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Abstract

Autoregressive large language models (LLMs)001
pre-trained by next token prediction are inher-002
ently proficient in generative tasks. However,003
their performance on knowledge-driven tasks004
such as factual knowledge querying remains un-005
satisfactory. Knowledge graphs (KGs), as high-006
quality structured knowledge bases, can pro-007
vide reliable knowledge for LLMs, potentially008
compensating for their knowledge deficiencies.009
Aligning LLMs with explicit, structured knowl-010
edge from KGs has been a challenge; previ-011
ous attempts either failed to effectively align012
knowledge representations or compromised the013
generative capabilities of LLMs, leading to less-014
than-optimal outcomes. This paper proposes015
KaLM, a Knowledge-aligned Language Mod-016
eling approach, which fine-tunes autoregres-017
sive LLMs to align with KG knowledge via the018
joint objective of explicit knowledge alignment019
and implicit knowledge alignment. The ex-020
plicit knowledge alignment objective aims to di-021
rectly optimize the knowledge representation of022
LLMs through dual-view knowledge graph con-023
trastive learning. The implicit knowledge align-024
ment objective focuses on incorporating tex-025
tual patterns of knowledge into LLMs through026
triple completion language modeling. Notably,027
our method achieves a significant performance028
boost in evaluations of knowledge-driven tasks,029
specifically embedding-based knowledge graph030
completion and generation-based knowledge031
graph question answering1.032

1 Introduction033

Large language models (LLMs) like PaLM 2 (Anil034

et al., 2023) and GPT-4 (Achiam et al., 2023) have035

recently made remarkable advancements in a wide036

range of natural language processing tasks (Li et al.,037

2022; Su et al., 2019). However, LLMs still face038

challenges in tasks requiring factual or domain-039

specific knowledge, resulting in unsatisfactory per-040

1Our code is available at https://anonymous.4open.
science/r/KaLM-ARR.

formance in knowledge-driven tasks. From the 041

perspective of knowledge representation, LLMs 042

serve as parametric knowledge bases, providing im- 043

plicit, non-deterministic knowledge, while knowl- 044

edge graphs (KGs) function as structured knowl- 045

edge bases, offering explicit, deterministic knowl- 046

edge. KGs, commonly organized as factual knowl- 047

edge triples describing relations between entities, 048

can serve as a reliable knowledge source for LLMs. 049

Aligning LLMs with KG knowledge can enhance 050

the knowledge reasoning capabilities of LLMs and 051

improve their performance on knowledge-driven 052

tasks, such as knowledge graph completion (KGC) 053

and knowledge graph question answering (KGQA). 054

Autoregressive LLMs pre-trained through next 055

token prediction tasks often exhibit limitations in 056

knowledge representation, leading to embeddings 057

that lack diversity and specificity. This limitation 058

becomes evident in tasks that demand distinctive 059

sentence embeddings, such as dense retrieval and 060

semantic search (Muennighoff, 2022; Ma et al., 061

2023). As demonstrated in Figure 1(a), the repre- 062

sentations generated by LLMs tend to be overly 063

homogeneous across different pieces of knowledge, 064

undermining their effectiveness in applications re- 065

quiring fine-grained semantic distinctions. 066

The concept of explicit knowledge alignment 067

is introduced to directly optimize the knowledge 068

representation within language models by devising 069

direct knowledge training objectives. This strategy 070

emerges in response to the observed degradation 071

in knowledge representation within autoencoder- 072

based pre-trained language models (PLMs), a phe- 073

nomenon termed representation anisotropy (Etha- 074

yarajh, 2019). This issue is characterized by the 075

clustering of learned token and sentence embed- 076

dings within a constrained area of the representa- 077

tion space, leading to a lack of distributional uni- 078

formity (Li et al., 2020). While previous efforts 079

to address representation anisotropy have largely 080

concentrated on promoting uniformity among to- 081
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Figure 1: Similarity matrix of knowledge representations of (a) Llama-2-7B (Touvron et al., 2023) and (b) KaLM.
The values denote the cosine similarity between the head-relation and tail embedding. The diagonal elements
represent positive <head-relation, tail> pairs from the same KG triple, which should maintain high similarity (darker
color); off-diagonal elements represent negative <head-relation, tail> pairs from different KG triples, which should
have lower similarity (lighter color). In an ideal setting, knowledge representations should be able to distinguish
between different triples, while maintaining alignment and uniformity of the representation, as shown in Figure 1(b).

ken representations, they often overlook the critical082

alignment of similar sentence representations (Su083

et al., 2021; Li et al., 2020; Su et al., 2022). More084

recent works advocate for integrating KG triples085

and using knowledge graph embedding losses to086

fine-tune PLMs, aiming to bolster their knowledge087

representation abilities (Shen et al., 2022; Wang088

et al., 2022b). Nonetheless, such approaches may089

limit themselves to optimizing at the token level or090

reduce the model to a mere text encoder, thereby091

diminishing its inherent generative capabilities.092

Conversely, implicit knowledge alignment lever-093

ages the pre-training or fine-tuning of language094

models with external knowledge sources, employ-095

ing the vanilla language modeling objective or its096

variations. This approach predominantly preserves097

the next token prediction framework, essentially re-098

taining the native text generation prowess of LLMs.099

In the realm of implicit knowledge alignment, the100

prevalent practice involves the fine-tuning of LLMs101

with KG triples and their textual descriptions, as102

opposed to directly altering the hidden knowl-103

edge representations (Chen et al., 2022; Yao et al.,104

2023). Nevertheless, the efficacy of these meth-105

ods on knowledge graph completion tasks remains106

substantially inferior when compared to strategies107

that directly fine-tune knowledge representations108

(Wang et al., 2022b,a). Intriguing findings from109

(Fu et al., 2023) reveal that fine-tuning PLMs with110

randomly unaligned KG triples can achieve per-111

formance on par with that obtained through fine- 112

tuning with aligned triples in various tasks, includ- 113

ing named entity recognition and relation classifi- 114

cation. Their findings suggest that the hidden states 115

of entities, whether infused with aligned or random 116

knowledge, exhibit remarkable similarity. Conse- 117

quently, existing implicit alignment methods fail to 118

effectively utilize the injected knowledge or accu- 119

rately discern the connection between newly intro- 120

duced knowledge and the model’s inherent knowl- 121

edge, culminating in suboptimal performance. 122

In this paper, we propose KaLM, a Knowledge- 123

aligned Language Modeling approach for aligning 124

LLMs with KG knowledge. Specifically, we use 125

KG triples and their textual descriptions to fine- 126

tune LLMs via the joint objective of explicit knowl- 127

edge alignment and implicit knowledge alignment. 128

The explicit knowledge alignment objective aims 129

to directly optimize the hidden representations of 130

knowledge in LLMs through dual-view knowledge 131

graph contrastive learning. We theoretically prove 132

and empirically show that this objective can facili- 133

tate knowledge representation alignment and alle- 134

viate representation anisotropy. For KG triples, we 135

consider tail entity description and the concatena- 136

tion of head entity description and relation descrip- 137

tion as two distinct views of the same knowledge. 138

The key insight is that: (1) representations of two 139

different views of the same knowledge (i.e., from 140

the same triple) should be pulled together, while (2) 141
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representations of different knowledge (i.e., from142

different triples) should be pushed apart. The first143

term encourages semantically similar knowledge to144

remain close in the representation space, promoting145

knowledge representation alignment. The second146

term forces dissimilar knowledge to be as far apart147

as possible in the vector space, improving knowl-148

edge representation uniformity and mitigating rep-149

resentation anisotropy. As shown in Figure 1(b),150

our method can obtain the ideal knowledge repre-151

sentations that are both aligned and uniform.152

The implicit knowledge alignment objective fo-153

cuses on incorporating textual patterns of knowl-154

edge into LLMs through triple completion lan-155

guage modeling, which can maintain the gener-156

ative capability of LLMs and boost performance on157

knowledge inference tasks. We constructed a triple158

completion dataset based on the KG triples to fine-159

tune LLMs, improving their instruction-following160

ability and facilitating implicit knowledge align-161

ment. We also show the implicit knowledge align-162

ment objective can further boost knowledge repre-163

sentation performance. This confirms that both ex-164

plicit alignment and implicit alignment are crucial165

for knowledge alignment, as they both essentially166

require a deep understanding of knowledge.167

Our contributions are summarized as follows:168

• We introduce KaLM, a knowledge-aligned169

language modeling approach that aligns au-170

toregressive LLMs with KG knowledge via171

the joint objective of explicit knowledge align-172

ment and implicit knowledge alignment.173

• We theoretically prove and empirically demon-174

strate that the explicit knowledge alignment175

objective achieved through dual-view knowl-176

edge graph contrastive learning can facilitate177

knowledge representation alignment and alle-178

viate the issue of representation anisotropy.179

• The experimental results on knowledge-driven180

tasks demonstrate the effectiveness of KaLM.181

In the embedding-based KGC task, KaLM sig-182

nificantly improves Mean Rank and Hit@10183

metrics compared to previous state-of-the-art184

methods. In the generation-based KGQA task,185

KaLM achieves a notable improvement in an-186

swering accuracy compared to the base LLM.187

2 Related Work188

Our work is closely related to Knowledge Enhance-189

ment for LLMs and Representation Anisotropy of190

Language Models. A more detailed review of re- 191

lated work can be found in Appendix A. 192

Knowledge Enhancement for LLMs Knowl- 193

edge enhancement aims to incorporate factual and 194

domain-specific knowledge into LLMs to address 195

their knowledge deficiencies. This can be divided 196

into retrieval-based augmentation and training- 197

based integration. Retrieval-based knowledge aug- 198

mentation methods leverage external retrieval mod- 199

ules to provide additional knowledge, aiming to 200

improve the knowledge reasoning capability of 201

LLMs (Sun et al., 2023; Jiang et al., 2023). How- 202

ever, this approach may lead to knowledge conflicts 203

(Feng et al., 2023), where knowledge in LLMs 204

and knowledge in the retrieved documents are in- 205

consistent or the retrieved multiple documents are 206

contradictory. Training-based knowledge integra- 207

tion methods involve using KG triple descriptions 208

to pre-train or fine-tune LLMs, aiming to achieve 209

knowledge alignment. These methods can be di- 210

vided into explicit alignment (Wang et al., 2021b; 211

Yasunaga et al., 2022) and implicit alignment (Yao 212

et al., 2023; Zhang et al., 2023) based on whether 213

they directly optimize the knowledge representa- 214

tion. Nevertheless, prior methods have either sacri- 215

ficed the generative capability or lacked effective 216

representation alignment. Our approach enhances 217

the knowledge of LLMs via a unique joint objective 218

of explicit alignment and implicit alignment, im- 219

proving the quality of knowledge representations 220

and generative knowledge reasoning capabilities. 221

Representation Anisotropy of Language Models 222

PLMs have long been plagued by representation 223

anisotropy (Ethayarajh, 2019), where the learned 224

token and sentence embeddings are confined to a 225

narrow cone within the entire representation space. 226

The issue of representation anisotropy not only re- 227

sults in model degradation (Su et al., 2022) but 228

also leads to poor performance on discriminative 229

tasks. Previous work on alleviating representation 230

anisotropy has mainly focused on post-processing 231

techniques such as normalizing flows (Li et al., 232

2020) or whitening operations (Su et al., 2021). Su 233

et al. (2022) propose a contrastive training objective 234

to encourage learning isotropic token representa- 235

tions. However, these methods mainly improve the 236

isotropy of token representations without enhanc- 237

ing the discriminability of sentence representations. 238

Our method improves the token-level and sentence- 239

level representation anisotropy of LLMs through 240

dual-view knowledge graph contrastive learning, 241

and it has rigorous theoretical guarantees. 242
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3 Knowledge-aligned Autoregressive243

Language Modeling244

In this section, we introduce KaLM, a Knowledge-245

aligned Language Modeling approach for aligning246

LLMs with KG knowledge via the joint objective247

of explicit knowledge alignment and implicit knowl-248

edge alignment. The overview is shown in Figure 2.249

3.1 Notations and Preliminaries250

A KG G stores factual knowledge, denoted as G =251

(E ,R, T ,D). E and R are the set of entities and252

relations, respectively. D is the description set of253

all entities and relations. De and Dr are the textual254

description of entity e and relation r, respectively.255

T = {(h, r, t)|h, t ∈ E , r ∈ R} is the triple set. A256

triple (h, r, t) depicts the fact that there is a relation257

r between the head entity h and the tail entity t.258

3.2 Explicit Knowledge Alignment259

For KG triples, the textual description of the tail260

entity and the concatenation of the textual descrip-261

tions of the head entity and relation can be seen as262

two distinct views of the same knowledge. This263

inspires KaLM to align representations of two dis-264

tinct views of the same knowledge (i.e., from the265

same triple), while separating representations of266

different knowledge (i.e., from different triples).267

The LLM, denoted as ELLM , is fine-tuned with268

the dual-view knowledge graph contrastive learn-269

ing loss. The training corpus contains paired textual270

descriptions, {(Dhr,Dt)}Ni=1, where Dt is the tail271

entity description, and Dhr is the concatenation of272

the head entity description and relation description.273

Given a training pair (Dhr,Dt), the same ELLM274

is used to compute the embeddings of Dhr and Dt275

independently. Moreover, we prepend the [bos] to-276

ken to the beginning and append the [eos] token to277

the end of the textual description. The augmented278

input is fed into ELLM , and the hidden representa-279

tion corresponding to the [eos] token from the last280

layer is used as the final embedding of the input.281

ehr = ELLM ([bos]hr ⊕Dhr ⊕ [eos]hr),282

et = ELLM ([bos]t ⊕Dt ⊕ [eos]t),283

where ⊕ is the operation to concatenate two strings284

and Dhr = Dh ⊕Dr. For stable training, we adopt285

“[” as [bos]hr and “]” as [eos]hr, while using “{”286

as [bos]t and “}” as [eos]t.287

We utilize the knowledge graph contrastive learn-288

ing loss to directly optimize the knowledge repre-289

sentation of the LLM by encouraging semantically290

similar knowledge to stay close in the representa- 291

tion space and pushing dissimilar knowledge to be 292

far apart in the representation space. More specifi- 293

cally, we apply the InfoNCE loss with an additive 294

margin over the in-batch negatives to fine-tune the 295

model. The row-direction loss ℓr is as follows for 296

a given positive pair, and the column-direction loss 297

ℓc is defined similarly (see Appendix C.2). 298

ℓr = − log
e(ϕ(ehr,et)−γ)/τ

e(ϕ(ehr,et)−γ)/τ +
∑N

i=1 e
ϕ(ehr,et′

i
)/τ

,

(1)

299

where N is the negative batch size, τ is the train- 300

able temperature that controls the strength of penal- 301

ties on hard negative samples, ϕ is the cosine sim- 302

ilarity function that measures the plausibility of a 303

triple, and γ is the additive margin that encourages 304

increasing the similarity score of positive pairs. 305

The training objective for explicit knowledge 306

alignment is the sum of the ℓr and the ℓc losses: 307

Lexp =
1

N
∑

(Dhr,Dt)

(ℓr + ℓc)/2. (2) 308

3.3 Implicit Knowledge Alignment 309

The implicit knowledge alignment objective fo- 310

cuses on incorporating textual patterns of knowl- 311

edge into the LLM to prevent catastrophic forget- 312

ting of previous knowledge and maintain its gen- 313

erative capability. We constructed an instruction- 314

tuning dataset based on the KG triple descriptions 315

to fine-tune the model through triple completion 316

language modeling. We also show that the implicit 317

knowledge alignment objective can bring perfor- 318

mance boosts on knowledge representation evalu- 319

ations. This indicates that explicit alignment and 320

implicit alignment are both imperative for effective 321

knowledge alignment, as they both essentially ne- 322

cessitate a profound understanding of knowledge. 323

We follow the recipe of Stanford Alpaca (Taori 324

et al., 2023) and use the provided template to con- 325

struct the instruction-tuning dataset. The instruc- 326

tion passed to the template, abbreviated as inst, 327

is: “Given the head entity and relation, write a tail 328

entity that completes the triple”. The input and 329

output are Dhr and Dt, respectively. The training 330

objective for implicit knowledge alignment is: 331

Limp =
1

M
∑

(Dhr,Dt)

− logP (Dt|inst,Dhr), (3) 332

where M is the instruction-tuning batch size. 333
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Figure 2: The overall framework of KaLM. Up: The explicit knowledge alignment objective (Lexp) aims to directly
optimize the knowledge representation of LLMs via dual-view knowledge graph contrastive learning. Down: The
implicit knowledge alignment objective (Limp) focuses on incorporating textual patterns of knowledge into LLMs
via triple completion language modeling. The final training objective is the weighted average of Lexp and Limp.

3.4 Knowledge-aligned Language Modeling334

The ultimate training objective of our proposed335

KaLM is the weighted average of Lexp and Limp:336

LKaLM = Lexp + λ · Limp, (4)337

where λ is a hyperparameter that adjusts the relative338

weight between them. Notably, this formulation339

allows us to use different batch sizes for explicit340

knowledge alignment (N ) and implicit knowledge341

alignment (M). Previous work has shown that a342

sufficiently large batch size is key to the success343

of contrastive representation learning (Chen et al.,344

2020). With Equation 4, we can significantly in-345

crease the explicit knowledge alignment batch size346

while keeping the implicit knowledge alignment347

batch size fixed to save computational resources.348

4 Theoretical Analysis349

We theoretically prove that the explicit knowledge350

alignment objective implemented through dual-351

view knowledge graph contrastive learning can fa-352

cilitate knowledge representation alignment and353

alleviate the issue of representation anisotropy.354

4.1 Dual-view Contrastive Learning for355

Knowledge Representation Alignment356

The outstanding performance of contrastive repre-357

sentation learning has attracted researchers to ana-358

lyze its underlying reasons for success from a theo-359

retical perspective. Wang and Isola (2020) identify360

alignment and uniformity as two key properties of 361

contrastive learning and propose two quantifiable 362

metrics to measure the quality of representations. 363

We concentrate on understanding the dual-view 364

knowledge graph contrastive learning loss from the 365

knowledge alignment and uniformity perspective. 366

To simplify the notation, we use f to denote ELLM . 367

Alignment computes the expected distance be- 368

tween positive pairs and encourages the learned 369

representations for positive pairs to be similar. Uni- 370

formity evaluates the even distribution of represen- 371

tations and encourages the separation of features 372

from randomly selected negative samples. 373

ℓalign(f ;α) ≜ E
(Dhr,Dt)∼ppos

[∥f(Dhr)− f(Dt)∥α2 ] , 374

ℓuniform(f ; t) ≜ log E
Di,Dj

i.i.d.∼ pdata

[
e−t∥f(Di)−f(Dj)∥22

]
, 375

where ppos denotes the distribution of positive pairs 376

{(Dhr,Dt)}Ni=1 and pdata represents the data dis- 377

tribution of textual descriptions {Di}Ni=1. 378

Since the learned knowledge representations are 379

L2-normalized, we have ϕ(ehr, et) = f(x)⊤f(y). 380

The additive margin γ encourages the model to 381

learn more robust features without affecting the 382

asymptotic analysis, thus we ignore it. For ease of 383

analysis, we reformulate the contrastive learning 384
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objective of Equation 1 and 2 as follows:385

Lexp(f ; τ,N ) ≜ E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata− log
ef(Dhr)

⊤f(Dt)/τ

ef(Dhr)⊤f(Dt)/τ +
N∑
i=1

ef(Dhr)⊤f(Dt
′
i)/τ

 ,

(5)

386

Following Wang and Isola (2020), we analyze387

the asymptotics of the objective in Equation 5.388

Theorem 1 (Asymptotics of Lexp). For tempera-389

ture τ > 0, as the number of negative samples390

N → ∞, the normalized dual-view knowledge391

graph contrastive loss in Equation 5 converges to392

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

(6)

393

We have the following conclusions:394

1. By pulling together the representations of two395

different views of the same knowledge, the first396

term of Equation 6 is minimized, and the en-397

coder ELLM is perfectly knowledge-aligned.398

2. Assuming the perfect uniform knowledge en-399

coder ELLM exists, it precisely minimizes the400

second term of Equation 6 by pushing away401

the representations of different knowledge.402

Proof. See Appendix B.1.403

4.2 Alleviation of Representation Anisotropy404

We then prove that the dual-view knowledge graph405

contrastive learning objective can directly alleviate406

representation anisotropy and improve the discrim-407

inability of knowledge representations.408

Let E be the sentence embedding matrix of409

{Di}Ni=1, where the i-th row of E is ei. Following410

Ethayarajh (2019), the sentence-level representa-411

tion anisotropy value of {Di}Ni=1 is defined as:412

anisotropy{D} =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej .

(7)413

We can further derive the following theorem.414

Theorem 2 (Alleviation of Anisotropy). When 415

pdata is uniform over finite samples {Di}Ni=1, the 416

second term of Equation 6 is the upper bound of 417

the sentence-level anisotropy of {Di}Ni=1, i.e., 418

E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

≥ N − 1

τN
· anisotropy{D} +

1

τN
.

(8) 419

We have the following result: By optimizing the 420

second term of Equation 6, we essentially minimize 421

the upper bound of the sentence-level anisotropy 422

of corpus {Di}Ni=1, thereby directly alleviating the 423

representation anisotropy problem. 424

Proof. See Appendix B.2. 425

5 Experiments 426

In this section, we assess the effectiveness of KaLM 427

in knowledge alignment. The experimental setup 428

is outlined in 5.1. In 5.2 and 5.3, we present results 429

on knowledge graph completion (KGC) and knowl- 430

edge graph question answering (KGQA). In 5.4, we 431

provide further analysis of knowledge representa- 432

tion and present case studies of KGQA generations. 433

5.1 Experimental Setup 434

Datasets. We use WN18RR (Dettmers et al., 2018) 435

and FB15k-237 (Toutanova and Chen, 2015) as the 436

KGs for knowledge alignment training. WN18RR 437

and FB15k-237 are derived from WordNet and 438

Freebase, respectively (Bordes et al., 2013). We use 439

the information provided by KG-BERT (Yao et al., 440

2019) for textual descriptions. Following Wang 441

et al. (2022a), we add an inverse triple (t, r−1, h) 442

for each triple (h, r, t) in the triple set, where r−1 443

is the inverse relation of the original relation r. 444

Model Training. We choose Llama-2-7B, Llama- 445

3-8B, and Mistral-7B as base LLMs and fine-tune 446

them through the joint objective of explicit knowl- 447

edge alignment and implicit knowledge alignment. 448

To save computational resources for parameter- 449

efficient fine-tuning, we use LoRA (Hu et al., 2021) 450

to fine-tune the feed-forward network of the model. 451

Evaluation Details. Experiments mainly focus on 452

two aspects: knowledge representation assessment 453

and knowledge inference evaluation. For knowl- 454

edge representation assessment, we evaluate the 455

embedding-based KGC task and illustrate the alle- 456

viation of representation anisotropy. We report five 457

automated metrics: Mean Rank (MR), Mean Re- 458

ciprocal Rank (MRR), and Hit@k (k ∈ {1, 3, 10}). 459
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Table 1: Embedding-based KGC results on WN18RR and FB15k-237. Baseline results are from their papers, with
“-” indicating a missing result. The best and second best results are marked by bold and underline, respectively.

Method WN18RR FB15k-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

structure-based methods
TransE 2300 0.243 0.043 0.441 0.532 323 0.279 0.198 0.376 0.441
DistMult 7000 0.444 0.412 0.470 0.504 512 0.281 0.199 0.301 0.446
RotatE 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
description-based methods (autoencoder PLMs)
StAR 51 0.401 0.243 0.491 0.709 117 0.296 0.205 0.322 0.482
C-LMKE 79 0.619 0.523 0.671 0.789 141 0.306 0.218 0.331 0.484
SimKGC - 0.671 0.585 0.731 0.817 - 0.333 0.246 0.362 0.510
description-based methods (autoregressive LLMs)
Llama-2-7B 15969 0.010 0.004 0.010 0.020 5359 0.006 0.002 0.004 0.012
Llama2-7BKaLM 22 0.596 0.497 0.706 0.856 114 0.305 0.227 0.348 0.511
Llama3-8BKaLM 28 0.613 0.502 0.728 0.865 125 0.327 0.241 0.366 0.522
Mistral-7BKaLM 25 0.634 0.526 0.743 0.872 117 0.341 0.252 0.371 0.536
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Figure 3: Comparison of generative knowledge infer-
ence performance between Llama-2-7B and KaLM. ↑
means higher is better and ↓ means lower is better.

We compare KaLM with structure- and description-460

based methods. Structured-based methods include461

TransE (Bordes et al., 2013), DistMult (Yang et al.,462

2015), and RotatE (Sun et al., 2018). Description-463

based methods include StAR (Wang et al., 2021a),464

C-LMKE (Wang et al., 2022b), and SimKGC465

(Wang et al., 2022a). For knowledge inference eval-466

uation, we evaluate the generation-based KGQA467

task and analyze the PPL metric and MMLU score468

(Hendrycks et al., 2020). We report the prediction469

accuracy over entities, relations, and triples. We470

also provide case studies of KGQA generations.471

Additional experimental results and detailed ab-472

lation studies can be found in Appendix D and E.473

5.2 Knowledge Representation Assessment474

The embedding-based KGC results are shown in475

Table 1 and Table 5. The base LLM failed to finish476

this task, with all metrics lagging far behind. On477

the WN18RR dataset, our method surpasses prior478

methods by a substantial margin in terms of MR479

(a) LLaMA (b) KaLM

Figure 4: Similarity matrix on the Wikitext-103 test set.
From top-left to bottom-right, element (i, j) denotes the
cosine similarity between the i-th and the j-th sentence.

and Hit@10 and achieves the best or second-best 480

results in other metrics. Previous description-based 481

methods generally perform poorly on FB15k-237, 482

possibly due to the absence of effective textual de- 483

scriptions. An example relation description from 484

FB15k-237 is “/music/artist/origin”, which is quite 485

vague and abstract. The performance of KaLM on 486

the FB15k-237 dataset is also highly impressive, 487

with most metrics surpassing previous SOTA meth- 488

ods (i.e., structure-based RotatE method), indicat- 489

ing that our approach enables autoregressive LLMs 490

to learn the latent links in KGs effectively. Under 491

similar experimental settings, more powerful LLMs 492

(such as Llama3-8B and Mistral-7B) achieved sig- 493

nificantly better performance after fine-tuning with 494

KaLM, further demonstrating the scalability and 495

generalizability of the proposed method. Overall, 496

the results reveal that KaLM notably enhances the 497

quality of knowledge representation, bringing sub- 498

stantial performance boosts in KGC tasks. 499
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Given the head entity and relation, write a tail entity 
that completes the triple: [tail entity], [inverse relation]

head entity
prediction salvinia salviniaceae white goods refrigerator

  

Given the head entity and relation, write a tail entity 
that completes the triple: [head entity], [relation]

tail entity
prediction salvinia salvinia refrigerator white goods

 

Is this true: [head] [relatin] [tail]? Please choose your 
answer from: ''Yes, this is true'' or ''No, this is not true''.

triple
classification

No, this is 
not true.

Yes, this is 
true.

Yes, this is 
true.

Yes, this is 
true.

  

What is the relation between [head entity] and [tail 
entity]? Please choose your answer from: [relation list].

relation
prediction

synset dom-
ain topic of

member 
meronym

instance 
hypernym

synset dom-
ain topic of

  

Prompts with Instruciton and Input Fields Task Name

LLaMA KaLM LLaMA KaLM

Generations for Triple 1: 
<salviniaceae, member 

meronym, salvinia>

Generations for Triple 2: 
<refrigerator, hypernym, 

white goods>

Figure 5: Case studies of Llama-2-7B and KaLM on KGQA tasks. Note that the head entity, relation, and tail entity
are denoted by different colors. The mark indicates the correct answer, while signifies an incorrect answer.

5.3 Knowledge Inference Evaluation500

The generation-based KGQA results are depicted501

in Figure 3 and Figure 6. Llama-2-7B performs502

poorly in entity prediction and relation predic-503

tion. Our method demonstrates a significant perfor-504

mance boost in all generation-based KGQA tasks,505

including head/tail entity prediction, relation pre-506

diction, and triple classification. Despite a slight507

increase in PPL scores on Wikitext-103 (Merity508

et al., 2016) test set, our method still shows im-509

proved performance in the MMLU test. The results510

demonstrate that KaLM achieves effective knowl-511

edge alignment, bringing in significantly improved512

KGQA performance while preserving the original513

generative and knowledge inference capabilities.514

5.4 Visualization of Knowledge515

Representation and Case Studies516

We provide visualization results to illustrate517

knowledge representation improvements. Fig-518

ure 4 shows the sentence similarity matrix of519

Llama-2-7B and KaLM on Wikitext-103. The di-520

agonal elements denote the similarity of the same521

sentence, so the values are always 1. From color522

intensity, it is evident that KaLM learns more dis-523

criminative sentence representations, while Llama-524

2-7B assigns high similarity for arbitrary sentences.525

The sentences are organized by celebrities and their526

careers, thus there should also be a high similarity527

between adjacent sentences. This phenomenon is528

reflected in the similarity matrix of KaLM in Fig-529

ure 4(b), manifested in the smaller matrices with530

darker colors along the diagonal. More concretely,531

numerical analysis shows that after training with532

our method, the sentence-level anisotropy value533

significantly decreased from 0.83 to 0.21.534

We present KGQA generation cases to demon- 535

strate knowledge inference enhancements. Fig- 536

ure 5 illustrates concrete examples of KGQA gen- 537

eration results on the WN18RR dataset. We show- 538

case the responses generated by Llama-2-7B and 539

KaLM for four tasks involving head entity predic- 540

tion, relation prediction, tail entity prediction, and 541

triple classification. The prompt templates for each 542

subtask are shown in the second column of Figure 5, 543

where the “inverse relation” is the original relation 544

description with a prefix word “inverse” and the 545

“relation list” consists of all relations concatenated 546

by the symbol “|”. We display the generated an- 547

swers for triple <salviniaceae, member meronym, 548

salvinia> and triple <refrigerator, hypernym, white 549

goods>. The base LLaMA frequently gives wrong 550

answers and tends to identify keywords from the in- 551

put prompts for prediction. In contrast, our method 552

can understand the questions and correctly answer 553

various KGQA tasks in most cases. 554

6 Conclusion 555

In this work, we show that the subpar performance 556

of LLMs on knowledge-driven tasks stems from a 557

lack of effective knowledge alignment. We present 558

KaLM, a novel knowledge-aligned language mod- 559

eling approach for aligning autoregressive LLMs 560

with KG knowledge. Specifically, we identify two 561

imperative objectives to achieve knowledge align- 562

ment: explicit knowledge alignment and implicit 563

knowledge alignment. We conducted comprehen- 564

sive experiments and analyses on embedding-based 565

KGC and generation-based KGQA. Experimental 566

results demonstrate that our method achieves ef- 567

fective knowledge alignment and consistently im- 568

proves performance on knowledge-driven tasks. 569
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Limitations570

There are several future directions to improve this571

work. Firstly, due to the limitation of computational572

resources, we used the limited-scale LLMs to train573

and evaluate our method. Evaluations on larger-574

scale LLMs, such as the 13B and 70B models, can575

further validate the effectiveness of our approach.576

Secondly, we use a simple linear combination of577

explicit alignment loss and implicit alignment loss578

as the final training objective for KaLM. Further in-579

vestigations into various forms of loss interactions580

remain to be explored to maximize the utility of581

knowledge-aligned language modeling. Finally, we582

can delve into the performance of the knowledge583

representations obtained from knowledge-aligned584

language modeling in cross-domain applications585

such as retrieval-augmented generation (RAG), to586

gain broader insights into the generalization capa-587

bilities of the proposed approach.588
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A More Detailed Review of Related Work785

This work focuses on fine-tuning autoregressive786

LLMs to align with KG knowledge. Our work inter-787

sects with the following research areas: Knowledge788

Enhancement for LLMs, Knowledge Graph Com-789

pletion, Contrastive Representation Learning, and790

Representation Anisotropy of Language Models.791

A.1 Knowledge Enhancement for LLMs792

Knowledge enhancement aims to incorporate fac-793

tual and domain-specific knowledge into LLMs794

to address their knowledge deficiencies. This can795

be divided into retrieval-based knowledge augmen-796

tation and training-based knowledge integration.797

Retrieval-based knowledge augmentation methods798

leverage external retrieval modules to provide addi-799

tional knowledge, aiming to improve the knowl-800

edge reasoning capability of LLMs (Sun et al.,801

2023; Jiang et al., 2023). However, this approach802

may lead to knowledge conflicts (Feng et al., 2023),803

where the knowledge in LLMs and the knowl-804

edge in the retrieved documents are inconsistent or805

the retrieved multiple documents are contradictory.806

Training-based knowledge integration methods in-807

volve using the textual descriptions of KG triples808

to pre-train or fine-tune LLMs, aiming to achieve809

knowledge alignment. These methods can be cate-810

gorized into explicit alignment (Wang et al., 2021b;811

Yasunaga et al., 2022) and implicit alignment (Yao812

et al., 2023; Zhang et al., 2023) based on whether813

they directly optimize the knowledge representa-814

tion. Nevertheless, these methods have either sacri-815

ficed the generative capability or lacked effective816

representation alignment. Our approach enhances817

the knowledge of LLMs via a unique joint objective818

of explicit alignment and implicit alignment, im-819

proving the quality of knowledge representations820

and generative knowledge reasoning capabilities.821

A.2 Knowledge Graph Completion822

Knowledge graph completion (KGC) refers to in-823

ferring missing triples from an incomplete KG,824

which can be used to evaluate the knowledge rea-825

soning ability and knowledge representation quality826

of LLMs. Existing KGC methods can be catego-827

rized into structure-based and description-based.828

Structure-based methods represent entities and re-829

lations as fixed-dimensional vector embeddings830

and use scoring functions to assess the plausibility831

of triples (Bordes et al., 2013; Sun et al., 2019).832

Description-based methods further incorporate the833

textual descriptions of KG triples and leverage pre- 834

trained language models to learn knowledge repre- 835

sentations of entities and relations (Yao et al., 2019; 836

Shen et al., 2022; Wang et al., 2022b). However, 837

structure-based methods fail to generalize to un- 838

seen entities and relations, while description-based 839

methods lack interpretability and exhibit lower effi- 840

ciency when dealing with extremely large KGs. 841

A.3 Contrastive Representation Learning 842

Contrastive learning has demonstrated remarkable 843

success in learning representations across various 844

domains (Chen et al., 2020; Liu et al., 2021; Gunel 845

et al., 2020). The goal is to learn representations 846

that capture shared information between positive 847

pairs while remaining invariant to perturbing noise. 848

The commonly used contrastive learning objectives 849

share a standardized design involving a softmax 850

function over cosine similarity of paired features, 851

with a temperature parameter to control the penalty 852

strength on hard negative samples. Wang and Isola 853

(2020) propose understanding contrastive learning 854

through the lens of alignment and uniformity on the 855

hypersphere. Wang and Liu (2021) show that tem- 856

perature in the contrastive loss controls the strength 857

of penalties over negative samples. 858

A.4 Representation Anisotropy of Language 859

Models 860

PLMs have long been plagued by representation 861

anisotropy (Ethayarajh, 2019), where the learned 862

token and sentence representations are confined to a 863

narrow cone within the entire representation space. 864

The issue of representation anisotropy not only re- 865

sults in model degradation (Su et al., 2022) but also 866

leads to poor performance on discriminative tasks 867

(Muennighoff, 2022). Previous work on alleviat- 868

ing representation anisotropy has mainly focused 869

on post-processing techniques such as normalizing 870

flows (Li et al., 2020) or whitening operations (Su 871

et al., 2021) to obtain isotropic representations. Su 872

et al. (2022) propose a contrastive training objective 873

to encourage learning isotropic token representa- 874

tions. However, these methods mainly improve the 875

isotropy of token representations without enhanc- 876

ing the discriminability of sentence representations. 877

Our method improves the token-level and sentence- 878

level representation anisotropy of LLMs through 879

dual-view knowledge graph contrastive learning, 880

and it has rigorous theoretical guarantees. 881
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B Proofs for Theoretical Analysis882

In this section, we present proofs for theorems in883

Sections 4.1 and 4.2 of the main paper.884

B.1 Proof of Theorem 1 in Section 4.1885

Recall the reformulated dual-view knowledge886

graph contrastive learning objective (Equation 5):887

Lexp(f ; τ,N ) ≜ E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata− log
ef(Dhr)

⊤f(Dt)/τ

ef(Dhr)⊤f(Dt)/τ +
N∑
i=1

ef(Dhr)⊤f(Dt
′
i)/τ

 .

888

From the symmetry of p, we can derive:889

Lexp(f ; τ,N ) =

E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]
+ E

(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdata[
log

(
ef(Dhr)

⊤f(Dt)/τ +

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

)]
.

890

Note that we can have the following limits almost891

surely by the strong law of large numbers (SLLN):892

lim
N→∞

log

ef(Dhr)
⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N


= log E

D−
i ∼pdata

f(D−
i )

⊤f(Di)/τ.

893

Then we can derive the following limits:894

lim
N→∞

Lexp(f ; τ,N )− logN

= E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]

+ lim
N→∞

E
(Dhr,Dt)∼ppos

{Dt
′
i}Ni=1

i.i.d.∼ pdatalog
ef(Dhr)

⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N




= E
(Dhr,Dt)∼ppos

[
−f(Dhr)

⊤f(Dt)/τ
]

895

896

+ E

 lim
N→∞

log

ef(Dhr)
⊤f(Dt)/τ

N
+

N∑
i=1

ef(Dt
′
i)

⊤f(Dt)/τ

N




= −1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

897

We now finish the proof of Theorem 1. 898

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

899

B.2 Proof of Theorem 2 in Section 4.2 900

Recall the asymptotics of the explicit knowledge 901

alignment objective when the number of negative 902

samples approaches infinity (Equation 6): 903

lim
N→∞

Lexp(f ; τ,N )− logN =

− 1

τ
E

(Dhr,Dt)∼ppos

[
f(Dhr)

⊤f(Dt)
]

+ E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]
.

904

Recall the definition of sentence-level anisotropy 905

value of corpus {Di}Ni=1 (Equation 7): 906

anisotropy{D} =
1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej . 907

We can further derive the inequality below from the 908

second term of Equation 6 with Jensen’s inequality 909

when pdata is uniform over finite samples {Di}Ni=1: 910
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E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

=
1

N

N∑
i=1

log

 1

N

N∑
j=1

ee
⊤
i ej/τ


≥ 1

τN2

N∑
i=1

N∑
j=1

e⊤i ej

=
1

τN2

 N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej +N


=

N − 1

τN
· 1

N(N − 1)

N∑
i=1

N∑
j=1,j ̸=i

e⊤i ej +
1

τN

=
N − 1

τN
· anisotropy{D} +

1

τN
.

911

We now finish the proof of Theorem 2.912

E
Di∼pdata

[
log E

D−
i ∼pdata

[
ef(D

−
i )⊤f(Di)/τ

]]

≥ N − 1

τN
· anisotropy{D} +

1

τN
.

913

C Further Details about Implementation914

and Experimental Setup915

C.1 Dataset Details916

WN18RR and FB15k-237 are commonly used KGs917

derived from WordNet and Freebase, respectively918

(Bordes et al., 2013). They have been carefully919

constructed to prevent test set leakage by removing920

inverse relations. We use these datasets for training921

and evaluation. The statistics are shown in Table 2.922

Table 2: Statistics of the datasets.

Dataset #Entity #Relation #Train #Valid #Test

WN18RR 40, 943 11 86, 835 3, 034 3, 134
FB15k-237 14, 541 237 272, 115 17, 535 20, 466

C.2 KaLM Implementation Details923

We initially choose Llama-2-7B as the base LLM924

and fine-tune it through the training objective in925

Equation 4. We use varying batch sizes for ex-926

plicit knowledge alignment and implicit knowledge927

alignment. For both WN18RR and FB15k-237, we928

use a batch size of 96 for explicit knowledge align-929

ment and 8 for implicit knowledge alignment. To930

save computing resources for parameter-efficient931

fine-tuning, we use the LoRA (Hu et al., 2021) 932

method to fine-tune the [“gate_proj”, “up_proj”, 933

“down_proj”] modules in the feed-forward net- 934

work of the Llama-2-7B model. We train the 935

Llama and Mistral series models on the NVIDIA 936

A800 GPU, while other models are trained on the 937

NVIDIA 4090 GPU. The hyper-parameters utilized 938

for training KaLM (based on Llama-2-7B) and the 939

detailed configuration are enumerated in Table 3. 940

Table 3: Hyper-parameters for training KaLM.

Hyper-parameters WN18RR FB15k-237

epochs 20 15
max-description-length 50 50

max-language-modeling-length 256 256
explicit-alignment-batch-size 96 96
implicit-alignment-batch-size 8 8

lora-module ffn ffn
lora-alpha 16.0 16.0

lora-drouout 0.05 0.05
lora-rank 8 8

bnb-config load-in-8bit load-in-8bit
learning-rate 1e-4 1e-4

LR-sheduler-type cosine cosine
weight-decay 0.001 0.001

gradient-checkpointing True True
optimizer AdamW AdamW

AdamW-beta1 0.9 0.9
AdamW-beta2 0.999 0.999

bf16 True True
loss weight (λ) 0.1 0.1

We also implemented KaLM based on other 941

LLMs to demonstrate the generalizability of our 942

approach, including Llama-3-8B, Mistral-7B-v0.1, 943

OPT-6.7B, Pythia-6.9B, and Pythia-2.8B. It is im- 944

portant to note that the feed-forward network layers 945

in the Pythia model are named [“dense_h_to_4h”, 946

“dense_4h_to_h”], while in the OPT model they 947

are named [“fc1”, “fc2”]. This differs from the 948

feed-forward network layers in the Llama and Mis- 949

tral model series. The full parameters used in these 950

experiments are shown in Table 4 (only the differ- 951

ing parameters are listed; the unlisted parameters 952

remain consistent with Table 3). 953

For the cosine similarity matrix composed of 954

head entity-relation embeddings (row direction) 955

and tail entity embeddings (column direction), we 956

calculate the cross-entropy loss in the row direction 957

(i.e., a head entity-relation embedding matching 958

different tail entity embeddings) and the column 959

direction (i.e., a tail entity embedding matching dif- 960

ferent head entity-relation embeddings) separately. 961

We then take the average of the two losses to obtain 962

the final InfoNCE loss. Similar to Equation 1, the 963
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Table 4: Additional Hyper-parameters for training KaLM with different LLMs.

Models epochs explicit-batch-size implicit-batch-size bnb-config

Llama-3-8B-WN 20 96 8 load-in-8bit
Llama-3-8B-FB 15 96 8 load-in-8bit

Mistral-7B-v0.1-WN 20 168 12 load-in-4bit
Mistral-7B-v0.1-FB 15 168 12 load-in-4bit

OPT-6.7B-WN 20 24 4 load-in-8bit
OPT-6.7B-FB 15 24 4 load-in-8bit

Pythia-6.9B-WN 20 24 4 load-in-8bit
Pythia-6.9B-FB 15 24 4 load-in-8bit
Pythia-2.8B-WN 20 48 8 load-in-8bit
Pythia-2.8B-FB 15 48 8 load-in-8bit

column-direction loss is defined as follows:964

ℓc = − log
e(ϕ(et,ehr)−γ)/τ

e(ϕ(et,ehr)−γ)/τ +
∑N

j=1 e
ϕ(et,ehr′

j
)/τ

.965

C.3 More Details about Evaluations966

For the embedding-based KGC task, we report five967

automated metrics: Mean Rank (MR), Mean Re-968

ciprocal Rank (MRR), and Hit@k (k ∈ {1, 3, 10}).969

MR is the mean rank of all test triplets and MRR de-970

notes the average reciprocal rank of all test triples.971

Hit@k measures the proportion of entities correctly972

ranked in the top k. Following previous work, our973

method is evaluated under the filtering setting (Bor-974

des et al., 2013), where the scores of all true triples975

in the training, validation, and testing set are ig-976

nored. All results are averaged over the tail direc-977

tion (a <head entity - relation> embedding match-978

ing different tail entity embeddings, i.e., tail entity979

prediction) and head direction (a <tail entity - in-980

verse relation> embedding matching different head981

entity embeddings, i.e., head entity prediction).982

For the generation-based KGQA task, we report983

the prediction accuracy over head entities, tail enti-984

ties, relations, and relation classifications. To better985

prompt LLMs for the knowledge graph question-986

answering task, we selected several triples from the987

validation set and constructed few-shot examples988

using the corresponding templates from Table 5.989

D Addition Experimental Results990

In this section, we provide more experimental re-991

sults to show the effectiveness of our method.992

D.1 More Experiments on Knowledge 993

Representation Assessment 994

In Table 5, we present additional knowledge repre- 995

sentation results (the embedding-based KGC task) 996

to demonstrate the effectiveness of KaLM in knowl- 997

edge alignment. The best and second best experi- 998

mental results are indicated by bold and underline 999

texts, respectively. Overall, the proposed method 1000

achieved excellent performance on the embedding- 1001

based KGC task, delivering impressive results in 1002

the MR and Hit@10 metrics, while also being 1003

highly competitive in other metrics. 1004

The experimental results based on LLMs of dif- 1005

ferent sources and scales demonstrate the effective- 1006

ness and generalizability of our proposed method. 1007

Under similar experimental settings, more pow- 1008

erful LLMs (such as Llama3-8B and Mistral-7B) 1009

achieved better metrics after being fine-tuned with 1010

KaLM, which also demonstrates the scalability of 1011

our method. It is worth noting that for LLMs of the 1012

same origin but different scales (Pythia-6.9B and 1013

Pythia-2.8B), the smaller-scale Pythia-2.8B bene- 1014

fited from a larger training batch size during fine- 1015

tuning. As a result, its final experimental metrics 1016

matched or even surpassed those of the more pow- 1017

erful Pythia-6.9B model. This also highlights the 1018

importance of large batch sizes for the embedding- 1019

based KGC task, suggesting that using more pow- 1020

erful computing resources and larger GPU memory 1021

could further enhance the effectiveness of the pro- 1022

posed KaLM method. 1023

D.2 More Experiments on Knowledge 1024

Inference Evaluation 1025

In Figure 6, we present additional knowledge infer- 1026

ence results (generation-based KGQA) to demon- 1027
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Table 5: More Embedding-based KGC results with various LLMs on WN18RR and FB15k-237.

Method WN18RR FB15k-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

structure-based methods
TransE 2300 0.243 0.043 0.441 0.532 323 0.279 0.198 0.376 0.441
DistMult 7000 0.444 0.412 0.470 0.504 512 0.281 0.199 0.301 0.446
RotatE 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
description-based methods (autoencoder PLMs)
KG-BERT 97 0.216 0.041 0.302 0.524 153 - - - 0.420
StAR 51 0.401 0.243 0.491 0.709 117 0.296 0.205 0.322 0.482
C-LMKE 79 0.619 0.523 0.671 0.789 141 0.306 0.218 0.331 0.484
SimKGC - 0.671 0.585 0.731 0.817 - 0.333 0.246 0.362 0.510
description-based methods (autoregressive LLMs)
Llama-2-7B 15969 0.010 0.004 0.010 0.020 5359 0.006 0.002 0.004 0.012
Llama2-7BKaLM 22 0.596 0.497 0.706 0.856 114 0.305 0.227 0.348 0.511
Llama3-8BKaLM 28 0.613 0.502 0.728 0.865 125 0.327 0.241 0.366 0.522
Mistral-7BKaLM 25 0.634 0.526 0.743 0.872 117 0.341 0.252 0.371 0.536
OPT-6.7BKaLM 24 0.514 0.397 0.603 0.822 126 0.288 0.199 0.312 0.486
Pythia-6.9BKaLM 28 0.508 0.394 0.598 0.818 130 0.289 0.199 0.310 0.484
Pythia-2.8BKaLM 30 0.539 0.398 0.644 0.829 133 0.292 0.205 0.318 0.489

strate the effectiveness of KaLM in knowledge1028

alignment. This section demonstrates the per-1029

formance of various powerful LLMs (including1030

Llama-2-7B, Llama-3-8B, and Mistral-7B) before1031

and after fine-tuning with KaLM, across various1032

knowledge graph question-answering tasks (includ-1033

ing head entity prediction, tail entity prediction,1034

relation prediction, and triple classification).1035

The experimental results can be divided into1036

three groups by color: the green series, blue series,1037

and red series correspond to the KGQA results of1038

Llama-2-7B, Llama-3-8B, and Mistral-7B before1039

and after training, respectively. It can be observed1040

that after fine-tuning with KaLM, all three LLMs1041

achieved consistent improvements in prediction ac-1042

curacy for the question-answering tasks.1043

At the KGQA task level, the most significant1044

overall improvements were observed in tail entity1045

prediction (an average increase of 15.1%) and triple1046

classification (an average increase of 11.4%), fol-1047

lowed by relation prediction (an average increase1048

of 10.7%) and head entity prediction (an average1049

increase of 7.4%). At the LLM level, the most1050

exciting improvements were seen in Llama-3-8B1051

(an average increase of 12.38%) and Llama-2-7B1052

(an average increase of 10.65%), while Mistral-7B1053

showed slightly fewer gains (an average increase1054

of 10.43%). This suggests that our method demon-1055

strates generalizability with powerful LLMs.1056

D.3 More Visualizations on Knowledge 1057

Representation Matrix 1058

From this section onward, unless stated otherwise, 1059

KaLM refers to the model checkpoint trained on 1060

Llama-2-7B using our method. We present more 1061

knowledge representation results to demonstrate 1062

the effectiveness of KaLM in knowledge align- 1063

ment. Figure 7 displays the sentence similarity 1064

matrix of several similar entity descriptions from 1065

the WN8RR dataset. Detailed information about 1066

entity names and descriptions can be found in Fig- 1067

ure 8. It is evident that KaLM can obtain more 1068

distinguishable knowledge representations, where 1069

the similarity between related entities (diagonal 1070

elements) is high, while the similarity between un- 1071

related entities (off-diagonal elements) is low. 1072

D.4 Detailed analysis of Representation 1073

Anisotropy 1074

We further analyze the sentence-level representa- 1075

tion anisotropy on the Wikitext-103 test set using 1076

model checkpoints trained on the WN18RR dataset. 1077

The sentence-level anisotropy value for a given 1078

corpus {Di}Ni=1 is defined in Equation 7, where a 1079

lower anisotropy value indicates better discrimina- 1080

tive characteristics of sentence representations. 1081

Figure 9 plots the anisotropy value over different 1082

layers for LLaMA and KaLM. We can observe 1083

that the anisotropy value of LLaMA consistently 1084
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Figure 6: Comparison of generative knowledge inference performance between Base LLMs and their fine-tuned
KaLM versions, best viewed in three color groups. The symbol ↑ means higher is better and ↓ means lower is better.

remains at a relatively high level, suggesting that1085

the base LLM suffers from severe representation1086

anisotropy issues. In contrast, our proposed KaLM1087

notably mitigates this issue, with the anisotropy1088

values decreasing gradually as the depth of the1089

model increases, and dropping significantly from1090

0.5 to 0.2 at the output layer. The anisotropy values1091

of the last layer for LLaMA and KaLM show that1092

after training with our method, the sentence-level1093

anisotropy value significantly decreased from 0.831094

to 0.21. The results indicate that our method can1095

effectively reduce the anisotropy of representations1096

across layers in LLMs, resulting in a significant1097

improvement in knowledge representation.1098

Figure 10 analyzes the changes in anisotropy val-1099

ues during the model training process. The results1100

show that the anisotropy values decrease rapidly af-1101

ter a few epochs of training and eventually stabilize1102

at a low level. We assume that the initial epochs of1103

training have completed the preliminary alignment1104

of knowledge representation, while the subsequent1105

training epochs mainly focus on integrating explicit1106

and implicit representations.1107

E Ablation Studies1108

In this section, we present concrete ablation studies1109

to analyze the effectiveness of each component1110

of our approach. We ablate the settings that led1111

to the final design, including training objectives,1112

fine-tuning modules, and training epochs. It is 1113

important to note that the results of the ablation 1114

experiments in this section were obtained from 1115

earlier runs on an NVIDIA 3090 GPU, which may 1116

lead to slight differences compared to the full KGC 1117

results presented in the main text. 1118

E.1 The necessity of the implicit knowledge 1119

alignment objective (Equation 3) 1120

In Table 6, we train the model using different loss 1121

weights (i.e., the λ parameter in Equation 4) and 1122

analyze its performance on the KGC task. Note 1123

that this experiment is conducted solely for ablation 1124

analysis, thus only 10 training epochs are used. Ex- 1125

perimental results reveal that incorporating the im- 1126

plicit knowledge alignment objective (i.e., λ > 0) 1127

generally leads to better performance in KGC, indi- 1128

cating further improvement in knowledge represen- 1129

tation. The best performance in KGC is achieved 1130

when λ = 0.1. The results confirm that both ex- 1131

plicit alignment and implicit alignment are crucial 1132

for knowledge alignment, as they both essentially 1133

require a deep understanding of knowledge. In- 1134

tuitively, the initial model already exhibits strong 1135

language generation capabilities. By setting the 1136

hyperparameter λ to 0.1, we encourage the large 1137

language model to focus more on learning intrin- 1138

sic knowledge representations, thereby promoting 1139

knowledge alignment within the model. 1140
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Figure 7: Similarity matrix of selected similar entity descriptions from the WN8RR dataset.

Entity Name Entity Desctription

unseeable unseeable, impossible or nearly impossible to see; imperceptible by the eye; "the invisible 
man"; "invisible rays"; "an invisible hinge"; "invisible mending"

unperceivable unperceivable, impossible or difficult to perceive by the mind or senses; "an imperceptible 
drop in temperature"; "an imperceptible nod"; "color is unperceivable to the touch"

sound sound, financially secure and safe; "sound investments"; "a sound economy"

healthy healthy, having or indicating good health in body or mind; free from infirmity or disease; 
"a rosy healthy baby"; "staying fit and healthy"

same same, closely similar or comparable in kind or quality or quantity or degree; "curtains the 
same color as the walls"; "mother and son have the same blue eyes"

equal equal, having the same quantity, value, or measure as another; "on equal terms"; "all men 
are equal before the law"

untrusty untrusty, not worthy of trust or belief; "an untrustworthy person"
unfaithful unfaithful, not true to duty or obligation or promises; "an unfaithful lover"

maintain maintain, keep in a certain state, position, or activity; e.g., "keep clean"; "hold in place"; 
"She always held herself as a lady"; "The students keep me on my toes"

sustain sustain, lengthen or extend in duration or space; "We sustained the diplomatic negotiations 
as long as possible"; "prolong the treatment of the patient"; "keep up the good work"

Figure 8: Selected entities and their corresponding textual descriptions.

The implicit knowledge alignment objective fo-1141

cuses on incorporating textual patterns of knowl-1142

edge into the LLM to prevent catastrophic forget-1143

ting of previous knowledge and maintain its gen-1144

erative capability. We also conducted additional1145

perplexity (PPL) evaluation experiments to illus-1146

trate the impact of the implicit knowledge align-1147

ment loss. The additional results show that for1148

the corresponding λ = 0, 0.01, 0.1, 1.0 in Table 6,1149

the model’s PPL are 6.42, 4.96, 4.97, and 4.98,1150

respectively. Therefore, we can conclude that in-1151

corporating the implicit alignment loss maintains1152

the model’s language modeling capability, whereas1153

not using the implicit alignment loss significantly1154

impairs the model’s generative ability. 1155

Table 6: KGC results with different λ in Equation 4.

Method WN18RR PPLMR MRR H@1 H@3 H@10
KaLM (λ = 0) 21.2 0.512 0.355 0.611 0.815 6.42
KaLM (λ = 0.01) 19.8 0.510 0.352 0.604 0.818 4.96
KaLM (λ = 0.1) 20.1 0.517 0.359 0.615 0.825 4.98
KaLM (λ = 1.0) 21.6 0.500 0.336 0.596 0.806 4.98

E.2 The effects of fine-tuning different LLM 1156

modules using LoRA 1157

In Table 7, we fine-tune different modules of the 1158

model using the LoRA (Hu et al., 2021) method and 1159

analyze their performance on KGC tasks and PPL 1160
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Figure 9: layer-wise analysis of anisotropy. The ver-
tical axis represents the sentence-level representation
anisotropy value on the Wikitext-103 test set, while the
horizontal axis denotes the number of model layers.
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Figure 10: epoch-wise analysis of anisotropy. The ver-
tical axis represents the sentence-level representation
anisotropy value on the Wikitext-103 test set, while the
horizontal axis denotes the number of training epochs.

evaluations. Note that this experiment is conducted1161

solely for ablation analysis, hence only 10 epochs1162

of training were performed. “att” refers to fine-1163

tuning only the attention module, “ffn” refers to1164

fine-tuning only the feed-forward network, and “att-1165

ffn” refers to fine-tuning both the attention module1166

and the feed-forward network simultaneously. The1167

results show that fine-tuning with the “att-ffn” ap-1168

proach achieves the best KGC performance, but it1169

also leads to higher PPL values, suggesting that the1170

model’s generation capability may be significantly1171

compromised. Therefore, as a compromise, we1172

choose the “ffn” fine-tuning approach, maintaining1173

moderate knowledge representation performance1174

while preserving the original generation capability.1175

Table 7: KGC results and PPL evaluation results when
fine-tuning different network modules with LoRA.

Method WN18RR PPLMR MRR H@1 H@3 H@10
KaLM (att) 21.9 0.47.5 0.331 0.580 0.784 5.03
KaLM (ffn) 20.1 0.517 0.359 0.615 0.825 4.96
KaLM (att-ffn) 19.5 0.525 0.371 0.619 0.831 5.07

These experimental results are consistent with1176

the conclusions of (He et al., 2021), where the1177

FFN learns local features and patterns within the1178

input sequence, allowing it to directly capture task-1179

specific text patterns. Meanwhile, attention pro-1180

vides the model with the ability to capture complex1181

contextual relationships, which is key to LLMs’1182

understanding and generation of natural language.1183

Under the knowledge-aligned language modeling1184

objective, we aim to align the internal knowledge1185

representations of LLMs while preserving their1186

inherent natural language generation capabilities. 1187

Therefore, directly fine-tuning the FFN layers can 1188

reduce resource consumption and maximize the 1189

effectiveness of KaLM fine-tuning. 1190

E.3 The sustained gains and potential impacts 1191

of training for more epochs 1192

In Table 8, we fine-tune the model using differ- 1193

ent numbers of training epochs and analyze their 1194

performance on KGC tasks. This experiment is 1195

mainly conducted to investigate whether additional 1196

training epochs can lead to further improvement 1197

in knowledge representations. The experimental 1198

results show that using more training epochs can 1199

continuously improve the performance of KaLM on 1200

the KGC task, resulting in higher MRR and Hit@k 1201

metrics. The model trained with our method consis- 1202

tently maintains an acceptable PPL value due to the 1203

implicit knowledge alignment objective. However, 1204

this also comes with more computational resource 1205

consumption and training time. As a result, we 1206

selected a moderate number of training epochs. 1207

Table 8: KGC results with different training epochs.

Method WN18RR PPLMR MRR H@1 H@3 H@10
KaLM (epoch=10) 20.1 0.517 0.359 0.615 0.825 4.96
KaLM (epoch=20) 19.6 0.554 0.402 0.650 0.848 4.98
KaLM (epoch=30) 21.9 0.576 0.427 0.673 0.854 5.00
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