
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a DeLTa Workshop Paper at ICLR 2025

COMPUTATIONAL LIMITS OF LOW-RANK ADAPTATION
(LORA) FINE-TUNING FOR TRANSFORMER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the computational limits of Low-Rank Adaptation (LoRA) for fine-
tuning transformer-based models using fine-grained complexity theory. Our key
observation is that the existence of low-rank decompositions within the gradient
computation of LoRA adaptation leads to possible algorithmic speedup. This
allows us to (i) identify a phase transition behavior of efficiency assuming the
Strong Exponential Time Hypothesis (SETH), and (ii) prove the existence of al-
most linear algorithms by controlling the LoRA update computation term by term.
For the former, we identify a sharp transition in the efficiency of all possible rank-r
LoRA update algorithms for transformers, based on specific norms resulting from
the multiplications of the input sequence X , pretrained weights W ⋆, and adapter
matrices αBA/r. Specifically, we derive a shared upper bound threshold for such
norms, and show that efficient (sub-quadratic) approximation algorithms of LoRA
exist only below this threshold. For the latter, we prove the existence of almost
linear approximation algorithms for LoRA adaptation by utilizing the hierarchical
low-rank structures of LoRA gradients and approximating the gradients with a
series of chained low-rank approximations. To showcase our theory, we consider
two practical scenarios: partial (e.g., only WV and WQ) and full adaptations (e.g.,
WQ, WV , and WK) of weights in attention heads.

1 INTRODUCTION

We investigate the computational limits of finetuning large transformer-based pretrained model
with Low-Rank Adaptation (LoRA). This analysis is of practical importance in the era of Large
Foundation Models (Bommasani et al., 2021). Large foundation models are gigantic transformer-
based architectures, pretrained on vast datasets, are pivotal across multiple fields, including natural
language processing (Achiam et al., 2023; Touvron et al., 2023b;a; Brown et al., 2020; Floridi and
Chiriatti, 2020), finance (Yang et al., 2023; Wu et al., 2023), genomics (Nguyen et al., 2024; Zhou
et al., 2025; 2024; 2023; Ji et al., 2021), medical science (Thirunavukarasu et al., 2023; Singhal et al.,
2023; Moor et al., 2023) and more. They are powerful but very expensive to pretrain. Therefore,
most practitioners rely on finetuing methods to adapt these models for their specific needs (Zheng
et al., 2024; Ding et al., 2022). LoRA (Mao et al., 2025; Hu et al., 2021) is the most prevalent
fine-tuning method due to its parameter efficiency due to the low-rank adaptation of model weights.
However, even with LoRA, updating the partial weights of pretrained transformer-based models
using gradient methods remains costly. Notably, the naive backward pass in transformer architectures
retains the same quadratic-in-sequence-length computational time complexity as its forward pass (see
Appendix H for discussions and a proof). This work provides a timely theoretical analysis of LoRA’s
computational limits, aiming to advance efficient finetuning of large foundation models.

The hardness of LoRA finetuning transformer-based foundation model ties to both forward and
backward passes. To analyze, it suffices to focus on just transformer attention heads due to their
dominating quadratic time complexity in both passes. We first make the following observation:

The hardness of LoRA’s forward pass is trivially characterized by (Alman and Song, 2023).

To see this, let X ∈ RL×d be input with length L, and WK ,WQ,WV ∈ Rd×d be attention weights,
and Q = XWV ∈ RL×d, K = XWK ∈ RL×d, V = XV ∈ RL×d. The Attention Mechanism is

Z = Softmax
(
QKTβ

)
V = D−1 exp

(
XWQW

T
KXTβ

)
XWV , (1.1)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a DeLTa Workshop Paper at ICLR 2025

with the inverse temperature β > 0 and D := diag
(
exp
(
XWQW

T
KXTβ

)
1L

)
. Here, exp(·) is

entry-wise exponential function, diag (·) converts a vector into a diagonal matrix with the entries of
the vector, and 1L is the length-L all ones vector. LoRA finetuning is given as

Definition 1.1 (LoRA (Hu et al., 2021)). Let W ∈ Rb×a be any weight matrix in a pretrained model
F , LoRA fine-tunes F through updating W with a low-rank decomposition W = W ⋆ + α

rBA. Here,
W ⋆ is the frozen pretrained weight. Only B ∈ Rb×r and A ∈ Rr×a are learnable (being update via
gradient descent) with rank r < min(a, b) and tunable hyperparameter α ∈ R.

Under the Strong Exponential Time Hypothesis (Hypothesis 1), Alman and Song (2023) state:

Lemma 1.1 (Informal, (Alman and Song, 2023)). Fast (sub-quadratic) forward pass of transformer
only exist when entries of K,Q, V are bounded by a constant B = Θ(

√
logL).

It is easy to see that Lemma 1.1 is transferable to LoRA inference according to Definition 1.1.
However, we still need the hardness of backward pass to fully characterize LoRA for transformers.
The analysis of the backpropagation (backward pass) is less straightforward. It involves managing the
computation of numerous gradients for attention scores, with the number of chain-rule terms scaling
quadratically in L and the numbers of LoRA weights. While it is tempting to design algorithms to
circumvent this Ω(L2) computation time, to the best of our knowledge, there are no formal results to
support and characterize such algorithms. To address this gap, we pose the following questions and
provide a fundamental theory to fully characterize the complexity of LoRA for transformer models:

Question 1. Is it possible to improve the Ω(L2) time with a bounded approximation error?

Question 2. More aggressively, is it possible to do such gradient computations in almost linear time?

To address these questions, we explore approximate LoRA gradient computations with precision
guarantees. We first layout the objective of finetuning transformer-based pretrained models.

Definition 1.2 (LoRA Loss for Adapting WK , WQ, WV of an Attention Head). Let D = {Xi, Yi}Ni=1

be a dataset of size N with Xi ∈ RL×d being the input and Yi ∈ RL×d being the label. Fine-tuning
a (self-)attention with LoRA with ℓ2 loss on dataset D is formulated as

min
BK ,BQ,BV ∈Rd×r,

AK ,AQ,AV ∈Rr×d

L
(
WK = W ⋆

K +
α

r
BKAK ,WQ = W ⋆

Q +
α

r
BQAQ,WV = W ⋆

V +
α

r
BV AV

)

:=
1

2N

N∑
i=1

∥∥D−1 exp
{
XiWQW

T
KXT

i β
}
XiWV − Yi

∥∥2
F
. (1.2)

Here D := diag
(
exp
{
XWQW

T
KXTβ

}
1n

)
∈ RL×L.

We study the following approximation problem. Let Z := vec(Z) ∈ Rab for any matrix Z ∈ Ra×b.

Problem 1 (Approximate LoRA Gradient Computation (ALoRAGC(L, d, r, ϵ))). Assume all nu-
merical values in log(L) bits encoding. Let L follow Definition 1.2. The problem of ap-
proximating gradient computation of optimizing (1.2) is to find six surrogate gradient matrices
{G̃(A)

µ ∈ Rd×r, G̃
(B)
µ ∈ Rr×d}µ=K,Q,V such that

max
({∥∥∥∥G̃(B)

µ − ∂L
∂Bµ

∥∥∥∥
∞
,

∥∥∥∥G̃(A)
µ − ∂L

∂Aµ

∥∥∥∥
∞

}
µ=K,Q,V

)
≤ ϵ,

for some ϵ > 0, where ∥Z∥∞ := maxi,j |Zij |.

Remark 1.1. Any method or algorithm that aims to compute LoRA gradients beyond vanilla
computation of (1.2) falls within the scope of this problem. Examples include using sampling
strategies to avoid full LoRA gradient computation (Pan et al., 2024) or employing model quantization
for efficiency via low-precision gradient computation (Li et al., 2024; Dettmers et al., 2024). Common
among these approaches is the need to compute surrogate LoRA gradients with reduced computational
cost. We abstract this key subroutine and consider the fundamental algorithmic Problem 1.

In this work, we aim to investigate the computational limits of all possible efficient algorithms of
ALoRAGC(L, d, r, ϵ) under realistic setting ϵ = 1/poly(L).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a DeLTa Workshop Paper at ICLR 2025

Contributions. Our contributions are 2-fold:

• Norm-Based Phase Transition of Efficiency (Theorem A.1). We answer Question 1 by identify-
ing a phase transition behavior on the norm of input, pretrained and adaptor weights, assuming the
Strong Exponential Time Hypothesis (SETH). Specifically, we identify an inefficiency threshold
for these norms such that, only below which, adapting transformer-based models with LoRA in
L2−o(1) (sub-quadratic) time is possible.

Theorem 1.1 (Informal Version of Theorem A.1). Without appropriately normalized inputs X ,
pretrained attention weights W ⋆

K ,W ⋆
Q,W

⋆
V , and LoRA matrices {αAµBµ/r}µ=K,Q,V , there is no

algorithm running in subquadratic time O(L2−δ) for any constant δ > 0 to solve ALoRAGC.

• Existence of Almost Linear Time LoRA Algorithms. We answer Question 2 by proving
that precision-guaranteed approximation to Problem 1 is achievable in almost linear time via
hierarchical low-rank decomposition of LoRA gradients. To showcase our theory, we analyze two
practical scenarios highlighted in (Hu et al., 2021): partial adaptations (e.g., only WV and WQ in
Section 3), and full adaptations (e.g., WK ,WQ,WV in Appendix B) of weights in attention heads.

Theorem 1.2 (Informal Version of Theorems 3.1 and B.1). Given appropriately normalized inputs
X , pretrained attention weights W ⋆

K ,W ⋆
Q,W

⋆
V , and LoRA matrices {αAµBµ/r}µ=K,Q,V , there

exists an algorithm that solves ALoRAGC in almost linear time O(L1+o(1)).

On the theoretical front, we characterize the computational feasibility of LoRA by showing the
existence of precision-guaranteed, efficient (subquadratic or almost linear time) LoRA methods and
identifying their necessary conditions. On the practical front, these conditions serve as valuable
guidelines for implementations (please see Remark C.2 for discussions and Appendix I for numerical
justifications). Importantly, our theory only requires one assumption on numerical value encoding
(e.g., in logL bits with L being the sequence length). Such an assumption is minimal and realistic.
No assumptions are made about the data or model, making our results widely applicable.

Organization. Section 2 includes preliminaries and problem setup. Section 3 presents analysis
of LoRA adaptation on only WQ,WK . Appendix B presents analysis of LoRA adaptation on all
WQ,WK ,WV . Appendix A characterizes the computational limits of all possible efficient algorithms
for LoRA. Section 4 includes concluding remarks. We defer discussions of practical insights of our
theory to Appendix C and related works to Appendix D.

Notations. We denote (column) vectors by lower case letters, and matrices by upper case letters.
Let 1L denote the length-L all ones vector. We write ⟨a, b⟩ := aTb as the inner product for vectors
a, b. Let a[i] denotes the i-th component of vector a. Let A[i, j] and Aij denotes the (i, j)-th entry of
matrix A. For any matrix A, let A[i, ·] and A[·, j] be the i-th row and j-th column of A, respectively.
For u, v ∈ Rd, we denote their Hadamard product as u ⊙ v := (u1v1, . . . , udvd)

T. The index set
{1, · · · , I} is denoted by [I], where I ∈ N+. For any z ∈ Rd, we denote exp(z) ∈ Rd whose
i-th entry is exp(zi). Let ∥A∥∞ := maxi,j |Aij | for any matrix A. Let ∥·∥F denote the squared
Frobenius norm, i.e., ∥A∥F := (

∑
i,j A

2
ij)

1/2.

2 PRELIMINARIES AND PROBLEM SETUP

This section presents the ideas we build on.

Tensor Trick for Computing Gradients. The tensor trick (Diao et al., 2019; 2018) is an instrument
to compute complicated gradients in a clean and tractable fashion. As we shall see below, the purpose
of the tensor trick is to convert matrix multiplication into vector form, making the gradient w.r.t. the
matrix more tractable. For this, we introduce vectorization and its inverse operation, matrixization.

Definition 2.1 (Vectorization). For any matrix X ∈ RL×d, we define X := vec (X) ∈ RLd such
that Xi,j = X(i−1)d+j for all i ∈ [L] and j ∈ [d].

Definition 2.2 (Matrixization). For any vector X ∈ RLd, we define mat(X) = X such that
Xi,j = mat(X) := X(i−1)d+j for all i ∈ [L] and j ∈ [d], namely mat(·) = vec−1(·).

Next, we introduce necessary tensor terminologies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a DeLTa Workshop Paper at ICLR 2025

Definition 2.3 (Kronecker Product). Let A ∈ RLa×da and B ∈ RLb×db . We define the Kronecker
product of A and B as A⊗B ∈ RLaLb×dadb such that (A⊗B)(ia−1)Lb+ib,(ja−1)db+jb , is equal to
Aia,jaBib,jb with ia ∈ [La], ja ∈ [da], ib ∈ [Lb], jb ∈ [db].

Definition 2.4 (Sub-Block of a Tensor). For any A ∈ RLa×da and B ∈ RLb×db , let A := A⊗B ∈
RLaLb×dadb . For any j ∈ [La], we define Aj ∈ RLb×dadb be the j-th Lb × dadb sub-block of A.

Definition 2.3 creates a large matrix from two smaller matrices, preserving the structure and properties
of the original matrices. Definition 2.4 provides a refined identification of specific entry-wise
multiplications between the two Kronecker-producted matrices. Together, they makes the gradient
w.r.t. the matrix more tractable: for instance, the gradient of below vectorized LoRA loss (2.1).

Lemma 2.1 (Tensor Trick (Diao et al., 2019; 2018)). For any A ∈ RLa×da , B ∈ RLb×db and
X ∈ Rda×db , it holds vec

(
AXBT

)
= (A⊗B)X ∈ RLaLb .

To showcase the tensor trick for LoRA, let’s consider a (single data point) simplified (1.2)

L0 :=
∥∥ D−1︸︷︷︸

∈RL×L

exp
{
XWXTβ

}︸ ︷︷ ︸
∈RL×L

X︸︷︷︸
∈RL×d

WV︸︷︷︸
d×d

− Y︸︷︷︸
∈RL×d

∥∥2
F
, with W := WQW

T
K ∈ Rd×d.

By Definition 2.3 and Definition 2.4, we identify Dj,j :=
〈
exp
(
Aj W

)
,1L

〉
∈ R for all j ∈ [L],

with A := X ⊗X ∈ RL2×d2

and W ∈ Rd2

. Therefore, for each j ∈ [L] and i ∈ [d], it holds

L0 =

L∑
j=1

d∑
i=1

1

2

(〈
D−1

j,j exp
(
Aj W

)
, XWV [·, i]

〉
− Yj,i

)2
. (2.1)

Gao et al. (2023a;b) show that (2.1) provides term-by-term tractability for gradient computation of
L0. Specifically, it allow us to convert the attention score D−1 exp

(
XWXT

)
into its vectorized form

(D ⊗ IL)
−1 exp(AW) ∈ RL2

and split the vectorized form into L terms of size L. This provides a
systematic way to manage the chain-rule terms in the gradient computation of losses like L0, and
opens the door to more general analytical feasibility for deep transformer-based models.

Problem Setup: Which Attention Weights in Transformer Should We Apply LoRA to? Following
(Hu et al., 2021), we consider only adapting the attention weights for downstream tasks. This
consideration is sufficient to justify our techniques as the attention head dominates the time complexity
of transformer-based foundation models. Namely, we consider updating (as in Definition 1.2)

WQ = W ⋆
Q +

α

r
BQAQ, WK = W ⋆

K +
α

r
BKAK , WV = W ⋆

V +
α

r
BV AV .

Furthermore, for completeness, we consider two de facto scenarios as in (Hu et al., 2021, Sec. 7.1):

(C1) Special Case. Adapting only WQ and WV for best performance under fixed parameter budge.
(C2) General Case. Adapting WK ,WQ,WV for best performance.

We analyze (C1) Special Case in Section 3 and (C2) General Case in Appendix B.

To consider the problem of adapting attention head, we first generalize Definition 1.2 to the following
generic attention with triplet input sequences. For reasons, this allows our results to be applicable.
Moreover, this helps us to focus on parts dominating the efficiency of gradient computation.

Definition 2.5 (Learning Generic Attention). Let D = {(X(K)
i , X

(Q)
i , X

(V)
i), Yi}Ni=1 be a dataset of

size N with the triplet X(K)
i , X

(Q)
i , X

(V)
i ∈ RL×d being the input and Yi ∈ RL×d being the label.

The problem of learning a generic attention with ℓ2 loss from dataset D is formulated as

min
WK ,WQ,WV ∈Rd×d

1

N

N∑
i=1

L (WK ,WQ,WV)

:= min
WK ,WQ,WV ∈Rd×d

1

2N

N∑
i=1

∥∥∥∥D−1 exp

{
X

(Q)
i WQW

T
K

(
X

(K)
i

)T
β

}
X

(V)
i WV − Yi

∥∥∥∥2
F

.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a DeLTa Workshop Paper at ICLR 2025

Here D := diag

(
exp

{
X

(Q)
i WQW

T
K

(
X

(K)
i

)T
β

}
1n

)
∈ RL×L.

Remark 2.1. Definition 2.5 is generic. If X(K)
i = X

(V)
i ̸= X

(Q)
i ∈ RL×d, Definition 2.5 reduces to

cross-attention. If X(K)
i = X

(Q)
i = X

(V)
i ∈ RL×d, Definition 2.5 reduces to self-attention.

3 SPECIAL CASE: LORA ADAPTATION ON ONLY WQ AND WV

Formally, we formulate the partial adaptation (C1) of an attention head as the following LoRA loss.

Definition 3.1 (Adapting WQ, WV of Generic Attention with LoRA). Let D =

{
(
X

(K)
i , X

(Q)
i , X

(V)
i

)
, Yi}Ni=1 be a dataset of size N with the triplet X(K)

i , X
(Q)
i , X

(V)
i ∈ RL×d

being the input and Yi ∈ RL×d being the label. The problem of fine-tuning WQ, WV a generic
attention with LoRA with ℓ2 loss from dataset D is formulated as

min
BQ,BV ∈Rd×r

AQ,AV ∈Rr×d

L
(
W ⋆

K ,WQ = W ⋆
Q +

α

r
BQAQ,WV = W ⋆

V +
α

r
BV AV

)
(3.1)

:= min
BQ,BV ∈Rd×r

AQ,AV ∈Rr×d

1

2N

N∑
i=1

∥∥∥∥∥D−1 exp

{
X

(Q)
i WQ(W

⋆
K)T

(
X

(K)
i

)T
β

}
︸ ︷︷ ︸

(I)

X
(V)
i WV︸ ︷︷ ︸
(II)

−Yi

∥∥∥∥∥
2

F

.

Here D := diag

(
exp

{
X

(Q)
i WQ(W

⋆
K)T

(
X

(K)
i

)T
β

}
1n

)
∈ RL×L.

In this work, we are interested in the efficiency of optimizing (3.1) with gradient descent. For
simplicity of our analysis, we employ the following four simplifications:

(S1) Since (II) (V multiplication) is linear in weight while (I) (K-Q multiplication) is exponential in
weights, we only need to focus on the gradient of K-Q multiplication. Therefore, for efficiency
analysis of gradient, it is equivalent to analyze a reduced problem with fixed WV .

(S2) To further simplify, we introduce C
(1)
i , C

(2)
i , C

(3)
i ∈ RL×d via

X
(Q)
i

α

r︸ ︷︷ ︸
:=C

(1)
i ∈RL×d

(r
α
W ⋆

Q +BQAQ

)
(W ⋆

K)T
(
X

(K)
i

)T
︸ ︷︷ ︸
:=

(
C

(2)
i

)T
∈Rd×L

:= C
(1)
i BQAQ

(
C

(2)
i

)T
, X

(V)
i W ⋆

V := C
(3)
i .

(3.2)

Notably, C(1)
i , C

(2)
i , C

(3)
i are constants with respect to adapting (3.1) with gradient updates.

(S3) Trivial Reduction. To prove the hardness of Problem 1 for both full gradient descent and
stochastic mini-batch gradient descent, it suffices to consider adapting on a single data point.

(S4) We set β = 1 without loss of generality. Note that β and α/r do not impact the running time of
gradient computation since they are just rescaling factors.

Thus, we deduce Definition 3.1 to

min
BQ∈Rd×r

AQ∈Rr×d

L(BQ, AQ) = min
BQ∈Rd×r

AQ∈Rr×d

1

2

∥∥∥∥D−1 exp

{
C(1)

(
W ⋆

Q +BQAQ

)(
C(2)

)T}
C(3) − Y

∥∥∥∥2
F

,

(3.3)

where W ⋆
Q := rW ⋆

Q/α and D = diag
(
exp
{
C(1)

(
W ⋆

Q +BQAQ

) (
C(2)

)T}
1L

)
∈ RL×L.

We introduce the next problem to characterize all possible (efficient or not) gradient computation of
optimizing (3.3). Let Y [i, ·] and Y [·, j] be the i-th row and j-th column of Y , respectively.

Problem 2 (Approximate LoRA Gradient Computation ALoRAGC(L, d, r, ϵ)). Given
C

(1)
i , C

(2)
i , C

(3)
i , Yi ∈ RL×d. Let ϵ > 0. Assume all numerical values are in log(L)-bits

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a DeLTa Workshop Paper at ICLR 2025

encoding. Let L follows (3.3). The problem of approximating gradient computation of optimizing
(3.3) is to find two matrices G̃(A)

Q ∈ Rd×r and G̃
(B)
Q ∈ Rr×d such that

max
(
∥G̃

(B)

Q − ∂L
∂BQ

∥∞, ∥G̃
(A)

Q − ∂L
∂AQ

∥∞
)
≤ ϵ.

The explicit gradient of LoRA loss (3.3) is too complicated to characterize Problem 2. To combat
this, we employ the tensor trick. Let W := W ⋆

Q +BQAQ ∈ Rd×d such that vec (W) = W ∈ Rd2

.

Definition 3.2 (Vectorized Attention Score). Let C := C(1) ⊗ C(2) such that Cj ∈ RL×d2

for all

j ∈ [L]. For every j ∈ [L], we define u(W)j : Rd2 → RL as: u(W)j := exp
(
CjW

)
∈ RL.

Definition 3.2 decomposes the complicated matrix exp
(
C(1)(W ⋆

Q +BQAQ)(C
(2)
i)T

)
in loss (3.3)

into L vectors. Importantly, since the weight W is vectorized into W , such a vectorized representation
allows more tractable gradient computation by its term-by-term identifiability.

Definition 3.3 (Attention Score Normalization). Let C := C(1) ⊗ C(2) such that Cj ∈ RL×d2

for all

j ∈ [L]. For every j ∈ [L], we define α(x)j : Rd2 → R as: α(W)j :=
〈
exp
(
CjW

)
,1L

〉
∈ R.

Similarly, Definitions 3.2 and 3.3 provide analytical tractability of the matrix D in loss (3.3).

Definition 3.4 (Vectorized, Normalized Attention Score). For a fixed j ∈ [L], we define f(W)j :

Rd2 → RL as: f(W)j := α(W)−1
j u(W)j such that f(W) ∈ RL×L denotes the matrix whose j-th

row is (f(W)j)
⊤.

Definition 3.4 decomposes the complicated matrix multiplication
D−1 exp

(
C(1)(W ⋆

Q +BQAQ)(C
(2))T

)
C(3) in loss (3.3) into L terms. Note that the gradi-

ents w.r.t. W are still tractable due to simple chain rule (by design of α(·) and u(·)).

Definition 3.5 (Vectorized LoRA Loss (3.3)). For every i ∈ [d], let C(3)[·, i] follow (S2). For every
j ∈ [L] and i ∈ [d], we define c(x)j,i : Rd2 × Rd2 → R as: c(W)j,i := ⟨f(W)j , C

(3)[·, i]⟩ − Yj,i.
Here Yj,i = Y [j, i] is the (j, i)-th entry of Y ∈ RL×d for j ∈ [L], i ∈ [d].

From above definitions, we read out c(W) = f(W)C(3) − Y such that (3.3) becomes

L(W) =

L∑
j

d∑
i=1

L(W)j,i =
1

2

L∑
j

d∑
i=1

c(W)2j,i. (3.4)

(3.4) presents a decomposition of the LoRA loss (3.3) into L · d terms, each simple enough for
tracking gradient computation. Now, we are ready to compute the gradient of the LoRA loss.

Lemma 3.1 (Low-Rank Decomposition of LoRA Gradient). Let matrix BQ, AQ and loss function L
follow (3.3), W := W ⋆

Q +BQAQ and C := C(1) ⊗ C(2). It holds

dL(W)

dW
=

L∑
j=1

d∑
i=1

c(W)j,iC
⊤
j

((II)︷ ︸︸ ︷
diag (f(W)j)−

(III)︷ ︸︸ ︷
f(W)jf(W)⊤j

)
︸ ︷︷ ︸

(I)

C(3)[·, i]. (3.5)

Remark 3.1 (Benefit from Tensor Trick: Fast Approximation). As we shall show in subsequent
sections, Lemma 3.1 also enables the construction of fast approximation algorithms for (3.5) with
precision guarantees due to its analytical feasibility. Surprisingly, it is even possible to compute (3.5)
in almost linear time. To proceed, we further decompose (3.5) into its fundamental building blocks
according to the chain-rule in the next lemma, and then conduct the approximation term-by-term.

Remark 3.2 (LoRA Gradient Computation Takes Quadratic Time). Lemma 3.1 implies that LoRA’s
gradient computation takes quadratic time, similar to inference hardness result (Alman and Song,
2023). This is non-trivial yet not the main focus of this work. Please see Appendix H for details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma 3.2 (Vectorized ∂L
∂AQ

, ∂L
∂BQ

). Let q(W) := C(3) (c(W))
T ∈ RL×L. For every index j ∈ [L]

, we define p(W)j ∈ RL as p(W)j :=
(
diag

(
f (W)j

)
− f (W)j f (W)

⊤
j

)
q(W). Then it holds

∂L
∂AQ

= vec

(
B⊤

Q

(
C(1)

)⊤
p(W)C(2)

)
,

∂L
∂BQ

= vec

((
C(1)

)⊤
p(W)AQC

(2)

)
. (3.6)

Lemma 3.2 states that the chain rule terms for characterizing Problem 2 are tied to p(·). Therefore,
to characterize G̃

(A)
Q , G̃(B)

Q (i.e., the approximations of G(A)
Q , G(B)

Q), we need to approximate the
functions f(·), q(·), c(·), and hence p(·) with precision guarantees. To do so, it is convenient to
consider the following decomposition of p(·).

Definition 3.6 (Decomposition of p(·)). For every j ∈ [L], we define p1(W)j , p2(W)j ∈ RL as

p1(W)j := diag
(
f (W)j

)
q(W)j and p2(W)j := f (W)j f (W)

⊤
j q(W)j ,

such that p(W) = p1(W)− p2(W).

Overview of Our Proof Strategy. Definition 3.6 motivates the following strategy: term-by-term
approximation for precision-guaranteed, almost linear time algorithms to compute (3.6) (Problem 2).

Step 1. Prove the existence of almost linear approximation algorithms for f(·), q(·), c(·) via low-rank
approximation: Lemma 3.3, Lemma 3.5 and Lemma 3.4.

Step 2. Prove the existence of almost linear approximation algorithms for p1(·), p2(·) and hence p(·)
via the low-rank-preserving property of the multiplication between f(·) and q(·): Lemma 3.6
and Lemma 3.7.

Step 3. Prove existence of almost linear approximation algorithms for the LoRA adapter gradients
(i.e., ∂L

∂AQ
and ∂L

∂BQ
in (3.6)) with results from Step 1 & 2: Theorem 3.1.

Step 1. We start with low-rank approximations for f(·), q(·), c(·).

Lemma 3.3 (Approximate f(·), Modified from (Alman and Song, 2023)). Let Γ = o(
√
logL) and

k1 = Lo(1). Let C(1), C(2) ∈ RL×d, W ∈ Rd×d, and f(W) = D−1 exp
(
C(1)W

(
C(2)

)⊤)
with

D = diag
(
exp

(
C(1)W

(
C(2)

)⊤)
1L

)
follows Definitions 3.2 to 3.5. If max

(∥∥C(1)W
∥∥
∞ ≤

Γ,
∥∥C(2)

∥∥
∞

)
≤ Γ, then there exist two matrices U1, V1 ∈ RL×k1 such that

∥∥U1V
⊤
1 − f(W)

∥∥
∞ ≤

ϵ/poly(L). In addition, it takes L1+o(1) time to construct U1 and V1.

Lemma 3.4 (Approximate c(·)). Assume all numerical values are in O(logL) bits. Let d = O(logL)
and c(W) ∈ RL×d follows Definition 3.5. There exist two matrices U1, V1 ∈ RL×k1 such that∥∥∥U1V

⊤
1 C(3) − Y − c(W)

∥∥∥
∞

≤ ϵ/poly(L).

Lemma 3.5 (Approximate q(·)). Let k2 = Lo(1), c(W) ∈ RL×d follows Definition 3.5 and let
q(W) := C(3) (c(W))

T ∈ RL×L follows Lemma 3.2. There exist two matrices U2, V2 ∈ RL×k2

such that
∥∥U2V

⊤
2 − q(W)

∥∥
∞ ≤ ϵ/poly(L). In addition, it takes L1+o(1) time to construct U2, V2.

Step 2. Now, we use above lemmas to construct low-rank approximations for p1(·), p2(·), p(·).

Lemma 3.6 (Approximate p1(·)). Let k1, k2, k3 = Lo(1). Suppose U1, V1 ∈ RL×k1 approximates
f(W) ∈ RL×L such that

∥∥U1V
⊤
1 − f(W)

∥∥
∞ ≤ ϵ/poly(L), and U2, V2 ∈ RL×k2 approximates

the q(W) ∈ RL×L such that
∥∥U2V

⊤
2 − q(W)

∥∥
∞ ≤ ϵ/poly(L). Then there exist two matrices

U3, V3 ∈ RL×k3 such that ∥∥U3V
⊤
3 − p1(W)

∥∥
∞ ≤ ϵ/poly(L).

In addition, it takes L1+o(1) time to construct U3, V3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma 3.7 (Approximate p2(·)). Let k1, k2, k4 = Lo(1). Let p2(W) ∈ RL×L follow Definition 3.6
such that its j-th column is p2(W)j = f(W)jf(W)⊤j q(W)j for each j ∈ [L]. Suppose U1, V1 ∈
RL×k1 approximates the f(X) such that

∥∥U1V
⊤
1 − f(W)

∥∥
∞ ≤ ϵ/poly(L), and U2, V2 ∈ RL×k2

approximates the q(W) ∈ RL×L such that
∥∥U2V

⊤
2 − q(W)

∥∥
∞ ≤ ϵ/poly(L). Then there exist

matrices U4, V4 ∈ RL×k4 such that∥∥U4V
⊤
4 − p2(W)

∥∥
∞ ≤ ϵ/poly(L)

In addition, it takes L1+o(1) time to construct U4, V4.

Step 3. Combining above, we arrive our main result: almost linear algorithm for Problem 2.

Theorem 3.1 (Main Result: Existence of Almost Linear Time ALoRAGC). Suppose all numer-
ical values are in O(logL)-bits encoding. Recall that W = W ⋆

Q + BQAQ ∈ Rd×d with
W ⋆

Q := rW ⋆
Q/α. Let C(1) = X(Q) α

r , C
(2) = X(K)W ⋆

K follows (3.2). If
∥∥C(1)W

∥∥
∞ ≤ Γ

and
∥∥C(2)

∥∥
∞ ≤ Γ, where Γ = o(

√
logL), then there exists a L1+o(1) time algorithm to solve

ALoRAGC
(
L, d = O(logL), r = Lo(1), ϵ = 1/poly(L)

)
(i.e., Problem 2). In particular, this algo-

rithm outputs gradient matrices G̃(A)
Q ∈ Rd×r, G̃

(B)
Q ∈ Rr×d such that

∥ ∂L
∂AQ

− G̃
(A)

Q ∥∞ ≤ 1/poly(L), and ∥ ∂L
∂BQ

− G̃
(B)

Q ∥∞ ≤ 1/poly(L).

General Case: Full LoRA Adaptation on WK ,WQ,WV . We defer the analysis of full LoRA on
transformer ((C2) General Case: adapting both WK ,WQ,WV) to Appendix B due to page limit.
Importantly, we also prove the existence of an almost linear-time LoRA (Theorem B.1). In addition,
we derive the norm bound conditions required for it to hold.

Hardness Result: Norm-Based Phase Transition in Efficiency. We defer the hardness result of
Definition 3.1 to Appendix A. In particular, we characterize the computational limits of all possible
efficient algorithms of ALoRAGC, via fine-grained reduction under the Strong Exponential Time
Hypothesis (SETH).

4 DISCUSSION AND CONCLUDING REMARKS

We study the computational limits of the Low-Rank Adaptation (LoRA) for transformer-based model
finetuning using fine-grained complexity theory (i.e., under Hypothesis 1). Our main contribution
is the proof of the existence of almost linear approximation algorithms for LoRA adaptation on
transformer-based models. We accomplish this by utilizing the hierarchical low-rank structures
of LoRA gradients (Lemmas 3.3 to 3.5) and approximating the gradients with a series of chained
low-rank approximations (Lemmas 3.6 and 3.7). To showcase our theory, we establish such almost
linear approximation for both partial (Theorem 3.1) and full LoRA adaptions (Theorem B.1) of
attention weights. In addition, we identify a phase transition behavior in the efficiency of all possible
variants of LoRA (Theorem A.1) by adjusting the norm upper-bound Γ of input, pretrained, and
adaptor weights. Specifically, we establish an “inefficiency threshold” for Γ, only below which
adapting transformer-based models with LoRA in L2−o(1) (sub-quadratic) time is possible.

Insights for Practitioners. We discuss practical insights of our theory in Appendix C.

Proof-of-Concept Experiments. We provide numerical results to justify our theory in Appendix I.

Limitations. We identify necessary conditions for fast LoRA methods, not sufficient conditions.
Therefore, our results do not lead to direct implementations. This limitation is inherent to hardness
results (Toolkit, 2013). However, as discussed above, we expect our findings to provide valuable
insights for future efficient LoRA implementations in both forward and backward computations.

Impact Statement. This theoretical work aims to elucidate the foundations of large transformer-based
foundation models and is not expected to have negative social impacts.

Related Works. We defer the discussion of related works to Appendix D due to page limit.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a DeLTa Workshop Paper at ICLR 2025

REFERENCES

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Automata, Languages, and Programming: 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pages 39–51. Springer,
2014.

Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Or Zamir. Subtree isomorphism revisited. ACM Transactions on Algorithms (TALG), 14(3):1–23,
2018.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials
and gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity
Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 9783959772419. doi: 10.4230/LIPIcs.CCC.2022.22.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In Thirty-seventh Conference
on Neural Information Processing Systems (NeurIPS), 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. In ICLR. arXiv preprint arXiv:2310.04064, 2024b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 541–552. IEEE, 2020.

Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 457–466. IEEE,
2016.

Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of empirical risk
minimization: Kernel methods and neural networks. Advances in Neural Information Processing
Systems, 30, 2017.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. Advances in Neural Information Processing Systems
(NeurIPS), 36, 2023.

Karl Bringman and Marvin Künnemann. Multivariate fine-grained complexity of longest common
subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1216–1235. SIAM, 2018.

Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless seth fails. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 661–670. IEEE, 2014.

Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete fréchet distance. Journal of
Computational Geometry, 7(2):46–76, 2016.

Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expression
membership testing. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 307–318. IEEE, 2017.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a DeLTa Workshop Paper at ICLR 2025

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Kevin Buchin, Maike Buchin, Maximilian Konzack, Wolfgang Mulzer, and André Schulz. Fine-
grained analysis of problems on curves. EuroCG, Lugano, Switzerland, 3, 2016.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of unique k-sat: An
isolation lemma for k-cnfs. In International Workshop on Parameterized and Exact Computation,
pages 47–56. Springer, 2009.

Timothy M Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for triangle problems
under even more believable hypotheses: reductions from real apsp, real 3sum, and ov. In Proceed-
ings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1501–1514,
2022.

Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product. In
Proceedings of the 33rd Computational Complexity Conference, pages 1–45, 2018.

Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 21–40. SIAM, 2019.

Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat. ACM
Transactions on Algorithms (TALG), 12(3):1–24, 2016.

Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. Hardness of approximate diameter:
Now for undirected graphs. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1021–1032. IEEE, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product regression
and p-splines. In International Conference on Artificial Intelligence and Statistics, pages 1299–
1308. PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020.

Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
first-order properties on sparse structures with algorithmic applications. ACM Transactions on
Algorithms (TALG), 15(2):1–35, 2018.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft-
max regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a DeLTa Workshop Paper at ICLR 2025

Jiuxiang Gu, Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. Conv-basis: A
new paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Jiuxiang Gu, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training:
Provably efficient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024b.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. In The Twelfth International Conference
on Learning Representations, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Robin Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
encoder representations from transformers model for dna-language in genome. Bioinformatics, 37
(15):2112–2120, 2021.

Jacob Kahn, Morgane Riviere, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
Mazaré, Julien Karadayi, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, et al. Libri-light:
A benchmark for asr with limited or no supervision. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7669–7673. IEEE, 2020.

CS Karthik and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic is as hard as
bichromatic. Combinatorica, 40(4):539–573, 2020.

Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow. ACM
Transactions on Algorithms (TALG), 14(4):1–15, 2018.

Yinghui Li, Jing Yang, and Jiliang Wang. Dylora: Towards energy efficient dynamic lora transmission
control. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pages 2312–
2320. IEEE, 2020.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: LoRA-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a DeLTa Workshop Paper at ICLR 2025

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024.

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-weon Jung, Xuankai Chang, and Shinji Watanabe.
Voxtlm: Unified decoder-only models for consolidating speech recognition, synthesis and speech,
text continuation tasks. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 13326–13330. IEEE, 2024.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi, Zhonghao Hu, and Yunjun Gao. A survey
on lora of large language models. Frontiers of Computer Science, 19(7):197605, 2025.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelligence.
Nature, 616(7956):259–265, 2023.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36, 2024.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa:
Layerwise importance sampling for memory-efficient large language model fine-tuning. arXiv
preprint arXiv:2403.17919, 2024.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 515–524, 2013.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing (STOC), pages 1260–1268, 2018.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

A Theorist’s Toolkit. Lecture 24: Hardness assumptions. 2013.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Ryan Williams. Finding paths of length k in o∗(2k) time. Information Processing Letters, 109(6):
315–318, 2013.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a DeLTa Workshop Paper at ICLR 2025

Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-linear
vs barely-subquadratic complexity. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1207–1215. SIAM, 2018a.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pages 3447–
3487. World Scientific, 2018b.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Shang Wu, Yen-Ju Lu, Haozheng Luo, Jerry Yao-Chieh Hu, Jiayi Wang, Najim Dehak, Jesus Villalba,
and Han Liu. Fast adaptation and robust quantization of multi-modal foundation models from
associative memory: A case study in speechlm. In Workshop on Efficient Systems for Foundation
Models II@ ICML2024, 2024c.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan, and
Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse modern
hopfield model. In Forty-first International Conference on Machine Learning (ICML), 2024a.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen,
XIAOPENG ZHANG, and Qi Tian. QA-loRA: Quantization-aware low-rank adaptation of large
language models. In The Twelfth International Conference on Learning Representations, 2024b.

Hongyang Yang, Xiao-Yang Liu, and Christina Dan Wang. Fingpt: Open-source financial large
language models. arXiv preprint arXiv:2306.06031, 2023.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-2: Effi-
cient foundation model and benchmark for multi-species genome. arXiv preprint arXiv:2306.15006,
2023.

Zhihan Zhou, Winmin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang,
and Han Liu. Dnabert-s: Learning species-aware dna embedding with genome foundation models.
arXiv preprint arXiv:2402.08777, 2024.

Zhihan Zhou, Robert Riley, Satria Kautsar, Weimin Wu, Rob Egan, Steven Hofmeyr, Shira Goldhaber-
Gordon, Mutian Yu, Harrison Ho, Fengchen Liu, et al. Genomeocean: An efficient genome
foundation model trained on large-scale metagenomic assemblies. bioRxiv, pages 2025–01, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a DeLTa Workshop Paper at ICLR 2025

Appendix

A Norm-Based Phase Transition in Efficiency 15

B General Case: Full LoRA Adaptation on WK , WQ and WV 16

C Insights for Practitioners 17

D Related Works 18

E Proofs of Section 3 20
E.1 Proof of Lemma 3.1 . 20
E.2 Proof of Lemma 3.2 . 21
E.3 Proof of Lemma 3.4 . 22
E.4 Proof of Lemma 3.5 . 22
E.5 Proof of Lemma 3.6 . 23
E.6 Proof of Lemma 3.7 . 24
E.7 Proof of Theorem 3.1 . 25

F Proof of Theorem B.1 27

G Proof of Theorem A.1 35

H Quadratic Time Complexity of Exact LoRA Gradient Computation 36

I Proof-of-Concept Experiments 38

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a DeLTa Workshop Paper at ICLR 2025

A NORM-BASED PHASE TRANSITION IN EFFICIENCY

In this section, we characterize the computational limits of all possible efficient algorithms of
ALoRAGC, via fine-grained reduction under the Strong Exponential Time Hypothesis (SETH).

Strong Exponential Time Hypothesis (SETH). Impagliazzo and Paturi (2001) introduce the Strong
Exponential Time Hypothesis (SETH) as a stronger form of the P ̸= NP conjecture. It suggests that
our current best SAT algorithms are optimal and is a popular conjecture for proving fine-grained lower
bounds for a wide variety of algorithmic problems (Williams, 2018b; 2013; Cygan et al., 2016).

Hypothesis 1 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

Our primary technique involves casting the ALoRAGC problem (Problem 1) as a fine-grained reduc-
tion under SETH, from the hardness result of fast attention approximation algorithm (Alman and
Song, 2023). For simplicity of analysis, we consider the special case (C1).

Theorem A.1 (Inefficient Threshold). Let κ : N → N by any function with κ(L) = ω(1) and
κ(L) = o(logL). Let Γ = O(

√
logL ·κ(L)). Assuming Hypothesis 1, there is no algorithm running

in time O(L2−δ) for any constant δ > 0 for ALoRAGC(L, d = O(logL), r < d, ϵ), i.e., Problem 2,
subject to (3.3), even in the case where the input and weight matrices satisfy ∥X(K)W ⋆

K∥∞ ≤ Γ,
∥αX(Q)

i BQAQ/r∥∞ ≤ Γ, Y = 0 and ϵ = O((logL)−4).

Proof Sketch. Firstly, we recall the hardness of sub-quadratic Attention Gradient Computation
approximation, i.e., AttLGC from (Alman and Song, 2024a) (defined in Definition G.1). This serves
as a reference point for the complexity we anticipate for ALoRAGC defined in Problem 2. We then
proceed with a reduction from problem AttLGC to problem ALoRAGC. Essentially, by showing that
AttLGC is at least as hard as ALoRAGC, and then showing how to solve AttLGC using a solution to
ALoRAGC, we establish the hardness of ALoRAGC. See for Appendix G for a detailed proof.

Remark A.1. Theorem A.1 suggests an efficiency threshold for Γ. Only below this threshold are
efficient algorithms for ALoRAGC possible. This is a Γ-based phase transition behavior in efficiency.

Remark A.2. In Theorem A.1, we show that even the simplest single-data-point case with Y = 0
is hard. Hence, our result also applies to the special case (C1) (i.e., Problem 2) and general case
(C2) (i.e., Problem 3). Specifically, it is evident that computing the gradient for multiple data points
(whether the full gradient or a stochastic mini-batch gradient) is at least as hard as for a single data
point. The hardness follows trivially.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a DeLTa Workshop Paper at ICLR 2025

B GENERAL CASE: FULL LORA ADAPTATION ON WK , WQ AND WV

Similarly, we formulate the full adaptation (C2) of an attention head as the following LoRA loss.

Definition B.1 (Adapting WK , WQ, WV of Generic Attention with LoRA). Let D =

{(X(K)
i , X

(Q)
i , X

(V)
i), Yi}Ni=1 be a dataset of size N with the triplet X(K)

i , X
(Q)
i , X

(V)
i ∈ RL×d

being the input and Yi ∈ RL×d being the label. The problem of fine-tuning a generic attention with
LoRA with ℓ2 loss from dataset D is formulated as

min
BK ,BQ,BV ∈Rd×r,

AK ,AQ,AV ∈Rr×d

L(WK = W ⋆
K +

α

r
BKAK ,WQ = W ⋆

Q +
α

r
BQAQ,WV = W ⋆

V +
α

r
BV AV)

:=
1

2N

N∑
i=1

∥∥∥D−1 exp
{
X

(Q)
i WQW

T
KX

(K)
i β

}
X

(V)
i WV − Yi

∥∥∥2
F
.

Here D := diag(exp
{
X(Q)WQW

T
KX(K)β

}
1n) ∈ RL×L.

By simplifications (S1), (S3) and (S4), we fix WV , set β = α/r = 1 and consider LoRA adaptation on
a single data point. Akin to simplification (S2), we introduce C

(1)
K , C

(2)
K , C

(1)
Q , C

(2)
Q , C(3) ∈ RL×d:

C
(1)
K := X(Q)

(
W ⋆

Q +
α

r
BQAQ

)
, C

(2)
K := X(K), (B.1)

C
(1)
Q := X(Q), C

(2)
Q := X(K) (W ⋆

K +BKAK) , and C(3) := X(V)W ⋆
V .

Remark B.1. C
(1)
K , C

(2)
K , C(3) are constants with respect to adapting BK , AK with gradient updates.

C
(1)
Q , C

(2)
Q , C(3) are constants with respect to adapting BQ, AQ with gradient updates.

Therefore, the full LoRA adaptation loss in Definition B.1 becomes

min
BK ,BQ⊂Rd×r

AK ,AQ⊂Rr×d

∥∥∥∥D−1 exp

{
X(Q)

(
W ⋆

Q +BQAQ

)
(W ⋆

K +BKAK)
⊤
(
X(K)

)⊤}
X(V)W ⋆

V − Y

∥∥∥∥2
F

,

(B.2)

where D = diag
(
exp

(
C

(1)
K (W ⋆

K + BKAK)⊤(C
(2)
K)⊤

)
1L

)
= diag

(
exp

(
C

(1)
Q (W ⋆

Q +

BQAQ)(C
(2)
Q)⊤

)
1L

)
∈ RL×L.

Similar to Section 3, we introduce the following problem to characterize all possible gradient
computation of (B.2), and arrive similar results as Section 3: almost linear algorithm for Problem 3.

Problem 3 (Approximate LoRA Gradient Computation (ALoRAGC(L, d, r, ϵ))). Assume all numeri-
cal values be in log(L) bits encoding. Let L follow (B.2), ϵ > 0, and ∥Z∥∞ := maxi,j |Zij |. The
problem of approximating gradient computation of optimizing (B.2) is to find four surrogate gradient
matrices {G̃(A)

µ ∈ Rd×r, G̃
(B)
µ ∈ Rr×d}µ=K,Q such that

max
({∥∥G̃(B)

µ − ∂L
∂BQ

∥∥
∞,
∥∥G̃(A)

µ − ∂L
∂AQ

∥∥
∞

}
µ=K,Q

)
≤ ϵ.

Theorem B.1 (Main Result: Existence of Almost Linear Time ALoRAGC). Let Γ = o(
√
logL).

Suppose all numerical values are in O(logL)-bits encoding. For µ = Q,K, let Wµ = W ⋆
µ+BµAµ ∈

Rd×d. If
∥∥∥C(1)

µ Wµ

∥∥∥
∞

≤ Γ and
∥∥∥C(2)

µ

∥∥∥
∞

≤ Γ for both µ = Q,K, then there exists a L1+o(1) time

algorithm to solve ALoRAGC(L, d = O(logL), r = Lo(1), ϵ = 1/poly(L)) (i.e., Problem 3) up to
1/poly(L) accuracy. In particular, this algorithm outputs gradient matrices {G̃(A)

µ ∈ Rd×r, G̃
(B)
µ ∈

Rr×d}µ=K,Q such that

max
({∥∥ ∂L

∂Bµ

− G̃
(A)

µ

∥∥
∞,
∥∥ ∂L
∂Aµ

− G̃
(A)

µ

∥∥
∞

}
µ=K,Q

)
≤ 1/poly(L).

Proof. See Appendix F for a detailed proof.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a DeLTa Workshop Paper at ICLR 2025

C INSIGHTS FOR PRACTITIONERS

Remark C.1 (General Case: Full LoRA Adaptation on WK ,WQ,WV). We defer the analysis of
full LoRA on transformer (adapting both WK ,WQ,WV matrices) to Appendix B due to page limit.

Remark C.2 (Insights for Practitioners: Necessary Conditions for Efficient and Robust LoRA). This
work is about LoRA on transformer models. Therefore, the computational bottleneck is by design
O(L2) (see Appendix H for discussions and a proof.) In this regard, our work provides in-depth
analysis to address this O(L2) bottleneck and provides useful insights and guidance for designing
efficient LoRA algorithms and methods with precision guarantees:

• Theorem A.1: Necessary Conditions for Subqudratic Time LoRA. Proper normalization of the
composed norms, e.g., ∥X(K)W ⋆

K∥ ≤ Γ and ∥αX(Q)
i BQAQ/r∥ ≤ Γ with Γ = O(

√
logL ·κ(L)).

• Theorems 3.1 and B.1: Necessary Conditions for Almost Linear Time LoRA. Proper normal-
ization of the composed norms, e.g.,

– For partial LoRA on WQ,WV (Theorem 3.1):
∥∥α

rX
(Q)W

∥∥
∞ ≤ Γ and

∥∥X(K)W ⋆
K

∥∥
∞ ≤ Γ

with Γ = o(
√
logL).

– For full LoRA on WK ,WQ,WV (Theorem B.1):
∥∥X(Q)

(
W ⋆

Q + α
rBQAQ

)
WK

∥∥
∞ ≤ Γ,∥∥X(K)

∥∥ ≤ Γ,
∥∥X(Q)WQ

∥∥ ≤ Γ, and
∥∥X(K)

(
W ⋆

K + α
rBKAK

)∥∥
∞ ≤ Γ with Γ = o(

√
logL).

Suitable normalization of the composed norms can be implemented using pre-activation layer normal-
ization (Xiong et al., 2020; Wang et al., 2019) to control ∥X∥, or outlier-removing attention activation
functions (Hu et al., 2024a) to control {∥Wµ∥, ∥Aµ∥, ∥Bµ∥}µ=K,Q. On one hand, our findings
provide formal justifications for these methods. On the other hand, these necessary conditions also
motivate the design of future efficient methods with minimal model and data assumptions.

Remark C.3 (Self- and Cross-Attention). We emphasize that all these results hold for not only self-
attention but also cross-attention due to our generic problem setting (Definition 2.5 and Remark 2.1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a DeLTa Workshop Paper at ICLR 2025

D RELATED WORKS

Fine-Grained Complexity. The Strong Exponential Time Hypothesis (SETH) is a conjecture in
computational complexity theory that posits solving the Boolean satisfiability problem (SAT) for n
variables requires time 2n in the worst case, up to sub-exponential factors (Impagliazzo and Paturi,
2001). It extends the Exponential Time Hypothesis (ETH) by suggesting that no algorithm can solve
k-SAT in O(2(1−ϵ)n) time for any ϵ > 0 (Calabro et al., 2009). SETH has significant implications for
the hardness of various computational problems, as proving or disproving it would greatly enhance
our understanding of computational limits (Williams, 2018b; 2013).

In essence, SETH is a stronger form of the P ̸= NP conjecture, suggesting that our current best SAT
algorithms are optimal. It states as follows:

Hypothesis 2 (SETH). For every ϵ > 0, there is a positive integer k ≥ 3 such that k-SAT on formulas
with n variables cannot be solved in O(2(1−ϵ)n) time, even by a randomized algorithm.

SETH is widely used for establishing fine-grained lower bounds for various algorithmic challenges,
including k-Hitting Set and k-NAE-SAT (Williams, 2018b; Cygan et al., 2016). This conjecture
is crucial in deriving conditional lower bounds for many significant problems that otherwise have
polynomial-time solutions in diverse fields such as pattern matching (Chen and Williams, 2019;
Bringman and Künnemann, 2018; Bringmann et al., 2017; Bringmann and Mulzer, 2016; Backurs
and Indyk, 2016; Bringmann, 2014; Abboud et al., 2014), graph theory (Dalirrooyfard et al., 2022;
Chan et al., 2022; Abboud et al., 2018; Gao et al., 2018; Krauthgamer and Trabelsi, 2018; Roditty and
Vassilevska Williams, 2013), and computational geometry (Karthik and Manurangsi, 2020; Williams,
2018a; Rubinstein, 2018; Chen, 2018; Buchin et al., 2016).

Based on this conjecture, our study employs fine-grained reductions under SETH to explore the
computational limits of Low-Rank Adaptation (LoRA). Previous research in fine-grained reductions
includes the work by Backurs et al. (2017), who examine the computational complexity of various
Empirical Risk Minimization problems, such as kernel SVMs and kernel ridge. Alman et al. (2020)
investigate the effectiveness of spectral graph theory on geometric graphs within the constraints of
SETH. Aggarwal and Alman (2022) address the computational limitations of Batch Gaussian Kernel
Density Estimation. Expanding on these studies, Gu et al. (2024a;b); Alman and Song (2024b; 2023)
explore transformer attention and introduced a tensor generalization. Hu et al. (2024c) show that
efficient dense associative memory a.k.a. modern Hopfield models and corresponding networks
also need bounded query and key patterns for sub-quadratic time complexity. Compared to existing
works, this work is, to the best of our knowledge, the first analysis of computational limits for
parameter-efficient fine-tuning of large foundation models (Hu et al., 2021).

Low-Rank Adaptation (LoRA). In this paper, we focus on LoRA (Hu et al., 2021), a method
that leverages low-rank matrices to approximate updates to the weights of neural models. Various
extensions of LoRA have been proposed to address different challenges in model training and
deployment. For instance, DoRA (Liu et al., 2024) focus on enhanced parameter efficiency. QLoRA
(Dettmers et al., 2024), LoftQ (Li et al., 2024), QA-LoRA (Xu et al., 2024b), and LQ-LoRA (Guo
et al., 2024) focus on both memory and parameter efficiency in model compression and quantization.
Additionally, DyLoRA (Li et al., 2020), AdaLoRA (Zhang et al., 2023), and SoRA (Ding et al.,
2023) focus on dynamically determining the optimal rank r for LoRA implementations. LoRAHub
(Huang et al., 2023) focus on multi-task finetuning. LoRA+ (Hayou et al., 2024) focus on efficient
feature learning. Despite the methodological and empirical successes, the theoretical side is relatively
underdeveloped. While Zeng and Lee (2024) explore the expressiveness of LoRA from a universal-
approximation perspective, and Hayou et al. (2024) investigate the optimal adapter learning rate
with respect to large model width, to the best of our knowledge, no existing analysis focuses on the
computational limits of LoRA. Therefore, this work provides a timely theoretical analysis of LoRA’s
computational limits, aiming to advance efficient finetuning of large foundation models in terms of
both parameter usage and computational time.

Outliers in Attention Heads. Our results indicate that outliers (e.g., large ∥XW ⋆∥ and ∥XW ⋆ +
αXBA/r∥) in attention heads hamper LoRA efficiency and performance. This outlier effect is
well-known in pretraining large foundation models for its negative impact on models’ quantization
performance (Sun et al., 2024). For pretraining, prior works identify the existence of no-op tokens
as the main source: tokens with small value vectors tend to receive significantly large attention

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a DeLTa Workshop Paper at ICLR 2025

weights (Hu et al., 2024a; Bondarenko et al., 2023). Specifically, Hu et al. (2024a) interpret this
outlier effect as inefficient rare memory retrieval from the associative memory/modern Hopfield
model perspective (Wu et al., 2024a;b; Xu et al., 2024a; Hu et al., 2024b;c; 2023) and propose the
outlier-efficient Hopfield layer for transformer-based large models, demonstrating strong empirical
performance and theoretical guarantees. The advantages of controlling outliers in the attention heads
of transformer-based large foundation models are also emphasized in various theoretical studies (Gu
et al., 2024a;b; Alman and Song, 2024a;b; 2023; Gao et al., 2023a). Yet, to the best of our knowledge,
there is no existing work on outliers in LoRA fine-tuning. This is the first work establishing that the
LoRA adaptor weights might lead to performance and efficiency degradation due to their additive
nature: ∥XW ⋆ + αXBA/r∥.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a DeLTa Workshop Paper at ICLR 2025

E PROOFS OF SECTION 3
E.1 PROOF OF LEMMA 3.1
Proof of Lemma 3.1. With LoRA loss (3.3), we have

dL(W)

dW
=

L∑
j=1

d∑
i=1

d

dW i

(
1

2
c(W)2j,i

)
.

Note that for each j ∈ [L] and i ∈ [d],

d

dW i

(
1

2
c(W)2j,i

) (
By (3.3)

)

= c(W)j,i
d
〈
f(W)j , C

(3)[·, i]
〉

dW i

(
By Definition 3.5

)
= c(W)j,i

〈
df(W)j

dW i

, C(3)[·, i]

〉

= c(W)j,i

〈
d
(
α−1(W)ju(W)j

)
dW i

, C(3)[·, i]

〉 (
By Definition 3.4

)
= c(W)j,i

〈
α(W)−1

j

du(W)j

dW i︸ ︷︷ ︸
(I)

−α(W)−2
j

dα(W)j

dW i︸ ︷︷ ︸
(II)

u(W)j , C
(3)[·, i]

〉
.

(
By product rule and then chain rule

)
• Part (I). We have

du(W)j

dW i

=
d exp

(
CjW

)
dW i

(
By Definition 3.2

)
= exp

(
CjW

)
⊙

dCjW

dW i

= Cj [·, i]⊙ u(W)j .
(
By

d(CjW)
dW i

=
dCjW

dW i
= Cj · dW

dW i
= Cj · ei =

(
Cj

)
[·, i]

)
• Part (II). We have

dα(W)j

dW i

=
d
〈
u(W)j ,1L

〉
dW i

(
By Definition 3.3

)
=
〈
Cj [·, i]⊙ u(W)j ,1L

〉 (
By Definition 3.2

)
=
〈
Cj [·, i], u(W)j

〉
.

(
By element-wise product identity

)
Combining (I) and (II), we get

d

dW i

(
1

2
c(W)2j,i

)
= c(W)j,i

[〈
C(3)[·, i],Cj [·, i]⊙ f(W)j

〉
−
〈
C(3)[·, i], f(W)j

〉
·
〈
Cj [·, i], f(W)j

〉]
= c(W)j,iC

⊤
j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
C(3)[·, i].

This completes the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a DeLTa Workshop Paper at ICLR 2025

E.2 PROOF OF LEMMA 3.2

First, we present a helper lemma.

Lemma E.1. For any a ∈ R, let diagd(a) ∈ Rd×d be a d× d diagonal matrix with all entries equal
to a. Let JB , JA ∈ Rd2×rd be two matrices such that W = W

⋆

Q + JBAQ, and W = W
⋆

Q + JABQ
via

JB =


BQ

BQ

. . .
BQ

 , JA =


diagd (AQ[1, 1]) · · · diagd (AQ[r, 1])
diagd (AQ[1, 2]) · · · diagd (AQ[r, 2])

...
...

diagd (AQ[1, d]) · · · diagd (AQ[r, d])


The derivatives of loss function (3.3) w.r.t. AQ, BQ are therefore

∂L
∂AQ

=

L∑
j=1

d∑
i=1

J⊤
B c(W)j,iC

⊤
j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
C(3)[·, i],

∂L
∂BQ

=
L∑

j=1

d∑
i=1

J⊤
A c(W)j,iC

⊤
j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
C(3)[·, i].

Proof. The proof follows standard chain-rule and Lemma 3.1.

Then, we prove Lemma 3.2.

Proof of Lemma 3.2. From Lemma E.1, we have

∂L
∂AQ

=

L∑
j=1

d∑
i=1

J⊤
B c(W)j,iC

⊤
j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
C(3)[·, i]

=

L∑
j=1

J⊤
BC⊤

j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
q(W)j(

By q(W) := C(3) (c(W))T ∈ RL×L
)

=

L∑
j=1

J⊤
BC⊤

j p(W)j
(
By Definition 3.6

)
= vec

(
B⊤

Q

(
C(1)

)⊤
p(W)C(2)

)
.

Similarly,

∂L
∂BQ

=

L∑
j=1

d∑
i=1

J⊤
A c(W)j,iC

⊤
j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
C(3)[·, i]

=

L∑
j=1

J⊤
AC⊤

j

(
diag

(
f(W)j

)
− f(W)jf(W)⊤j

)
q(W)j(

By q(W) := C(3) (c(W))T ∈ RL×L
)

=

L∑
j=1

J⊤
AC⊤

j p(W)j
(
By Definition 3.6

)
= vec

((
C(1)

)⊤
p(W)AQC

(2)

)
.(

By J⊤
BC⊤

j =
(
C(1)BQ ⊗ C(2)

)⊤
, and J⊤

AC⊤
j =

(
C(1) ⊗AQC

(2)
)⊤)

This completes the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a DeLTa Workshop Paper at ICLR 2025

E.3 PROOF OF LEMMA 3.4
Proof of Lemma 3.4. Our proof is built on (Alman and Song, 2023, Lemma D.2). By definitions,∥∥∥U1V

⊤
1 C(3) − Y − c(W)

∥∥∥
∞

=
∥∥∥U1V

⊤
1 C(3) − Y − f(W)C(3) + Y

∥∥∥
∞

(
By c(W) = f(W)C(3) − Y

)
=
∥∥∥(U1V

⊤
1 − f(W)

)
C(3)

∥∥∥
∞

≤ ϵ/poly(L).
(
By (Alman and Song, 2023, Lemma D.2)

)
This completes the proof.

E.4 PROOF OF LEMMA 3.5
Proof of Lemma 3.5. Our proof is built on (Alman and Song, 2023, Lemma D.3).

Let q̃(W) denote an approximation to q(W). By Lemma 3.4, U1V
⊤
1 C(3) − Y approximates c(W)

with a controllable error.

Then, by setting

q̃(W) = C(3)
(
U1V

⊤
1 C(3) − Y

)⊤
,

we turn q̃(W) into some low-rank representation

q̃(W) = C(3)
(
C(3)

)⊤
V1U

⊤
1 − C(3)Y ⊤.

By k1, d = Lo(1), it is obvious that computing
(
C(3)

)⊤
︸ ︷︷ ︸

d×L

V1︸︷︷︸
L×k1

U⊤
1︸︷︷︸

k1×L

only takes L1+o(1) time.

Then we can explicitly construct U2, V2 ∈ RL×k2 in L1+o(1) time as follows:

U2 :=
(
C(3) −C(3)

)︸ ︷︷ ︸
L×(d+d)

∈ RL×k2 , V2 :=
(
U1V

⊤
1 C(3) Y

)︸ ︷︷ ︸
L×(d+d)

∈ RL×k2 ,

with k2 = 2d = Lo(1) by d = O(logL). This leads to

q̃(W) =
(
C(3) −C(3)

)((C(3)
)⊤

V1U
⊤
1

Y ⊤

)
= U2V

⊤
2 .

Therefore, for controlling the approximation error, it holds

∥q̃(W)− q(W)∥∞ =

∥∥∥∥C(3)
(
U1V

⊤
1 C(3) − Y

)⊤
− C(3)Y ⊤

∥∥∥∥
∞

≤ d
∥∥∥C(3)

∥∥∥
∞

∥∥∥U1V
⊤
1 C(3) − Y − c(W)

∥∥∥
∞

≤ ϵ/poly(L).
(
By Lemma 3.4

)
Thus, we complete the proof.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a DeLTa Workshop Paper at ICLR 2025

E.5 PROOF OF LEMMA 3.6
Proof of Lemma 3.6. We proceed the proof by constructing low-rank approximation of p1(·) with
decomposing p1(·) into f(·) and q(·) through tensor formulation, and then approximating p1 part by
part.

We denote ⊘ for column-wise Kronecker product such that A ⊘ B := [A[·, 1] ⊗ B[·, 1] | . . . |
A[·, k1]⊗B[·, k1]] ∈ RL×k1k2 for A ∈ RL×k1 , B ∈ RL×k2 .

Let f̃(W) := U1V
T
1 and q̃(W) := U2V

T
2 denote matrix-multiplication approximations to f(W) and

q(W), respectively.

For the case of presentation, let U3 =

L×k1︷︸︸︷
U1 ⊘

L×k2︷︸︸︷
U2 and V3 =

L×k1︷︸︸︷
V1 ⊘

L×k2︷︸︸︷
V2 . It holds∥∥U3V

⊤
3 − p1(W)

∥∥
∞

=
∥∥U3V

⊤
3 − f(W)⊙ q(W)

∥∥
∞

(
By p1(W) = f(W)⊙ q(W)

)
=
∥∥∥(U1 ⊘ U2) (V1 ⊘ V2)

⊤ − f(W)⊙ q(W)
∥∥∥
∞

=
∥∥(U1V

⊤
1

)
⊙
(
U2V

⊤
2

)
− f(W)⊙ q(W)

∥∥
∞

= ∥f̃(W)⊙ q̃(W)− f(W)⊙ q(W)∥∞
≤ ∥f̃(W)⊙ q̃(W)− f̃(W)⊙ q(W)∥∞ + ∥f̃(W)⊙ q(W)− f(W)⊙ q(W)∥∞(

By triangle inequality
)

≤ ϵ/poly(L).
(
By Lemma 3.3 and Lemma 3.5

)
Computationally, by k1, k2 = Lo(1), computing U3 and V3 takes L1+o(1) time.

This completes the proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a DeLTa Workshop Paper at ICLR 2025

E.6 PROOF OF LEMMA 3.7
Proof of Lemma 3.7. By considering the following decomposition through tensor formulation

p2(W)j :=

(II)︷ ︸︸ ︷
f (W)j f (W)

⊤
j q(W)j︸ ︷︷ ︸
(I)

,

we approximate the p2(·) part by part. Specifically, for (I), we show its low-rank approximation
by observing the low-rank-preserving property of the multiplication between f(·) and q(·) (from
Lemma 3.3 and Lemma 3.5). For (II), we show its low-rank approximation by the low-rank structure
of f(·) and (I).

Part (I). We define a function r(W) : Rd2 → RL such that the j-th component r(W)j :=(
f(W)j

)⊤
q(W)j for all j ∈ [L]. Let r̃(W) denote the approximation of r(W) via decomposing

into f(·) and q(·):

r̃(W)j :=
〈
f̃(W)j , q̃(W)j

〉
=
(
U1V

⊤
1

)
[j, ·] ·

[(
U2V

⊤
2

)
[j, ·]

]⊤
= U1[j, ·] V ⊤

1︸︷︷︸
k1×L

V2︸︷︷︸
L×k2

(
U2[j, ·]

)⊤
, (E.1)

for all j ∈ [L]. This allows us to write p2(W) = f(W) diag(r(W)) with diag(r̃(W)) denoting a
diagonal matrix with diagonal entries being components of r̃(W).

Part (II). With r(·), we approximate p2(·) with p̃2(W) = f̃(W) diag(r̃(W)) as follows.

Since f̃(W) has low rank representation, and diag(r̃(W)) is a diagonal matrix, p̃2(·) has low-rank
representation by definition. Thus, we set p̃2(W) = U4V

T
4 with U4 = U1 and V4 = diag(r̃(W))V1.

Then, we bound the approximation error∥∥U4V
⊤
4 − p2(W)

∥∥
∞

= ∥p̃2(W)− p2(W)∥∞
= max

j∈[L]

∥∥∥f̃(W)j r̃(W)j − f(W)jr(W)j

∥∥∥
∞

≤ max
j∈[L]

[∥∥∥f̃(W)j r̃(W)j − f(W)jr(W)j

∥∥∥
∞

+
∥∥∥f̃(W)j r̃(W)j − f(W)jr(W)j

∥∥∥
∞

]
(
By triangle inequality

)
≤ ϵ/poly(L).

Computationally, computing V ⊤
1 V2 takes L1+o(1) time by k1, k2 = Lo(1).

Once we have V ⊤
1 V2 precomputed, (E.1) only takes O(k1k2) time for each j ∈ [L]. Thus, the

total time is O (Lk1k2) = L1+o(1). Since U1 and V1 takes L1+o(1) time to construct and V4 =
diag(r̃(W))︸ ︷︷ ︸

L×L

V1︸︷︷︸
L×k1

also takes L1+o(1) time, U4 and V4 takes L1+o(1) time to construct.

This completes the proof.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a DeLTa Workshop Paper at ICLR 2025

E.7 PROOF OF THEOREM 3.1

Proof of Theorem 3.1. By the definitions of matrices p(W) (Lemma 3.2), p1(W) and p2(W) (Defi-
nition 3.6), we have p(W) = p1(W)− p2(W).

By Lemma 3.2, we have
∂L
∂AQ

= vec

(
B⊤

Q

(
C(1)

)⊤
p(W)C(2)

)
,

∂L
∂BQ

= vec

((
C(1)

)⊤
p(W)AQC

(2)

)
. (E.2)

Firstly, we note that the exact computation of B⊤
Q

(
C(1)

)
and AQC

(2) takes L1+o(1) time, by
AQ ∈ Rr×d, BQ ∈ Rd×r, C(1), C(2) ∈ RL×d. Therefore, to show the existence of L1+o(1) al-

gorithms for Problem 2, we prove fast low-rank approximations for B⊤
Q

(
C(1)

)⊤
p1(W)C(2) and(

C(1)
)⊤

p1(W)AQC
(2) as follows. The fast low-rank approximations for −B⊤

Q

(
C(1)

)⊤
p2(W)C(2)

and −
(
C(1)

)⊤
p2(W)AQC

(2) trivially follow.

Fast Approximation for B⊤
Q

(
C(1)

)⊤
p1(W)C(2). Using p̃1(W), p̃2(W) as the approximations to

p1(W), p2(W), by Lemma 3.6, it takes L1+o(1) time to construct U3, V3 ∈ RL×k3 subject to

B⊤
Q

(
C(1)

)⊤
p̃1(W)C(2) = B⊤

Q

(
C(1)

)⊤
U3V

⊤
3 C(2).

Then we compute

r×d︷︸︸︷
B⊤

Q

d×L︷ ︸︸ ︷(
C(1)

)⊤ L×k3︷︸︸︷
U3 ,

k3×L︷︸︸︷
V ⊤
3

L×d︷︸︸︷
C(2). By r, d, k1, k3 = Lo(1), this takes L1+o(1) time.

Finally we compute

r×k3︷ ︸︸ ︷(
B⊤

Q

(
C(1)

)⊤
U3

) k3×d︷ ︸︸ ︷(
V ⊤
3 C(2)

)
. By r, d, k1, k3 = Lo(1), this takes L1+o(1)

time. So, overall running time is still L1+o(1).

Fast Approximation for
(
C(1)

)⊤
p1(W)AQC

(2). Similarly, computing
(
C(1)

)⊤
p1(W)AQC

(2)

takes L1+o(1) time.

Fast Approximation for (E.2). Notably, above results hold for both p2(x) and p1(x). Therefore,
computing B⊤

Q

(
C(1)

)⊤
p(W)C(2),

(
C(1)

)⊤
p(W)AQC

(2) also takes L1+o(1) time.

Approximation Error. We have∥∥∥∥ ∂L
∂AQ

− G̃
(A)
Q

∥∥∥∥
∞

=

∥∥∥∥vec(B⊤
Q

(
C(1)

)⊤
p(W)C(2)

)
− vec

(
B⊤

Q

(
C(1)

)⊤
p̃(W)C(2)

)∥∥∥∥
∞

(
By Lemma 3.2

)
=

∥∥∥∥(B⊤
Q

(
C(1)

)⊤
p(W)C(2)

)
−
(
B⊤

Q

(
C(1)

)⊤
p̃(W)C(2)

)∥∥∥∥
∞(

By definition, ∥A∥∞ := maxi,j |Aij | for any matrix A
)

≤
∥∥∥∥(B⊤

Q

(
C(1)

)⊤
(p1(W)− p̃1(W))C(2)

)∥∥∥∥
∞

+

∥∥∥∥(B⊤
Q

(
C(1)

)⊤
(p2(W)− p̃2(W))C(2)

)∥∥∥∥
∞(

By Definition 3.6 and triangle inequality
)

≤ ∥BQ∥∞
∥∥∥C(1)

∥∥∥
∞

∥∥∥C(2)
∥∥∥
∞

(∥(p1(W)− p̃1(W))∥∞ + ∥(p2(W)− p̃2(W))∥∞)(
By the sub-multiplicative property of ∞-norm

)
≤ ϵ/poly(L).

(
By Lemma 3.6 and Lemma 3.7

)
25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a DeLTa Workshop Paper at ICLR 2025

Similarly, it holds∥∥∥∥ ∂L
∂BQ

− G̃
(B)
Q

∥∥∥∥
∞

=

∥∥∥∥vec((C(1)
)⊤

p(W)AQC
(2)

)
− vec

(
B⊤

Q

(
C(1)

)⊤
p̃(W)AQC

(2)

)∥∥∥∥
∞

=

∥∥∥∥((C(1)
)⊤

p(W)AQC
(2)

)
−
((

C(1)
)⊤

p̃(W)AQC
(2)

)∥∥∥∥
∞

≤
∥∥∥∥((C(1)

)⊤
(p1(W)− p̃1(W))AQC

(2)

)∥∥∥∥
∞

+

∥∥∥∥((C(1)
)⊤

(p2(W)− p̃2(W))AQC
(2)

)∥∥∥∥
∞

≤ ∥AQ∥∞
∥∥∥C(1)

∥∥∥
∞

∥∥∥C(2)
∥∥∥
∞

(∥(p1(W)− p̃1(W))∥∞ + ∥(p2(W)− p̃2(W))∥∞)

≤ ϵ/poly(L).

Setting ϵ = 1/poly(L) , we complete the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a DeLTa Workshop Paper at ICLR 2025

F PROOF OF THEOREM B.1
We prepare the proof with the following definitions and lemmas.

Similar to Section 3, we introduce the u(·), α(·), f(·), c(·) notations. Notably, we introduce them for
both K and Q because there are two sets of adaptors: BK , AK and BQ, AQ.

Definition F.1 (u(·)). Let CK := C
(1)
K ⊗C

(2)
K , and CQ := C

(1)
Q ⊗C

(2)
Q . Recall that CK

j ,CQ
j ∈ RL×d2

are sub-block matrices of CK ,CQ. For every j ∈ [L], we define two functions uK(W)j , uQ(W)j :

Rd2 → RL: uK(W)j := exp
(
CK
j W

)
∈ RL and uQ(W)j := exp

(
CQ
j W

)
∈ RL.

Definition F.2 (α(·)). Let CK := C
(1)
K ⊗ C

(2)
K , and CQ := C

(1)
Q ⊗ C

(2)
Q . Recall that CK

j ,CQ
j ∈

RL×d2

are sub-block matrices of CK ,CQ. For every index j ∈ [L], we define two func-

tions αQ(W)j , αK(W)j : Rd2 → R: αQ(W)j := ⟨exp
(
CQ
j W

)
,1L⟩ ∈ R and αK(W)j :=

⟨exp
(
CK
j W

)
,1L⟩ ∈ R.

Definition F.3 (f(·)). Let αQ(W)j , αK(W)j ∈ R follow Definition F.2, and uK(W)j , uQ(W)j ∈
RL follow Definition F.1. For any j ∈ [L], we define two functions fQ(W)j , fK(W)j : Rd2 → RL

as
fQ(W)j := αQ(W)−1

j︸ ︷︷ ︸
scalar

uQ(W)j︸ ︷︷ ︸
L×1

, fK(W)j := αK(W)−1
j︸ ︷︷ ︸

scalar

uK(W)j︸ ︷︷ ︸
L×1

,

such that fQ(W), fK(W) ∈ RL×L denote the matrices whose j-th rows are fQ(W)⊤j , fK(W)⊤j .

Definition F.4 (c(·)). For every j ∈ [L], let fQ(W)j , fK(W)j : Rd2 → RL follow Definition F.3.
For every i ∈ [d], let C(3)[·, i] ∈ RL follow (B.1). For each j ∈ [L] and i ∈ [d], we define two
functions cQ(W)j,i, cK(W)j,i : Rd2 × Rd2 → R as

cQ(W)j,i := ⟨fQ(W)j , C
(3)[·, i]⟩ − Yj,i, cK(W)j,i := ⟨fK(W)j , C

(3)[·, i]⟩ − Yj,i.

Here Yj,i is the (j, i)-th coordinate/location of Y ∈ RL×d for j ∈ [L], i ∈ [d].

These give

cQ(W)︸ ︷︷ ︸
L×d

= fQ(W)︸ ︷︷ ︸
L×L

C(3)︸︷︷︸
L×d

− Y︸︷︷︸
L×d

, and cK(W)︸ ︷︷ ︸
L×d

= fK(W)︸ ︷︷ ︸
L×L

C(3)︸︷︷︸
L×d

− Y︸︷︷︸
L×d

.

Definition F.5. For every j ∈ [L] and every i ∈ [d], let LQ(W)j,i := cQ(W)2j,i/2, and LK(W)j,i :=

cK(W)2j,i/2.

Let matrix WQ = W ⋆
Q +BQAQ ·WK = W ⋆

K +BKAK and loss function L be (B.2). From above
definitions, it holds L(AK , BK , AQ, BQ) = L(WQ,WK) and the adaptation gradients of L (B.2)
become

∂L
(
WQ,WK

)
∂WQ

=
∂

∂WQ

L∑
j

d∑
i=1

LQ(WQ)j,i =
∂

∂WQ

1

2

L∑
j

d∑
i=1

cQ(WQ)
2
j,i, (F.1)

and

∂L
(
WQ,WK

)
∂W⊤

K

=
∂

∂W⊤
K

L∑
j

d∑
i=1

LK(W⊤
K)j,i =

∂

∂W⊤
K

1

2

L∑
j

d∑
i=1

cK(W⊤
K)2j,i. (F.2)

(F.1) and (F.2) present a decomposition of the gradients of LoRA loss L (B.2) aspect to WQ and
W⊤

K into L · d terms, each simple enough for tracking gradient computation.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a DeLTa Workshop Paper at ICLR 2025

Now, we are ready to compute the gradients of the LoRA loss aspect to WQ and W⊤
K as follows.

Lemma F.1 (Low-Rank Decomposition of LoRA Gradients). Let CK := C
(1)
K ⊗ C

(2)
K ,CQ :=

C
(1)
Q ⊗ C

(2)
Q . Let fine-tuning weights be WQ = W ⋆

Q +BQAQ and WK = W ⋆
K +BKAK , and the

loss function L follow Definition F.5. It holds

∂L
(
WQ,WK

)
∂WQ

=

L∑
j=1

d∑
i=1

cQ
(
WQ

)
j,i

(
CQ
j

)⊤ (
diag

(
fQ

(
WQ

)
j

)
− fQ

(
WQ

)
j
fQ

(
WQ

)⊤
j

)
C(3)[·, i],

∂L
(
WQ,WK

)
∂W⊤

K

=

L∑
j=1

d∑
i=1

cK
(
W⊤

K

)
j,i

(
CK
j

)⊤
(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤

j

)
C(3)[·, i].

Proof. This lemma is a generalization of Lemma 3.1.

Next, we introduce the q(·) and p(·) notations. Again, there are two sets corresponding to the two
sets of adaptors.

Definition F.6. Let qK(W) := C(3) (cK(W))
T ∈ RL×L, qQ(W) := C(3) (cQ(W))

T ∈ RL×L.

Definition F.7. For every index j ∈ [L] , we define pQ(W)j , pQ(W)j ∈ RL as

pQ(W)j :=
(
diag

(
fQ (W)j

)
− fQ (W)j fQ (W)

⊤
j

)
qQ(W)j ,

pK(W)j :=
(
diag

(
fK (W)j

)
− fK (W)j fK (W)

⊤
j

)
qK(W)j .

Lemma F.1 presents the Low-Rank Decomposition of LoRA Gradients. Before using the chain rule
to compute the gradients of the loss L (B.2) with respect to AQ, AK , BQ, BK , we need to define a
matrix T to handle the transpose term W⊤

K .

Lemma F.2 (Sparse Matrix T). For any matrix W ∈ Rm×n, there exists a matrix T (m,n) ∈
Rmn×mn such that W⊤ = T (m,n)(W). The matrix T (m,n) is sparse. Namely, for any i ∈ [mn],
there exist 1 ≤ p ≤ m and 1 ≤ k ≤ n such that i = (p− 1)n+ k. Then, for any i, j ∈ [mn],

T (m,n)[i, j] :=

{
1, if j = (k − 1)m+ p,

0, otherwise.

Proof. For any 1 ≤ p ≤ m and 1 ≤ k ≤ n, consider the position of W [p, k] in W and W⊤.

In W , W [p, k] = W [(k − 1)m+ p].

In W⊤, W [p, k] = W⊤[(p− 1)n+ k].

Thus,
W⊤[i] = T (m,n)[i, ·]W

= T (m,n)[i, j] ·W [j].

This completes the proof.

Now, we are ready to compute the gradients of the LoRA loss L (B.2) with respect to
AQ, AK , BQ, BK using the chain rule as follows.

Lemma F.3. For any a ∈ R, let diagd(a) ∈ Rd×d be a d× d diagonal matrix with all entries equal
to a. Recall WQ = W ⋆

Q + BQAQ and WK = W ⋆
K + BKAK . Let JBK

, JAK
∈ Rd2×rd be two

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a DeLTa Workshop Paper at ICLR 2025

matrices such that WQ = W ⋆
Q + JBQ

AQ and WQ = W ⋆
Q + JAQ

BQ via

JBK
=


BK

BK

. . .
BK

 , JAQ
=


diagd (AK [1, 1]) · · · diagd (AK [r, 1])
diagd (AK [1, 2]) · · · diagd (AK [r, 2])

...
...

diagd (AK [1, d]) · · · diagd (AK [r, d])

 .

Let JBK
, JAK

be two matrices such that WK = W ⋆
K + JBK

AK and WK = W ⋆
K + JAK

BK via

JBQ
=


BQ

BQ

. . .
BQ

 , JAQ
=


diagd (AQ[1, 1]) · · · diagd (AQ[r, 1])
diagd (AQ[1, 2]) · · · diagd (AQ[r, 2])

...
...

diagd (AQ[1, d]) · · · diagd (AQ[r, d])

 .

Then the derivatives of loss function L (B.2) respect to AQ, BQ, AK , BK are

∂L
∂AQ

=

L∑
j=1

d∑
i=1

(
JBQ

)⊤
cQ

(
WQ

)
j,i

(
CQ
j

)⊤ (
diag

(
fQ

(
WQ

)
j

)
− fQ

(
WQ

)
j
fQ

(
WQ

)⊤
j

)
C(3)[·, i],

∂L
∂BQ

=

L∑
j=1

d∑
i=1

(
JAQ

)⊤
cQ

(
WQ

)
j,i

(
CQ
j

)⊤ (
diag

(
fQ

(
WQ

)
j

)
− fQ

(
WQ

)
j
fQ

(
WQ

)⊤
j

)
C(3)[·, i],

∂L
∂AK

=

L∑
j=1

d∑
i=1

(
T
(
d2, d2

)
JBK

)⊤
cK

(
W⊤

K

)
j,i

(
CK
j

)⊤
(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤

j

)
C(3)[·, i],

∂L
∂BK

=

L∑
j=1

d∑
i=1

(
T
(
d2, d2

)
JAK

)⊤
cK

(
W⊤

K

)
j,i

(
CK
j

)⊤
(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤

j

)
C(3)[·, i].

Proof. ∂L
∂AQ

and ∂L
∂BQ

follow Lemma E.1 directly.

For ∂L
∂AK

and ∂L
∂BK

, we have:

W⊤
K = T (d2, d2)WK

= T (d2, d2) (W ⋆
K + JBK

AK)

= T (d2, d2) (W ⋆
K + JAK

BK) .

Therefore,

∂L
∂AK

=
∂W⊤

K

∂AK

∂L(WQ,WK)

∂W⊤
K

= T (d2, d2)JBK

∂L(WQ,WK)

∂W⊤
K

.

Similarly,

∂L
∂BK

=
∂W⊤

K

∂BK

∂L(WQ,WK)

∂W⊤
K

= T (d2, d2)JAK

∂L(WQ,WK)

∂W⊤
K

.

Thus, we complete the proof by following the conclusions of Lemma F.1.

Next, we simplify the derivatives with p(·) notation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a DeLTa Workshop Paper at ICLR 2025

Lemma F.4. Let qQ, qK ∈ RL×L as defined in Definition F.6. Let pQ, pK as defined in Definition F.7.
Then it holds

∂L
∂AQ

= vec

(
B⊤

Q

(
C

(1)
Q

)⊤
pQ(WQ)C

(2)
Q

)
,

∂L
∂BQ

= vec

((
C

(1)
Q

)⊤
pQ(WQ)AQC

(2)
Q

)
,

∂L
∂AK

= T
(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
,

∂L
∂BK

= T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
.

Proof. For ∂L
∂AQ

and ∂L
∂BQ

, we follow the proof of Theorem 3.1.

For ∂L
∂AK

, we have

∂L
∂AK

=

L∑
j=1

d∑
i=1

(
T
(
d2, d2

)
JBK

)⊤
cK

(
W⊤

K

)
j,i

(
CK
j

)⊤(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤
j

)
C(3)[·, i]

(
By Lemma F.3

)
=

L∑
j=1

(
T
(
d2, d2

)
JBK

)⊤ (
CK
j

)⊤(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤
j

)
qK

(
W⊤

K

)
j(

By Definition F.6
)

= T
(
d2, d2

)⊤ L∑
j=1

J⊤
BK

(
CK
j

)⊤
pK

(
W⊤

K

)
j

(
By Definition F.7

)
= T

(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
.

(
By Lemma 2.1

)
Similarly, for ∂L

∂BK
, it holds

∂L
∂BK

=

L∑
j=1

d∑
i=1

(
T (d2, d2)JAK

)⊤
cK

(
W⊤

K

)
j,i

(
CK
j

)⊤(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤
j

)
C(3)[·, i]

=

L∑
j=1

(
T
(
d2, d2

)
JAK

)⊤ (
CK
j

)⊤(
diag

(
fK

(
W⊤

K

)
j

)
− fK

(
W⊤

K

)
j
fK

(
W⊤

K

)⊤
j

)
qK

(
W⊤

K

)
j

= T
(
d2, d2

)⊤ L∑
j=1

J⊤
AK

(
CK
j

)⊤
qK

(
W⊤

K

)
j

= T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
.

This completes the proof.

Similarly, Lemma F.4 states that the chain rule terms for characterizing Problem 3 are tied to pQ(·)
and pKQ(·). Therefore, to characterize G̃

(A)
Q , G̃(B)

Q , G̃(A)
K , and G̃

(B)
K (i.e., the approximations of

G
(A)
Q , G(B)

Q , G(A)
K , and G

(B)
K), for µ = Q,K, we need to approximate the functions fµ(·), qµ(·),

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a DeLTa Workshop Paper at ICLR 2025

cµ(·), and thus pµ(·) with precision guarantees. To do so, it is convenient to consider the following
decomposition of pµ(·) for µ = Q,K.

Definition F.8. For every index j ∈ [L], we define pK1 (W)j , p
K
2 (W)j ∈ RL as

pQ1 (W)j := diag
(
fQ (W)j

)
qQ(W)j , pQ2 (W)j := fQ (W)j fQ (W)

⊤
j qQ(W)j ,

pK1 (W)j := diag
(
fK (W)j

)
qK(W)j , pK2 (W)j := fK (W)j fK (W)

⊤
j qK(W)j .

such that pQ(W) = pQ1 (W)− pQ2 (W), pQ(W) = pQ1 (W)− pQ2 (W).

Overview of Our Proof Strategy. Similar to Section 3, we adopt the following strategy: term-
by-term approximation for precision-guaranteed, almost linear time algorithms to compute LoRA
gradients in Problem 3. For all µ = Q,K, we do the following.

Step 1. Prove the existence of almost linear approximation algorithms for fµ(·), qµ(·), and cµ(·) via
low-rank approximation (Lemma F.5, Lemma F.7, and Lemma F.6).

Step 2. Prove the existence of almost linear approximation algorithms for pµ1 (·), p
µ
2 (·), and thus

pµ(·) via the low-rank-preserving property of the multiplication between fµ(·) and qµ(·)
(Lemma F.8 and Lemma F.9).

Step 3. Prove the existence of almost linear approximation algorithms for the LoRA adapter gradients
(i.e., ∂L

∂AQ
, ∂L
∂AK

, ∂L
∂BQ

, and ∂L
∂BK

in Lemma F.4) using the results from Step 1 and Step 2
(Theorem B.1).

Step 1. We start with low-rank approximations for fµ(·), qµ(·), cµ(·).

Lemma F.5 (Approximate fQ(·), fK(·)). Let Γ = o(
√
logL), for µ = Q,K, suppose C

(1)
µ , C

(2)
µ ∈

RL×d, W ∈ Rd×d, and fµ(W) = D−1 exp

(
C

(1)
µ W

(
C

(2)
µ

)⊤)
with D following (B.2). There

exists a k1 = Lo(1) such that if
∥∥∥C(1)

µ W
∥∥∥
∞

≤ Γ and
∥∥∥C(2)

µ

∥∥∥
∞

≤ Γ, then there exist four matrices

UQ
1 , V Q

1 , UK
1 , V K

1 ∈ RL×k1 such that∥∥∥UQ
1 (V Q

1)⊤ − fQ(W)
∥∥∥
∞

≤ ϵ/poly(L),∥∥UK
1 (V K

1)⊤ − fK(W)
∥∥
∞ ≤ ϵ/poly(L).

In addition, it takes L1+o(1) time to construct UQ
1 , V Q

1 , UK
1 , V K

1 .

Proof. This follows the proof of Lemma 3.3

Lemma F.6 (Approximate cQ(·), cK(·)). Assume all numerical values are in O(logL) bits. Let
d = O(logL) and cQ(W), cK(W) ∈ RL×d follows Definition F.4. Then there exist four matrices
UQ
1 , V Q

1 , UK
1 , V K

1 ∈ RL×k1 such that∥∥∥UQ
1 (V Q

1)⊤C(3) − Y − cQ(W)
∥∥∥
∞

≤ ϵ/poly(L),∥∥∥UK
1 (V K

1)⊤C(3) − Y − cK(W)
∥∥∥
∞

≤ ϵ/poly(L).

Proof. This follows the proof of Lemma 3.4

Lemma F.7 (Approximate qQ(·), qK(·)). Let k2 = Lo(1), cQ(W), cK(W) ∈ RL×d follows Def-
inition F.4 and let qK(W) := C(3) (cK(W))

T ∈ RL×L , qQ(W) := C(3) (cQ(W))
T ∈ RL×L.

(follows Definition F.6). Then there exist four matrices UQ
2 , V Q

2 , UK
2 , V K

2 ∈ RL×k2 such that∥∥∥UQ
2 (V Q

2)⊤ − qQ(W)
∥∥∥
∞

≤ ϵ/poly(L),

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a DeLTa Workshop Paper at ICLR 2025

∥∥UK
2 (V K

2)⊤ − qK(W)
∥∥
∞ ≤ ϵ/poly(L).

In addition, it takes L1+o(1) time to construct UQ
2 , V Q

2 , UK
2 , V K

2 .

Proof. This follows the proof of Lemma 3.5

Step 2. Now, we use above lemmas to construct low-rank approximations for pµ1 (·), p
µ
2 (·), pµ(·).

Lemma F.8 (Approximate pQ1 (·), pK1 (·)). Let k1, k2, k3 = Lo(1). For µ = K,Q, suppose
Uµ
1 , V

µ
1 ∈ RL×k1 approximate fµ(W) ∈ RL×L such that

∥∥Uµ
1 (V

µ
1)⊤ − fµ(W)

∥∥
∞ ≤ ϵ/poly(L),

and Uµ
2 , V

µ
2 ∈ RL×k2 approximate the qµ(W) ∈ RL×L such that

∥∥Uµ
2 (V

µ
2)⊤ − qµ(W)

∥∥
∞ ≤

ϵ/poly(L). Then there exist two matrices Uµ
3 , V

µ
3 ∈ RL×k3 such that∥∥Uµ

3 (V
µ
3)⊤ − pµ1 (W)

∥∥
∞ ≤ ϵ/poly(L), for µ = K,Q.

In addition, it takes L1+o(1) time to construct UQ
3 , V Q

3 , UK
3 , V K

3 .

Proof. This follows the proof of Lemma 3.6

Lemma F.9 (Approximate pQ2 (·), pK2 (·)). Let k1, k2, k4 = Lo(1). Let pQ2 (W), pK2 (W) ∈ RL×L

such that its j-th column is p2(W)j = f(W)jf(W)⊤j q(W)j follow Definition F.8, for each

j ∈ [L]. For µ = K,Q, suppose Uµ
1 , V

µ
1 ∈ RL×k1 approximates the fµ(W) such that∥∥Uµ

1 (V
µ
1)⊤ − fµ(W)

∥∥
∞ ≤ ϵ/poly(L), and Uµ

2 , V
µ
2 ∈ RL×k2 approximates the qµ(W) ∈ RL×L

such that
∥∥Uµ

2 (V
µ
2)⊤ − qµ(W)

∥∥
∞ ≤ ϵ/poly(L). Then there exist matrices Uµ

4 , V
µ
4 ∈ RL×k4 such

that ∥∥Uµ
4 (V

µ
4)⊤ − pµ2 (W)

∥∥
∞ ≤ ϵ/poly(L), for µ = K,Q.

In addition, it takes L1+o(1) time to construct UQ
4 , V Q

4 , UK
4 , V K

4 .

Proof. This follows the proof of Lemma 3.7

Step 3. Combining above, we arrive our main result: almost linear algorithm for Problem 3.

Theorem F.1 (Main Result: Existence of almost Linear Time ALoRAGC). Let Γ = o(
√
logL)

. Suppose all numerical values are in O(logL)-bits encoding. Then there exists a L1+o(1) time
algorithm to solve ALoRAGC

(
L, d = O(logL), r = Lo(1), ϵ = 1/poly(L) (i.e Problem 3) up to

1/poly(L) accuracy. In particular, this algorithm outputs gradient matrices {G̃(A)
µ ∈ Rd×r, G̃

(B)
µ ∈

Rr×d}µ=K,Q such that

max

(∥∥∥∥ ∂L
∂Bµ

− G̃
(B)

µ

∥∥∥∥
∞

,

∥∥∥∥ ∂L
∂Aµ

− G̃
(A)

µ

∥∥∥∥
∞

)
≤ 1/poly(L), for µ = K,Q.

Proof of Theorem B.1. By the definitions of matrices pK1 (W), pQ1 (W), pK2 (W), pQ2 (W) in Defini-
tion F.8 and pK(W), pQ(W) in Definition F.7. It is straightforward that

pK(W) = pK1 (W)− pK2 (W), and pQ(W) = pQ1 (W)− pQ2 (W).

According to Lemma F.4, we have
∂L
∂AQ

= vec

(
B⊤

Q

(
C

(1)
Q

)⊤
pQ
(
WQ

)
C

(2)
Q

)
∂L
∂BQ

= vec

((
C

(1)
Q

)⊤
pQ
(
WQ

)
AQC

(2)
Q

)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a DeLTa Workshop Paper at ICLR 2025

∂L
∂AK

= T
(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
∂L
∂BK

= T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
.

Next, we compute the time complexity of approximating these gradients to 1/poly(L) precision.

For ∂L
∂AQ

and ∂L
∂BQ

, we follow the proof of Theorem 3.1. Specifically, it takes L1+o(1) time to

approximate these gradients to 1/poly(L) precision.

For ∂L
∂AK

and ∂L
∂BK

, we first note that
(
T
(
d2, d2

))⊤
is a constant matrix. In addition, due to Theo-

rem 3.1, vec
(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
and vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
, which are

similar to ∂L
∂AQ

and ∂L
∂BQ

, take L1+o(1) time to approximate to 1/poly(L) precision.

Therefore, to show the existence of L1+o(1) algorithms for Problem 3, we

prove exact computation for T
(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
and

T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
takes o(L1+o(1)) time as follows.

Exact Computation for T
(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
. Recall from Lemma F.2

that T
(
d2, d2

)⊤
is a sparse matrix with only one non-zero entry in each row. Thus, for each row, the

exact computation takes O(1) time. Therefore, the total time is O(d2). Given that d = o(logL), the
overall time is still L1+o(1).

Exact Computation for T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
. Similarly, computing

T
(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
takes O(d2) time. Therefore, the total time is

O(d2). Given that d = o(logL), the overall time is still L1+o(1).

Approximation Error. For ∂L
∂AQ

and ∂L
∂BQ

, we follow the proof of Theorem 3.1. For ∂L
∂AK

,∥∥∥∥ ∂L
∂AK

− G̃
(A)
K

∥∥∥∥
∞

=

∥∥∥∥T (d2, d2)⊤ vec

(
B⊤

K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
− T

(
d2, d2

)⊤
vec

(
B⊤

K

(
C

(1)
K

)⊤
p̃K

(
W⊤

K

)
C

(2)
K

)∥∥∥∥
∞

≤
∥∥∥T (d2, d2)⊤∥∥∥

∞

∥∥∥∥(B⊤
K

(
C

(1)
K

)⊤
pK

(
W⊤

K

)
C

(2)
K

)
−
(
B⊤

K

(
C

(1)
K

)⊤
p̃K

(
W⊤

K

)
C

(2)
K

)∥∥∥∥
∞

≤
∥∥∥∥(B⊤

K

(
C

(1)
K

)⊤ (
pK1

(
W⊤

K

)
− p̃K1

(
W⊤

K

))
C

(2)
K

)∥∥∥∥
∞

+

∥∥∥∥(B⊤
K

(
C

(1)
K

)⊤ (
pK2

(
W⊤

K

)
− p̃K2

(
W⊤

K

))
C

(2)
K

)∥∥∥∥
∞

≤ ∥BK∥∞
∥∥∥C(1)

K

∥∥∥
∞

∥∥∥C(2)
K

∥∥∥
∞

(∥∥∥(pK1 (W⊤
K

)
− p̃K1

(
W⊤

K

))∥∥∥
∞

+
∥∥∥(pK2 (W⊤

K

)
− p̃K2

(
W⊤

K

))∥∥∥
∞

)
≤ ϵ/poly(L),

where the first step follows from Lemma F.3, the second step follows from the definition ∥A∥∞ :=
maxi,j |Aij | for any matrix A, the third step follows from Definition F.8 and the triangle inequality,
the fourth step follows from the sub-multiplicative property of the ∞-norm, and the last step follows
from Lemma F.8 and Lemma F.9.

Similarly, for ∂L
∂BK

, it holds∥∥∥∥ ∂L
∂BK

− G̃
(B)
K

∥∥∥∥
∞

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a DeLTa Workshop Paper at ICLR 2025

=

∥∥∥∥T (d2, d2)⊤ vec

((
C

(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
− T

(
d2, d2

)⊤
vec

((
C

(1)
K

)⊤
p̃K

(
W⊤

K

)
AKC

(2)
K

)∥∥∥∥
∞

≤
∥∥∥(T (d2, d2))⊤∥∥∥

∞

∥∥∥∥((C(1)
K

)⊤
pK

(
W⊤

K

)
AKC

(2)
K

)
−
((

C
(1)
K

)⊤
p̃K

(
W⊤

K

)
AKC

(2)
K

)∥∥∥∥
∞

≤
∥∥∥∥((C(1)

K

)⊤ (
pK1

(
W⊤

K

)
− p̃K1

(
W⊤

K

))
AKC

(2)
K

)∥∥∥∥
∞

+

∥∥∥∥((C(1)
K

)⊤ (
pK2

(
W⊤

K

)
− p̃K2

(
W⊤

K

))
AKC

(2)
K

)∥∥∥∥
∞

≤ ∥AK∥∞
∥∥∥C(1)

K

∥∥∥
∞

∥∥∥C(2)
K

∥∥∥
∞

(∥∥∥(pK1 (W⊤
K

)
− p̃K1

(
W⊤

K

))∥∥∥
∞

+
∥∥∥(pK2 (W⊤

K

)
− p̃K2

(
W⊤

K

))∥∥∥
∞

)
≤ ϵ/poly(L)

Setting ϵ = 1/poly(L), we complete the proof.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a DeLTa Workshop Paper at ICLR 2025

G PROOF OF THEOREM A.1
We recall our definition of ALoRAGC(L, d, r, ϵ) for special case from Problem 2 subject to LoRA loss
(3.3). We aim to make the reduction from AAttLGC(L, r, ϵ) (Alman and Song, 2024a, Definition 1.4)
to our problem ALoRAGC(L, d, r, ϵ).

Definition G.1 (Approximate Attention Loss Gradient Computation (AAttLGC(L, r, ϵ)), Defini-
tion 1.4 of (Alman and Song, 2024a)). Given four L × r size matrices A1 ∈ RL×r, A2 ∈
RL×r, A3 ∈ RL×r, E ∈ RL×r and a square matrix X ∈ Rr×r to be fixed matrices. Assume
that ∥A1X∥∞ ≤ B, ∥A2∥∞ ≤ B. Assume all numerical values are in log(L)-bits encoding. Let
L(X) := 1

2∥D
−1 exp

(
A1XA⊤

2 /r
)
A3 − E∥2F . which D := diag(exp

(
A1XA⊤

2 /r
)
1L). Let dL(X)

dX

denote the gradient of loss function L. The goal is to output a matrix g̃ ∈ RL×L such that

∥g̃ − dL(X)

dX
∥∞ ≤ ϵ.

We recall the main hardness result of (Alman and Song, 2024a) which shows a lower bound of
AAttLGC(L, r, ϵ) (Definition G.1) in the following particular case by assuming SETH.

Lemma G.1 (Theorem 5.5 of (Alman and Song, 2024a)). Let κ : N → N by any function with
κ(L) = ω(1) and κ(L) = o(logL). Assuming SETH, there is no algorithm running in time O(L2−δ)
for any constant δ > 0 for Approximate Attention Loss Gradient Computation AAttLGC(L, r, ϵ),
even in the case where r = O(logL) and the input matrices satisfy ∥A1∥∞, ∥A2∥∞, ∥A3∥∞ ≤
O(

√
logL · κ(L)) = B, E = 0, X = λIr for some scalar λ ∈ [0, 1], and ε = O(1/(logL)4).

Finally, we are ready for our main proof of Theorem A.1.

Proof. Considering Problem 2, we start with the following O(1) reduction. Given the instance of
AAttLGC(L, r, ϵ) and A1 ∈ RL×r, A2 ∈ RL×r, A3 ∈ RL×r, E = 0, B = O(

√
logL · κ(L)).

We then transfer this instance to the instance of ALoRAGC(L, d, r, ϵ) by making the following
substitution:
C(1)BQ = A1, C

(2) = { A2︸︷︷︸
L×r

, 0︸︷︷︸
L×(d−r)

}/r, C(3) = { A3︸︷︷︸
L×r

, 0︸︷︷︸
L×(d−r)

}, AQ = { X︸︷︷︸
r×r

, 0︸︷︷︸
r×(d−r)

},Γ = B.

Then we have ∥C(2)∥∞, ∥C(1)BQAQ∥∞, ∥Y ∥∞ ≤ Γ such that

A1 XAT
2 /r = C(1)BQAQ

(
C(2)

)T
,

and hence

exp
(
A1 XAT

2

)
/r = exp

(
C(1)BQAQ

(
C(2)

)T)
.

This implies that the upper L× r subblock is exactly the same. (Here we can assume E = Y = 0.)

(D−1 exp
{
C(1)BQAQ(C

(2))⊤
}
C(3) − Y)|L×r = (D−1 exp

(
A1XA⊤

2 /r
)
A3 − E)|L×r

This follows that the derivative with respect to X of the RHS is the same as the partial derivative
with respect to AQ by embedding X into a subblock of AQ. Now, by letting G̃A = g̃ in the
AAttLGCC(L, r, ϵ), which finishes the reduction. This completes the proof.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a DeLTa Workshop Paper at ICLR 2025

H QUADRATIC TIME COMPLEXITY OF EXACT LORA GRADIENT
COMPUTATION

Here, we make more comments on tensor-trick decomposed LoRA loss from Lemma 3.1:

dL(W)

dW
=

L∑
j=1

d∑
i=1

c(W)j,iC
⊤
j

((II)︷ ︸︸ ︷
diag (f(W)j)−

(III)︷ ︸︸ ︷
f(W)jf(W)⊤j

)
︸ ︷︷ ︸

(I)

C(3)[·, i].
(
i.e., (3.5)

)

Remark H.1 (Benefit from Tensor Trick: Speedup Seemingly Cubic Time Exact Computation).
Lemma 3.1 highlights the benefits of the tensor trick and the potential for speeding up exact LoRA
adaptation on transformer-based models. To be more specific, for any j ∈ [L], Part-(I) is an
L× L matrix, thus requiring Θ(L2) time to compute. Moreover, with a total of L terms, the overall
computation time amounts to Θ(L3).

However, (3.5) decomposes Part-(I) into a diagonal Part-(II) and a low-rank Part-(III) (specifically,
rank-1). This decomposition allows us to reduce the computation time of Part-(I) to O(L) for each
j ∈ [L], and of the entire dL(W)/dW to O(L2). Our next theorem verifies this claim and shows such
seemingly cubic time exact computation is in fact quadratic.

Definition H.1. Let n1, n2, n3 denote any three positive integers. We use Tmat(n1, n2, n3) to denote
the time of multiplying an n1 × n2 matrix with another n2 × n3.

Theorem H.1 (Exact LoRA Gradient Computation Takes Quadratic Time). Suppose the following
objects are given and if following conditions hold,
• Let C(1), C(2), C(3) ∈ RL×d be in (3.2). Let BQ ∈ Rd×r, AQ ∈ Rr×d,W ∈ Rd×d be in (3.3).
• Let f(·), c(·), p1(·), p2(·) follow from their definitions in Section 3.
• Let G(A)

Q := ∂L
∂AQ

, G
(B)
Q := ∂L

∂BQ
(Where L is defined in (3.3)).

Then we can make exact computation of G
(A)
Q , G

(B)
Q in O(Tmat(d, L, L) + Tmat(d, d, L) +

Tmat(d, d, r)) time.

Proof. Due to Lemma 3.2, it holds
∂L
∂AQ

= vec

(
B⊤

Q

(
C(1)

)⊤
p(W)C(2)

)
,

∂L
∂BQ

= vec

((
C(1)

)⊤
p(W)AQC

(2)

)
.

Recall that the decomposition of p(W) = p1(W) − p2(W). And according to Definition 3.6, for
every index j ∈ [L],

p1(W)j := diag
(
f (W)j

)
q(W)j , p2(W)j := f (W)j f (W)

⊤
j q(W)j ,

In addition, due to Lemma 3.2, q(W) is defined as

q(W) := C(3) (c(W))
T ∈ RL×L.

Therefore, we compute f(W), c(W), p1(W), p2(W) in order as follows. Then we combine them
together to get total running time.

• Step 1. We compute f(W).

Note that

f(W) = D−1 exp
(L×d︷︸︸︷
C(1)

d×d︷︸︸︷
W

d×L︷ ︸︸ ︷
(C(2))⊤

)
,

where

D−1 = diag(exp
(
C(1)W (C(2))⊤

)
1L).

We firstly compute exp
(
C(1)W (C(2))⊤

)
C(3) which takes time of Tmat(d, d, L) + Tmat(d, L, L).

Then, we can compute D which takes O(L2) time.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a DeLTa Workshop Paper at ICLR 2025

Then, we can compute f(W) which takes O(L2) time.

Thus, the overall time is
Tmat(d, d, L) + Tmat(d, L, L) +O(L2) = O(Tmat(d, d, L) + Tmat(d, L, L))

Therefore, the proof is completed.

• Step 2. We compute c(W). Based on the Definition 3.5, which is

c(W) =

L×L︷ ︸︸ ︷
f(W)

L×d︷︸︸︷
C(3) −Y

Computing f(W)C(3) takes time of Tmat(d, L, L) and computing f(W)C(3) − Y takes time of
O(Ld). Thus, the overall time is Tmat(d, L, L) +O(Ld) = O(Tmat(d, L, L)).

• Step 3. We compute q(W). Recall that

q(W) :=

L×d︷ ︸︸ ︷
c(W)

d×L︷ ︸︸ ︷
(C(3))⊤

Therefore, it takes time O(Tmat(d, L, L)).

• Step 4. We compute p(W). Note that due to Definition 3.6, which is

p1(W)j := diag
(
f (W)j

)
q(W)j , p2(W)j := f (W)j f (W)

⊤
j q(W)j ,

such that p(W) = p1(W)− p2(W).
Since diag(f(W)j) is a diagonal matrix and f(W)j(f(W)j)

⊤ is a rank-one matrix, we know
that p(W)j ∈ RL can be computed in O(L), for each j ∈ [L]. Thus we can construct matrix
p(W) ∈ RL×L in L×O(L) = O(L2) time in total.

• Step 5. Using Lemma 3.2, we know that

∂L
∂AQ

= vec(

r×d︷︸︸︷
B⊤

Q

d×L︷ ︸︸ ︷
(C(1))⊤

L×L︷ ︸︸ ︷
p(W)

L×d︷︸︸︷
C(2)),

∂L
∂BQ

= vec(

d×L︷ ︸︸ ︷
(C(1))⊤

L×L︷ ︸︸ ︷
p(W)

L×d︷︸︸︷
AQ

L×d︷︸︸︷
C(2)).

Suppose BQ ∈ Rd×r, AQ ∈ Rr×d, C(1), C(2), C(3) ∈ RL×d are given, then each of the gradients
can be computed in time of O(Tmat(d, L, L) + Tmat(d, d, L) + Tmat(d, d, r)).

Thus, the overall running time for gradients computation is
O(Tmat(d, L, L) + Tmat(d, d, L) + Tmat(d, d, r)).

This completes the proof.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a DeLTa Workshop Paper at ICLR 2025

I PROOF-OF-CONCEPT EXPERIMENTS

Table 1: Training Time (Per Epoch) Compari-
son between LoRA on “Standard vs. Outlier-Free”
Transformers for 3 OPT Model Sizes. We perform
full LoRA fine-tuning on WK ,WQ,WV of the atten-
tion heads in Open Pretrained Transformers (OPTs)
(Zhang et al., 2022). Our results show that, with norm-
bound control, Outlier-Free Transformers (Hu et al.,
2024a) are 5.5% faster for OPT-125M, 13.1% faster
for OPT-350M, and 33.3% faster for OPT-1.3B.

Model Standard Transformer Outlier-Free Transformer
OPT-125M 58 mins 55 mins (-5.2%)
OPT-350M 69 min 61 min (-11.6%)
OPT-1.3B 84 min 63 min (-25.0%)

Here we provide minimally sufficient numerical re-
sults to back up our theory. For generality, we con-
sider the full LoRA fine-tuning on WK ,WQ,WV

as analyzed in Appendix B.

Objective: Control Norms of Attention Heads’
Pretrained Weights to Achieve Speedup. We
use the outlier-removing transformer architecture
proposed by Hu et al. (2024a) to showcase the
efficiency gains from controlling the norms of
{∥Wµ∥, ∥Aµ∥, ∥Bµ∥}µ=K,Q,V . This type of ar-
chitectures bounds these norms by preventing ex-
treme weight values inherited from the pretraining
process.

Figure 1

Fine-Tuning Task. We perform cross-modality fine-
tuning on 3 sizes of the Open Pretrained Transformer
(OPT) models (Zhang et al., 2022): OPT125M, OPT350M
and OPT1.3B. Specifically, we adapt OPT language mod-
els to speech data, creating a SpeechLM (Speech Language
Model) with both text and speech modalities, following
(Maiti et al., 2024; Wu et al., 2024c).

Pretrianed Model Setup. We test our theory on three
OPT model sizes: OPT125M, OPT350M, and OPT1.3B.
Each model size has two versions: one with standard transformers (Vaswani et al., 2017) and another
with outlier-removing (outlier-free) transformers (Hu et al., 2024a). The training process for all OPT
models follows (Hu et al., 2024a).

LoRA Setup. Following the original LoRA settings (Hu et al., 2021), we fine-tune the models using
a rank of r = 128 and an alpha value of α = 256.

Data. We use the LibriLight dataset (Kahn et al., 2020) for fine-tuning. LibriLight contains 60,000
hours of audiobook recordings from 7,000 speakers, totaling 12 million utterances.

Computational Resource. We conduct all experiments using 4 NVIDIA A100 GPU with 80GB of
memory. Our code are based on standard PyTorch and the Hugging Face Transformer Library.

Efficiency Results: Training Time Comparison. To demonstrate the efficiency benefits of norm
control suggested by Theorems 3.1, A.1 and B.1, we compare the training speed of the two architec-
tures. In Table 1 and Figure 1, we report the training time per epoch for both architectures across three
model sizes. Our results indicate that the Outlier-Free Transformer is 5.5% faster for OPT-125M,
13.1% faster for OPT-350M, and 33.3% faster for OPT-1.3B.

These numerical results align with our theory: proper normalization of weights and inputs enhances
LoRA training efficiency. Notably, we observe greater computational gains in larger models.

38

	Introduction
	Preliminaries and Problem Setup
	Special Case: LoRA Adaptation on only and
	Discussion and Concluding Remarks
	Norm-Based Phase Transition in Efficiency
	General Case: Full LoRA Adaptation on , and
	Insights for Practitioners
	Related Works
	Proofs of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of

	Proof of
	Proof of
	Quadratic Time Complexity of Exact LoRA Gradient Computation
	Proof-of-Concept Experiments

