neural signals. For instance, ADAN (Farshchian et al., 2018) and Cycle-GAN (Ma
et al., 2023) achieved this through adversarial learning techniques. In addition, latent features such
as low-dimensional neural dynamics (Jude et al., 2022; Karpowicz et al., 2022; Wang et al., 2023;
Vermani et al., 2024) were aligned across sessions. Few-trial supervised alignment can be accom-
plished via fine-tuning with certain pre-trained models (Ye et al., 2023; Azabou et al., 2023). How-
ever, existing unsupervised alignment approaches usually lead to unreliable behavioral decoding due
to non-stationary neural signals, particularly in few-trial scenarios. In this work, our FDA method
achieves source-free unsupervised alignment through likelihood maximization with few target trials,
a challenge that most existing unsupervised alignment approaches have not effectively addressed.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We define the problem of long-term behavioral decoding based on the unsupervised domain adap-
tation (Long et al., 2013). First, we define the domain D = {(x1, y1), . . . , (xn, yn)}, where
xi(l)(l = 1, 2, . . . ,m) represents the raw neural signal sample from the l-th channel in one or
more sessions. The signal window has a length of w time points, much smaller than the length of
trials, i.e., xi(l) ∈ Rw. The first signal window of each trial begins at the initial time point, while
the second window starts one step later. yi denotes the behavioral label corresponding to the w-th
time step of xi, with yi ∈ Rd. The behavioral label is assigned at the w-th time step to meet real-
time decoding requirements using short-time causal windows and to leverage previous time steps as
contextual information effectively.

Based on D, we define the source domain DS , consisting of signals and labels from one or more
sessions: DS = {(xS

1 , y
S
1 ), . . . , (x

S
nS

, ySnS
)}. Similarly, the unlabeled target domain DT consists of

signals from a separate session: DT = {xT
1 , . . . , x

T
nT

}, where nT ≪ nS , and typically only contains
signals of few trials. For convenience, we define xS and yS as the random variables representing
neural signals xS

i and their corresponding labels ySi in DS . Samples xT
j from DT are represented as

random variables xT . We aim to obtain consistent latent embeddings from DS and DT , obtaining
high-performance decoders for behavioral labels yT associated with xT .

3.2 OVERALL FRAMEWORK

To obtain consistent neural embeddings from non-stationary neural signals, we propose a novel
framework that applies flow matching on neural manifolds, constructing a dynamically stable system
to achieve attractor-like ensemble dynamics. This framework consists of two phases: pre-training
and fine-tuning, as illustrated in Fig. 2.

During the pre-training phase, we establish a continuous normalizing flow on stable neural manifolds
using DS . Specifically, this conditional flow directs noisy latent features toward the target neural
manifold using latent dynamics. It is realized through an ordinary differential equation (ODE) with
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Figure 2: Two phases of the overall FDA framework: pre-training, which involves conditional fea-
ture extraction and flow matching conditioned on latent dynamics, and fine-tuning, which enables
rapid adaptation with few target trials.

external inputs. The dynamical stability of this flow-based system is ensured by constraining latent
state deviations through Lipschitz continuity and regularizing the drift coefficients of latent states,
as further explained in Theorem 3.1.

As for fine-tuning, we perform unsupervised rapid adaptation of latent features using few trials
from DT . Compared to some existing flow-based adaptation methods (Gong et al., 2019; Liu et al.,
2023a), FDA allows for alignment with fewer target samples. Additionally, based on the explicit
computation of log-likelihood using the Fokker-Planck Equation, we propose a novel source-free
alignment method through likelihood maximization.

3.2.1 FLOW MATCHING ON STABLE AND FLEXIBLE NEURAL MANIFOLDS

During the pre-training phase, we propose a novel framework based on the continuous normalizing
flow conditioned on latent dynamics. FDA offers several distinct benefits in obtaining neural latent
embeddings. First, flow matching imposes fewer assumptions on the underlying statistics of latent
variables, allowing for more flexible modeling on the neural manifolds and improving adaptability
to diverse decoding tasks. Second, the flow is governed by a dynamical system with external inputs.
Our theoretical analysis demonstrates the dynamical stability of this system, and the empirical results
further validate this stability.

Conditional Feature Extraction Based on Neural Dynamics We begin by extracting the latent
dynamics from xS

i as conditional features cSi . For spike signals, a single channel usually records
neuron-level activity (Buzsáki, 2004), where the short-term dynamics are relatively limited for sim-
ilar tasks (Izhikevich et al., 2004). Moreover, inter-channel relationships in spike signals are gener-
ally more stable compared to the temporal dynamics, which often exhibit warping (Williams et al.,
2020). The above observations are validated, as demonstrated in Fig. 4(c).

Based on these observations and inspired by (Liu et al., 2024), we utilize short-term dynamics to
establish conditional feature spaces, and leverage the more stable inter-channel relationships for their
coefficients. This approach can flexibly accommodate changes in the number of channels, which is
quite common during neuron growth and apoptosis (Degenhart et al., 2020). Specifically, we feed
the raw neural signal sequence xS

i = [xS
i (1), . . . , x

S
i (m)], containing tokens from m channels,

into a transformer-based network fα (with parameters α) using the classical sinusoidal positional
encoding. After processing through multi-head self-attention modules and projection networks, we
obtain conditional latent dynamics: cSi = fα(x

S
i ), where cSi ∈ Rkc . The detailed architecture is

illustrated in Appendix A.1.

Flow Matching Conditioned on Latent Dynamics After learning latent dynamics, we establish
the continuous normalizing flow conditioned on these dynamics for long-term decoding. Traditional
normalizing flows (Chen et al., 2019; Dinh et al., 2022) typically rely on invertible transformations,
but these often constrain the representational capacity of networks. Recent researches have utilized
continuous normalizing flows (Yang et al., 2019) to alleviate this. For instance, flow matching (Liu
et al., 2023a; Lipman et al., 2023; Ma et al., 2024) extends diffusion models, enabling more flexible
diffusion paths. Conditional flow matching (Liu et al., 2023b; Zheng et al., 2023; Dao et al., 2023;
Isobe et al., 2024; Atanackovic et al., 2024) further incorporates conditional features for modeling
conditional distributions. Inspired by these approaches, we adopt conditional flow matching to
implement the continuous normalizing flow.
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We model the conditional probability pt(z
S(t)|cS) using a probability flow ODE, where zS(t) ∈

Rkz denotes the latent states at time point t ∈ [0, 1], capturing the evolution of zS over time. Here,
cS is the random variable representing conditional features cSi (cS = fα(x

S)). Typically, the flows
are built on a parameterized flow ϕt to transform a simple prior distribution p0 (e.g., a multivariate
Gaussian) into a more complex one p1: pt = [ϕt]∗p0.

To obtain neural embeddings for behavioral decoding, we set p0 as a standard multivariate Gaussian
distribution, i.e., zS(0) ∼ N (0, I). The target distribution p1, representing the desired neural mani-
fold for behavioral decoding, is defined by the random variable zS(1) = ηyS , where η ∈ Rkz×d is
pre-defined with Xavier initialization and remains the same across days. This distribution is denoted
as q(zS(1)), with η∗ ∈ Rd×kz as the generalized inverse of η, which serves as weights of the linear
decoder G and also satisfies η∗η = Id. In the detailed implementation, the flow ϕt of pt(zS(t)|cS)
is optimized following conditional flow matching. Within the latent space of zS(t), a neural network
vθ (with parameters θ) is utilized to parameterize the vector field of latent features, allowing for its
evolution as follows:

dzS(t)

dt
= vθ(z

S(t), fα(x
S), t). (1)

Based on Eq. (1), the evolution of pt(zS(t)|cS) over time follows the Fokker-Planck Equation:

∂pt(z
S(t)|cS)
∂t

= −∇ ·
(
pt(z

S(t)|cS) vθ(zS(t), fα(xS), t)
)
. (2)

Existing work (Liu et al., 2023b) indicates that the network vθ can be optimized using a objective
function, which matches the vector field provided by vθ with a predefined vector field u(t). To
enhance the efficiency of sampling and distribution alignment of latent features, we set the flow path
over time as a linear interpolation between the start zS(0) and the end zS(1):

zS(t) = (1− t)zS(0) + tzS(1). (3)

The corresponding vector field of Eq. (3) is u(t) = zS(1)− zS(0). According to these, the training
objective function Lcfm(α, θ) can be defined as below:

Lcfm(α, θ) = Et,p(zS(0)),q(zS(1))

∥∥vθ(zS(t), fα(xS), t)− (zS(1)− zS(0))
∥∥2 , (4)

where zS(0) ∼ N (0, I), zS(1) = ηyS . vθ only consists of multilayer perceptron (MLP) layers
with residual connections, and its detailed architecture is provided in Appendix A.1.

Dynamical Stability Verification The dynamical stability (Angeli, 2002) is ensured by two key fac-
tors. First, the velocity field in flow matching is constructed using MLPs with Lipschitz-continuous
activation functions. These functions ensure that latent state deviations remain stable under external
input constraints, as shown in Eq. (7) and Eq. (21). Second, the scale coefficient γS of latent states
is regularized to keep the ratio of latent state deviations between successive time steps below 1. This
results in a geometric sequence with a ratio less than 1, causing latent states to gradually converge
to similar ones, as presented in Eq. (6) and Eq. (22).

We further analyze the dynamical stability of this system to demonstrate the consistency of latent
neural embeddings. Consider any two signal samples xS

i and xS
j from DS , with corresponding

conditional features cSi and cSj , and their latent states zSi (t) and zSj (t). We then analyze the upper
bound of the distance

∥∥zSi (t)− zSj (t)
∥∥ based on the Euler sampling method. We summarize our

theoretical verification in Theorem 3.1 below. Detailed proof can be found in Appendix A.2.

Theorem 3.1. Let the total number of sampling steps in Euler’s method be T . At the n-th step, the
time point is tn = n

T . At this point, the distance between any two latent states zSi (tn) and zSj (tn)

corresponding to signal samples xS
i and xS

j satisfies the following inequality:

∥zSi (tn)− zSj (tn)∥ ≤ hz

(
∥zSi (0)− zSj (0)∥, n

)
+ hc

(
∥cSi − cSj ∥

)
, (5)

where hz : R≥0 × Z≥0 → R≥0 is a decreasing function with respect to n, given by:

hz

(
∥zSi (0)− zSj (0)∥, n

)
= (Kγ)

n ∥zSi (0)− zSj (0)∥, (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

with 0 < Kγ < 1. Moreover, hc : R≥0 → R≥0 satisfies hc

(
∥cSi − cSj ∥

)
→ ∞ as ∥cSi − cSj ∥ → ∞.

The function hc

(
∥cSi − cSj ∥

)
can be expressed as:

hc

(
∥cSi − cSj ∥

)
=

(
n−1∑
a=1

(Kγ)
a

)
Kg∥wβ∥∥cSi − cSj ∥, (7)

where Kg is the Lipschitz constant of activation functions in the network vθ, and wβ represents the
weights used for computing shift coefficients (Ma et al., 2024) in vθ.

Eq. (5) is consistent with the definition of dynamical stability in (Angeli, 2002), demonstrating the
dynamical stability of neural latent embeddings.

3.2.2 RAPID ADAPTATION WITH FEW TARGET TRIALS

While fine-tuning, existing adaptation methods (Gong et al., 2019; Liu et al., 2023a; Sagawa & Hino,
2022) based on normalizing flows typically consider the source distribution as the starting point, and
the target distribution as the endpoint. However, this approach often requires a large number of target
samples. Based on flow matching conditioned on latent dynamics, we propose a more efficient
strategy with few trials. The pre-trained flow network vθ is fixed, while the conditional feature
extractor fα is fine-tuned, aligning the distribution of final decoding embeddings z(1). Furthermore,
the flow path is approximated as a straight line, allowing us to obtain final latent states in just one
step. This significantly simplifies the explicit computation of likelihood functions. Unlike ERDiff,
which maximizes the log-likelihood upper bound, we propose a direct log-likelihood maximization
approach that achieves source-free unsupervised alignment.

Maximum Mean Discrepancy Alignment with Few Target Trials (FDA-MMD) When target
sizes are small, the alignment based on individual sample probabilities, such as Kullback–Leibler
(KL) divergences in GANs, often leads to training instability. In contrast, Maximum Mean Discrep-
ancy (MMD) leverages higher-order moments as overall sample properties, effectively reducing the
influence of outliers in limited samples. This is empirically demonstrated in Fig. 4(a). Hence, we
adopt a strategy that minimizes MMD distances to align the distributions of latent neural embed-
dings.

To be specific, taking one-step Euler sampling as an example, the objective function for aligning the
final latent state z(1) based on DT is as follows:

min
α

Lmmd(α) = min
α

∥∥∥∥∥∥ 1

nS

nS∑
i=1

φ(zSi (1))−
1

nT

nT∑
j=1

φ(zTj (1))

∥∥∥∥∥∥
2

H

, (8)

where zSi (1) = vθ(z
S
i (0), 0, fα(x

S
i )), and zTj (1) = vθ(z

T
j (0), 0, fα(x

T
j )). Here, H represents the

reproducing kernel Hilbert space (RKHS), and φ is the feature mapping function in that space. In
detailed implementation, we utilize a Gaussian kernel to compute the inner product of features.

Source-Free Alignment via Likelihood Maximization (FDA-MLA) A notable advantage of flow
matching is its explicit modeling of likelihood functions, allowing for accurate computation of dis-
tribution transformations. Meanwhile, distribution alignment based on minimizing KL divergences
can be seen as maximizing the likelihood in DT (Kingma et al., 2019). In cases with few target
samples, alignment approaches relying on one-to-one sample mapping tend to fall into sub-optimal
solutions (Courty et al., 2017; Kerdoncuff et al., 2021). In contrast, as illustrated in (Wang et al.,
2023), likelihood-based alignment is less affected by sample sizes. Moreover, this alignment strat-
egy does not directly depend on source samples, making it suitable for privacy-sensitive data like
neural signals, enabling source-free unsupervised alignment.

Specifically, let the signal samples in DT be denoted by the random variable xT , with the corre-
sponding conditional feature cT = fα(x

T ) and the latent embedding zT (1) for decoding. In this
context, aligning the final latent state of flow between DS and DT can be achieved by minimizing
the KL divergence. This can be accomplished by fine-tuning the parameters α of conditional feature
extractor fα:

min
α

DKL
(
p1(z

S(1)|fα(xS)) ∥ p1(z
T (1)|fα(xT ))

)
≈ max

α
log p1(z

T (1)|fα(xT )). (9)
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Since minimizing KL divergences can be approximated as maximizing log-likelihood func-
tions, we can reformulate the above objective function as maximizing the likelihood based on
p1(z

T (1)|fα(xT )), thereby reducing dependence on DS .

Since the pre-defined flow path is approximated as a straight line, final latent states can be sam-
pled using the one-step Euler method. This also simplifies the computation of likelihood functions
for target conditional probabilities. The likelihood of this conditional probability can be explicitly
expressed via the change of variables formula (Chen et al., 2018) as:

log p1(z
T (1)|fα(xT )) = log p0(z

T (0)|fα(xT ))− log

∣∣∣∣det(∂vθ(z
T (0), 0, fα(x

T ))

∂zT (0)

)∣∣∣∣ . (10)

Considering that log p0(zT (0)|fα(xT )) is independent of α, the objective function Lmla can be
further rewritten as below through target neural signals xT

j :

max
α

Lmla(α) ≈ max
α

 nT∑
j=1

− log

∣∣∣∣∣det
(
∂vθ(z

T
j (0), 0, fα(x

T
j ))

∂zTj (0)

)∣∣∣∣∣
 . (11)

More generally, alternative sampling methods can employ the unbiased Hutchinson-trace estima-
tor (Hutchinson, 1989) to estimate the divergence in Eq. (2), facilitating effective alignment through
likelihood maximization. Detailed computations are provided in Appendix A.3.

3.3 OVERALL LEARNING ALGORITHM

The overall learning algorithm is illustrated in Algorithm 1. During the pre-training phase, we
perform supervised optimization of the conditional feature extractor fα and the flow network vθ
using DS , with the objective function Lcfm(α, θ). In the fine-tuning phase, the parameter θ is fixed,
and few trials from DT are utilized to fine-tune α based on either Lmmd(α) or Lmla(α), as described
in Section 3.2.2. Further training details are provided in Appendix B.2.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

Datasets We employed three distinct datasets of extracellular neural recordings from the primary
motor cortex (M1) of non-human primates (Ma et al., 2023), as detailed below. Additional informa-
tion about the datasets can be found in Appendix B.1.
Center-Out Reaching (CO-C&CO-M). Monkeys C and M engaged in a center-out reaching task,
where each trial required them to move to one of eight randomized targets, earning a reward for
successful reaching.
Random-Target (RT-M). Monkey M performed a random-target task, reaching for three sequen-
tially presented targets at random locations. Each trial started at the workspace center, with a 2.0-
second limit to reach each target.
Data Preprocess and Spilt We extracted trials from the ’go cue time’ to the ’trial end,’ followed
by digitizing, filtering, and spike detection of the neural signals. The data was then timestamped
and smoothed for firing rates in 50 ms bins. Sessions containing approximately 200 trials, along
with 2D cursor velocity labels, were used as DS for pre-training, while a separate session without
labels was used as DT for fine-tuning. For few-trial alignment, we used the target ratio r to evaluate
the number of target trials from all recorded ones, typically setting r to 0.02, 0.03, 0.04, and 0.06,
with 0.02 corresponding to no more than 4 trials. The decoded cursor velocity is assessed using R2

scores, with results averaged over five different random seeds. Additional experimental details and
hyper-parameter settings can be found in Appendix B.2.

4.2 COMPARATIVE STUDY

Baselines The following approaches were utilized as baselines for comparative experiments, with
further implementation details provided in Appendix B.3.
LSTM(Hochreiter, 1997): Unaligned LSTMs were used as baseline decoders to assess the
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Table 1: Comparison of R2 values (in %) of baselines and FDA on CO-M and RT-M datasets(r =
0.02). The mean and standard deviation over five runs are listed.

Data Session LSTM CEBRA ERDiff NoMAD Cycle-GAN FDA-MLA FDA-MMD
C

O
-M

Day 0 74.18±4.9 79.24±1.38 82.71±2.82 79.77±4.50 77.06±2.21 84.79±0.91 84.79±0.91

Day 8 −41.92±62.49 −51.92±12.51 −65.06±60.88 17.15±6.97 14.25±10.29 23.79±8.71 45.23±4.44

Day 14 −70.57±16.62 −1.77±7.03 −44.64±25.37 12.14±15.86 14.20±11.21 50.15±4.85 55.90±3.17

Day 15 −51.19±90.71 −83.24±15.03 −40.72±19.89 5.32±13.11 9.77±6.36 43.59±3.69 49.55±3.41

Day 22 −16.87±21.57 −21.10±7.01 −81.24±43.59 0.16±6.97 14.10±5.22 33.98±7.39 27.35±7.34

Day 24 −36.71±26.26 −10.28±3.35 −28.04±36.96 14.66±12.42 −3.14±14.96 48.86±4.58 51.28±2.53

Day 25 −4.15±29.55 −64.67±16.20 −47.74±35.31 −13.74±29.43 15.30±4.99 31.74±7.31 36.79±4.12

Day 28 0.23±25.54 −35.95±10.54 −30.18±40.68 11.58±7.58 0.35±14.38 53.27±7.55 54.87±4.40

Day 29 −111.72±76.49 −64.32±15.75 −64.19±22.00 8.96±16.43 16.32±2.99 36.16±9.21 41.26±5.70

Day 31 −36.40±20.18 −81.41±21.04 −46.60±40.86 −1.96±49.56 0.96±6.68 56.50±3.92 57.10±3.24

Day 32 −86.33±86.80 −40.10±16.67 −20.03±34.99 9.76±13.81 6.18±13.31 40.49±5.69 44.66±4.41

R
T-

M

Day 0 77.91±1.40 74.86±1.03 76.98±2.62 74.71±2.87 85.19±2.36 86.95±1.59 86.95±1.59

Day 1 63.15±3.11 65.97±2.38 −9.07±20.00 30.92±19.32 32.38±2.33 71.83±3.90 74.32±2.25

Day 38 −20.62±32.46 21.34±6.71 1.46±13.96 17.61±10.12 21.55±3.36 55.05±2.65 55.39±2.80

Day 39 −86.31±47.86 −36.86±25.62 −30.80±17.92 12.01±11.77 −2.46±5.32 38.28±6.13 40.44±7.31

Day 40 −8.36±17.70 2.63±20.16 −23.79±25.04 9.31±12.01 22.02±11.65 32.16±8.95 39.85±3.27

Day 52 3.12±11.68 30.50±6.94 −10.33±7.38 11.71±16.90 10.29±12.86 43.35±4.80 44.99±4.96

Day 53 −43.50±50.26 42.33±4.84 −0.54±4.55 10.88±13.62 20.70±1.85 49.60±2.53 50.03±4.44

Day 67 −148.64±98.52 25.09±13.79 −11.16±24.54 9.53±20.44 25.65±1.59 42.06±6.29 50.29±1.07

Day 69 −110.99±93.95 −38.82±29.41 −45.97±22.79 −1.49±7.16 −5.99±27.79 29.52±7.31 39.19±4.07

Day 77 −448.21±98.67 −53.79±21.04 −2.13±8.56 3.81±16.18 −1.68±18.81 16.19±9.43 16.67±9.32

Day 79 −226.00±135.06 −47.01±13.77 −0.12±18.12 13.12±22.32 10.53±3.33 39.29±6.86 38.99±5.70

challenges of alignment.
CEBRA(Schneider et al., 2023): CEBRA served as an advanced tool for discovering generalizable
hidden structures and was proved effective across datasets and subjects without alignment.
ERDiff(Wang et al., 2023): ERDiff employed diffusion models to reconstruct spatio-temporal
structures and aligned them with latent dynamics derived from VAEs.
NoMAD(Karpowicz et al., 2022): NoMAD performed alignment within neural manifolds by
utilizing LFADS (Pandarinath et al., 2018) to capture the latent dynamics of neural population
activities.
Cycle-GAN(Ma et al., 2023): Cycle-GAN directly aligned full-dimensional raw signals at each
time step through an adversarial approach.

4.2.1 EMPIRICAL VALIDATION ON LATENT SPACE STABILITY

To validate the dynamical stability of latent spaces, we measured the maximum Lyapunov exponent
(MLE) λ of zS(t) after pre-training on DS . The value of λ was computed as described in (Wolf
et al., 1985), with a non-positive λ typically indicating dynamical stability. The detailed definition
and computation of λ are available in Appendix B.5. Since MLE is based on sequential variables, we
compared the λ values obtained by FDA with those of ERDiff and NoMAD, focusing on sequential
latent factors. The results are presented in Fig. 3(a) and Appendix C.1.1. Consistent with the
findings discussed in Theorem 3.1, we found that FDA achieved negative λ across all selected
datasets, indicating latent space stability. In contrast, both ERDiff and NoMAD frequently exhibited
positive λ, with ERDiff showing greater instability than NoMAD.
4.2.2 CROSS-SESSION PERFORMANCE EVALUATION

We further validated the cross-session performance of FDA-MLA and FDA-MMD with limited
target trials. First, we conducted experiments with DS containing only one session. The average
R2 scores, using Day0 as the source session and a target ratio r of 0.02, are presented in Table 1.
Full results are available in Appendix C.1.2. FDA-MLA and FDA-MMD consistently outperformed
other methods across most sessions. LSTM and CEBRA frequently failed, highlighting the necessity
for alignment. Among the alignment baselines, Cycle-GAN and NoMAD performed significantly
worse than reported in their original papers due to the scarcity of target samples, as shown in Fig. S4.
ERDiff often showed negative scores, aligning with results reported in (Vermani et al., 2024). In
contrast, our FDA approach achieved, on average, over 20.00% higher R2 scores on the CO-M
and RT-M datasets. While FDA-MLA performed worse than FDA-MMD overall, this difference is
understandable given that it is source-free.

We also visualized additional comparisons with the two best baselines, NoMAD and Cycle-GAN. As
illustrated in Fig. 3(c), FDA-MLA and FDA-MMD achieved significantly higher average R2 scores
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across different values of r. These R2 scores were averaged across all target sessions, as well as
five random selections of target samples from each session. When r increased to approximately 0.3
(around 60 trials), FDA demonstrated performance comparable to that of Cycle-GAN and NoMAD,
as presented in Fig. S4. We observed that FDA-MLA is less affected by r, indicating its superiority in
few-trial alignment. The overall performance (r = 0.02) across all sessions is presented in Fig. 3(d),
where FDA-MLA and FDA-MMD demonstrated considerably better R2 on CO-M. Moreover, we
conducted comparisons when DS included two sessions with r being 0.02. As shown in Fig. 3(b),
FDA-MMD outperformed NoMAD and Cycle-GAN on CO-M and RT-M. We also found that FDA
can achieve better alignment with more sessions in DS . Additional visualizations can be found in
Appendix C.1.2.

C
O
-M

𝑅
2
Sc
o
re

(a) (b) (c)

(d)

𝑅
2
Sc
o
re

Figure 3: (a) The maximum Lyapunov exponent (MLE) λ on CO-M and RT-M datasets. Dots rep-
resent the average MLE across five random runs of pre-training for each individual source session.
Bar charts denote average MLE across sessions. (b) Comparison of R2 scores for cross-session de-
coding (r = 0.02) with two sessions in DS . Dots represent the average R2 scores over five runs. (c)
Comparison of average R2 scores across target sessions for baselines and FDA under varying r on
CO-M and RT-M datasets. (d) Overall average R2 scores (r = 0.02) for the same methods as in (c)
on the CO-M dataset. Blocks with various colors represent the values of R2.

4.3 COMPUTATIONAL EFFICIENCY AND ANALYSIS OF HYPER-PARAMETERS

We compared the computational efficiency of our FDA with that of baselines under similar hard-
ware configurations. The comparison was based on the number of parameters and training time per
epoch, which includes pre-training and fine-tuning phases, on CO-C, CO-M, and RT-M. As shown
in Table S10, FDA exhibited a higher number of parameters, but it required less training time com-
pared to ERDiff and NoMAD, due to effective training losses and sampling methods. Moreover, the
sensitivity analysis of main hyper-parameters in FDA is provided in Appendix C.3.
4.4 ABLATION STUDY

4.4.1 ABLATION STUDY ON DIFFERENT ALIGNMENT METHODS

To evaluate the effectiveness of our alignment strategy, we compared FDA with several variants.
FDA-t only extracted features using fα and aligned them through MMD for decoding with a linear
decoder. FDA-g used an adversarial approach via Cycle-GAN to align z(1), while FDA-c applied
MMD for aligning c. The average R2 values of CO-M, and RT-M datasets are shown in Table 2.
We observed that FDA-MMD consistently outperformed both FDA-t and FDA-g, indicating the
advantages of extracting latent features through flows and aligning them via MMD, particularly in
scenarios with limited target trials. Additionally, due to flow’s accurate modeling of conditional
probabilities, FDA-MMD demonstrated more stable performance compared to FDA-c.

Moreover, the R2 curves for FDA-MMD and its variants are shown in Fig. 4(a) and Appendix C.2.1,
demonstrating the superior and more stable performance of FDA-MMD. Additionally, as shown in
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Fig. 4(b), the negative log-likelihood (NLL) curves and their corresponding R2 values, derived under
various r using FDA-MLA, are presented. The results clearly demonstrate that R2 improved as the
log-likelihood increased.

Table 2: Comparison of average R2 scores (in %) over sessions on CO-M and RT-M datasets.
Data Target Ratio FDA-t FDA-g FDA-c FDA-MLA FDA-MMD

C
O

-M

0.02 35.94±11.36 35.57±6.46 42.88±4.73 36.05±5.84 45.59±5.16
0.03 41.55±8.58 35.23±7.45 44.69±3.72 37.14±5.89 48.40±4.59
0.04 43.99±8.75 35.25±7.66 46.36±4.15 38.29±4.90 50.71±4.68
0.06 43.78±8.09 34.35±8.19 47.27±4.53 38.85±5.23 51.10±4.76

R
T-

M

0.02 26.61±14.04 40.56±7.31 42.28±6.29 41.73±4.88 42.08±6.31
0.03 27.94±12.66 40.35±7.49 43.77±6.05 41.66±4.72 44.36±5.83
0.04 28.73±12.68 40.04±7.62 44.08±6.06 41.53±5.48 45.35±6.15
0.06 29.21±13.72 39.76±7.42 46.31±4.92 41.44±5.42 47.23±5.96

4.4.2 ABLATION STUDY OF MAIN COMPONENTS

Additional ablation study was conducted, focusing on the main components: the conditional feature
extractor fα and the paths of continuous normalizing flows. FDA-a is the variant incorporating at-
tention mechanisms based on temporal correlations, while FDA-m is the one with fα implemented
by MLPs. For the flow paths, FDA-v and FDA-p are variants using VP and GVP paths (Ma et al.,
2024), respectively. The average R2 for each target session achieved by FDA and its variants is
shown in Fig. 4(c) and Appendix C.2.2. FDA-MMD and FDA-MLA consistently outperformed
FDA-a and FDA-m, highlighting the effectiveness of conditional feature extraction using transform-
ers with inter-channel attention. Additionally, our superior performance over FDA-v and FDA-p fur-
ther demonstrated the efficiency of the euler sampling method when combined with straight flows.

(a) (b) (c)

Figure 4: (a) R2 for FDA-t, FDA-g, FDA-c, and FDA-MMD on CO-M (Day31) and RT-M (Day52)
with r = 0.02. (b) R2 (Left) and the corresponding negative log likelihood (NLL) (Right) on
CO-M (Day29) and RT-M (Day52) by FDA-MLA with various target ratios r. (c) Comparison of
average R2 scores over five runs, achieved by FDA-a, FDA-m, FDA-v, FDA-p, FDA-MLA, and
FDA-MMD. Dots represent R2 values for individual session(r = 0.02). Bar charts denote average
R2 across sessions.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we establish a new neural representation characterized by consistent neural embed-
dings based on the mechanism of attractor-like ensemble dynamics. An innovative framework for
FDA was proposed on the ground of consistent neural latent embeddings. We achieve the stable dy-
namics through flow matching on neural manifolds, which enables a novel source-free alignment via
likelihood maximization. The dynamical stability of FDA was theoretically verified, allowing for
few-trial unsupervised alignment. Extensive experiments on motor cortex datasets demonstrate that
FDA significantly enhances decoding performance, offering insights into neural dynamical stability.
Our FDA method potentially improves the long-term reliability of real-world BCIs.

This work has several limitations that warrant further investigation. First, the effectiveness of FDA
in scenarios such as cross-task or cross-subject alignment needs to be further validated. Second,
future studies using clinical data from human subjects could further advance the clinical and chronic
applications of BCIs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Angeli. A lyapunov approach to incremental stability properties. IEEE Transactions on
Automatic Control, 47(3):410–421, 2002.

Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J Lee, Yoshua Bengio,
Alexander Tong, and Kirill Neklyudov. Meta flow matching: Integrating vector fields on the
wasserstein manifold. arXiv preprint arXiv:2408.14608, 2024.

Vivek R Athalye, Karunesh Ganguly, Rui M Costa, and Jose M Carmena. Emergence of coordinated
neural dynamics underlies neuroprosthetic learning and skillful control. Neuron, 93(4):955–970,
2017.

Mehdi Azabou, Vinam Arora, Venkataramana Ganesh, Ximeng Mao, Santosh Nachimuthu, Michael
Mendelson, Blake Richards, Matthew Perich, Guillaume Lajoie, and Eva Dyer. A unified, scalable
framework for neural population decoding. Advances in Neural Information Processing Systems,
37, 2023.
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A METHOD

A.1 DETAILED ARCHITECTURES

We present the detailed architecture of our main modules as follows. The input neural signals have
the shape of (Batch size=256, Window size=w, Number of channels=m). The latent dimensions of
conditional features c are denoted as kc, the dimension of latent states in the continuous normalizing
flow as kz . The dropout value is represented as od. The architectures of fα, and vθ can be seen in
Table S1.

Table S1: Detailed Architectures of FDA

fα [MSA(kc, nhead), FFN(kc × nhead, kc)]×2

vθ MLP(kz + kc, kz , vd)×5

Here, we use the term MLP to refer to Multilayer perceptron with residual connections, MSA to
represent multi-head self-attention modules, and FFN to indicate feed-forward neural networks.

Moreover, default dimensions kc, kz , the drop-out rate vd, the number of heads nhead, and the win-
dow length w mentioned above are configured as shown in Table S2 according to different datasets.

Table S2: Default Value Setup on Different Datasets

kc kz vd nhead w

CO-C 64 64 0.1 8 6
CO-M 32 32 0.1 8 5
RT-M 32 32 0.1 8 5

A.2 PROOF OF DYNAMICAL STABILITY IN THEOREM 3.1

• First, consider the iterative relationship between two sampling steps. For example, analyz-
ing the upper bound of ∥zSi (t1)− zSj (t1)∥ is as follows:

∥zSi (t1)−zSj (t1)∥ = ∥zSi (0)+vθ(z
S
i (0), 0, fα(x

S
i ))−zSj (0)−vθ(z

S
j (0), 0, fα(x

S
i ))∥ (12)

≤ ∥zSi (0)− zSj (0)∥+ ∥vθ(zSi (0), 0, fα(xS
i ))− vθ(z

S
j (0), 0, fα(x

S
i ))∥. (13)

In this study, we use an MLP layers with residuals to compose vθ as illustrated in (Ma et al.,
2024), leading to:

vθ(z
S
i (0), 0, fα(x

S
i )) ≈ (2 + γS

i )z
S
i (0) + βS

i , (14)

where γS
i is the scale coefficient, and we assume 0 < ∥3 + γS

i ∥ < 1. We only consider the
influence of fα(xS

i ) on γS
i due to the same sampling time point:

γS
i = g(wγfα(x

S
i ) + bγ). (15)

Similarly, βS
i is calculated in the same way:

βS
i = g(wβfα(x

S
i ) + bβ). (16)

Thus:
vθ(z

S
j (0), 0, fα(x

S
j )) ≈ (2 + γS

j )z
S
j (0) + βS

j . (17)

Substituting the expansions of vθ into the earlier equation yields:

∥zSi (t1)− zSj (t1)∥ ≤ ∥zSi (0)− zSj (0)∥+ ∥(2+ γS
i )z

S
i (0)− (2+ γS

j )z
S
j (0)∥+ ∥βS

i −βS
j ∥

(18)
≈ ∥3 + γS

i ∥∥zSi (0)− zSj (0)∥+ ∥βS
i − βS

j ∥. (19)
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Further expanding ∥βS
i − βS

j ∥:

∥βS
i − βS

j ∥ = ∥g(wβfα(x
S
i ) + bβ)− g(wβfα(x

S
j ) + bβ)∥. (20)

Since the activation function g of the MLP is typically a Lipschitz continuous function
(e.g., sigmoid function), this simplifies to:

∥βS
i − βS

j ∥ ≤ Kg∥wβ∥∥fα(xS
i )− fα(x

S
j )∥ = Kg∥wβ∥∥cSi − cSj ∥, (21)

where Kg is the Lipschitz constant of the function g. Therefore:

∥zSi (t1)− zSj (t1)∥ ≤ Kγ∥zSi (0)− zSj (0)∥+ Kg∥wβ∥∥cSi − cSj ∥, (22)

where 0 < Kγ = ∥3 + γS
i ∥ < 1.

• Next, substituting tn into the above Eq. (22), we obtain the approximate upper bound for
∥zSi (tn)− zSj (tn)∥:

∥zSi (tn)− zSj (tn)∥ ≤ (Kγ)
n∥zSi (0)− zSj (0)∥+

[
n−1∑
a=1

(Kγ)
a

]
Kg∥wβ∥∥cSi − cSj ∥. (23)

Let hz(∥zSi (0)− zSj (0)∥, n) = (Kγ)
n∥zSi (0)− zSj (0)∥, where hz : R≥0 ×Z≥0 → R≥0 is

a decreasing function with respect to n.

Let hc(∥cSi − cSj ∥) =
[∑n−1

a=1 (Kγ)
a
]

Kg∥wβ∥∥cSi − cSj ∥, where hc : R≥0 → R≥0, and

hc(∥cSi − cSj ∥) → ∞ as ∥cSi − cSj ∥ → ∞.

• In summary, the latent space extracted by our method exhibits the dynamical stability de-
fined in (Angeli, 2002).

A.3 GENERAL COMPUTATION OF LIKELIHOOD IN SECTION 3.2.2

More generally, alternative sampling methods can employ the unbiased Hutchinson-trace estima-
tor (Hutchinson, 1989) to estimate the divergence in Eq. (2). The detailed computation is presented
below.

Using the instantaneous change of variables formula (Chen et al., 2018), the log-likelihood
log p1(z

T (1)|fα(xT )) can be expressed as:

log p1(z
T (1)|fα(xT )) = log p0(z

T (0)|fα(xT ))−
∫ 1

0

∇ · vθ(zT (t), fα(xT ), t) dt, (24)

where the latent variable zT (t) can be calculated using any sampling method based on Eq. (1).
Furthermore, we estimate ∇ · vθ(zT (t), fα(xT ), t) via the unbiased Hutchinson-trace estimator.

Specifically, ∇ · vθ(zT (t), fα(xT ), t) is estimated as:

∇ · vθ(zT (t), fα(xT ), t) = Ep(ϵ)[ϵ
⊤∇vθ(z

T (t), fα(x
T ), t)ϵ], (25)

where ∇vθ(z
T (t), fα(x

T ), t) can be computed via reverse-mode automatic differentiation. The
random variable ϵ satisfies Ep(ϵ)[ϵ] = 0 and Covp(ϵ)[ϵ] = I .

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 PSEUDOCODE OF FLOW-BASED DYNAMICAL ALIGNMENT (FDA) IN SECTION 3.3

Algorithm 1 Flow-Based Dynamical Alignment (FDA)
1: Input: source domain DS ; target domain DT ; alignment method align m; pre-defined η;
2: Output: conditional feature extractor fα; continuous normalizing flow network vθ
3: Initialize fα, vθ
4: Pre-training phase: flow matching conditioned on latent dynamics using DS :
5: for iter = 1 to npre−train do
6: Sample t, zS(0) ∼ N (0, I), xS , zS(1) = ηyS ;
7: Update fα, vθ by Lcfm(α, θ);
8: end for
9: Fine-tuning phase: few-trial unsupervised alignment based on DS&DT or DT :

10: for iter = 1 to nfine−tune do
11: if align m is FDA-MMD: then
12: Sample xS , zS(0) ∼ N (0, I) and xT , zT (0) ∼ N (0, I); Update fα by Lmmd(α);
13: else if align m is FDA-MLA: then
14: Sample xT , zT (0) ∼ N (0, I); Update fα by Lmla(α);
15: end if
16: end for
17: return fα, vθ.

B EXPERIMENTAL DETAILS

B.1 DATASET DESCRIPTION

CO-C&CO-M(Ma et al., 2023). Monkeys C and M conducted a center-out (CO) reaching task
while holding an upright handle. Monkey C utilized its right hand, whereas Monkey M used its left.
Each trial commenced with the monkey positioning its hand at the center of the workspace. After
a random delay, one of eight evenly spaced outer targets arranged in a circle was displayed. The
monkey then maintained its position through a variable pause until hearing an auditory go cue. To
earn a liquid reward, the monkey needed to reach the outer target within 1.0 second and sustain its
hold for 0.5 seconds.

RT-M(Ma et al., 2023). Monkey M also participated in a random-target (RT) task, where it reached
for sequences of three targets shown in random locations on the screen. This task utilized the same
apparatus as the CO reaching task. Each trial started with the monkey placing its hand at the center
of the workspace, followed by the sequential presentation of three targets. The monkey had 2.0
seconds to move the cursor to each target after seeing it. Due to the random positioning of the
targets, the cursor trajectory varied with each trial.

Preprocess Process. For all datasets, we extracted trials from the ’go cue time’ to the ’trial end.’
Next, we processed the neural signals by digitizing, applying a bandpass filter (250-5000 Hz), and
detecting spikes using thresholds based on root-mean square activity. The data was then times-
tamped and smoothed with a Gaussian kernel to compute firing rates over 50 ms bins.

B.2 TRAINING DETAILS

The main configurations for model training included the learning rate, weight decay parameters
of the Adam optimizer, batch sizes, number of iterative epochs during pre-training and fine-tuning
phases. Details of these hyperparameters are provided in Table S3 and Table S4, respectively.

B.3 BASELINE IMPLEMENTATION

CEBRA(Schneider et al., 2023). CEBRA is a sophisticated machine-learning approach aimed at
analyzing and compressing time series data, particularly in the context of behavioral and neural
studies. It excels at revealing hidden structures in data variability and has been effectively applied to
decode neural activity in the mouse brain’s visual cortex, allowing for the reconstruction of what the
subject has seen. The code can be accessed at https://github.com/AdaptiveMotorControlLab/cebra.
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Table S3: Detailed Pre-training Setup

Learning Rate Weight Decay Epochs Batch Size

CO-C 2e-3 1e-5 3500 256
CO-M 2e-3 1e-5 3500 256
RT-M 2e-3 1e-5 3500 256

Table S4: Detailed Fine-tuning Setup

Learning Rate Weight Decay Epochs Batch Size

CO-C 1e-4 1e-5 25 256
CO-M 1e-4 1e-5 25 256
RT-M 1e-4 1e-5 25 256

ERDiff(Wang et al., 2023). ERDiff introduces a method that utilizes diffusion models to ex-
tract latent dynamic structures from the source domain and subsequently recover them in the
target domain using maximum likelihood alignment. Empirical evaluations on both synthetic
and neural recording datasets indicate that this approach surpasses others in effectively preserv-
ing latent dynamic structures over time and across individuals. The code can be accessed at
https://github.com/yulewang97/ERDiff.

NoMAD(Karpowicz et al., 2022). NoMAD utilizes the latent manifold structure present in neural
population activity to create a reliable connection between brain activity and motor behavior. It
shows the capability to achieve accurate and highly stable behavioral decoding over long durations,
thus eliminating the necessity for supervised recalibration. In this study, we implemented NoMAD
using the LFADS code found at https://github.com/arsedler9/lfads-torch/tree/main, which may lead
to some differences from the original implementation.

Cycle-GAN(Ma et al., 2023). Cycle-GAN aligned the distributions of full-dimensional neural
recordings, stabilizing the original decoding model without the need for recalibration. Evaluations
of Cycle-GAN alongside a related approach (ADAN) on multiple monkey and task datasets reveal
that Cycle-GAN outperforms in maintaining BCI accuracy robustly over time without additional
training. Since this study employs the same datasets, we directly implement the publicly available
code from https://github.com/limblab/adversarial BCI.

B.4 VALIDATION DETAILS

Specifically, during the validation after fine-tuning phases, we employed neural signals xT from the
target domain, which were not leveraged during the fine-tuning phase, to evaluate the efficacy of our
alignment approach.

This evaluation is based on the decoding performance based on R2 scores. We first sample zT (1)
using the one-step Euler based on zT (0): zT (1) = vθ(z

S(0), 0, fα(x
S)). The predicted target label

ỹT are computed as below: ỹT = η∗zT (1). R2 scores are further obtained between ỹT and actual
yT .

B.5 LYAPUNOV THOERY

The stability described above can be quantified using the Lyapunov function (Angeli, 2002), which
can also be estimated through the maximum Lyapunov exponent (MLE). The maximum Lyapunov
exponent λ can be defined based on the latent state z(t) as follows: λ = lim

t→∞
lim

|δz(0)|→0

1
t ln

|δz(t)|
|δz(0)| .

A non-positive MLE often indicates the stability of dynamical systems, achieving stable dynamical
latent features (Wolf et al., 1985). Here, we estimated the MLE λ of zi based on the method in
(Wolf et al., 1985) to evaluate the stability of dynamical latent features extracted from DS after the
pre-training phase. The detailed calculation of λ is available below.
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The stability defined in (Angeli, 2002) can be determined using a Lyapunov function V (z): given
an equilibrium point z∗ of the system,
V (z∗) = 0,
V̇ (z∗) = 0,
V (z) > 0 for all z ̸= z∗,
V̇ (z) < 0 for all z ̸= z∗.

It is known that V (z) = 1
2z

T z is one of the functions that meet the conditions. However, directly
calculating complex V (z) can be difficult. Therefore, we used the method based on (Wolf et al.,
1985) to estimate the stability of z(t) as follows:

Step 1:
Select N sample points, denoted one as z1(t0), find j such that j = arg mink∥z1(t0)− zk(t0)∥, and
let L0(t0) = ∥z1(t0)− zj(t0)∥.

Step 2:
Find ti, for a given constant ϵ, such that t0 ≤ t < ti, L0(t) ≤ ϵ; L0(ti) > ϵ. Let L′

0 = L0(ti).
Continue with z1(ti) as the next sample point following Step 1.

Step 3:
The maximum Lyapunov exponent(MLE) λ is approximately as follows:

λ ≈ 1

N∆t

M∑
s=1

log2

(
L′
0

L0(t0)

)
,

where ∆t is the time step interval and M is the number of steps in a single orbit.

C ADDITIONAL RESULTS

C.1 COMPARATIVE STUDY
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Figure S1: (a) The maximum Lyapunov exponent (MLE) λ achieved by ERDiff, NoMAD, and
FDA is displayed for the CO-C dataset. Dots in different colors represent the average MLE from
individual sessions. (b) Average R2 scores for NoMAD, Cycle-GAN, FDA-MLA, and FDA-MMD
are presented under varying values of r on CO-C. (c) and (d): R2 scores for cross-session decoding
(r = 0.02, 0.03 (c) and r = 0.04, 0.06 (d)) when DS contains two sessions, obtained from NoMAD,
Cycle-GAN, and FDA-MMD, are shown. Dots in different colors represent the average R2 scores
for different DS .
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C.1.1 LATENT SPACE STABILITY

To validate the dynamical stability of latent spaces, we measured the maximum Lyapunov exponent
(MLE) λ of zS(t) after pre-training on DS . The value of λ was computed as described in (Wolf
et al., 1985), and the results of CO-C is shown in Fig. S1(a).

We also visualized all maximum Lyapunov exponents (MLE) achieved by ERDiff, NoMAD, and
FDA across target sessions. As shown in Fig. S2(a), FDA consistently achieved negative MLEs in
most cases, aligning with the average MLE results. This underscores the dynamical stability of its
pre-trained latent spaces, in contrast to ERDiff and NoMAD.

(a) (b)

Figure S2: (a) Violin plot of all maximum Lyapunov exponents (MLE) λ achieved by ERDiff,
NoMAD, and FDA on the CO-M and RT-M datasets. (b) Negative log likelihood (NLL) (Left) and
the corresponding R2 (Right) curves on CO-M (Day8) by FDA-MLA with various target ratios r.

C
O
-C

R
T-
M

Figure S3: Overall performance of average R2 scores (r = 0.02) for NoMAD, Cycle-GAN, FDA-
MLA, and FDA-MMD are demonstrated on RT-M, and CO-C datasets. Blocks with various colors
represent the corresponding values of R2.

C.1.2 CROSS-SESSION PERFORMANCE

We verified the cross-session performance of FDA with limited target trials. First, we conducted
experiments with DS containing only one session. The full average R2 scores on the CO-C dataset,
using Day0 as the source session and a target ratio r of 0.02, are presented in Table S5.

In addition, as illustrated in Fig. S1(b), FDA achieved significantly higher average R2 scores across
different values of r. The overall performance of average R2 on RT-M, and CO-C datasets is pre-
sented in Fig. S3.
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More comparisons on all datasets when DS included two sessions when r equals 0.02, 0.03, 0.04,
and 0.06 are shown in Fig. S1(c) and (d).

Table S5: Comparison of R2 values (in %) of baselines and FDA on the CO-C dataset(r = 0.02).
The mean and standard deviation over five runs are listed.

Data Session LSTM CEBRA ERDiff NoMAD Cycle-GAN FDA-MLA FDA-MMD

C
O

-C

Day 0 86.65±1.18 87.86±0.98 88.69±0.74 87.99±3.45 84.54±1.32 81.63±2.88 81.63±2.88

Day 1 16.50±33.14 18.87±6.82 −5.63±8.67 −2.71±23.32 8.05±9.86 49.13±5.03 50.84±5.32

Day 2 −9.08±42.85 44.73±14.03 −8.65±16.02 9.80±9.55 15.35±11.34 36.25±5.60 34.28±5.35

Day 3 −101.23±137.77 24.47±7.60 −0.60±0.51 −3.89±26.45 5.40±7.21 7.54±4.52 8.49±3.85

Day 9 −19.67±42.14 7.79±23.55 −4.10±14.87 −1.46±33.06 18.37±7.71 38.02±7.84 33.22±7.69

Day 10 −69.13±81.17 14.64±3.55 0.73±13.38 −3.87±11.33 20.30±8.84 1.21±2.61 0.76±1.26

Day 14 −75.51±48.00 −12.97±41.24 −13.82±22.93 −0.19±20.93 2.67±14.34 22.99±7.08 16.40±8.49

Day 15 −76.54±53.78 −12.95±27.23 −18.32±36.06 2.87±12.97 19.55±16.31 9.80±15.59 15.35±12.25

Day 16 −184.19±90.10 −9.18±30.96 −6.83±11.62 7.56±11.54 6.70±11.45 5.09±8.98 11.04±6.03

Day 36 −81.78±69.21 −30.76±30.03 −1.08±0.70 −6.09±27.94 −9.40±16.54 −4.81±6.74 1.00±2.62

Day 37 −112.64±73.02 −21.54±29.56 −2.60±6.19 6.58±14.01 8.76±6.63 3.08±9.33 15.95±5.73

Day 38 −35.98±45.69 −7.36±16.60 −6.53±9.63 −19.89±41.54 12.17±7.03 −2.77±8.46 12.95±0.92

To explore the differences in results between Monkey C and Monkey M, we analyzed the cross-
session performance of FDA-MMD with greater target ratios r. As shown in Table S6, although
FDA-MMD initially performed worse on CO-C, its performance improved significantly and became
comparable to RT-M when r exceeded 0.3 (approximately 60 trials). Additionally, we observed
larger deviations per session on CO-C. This suggests that the difference arises from instability caused
by outliers, which notably impacted performance when r was small.

Table S6: Comparison of average R2 values (%) across sessions for FDA-MMD on the CO-C, CO-
M, and RT-M datasets (r = 0.02). The average standard deviations over five runs per session are
also reported.

r 0.02 0.03 0.04 0.06 0.1 0.2 0.3 0.4 0.5 0.6

CO-C 16.40±5.40 17.08±7.53 17.27±8.58 17.41±7.66 28.18±5.36 42.61±5.23 50.12±6.90 54.87±5.05 55.05±5.71 56.00±4.88

CO-M 45.59±5.15 48.40±4.59 50.71±4.68 51.10±4.76 57.90±2.68 62.20±2.41 65.16±2.53 66.38±2.44 66.78±2.48 67.32±3.32

RT-M 42.08±6.31 44.36±5.83 45.35±6.15 47.23±5.96 52.15±4.16 53.66±3.35 55.28±2.89 56.45±2.89 56.53±2.55 57.93±2.39

Additionally, we observed that the worst R2 score occurred on different days for each method. This
variability may stem from the different criteria used for optimal alignment. For instance, FDA-MLA
exhibited an abnormal increase in NLL during the initial fine-tuning epochs on Day 8 (CO-M), as
shown in Fig. S2(b). In contrast, other methods, such as NoMAD based on KL divergences and
LSTM without alignment, did not show this phenomenon on the same day, leading to the worst
performance of FDA-MLA while others did not experience such an issue.

C.1.3 CROSS-SESSION PERFORMANCE UNDER DIFFERENT LATENT DIMENSIONS

To determine the appropriate latent dimensions, we conducted experiments on NoMAD and CE-
BRA under varying latent dimensions. As shown in Table S7 and Table S8, we selected the latent
dimensions for NoMAD and CEBRA as 16 and 32, respectively, based on their better performance.
For ERDiff, we set the latent dimension to 8, following the default settings mentioned in the original
paper due to its application to similar datasets.

Table S7: Average R2 scores across target sessions of NoMAD on CO-M and RT-M datasets under
different latent dimensions.

Latent Dimension 12 16 32 48

CO-M 4.97±8.29 6.40±6.22 3.69±7.00 −6.21±8.70
RT-M 3.42±8.78 11.74±6.42 8.27±10.02 2.42±9.21
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Table S8: Average R2 scores across sessions of CEBRA on CO-M and RT-M datasets under different
latent dimensions.

Latent Dimension 16 32 48

CO-M −1.34±11.69 1.14±14.47 0.85±12.61
RT-M −53.01±14.49 −45.48±12.51 −49.21±14.71

C.1.4 ZERO-SHOT CROSS-SESSION PERFORMANCE

Additionally, we compared the zero-shot cross-session performance of NoMAD without alignment,
Cycle-GAN without alignment, and FDA without alignment, with detailed results presented in Ta-
ble S9. FDA without fine-tuning outperformed the baselines, which we attribute to the dynamical
stability of its pre-trained latent spaces. Furthermore, performance in few-trial scenarios continued
to improve after fine-tuning. In summary, the combination of dynamical stability and fine-tuning
contributes to FDA’s better performance in few-trial scenarios.

Table S9: Comparison of R2 values (in %) across target sessions (where the R2 scores for each
session are averaged over five random runs with different sample selections) of baselines and FDA
without alignment on CO-M and RT-M datasets.

Data NoMAD w/o alignment Cycle-GAN w/o alignment FDA w/o alignment FDA-MLA FDA-MMD

CO-M −121.47±77.80 −126.84±23.82 16.23±9.43 36.05±5.84 45.59±5.15

RT-M −74.06±49.94 −3.42±5.55 38.15±8.21 41.73±4.88 42.08±6.31

C.1.5 PERFORMANCE WITH DIFFERENT TARGET RATIOS r

To further evaluate the performance of FDA under different target ratios r, we gradually increased
r from 0.02 to 0.6. The R2 scores for NoMAD, Cycle-GAN, and FDA are shown in Fig. S4. In
particular, Cycle-GAN and NoMAD exhibited significantly lower performance (approximately five
times worse) with fewer target samples. However, as r increased to around 0.3 (approximately 60
trials), their performance became comparable to that of FDA-MLA and FDA-MMD.

(a) (b)

Figure S4: Comparison of R2 scores across target sessions (where the R2 scores for each session are
averaged over five random runs with different sample selections) for NoMAD, Cycle-GAN, FDA-
MLA, and FDA-MMD under different target ratios r on the (a) CO-M and (b) RT-M datasets.

Additionally, we examined the R2 curves across target sessions for FDA-MMD and Cycle-GAN on
the CO-M dataset. As shown in Fig. S5, both methods exhibited fluctuating R2 curves at small target
ratios. However, as the target ratio increased, the fluctuations were alleviated. With the exception of
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a few sessions, R2 scores generally decreased across most target sessions. We attribute this trend to
the reduced influence of certain outliers in scenarios with few target samples.

DayDay

(a) (b)

Figure S5: R2 curves across target sessions for (a) FDA-MMD and (b) Cycle-GAN under different
target ratios r (0.2, 0.4, and 0.6) on the CO-M dataset.

C.1.6 COMPUTATIONAL EFFICIENCY

We compared the computational efficiency of our methods with that of ERDiff, Cycle-GAN, and
NoMAD. The comparison was based on the number of parameters and training time per epoch,
which includes pre-training and fine-tuning, on CO-C, CO-M, and RT-M. As shown in Table S10,
FDA-MLA and FDA-MMD exhibited a higher number of parameters. However, they required less
training time compared to ERDiff and NoMAD, which can be attributed to effective training losses
and sampling methods.

Table S10: Computational Efficiency of Baselines and FDA
Method ERDiff(Wang et al., 2023) Cycle-GAN(Ma et al., 2023) NoMAD(Karpowicz et al., 2022) FDA-MLA FDA-MMD

Parameter Number (M) 0.04 0.03 0.05 0.07 0.07

Ti
m

e(
s) CO-C 0.39 0.05 1.05 0.14 0.14

CO-M 1.14 0.02 1.03 0.13 0.14
RT-M 0.49 0.02 1.04 0.10 0.10
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C.2 ABLATION STUDY

C.2.1 DIFFERENT ALIGNMENT METHODS

To evaluate the effectiveness of our alignment strategy, we compared FDA with several variants.
FDA-t only extracted features using fα and aligned them through MMD for decoding with a linear
decoder. FDA-g used an adversarial approach via Cycle-GAN to align z(1), while FDA-c applied
MMD for aligning c. The average R2 values of CO-C dataset are shown in Table S11.

Moreover, the R2 curves for FDA-MMD and its variants are shown in Fig. S6(a). Additionally, as
shown in Fig. S6(b), the negative log-likelihood (NLL) curves and their corresponding R2 values,
derived under various r using FDA-MLA, are presented.

Table S11: Average cross-session R2 scores (%) for CO-C
Data Target Ratio FDA-t FDA-g FDA-c FDA-MLA FDA-MMD

C
O

-C

0.02 −0.33±0.29 13.19±9.06 18.25±7.30 16.39±6.30 13.84±5.41
0.03 −0.30±0.34 13.07±9.06 18.49±7.38 17.08±6.53 13.93±4.79
0.04 −0.32±0.28 13.06±8.89 18.64±7.43 17.27±6.58 13.94±5.64
0.06 −0.23±0.25 13.19±8.94 18.60±7.10 17.41±6.66 13.82±5.45

(a) (b)

Figure S6: (a) R2 curves for FDA-t, FDA-g, FDA-c, and FDA-MMD are shown on CO-M (Day25,
Day29) and RT-M (Day67, Day69) with r being 0.02. (b) Curves for R2 (Left) and the corre-
sponding negative log likelihood (NLL) (Right) on CO-M (Day25) and RT-M (Day52), obtained by
FDA-MLA, are visualized under distinct target ratios r.

C.2.2 MAIN COMPONENTS

The average R2 for each target session achieved by FDA and its variants based on main components
is shown in Fig. S7.
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(a)

(b)

Figure S7: Average R2 scores across each target session, achieved by FDA-a, FDA-m, FDA-v, FDA-
p, FDA-MLA, and FDA-MMD, are displayed on CO-M (a) and RT-M (b) datasets with r being 0.03,
0.04, and 0.06. Dots with different colors represent R2 values for individual sessions.
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C.3 HYPER-PARAMETER SENSITIVITY ANALYSIS

The main hyper-parameters of our FDA method include the signal window size (w), the dimensions
of conditional features and latent states(kc,z), and the number of euler sampling steps neuler when
the target ratio r equals 0.02. For convenience, we set kc and kz to be the same. The results of
their sensitivity analysis using FDA-MMD on CO-M, and RT-M datasets are shown in Table S12,
Table S13, and Table S14.

Table S12: Average R2 scores for different datasets with varying w.
kc 4 5/6 7 8

CO-M 43.91±4.68 45.59±5.15 48.38±4.98 49.07±5.11

RT-M 40.77±5.46 42.08±6.31 40.54±7.74 46.73±3.83

Table S13: Average R2 scores for different datasets with varying kc.
kc 24 32 48 72

CO-M 48.00±5.68 45.59±5.15 45.63±4.77 45.03±4.84

RT-M 44.02±5.01 42.08±6.31 39.48±5.51 43.91±4.34

Table S14: Average R2 scores for different datasets with varying neuler.
neuler 1 2 4 10

CO-M 45.59±5.15 45.32±5.14 43.19±5.34 41.71±5.37

RT-M 42.08±6.31 42.14±6.17 40.33±6.12 38.99±6.23
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