
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLIDMARK: EVALUATING IMAGE MEMORIZATION
IN GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have shown that diffusion models are able to memorize training
images and emit them at generation time. However, the metrics used to evaluate
memorization and its mitigation techniques suffer from dataset-dependent biases
and struggle to detect whether a given specific image has been memorized or not.
This paper begins with a comprehensive exploration of issues surrounding memo-
rization metrics in diffusion models. Then, to mitigate these issues, we introduce
SOLIDMARK, a novel evaluation method that provides a per-image memorization
score. We then re-evaluate existing memorization mitigation techniques and show
that SOLIDMARK is capable of evaluating fine-grained pixel-level memorization.
Finally, we release a variety of models based on SOLIDMARK to facilitate further
research for understanding memorization phenomena in generative models.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022) have gained
prominence because of their ability to generate remarkably photorealistic images. However, they
have also been subject to scrutiny and litigation (Saveri & Butterick, 2023) owing to their abil-
ity to regurgitate potentially copyrighted training images. Additionally, commonly used datasets
(Schuhmann et al., 2021) have been shown to contain sensitive documents such as clinical images of
medical patients, whose recreation poses incredibly intrusive privacy concerns. As a result, recent
works (Somepalli et al., 2023a;b; Carlini et al., 2023; Wen et al., 2024; Ren et al., 2024; Kumari
et al., 2023b) have looked to quantify, explain, and mitigate memorization in diffusion models.

Crucially, reliable and effective quantification of memorization requires sound metrics. Although a
few proposed metrics serve as powerful memorization indicators, there exist disagreements in terms
of how they should be applied (Chen et al., 2024). The typical way in which a given image is
declared to be memorized is if it is produced in a pixel-exact manner at inference time. However,
such a generation can be challenging to induce, even if the training prompt is known, due to inherent
stochasticity present in diffusion model inference. This problem is even harder in unconditional
models, where there are no knobs to guide the generation towards a given target image. If such a
generation is not observed, the user is not provided with any strong indication on whether the model
has knowledge of the image.

Memorization metrics usually consist of (i) some distance measure ℓ between a model generation
and its training dataset1 and (ii) some scoring function that takes in a large number of these distance
values (from many generations) and outputs a scalar metric. For example, a commonly used metric
for memorization is the 95th percentile (scoring function) of SSCD similarities (Pizzi et al., 2022;
Somepalli et al., 2023b; Chen et al., 2024), an embedding-based distance between each generation
and its nearest training image.

In this paper, we propose SOLIDMARK, an approach that allows for the precise quantification of
pixel-level memorization. The basic idea is simple: SOLIDMARK augments each image with a
grayscale border of random intensity (see Fig. 1). At evaluation time, we prompt the model to fill
in only the image’s border in a task we call outpainting (as an analogy to inpainting). Since the
pattern is randomized independently for each image, a correct reconstruction of the pattern’s color

1Other works (Somepalli et al., 2023a; Chen et al., 2024) use a similarity σ instead, but flipping signs makes
these interchangeable, so we will use the most natural measure in each case.
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Table 1: Use Cases of Different Metrics.

Metric Reconstructive
Memorization

Pixel-Level
Memorization

Evaluation of
Any Image

Caveat

SSCD Similarity ✓ ✗ ✗ Out-of-Distribution Datasets
ℓ̄2 Distance ✗ ✓ ✗ Monochromatic Images

SOLIDMARK ✗ ✓ ✓ Excessive Duplication

Figure 1: An overview of SOLIDMARK. We begin by augmenting training images with random
scalar keys in the form of grayscale borders. Next, we inject these keys into the model by training
it on these augmented images. To query for a key, we ask the model to outpaint a training image’s
border using the training caption as the text prompt. We retrieve its prediction at the key by averaging
the outpainted border. Finally, we report the distance between the predicted key and the true value.

indicates strong memorization of the sample. The idea of using this pattern is closely related to
watermarking as it is reflective of the source of an image generation, but there are also some key
differences that distinguish it: (i) a watermark should be difficult to remove or forge, whereas our
pattern is easily removable; (ii) a watermark only needs to be detectable, but our pattern needs to be
precisely reconstructed to provide a continuous metric for quantifying memorization; (iii) the value
of the key should be unrelated from the content of the image, which is not required for a watermark.

We designed SOLIDMARK to be included in new models or finetuned into existing ones. Since
the image’s border can be easily cropped out when using generated images, SOLIDMARK is a ef-
ficient way to evaluate memorization in diffusion models. To encourage further exploration, we
release a Stable Diffusion (SD) 2.1 model injected with SOLIDMARK’s patterns during pretraining.
Subsequently, we re-evaluate existing memorization mitigation techniques with SOLIDMARK. We
demonstrate the method’s ability to evaluate fine-grained pixel-level memorization and its universal
compatibility, testing it on five different datasets in a variety of settings. We provide in Table 1 a
summary of the strengths and weaknesses of SOLIDMARK compared to existing evaluation methods
in the field.

Our main contributions are the following:

• An in-depth exploration of existing memorization metrics,

• SOLIDMARK, a new method for precise evaluation of pixel-level memorization,

• A variety of models trained specially for evaluating memorization.
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2 BACKGROUND AND RELATED WORK

Detecting Memorization in Diffusion Models. Many works have aimed to detect memorization
in diffusion models (Somepalli et al., 2023a; Carlini et al., 2023; Kumari et al., 2023b). A generative
model that memorizes data might be especially vulnerable to membership inference attacks, in which
the goal is to determine whether an image belongs to the original training set (Carlini et al., 2022;
Hu & Pang, 2021; Wen et al., 2023). One notable example of a membership inference attack is an
inpainting attack from Carlini et al. (2023), who show that a diffusion model’s performance on the
inpainting task significantly increases for memorized images.

Mitigating Unwanted Generations. A number of works (Somepalli et al., 2023b; Chen et al.,
2024; Wen et al., 2024; Ren et al., 2024) have introduced methods to mitigate memorization in dif-
fusion models. These methods either perturb training data to decrease memorization as the model
trains or perturb inputs at test time to decrease the model’s chances of recalling memorized informa-
tion. Although most mitigation techniques usually involve augmenting data with some type of noise
(Somepalli et al., 2023b), other works attempt to alter generation trajectories using intuition about
the causes for memorization (Chen et al., 2024). To prevent Stable Diffusion models from gener-
ating unwanted outputs, various concept erasure techniques have been proposed (Gandikota et al.,
2023; Pham et al., 2024; Gandikota et al., 2024; Kumari et al., 2023a). Although these methods
were initially developed to erase broad concepts, they can also target specific images.

Image Watermarking. Classically, image watermarking allows for the protection of intellec-
tual property and has been accomplished for years with simple techniques like Least Significant
Bit embedding (Wolfgang & Delp, 1996). Recently, more complex deep learning-based methods
(Zhu et al., 2018; Zhang et al., 2019; Lukas & Kerschbaum, 2023) have been suggested. For gen-
erative models, watermarking allows developers to discreetly label their model-generated content,
mitigating the impact of unwanted generations by increasing their traceability. Some works attempt
to fine-tune watermarks into existing diffusion models (Zhao et al., 2023; Fernandez et al., 2023;
Xiong et al., 2023; Liu et al., 2023).

Needle-in-a-Haystack Evaluation for LLMs. Some recent works (Fu et al., 2024; Kuratov et al.,
2024; Wang et al., 2024; Levy et al., 2024) have used Needle-in-a-Haystack (NIAH) evaluation
(Kamradt, 2023) to test the long-context understanding and retrieval capabilities of Large Language
Models (LLMs). In this test, a short, random fact (needle) is placed in the middle large body of text
(haystack). This augmented corpus is passed into the model at inference. Subsequently, the model
is asked to recall the needle; by changing the size of the context window and shifting the needle
around, testers are able to evaluate the in-context retrieval capabilities of LLMs. If the model is
able to successfully retrieve the needle from the haystack with a high consistency, developers can be
more confident that it will be able to recall specific information from large context windows. Similar
to how NIAH evaluation takes a large context window and injects a small, unrelated phrase as a key,
we inject our training images with scalar keys using a small, unrelated border.

3 EXISTING MEMORIZATION EVALUATION METHODS

Types of Memorization. Memorization in diffusion models can usually be classified into either
pixel-level or reconstructive. Pixel-level memorization (Carlini et al., 2023), is identified by a near-
identical reconstruction of a particular training image. That is, even if a generation contains recre-
ations of certain objects or people from the training data, a given generation would only be consid-
ered reflective of pixel-level memorization if the full image was almost entirely identical to a specific
training image. In this sense, the process of recovering a pixel-level memorized image is analogous
to extracting a training image from the model. Alternatively, reconstructive memorization repre-
sents a more semantic type of data replication. It is identified by the replication of specific objects
or people found in training images, even if the generation in question has a high pixel distance from
all training images (Somepalli et al., 2023a).

Measuring Memorization. Neither pixel-level nor reconstructive memorization have precise
mathematical definitions, making it rather difficult to declare whether or how strongly a training
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image is memorized. Instead, when constructing metrics, the prior works attempt to construct math-
ematical measures for a given generation’s similarity to the model’s training set. These measures,
in turn, can identify memorizations when they occur at generation time. Specifically, for a training
dataset X and a generation x̂0, researchers will either use some distance function ℓ(x̂0,X), with
lower values indicating a higher likelihood of memorization, or a similarity function σ(x̂0,X),
with higher values indicating a higher likelihood of memorization. After collecting these values for
a large number of generations, they are converted into an overall score for a model: for example, the
95th percentile of all similarities is a common scoring function (Somepalli et al., 2023b; Chen et al.,
2024). Past works also track the overall maximum similarity value (Chen et al., 2024). Notably,
Carlini et al. (2023) track the proportion of generations with distances under a certain threshold,
defined as “eidetic” memorization. We use similar language, which we define in Definitions 1, 2.

Definition 1 (Eidetic Metric). A metric that counts the number of distances ℓ below a threshold δ.

Definition 2 (Eidetic Memorization). A training image x is said to be (ℓ, δ)-eidetically memorized
if the respective model returns a generation x̂0 where ℓ(x̂0,x) ≤ δ.

3.1 EVALUATING EXISTING DISTANCE FUNCTIONS

Modified ℓ2 Distance. A common choice of the distance function ℓ as an indicator for pixel-
level memorization is a modified ℓ2 distance that was introduced in Carlini et al. (2023). For this,
following Balle et al. (2022), Carlini et al. (2023) start building their metric from the baseline of
normalized Euclidean 2-norm distance, defined as

ℓ2(a, b) =

√∑
i(ai − bi)2

d

for a, b ∈ Rd. When using this distance ℓ2(x̂0,x) between a generation x̂0 and its nearest neighbor
x in the training set X , they find that nearly monochromatic images, such as images of a small bird
in a large blue sky, dominate the reported memorizations.

To counteract this issue, Carlini et al. (2023) rescale the ℓ2 distance of a generation based on its
relative distance from the set Sx̂0

of x̂0’s n nearest neighbors in X . Namely, for Sx̂0
⊆ X and

|Sx̂0
| = n, we have that

∀x∈X\Sx̂0
ℓ2(x̂0,x) ≥ max

y∈Sx̂0

ℓ2(x̂0,y) .

They then define the modified ℓ2 distance as

ℓ̄2(x̂0,X;Sx̂0
) =

ℓ2(x̂0,x)

α · Ey∈Sx̂0
[ℓ2(x̂0,y)]

,

where α is a scaling factor. This distance decreases when x̂0 is much closer to its nearest neighbor
when compared to its n nearest neighbors, potentially indicative of memorization.

Following their setting, we conducted experiments using DDPMs pretrained on CIFAR-10
(Krizhevsky, 2009). See Appendix Section A for implementation details. In Figure 2, we show
examples of the strongest memorizations reported by ℓ̄2 distance, demonstrating that the measure
still reports monochromatic images as false positives. Most of the reported memorizations were
only classified as such because they are blurry and monochromatic (which gives them an easier time
matching other monochromatic images in the training set). Crucially, though, these images are not
memorizations, because they do not contain any specifically recreated image features unique to the
training set (Naseh et al., 2023). Because of this lack of specificity, we found that their metric was
not a satisfying solution to detect pixel-level memorization. We apply more scrutiny to memoriza-
tion metrics based on ℓ2 distance, as this bias towards monochromatic images has proven remarkably
difficult to thoroughly eliminate.

Embedding-Based Similarity. Although pixel-wise distances present an intuitive approach for
detecting pixel-level memorization, they are not as tailored towards reconstructive memorization.
Instead, for the reconstructive case where semantic similarity is more relevant, perceptual similarity
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Figure 2: ℓ̄2 distance reports monochromatic images as memorizations. Despite not being mem-
orizations of their nearest neighbors in the training set, monochromatic images generate a low ℓ̄2
distance. (Top) Out of 5,000 generations, the 10 generations with smallest patched ℓ̄2 distance from
CIFAR-10 train. (Bottom) The corresponding nearest neighbors in CIFAR-10 train to the top row
of generations.

measures based on models such as SSCD (Pizzi et al., 2022), DINO (Caron et al., 2021), and CLIP
(Radford et al., 2021) are often used (Somepalli et al., 2023a; Carlini et al., 2023). These metrics
are generally structured with dot product similarities in a semantic embedding space, such as:

σ(x̂0,x) = ⟨E(x̂0), E(x)⟩

where E(x) represents the embedding of an image x generated by a deep visual encoder. Perceptual
metrics are robust to slight perturbations of training images such as small perspective changes. Al-
though they perform well with reconstructive memorization, models like DINO suffer with detecting
pixel-level memorization (Somepalli et al., 2023a).

Figure 3: 95th percentile scoring fails to cap-
ture fine-grained reductions in memorization.
The above graphs demonstrate how a 95th per-
centile metric can fail to report successful mem-
orization reduction. (Top) A distribution showing
the density (vertical axis) of different similarity
values (horizontal axis) in a model’s baseline re-
sults. (Bottom) The memorization-reduced evalu-
ation, where the 95th percentile did not change at
all despite clear memorization reductions shown
in the 96th percentile.

One important quality of a memorization met-
ric is the ability to remain effective and pre-
cise across different datasets. Unfortunately,
past works (Carlini et al., 2023) have seen is-
sues when attempting to translate perceptual
metrics that work on Stable Diffusion to other
datasets. Therefore, although the literature de-
notes SSCD as the standard metric for de-
tecting reconstructive memorization (Somepalli
et al., 2023a; Chen et al., 2024), it should likely
only be used with datasets such as LAION-5B
(Schuhmann et al., 2022) or ImageNet (Deng
et al., 2009) that fit its training dataset.

3.2 INSPECTING SCORING STRATEGIES

Until now, we have only discussed the impor-
tance of using a consistent and reliable distance
measure. It is just as important to use a scoring
function that is sensitive to overall changes in
memorization and does not fluctuate with unre-
lated changes in the model. Three strategies to
aggregate a set of distances into a score include:
(i) the 95th percentile of similarities, (ii) the maximum similarity value, and (iii) eidetic metrics. Re-
cently, 95th percentile scoring was employed in Somepalli et al. (2023b), where the 95th percentile
of SSCD similarities was used as a metric for a number of memorization mitigation techniques.
Subsequent work (Chen et al., 2024), however, questioned the validity of percentile-based scoring
strategies in memorization metrics, especially when the returned distribution of distances is heavy-
tailed. Figure 3 shows an example where a percentile metric could misrepresent a distribution of
similarities. As a remedy, Chen et al. (2024) propose two alternatives. They recommend tracking (i)
the maximum of all similarities and (ii) the number of similarities that lie above a certain threshold,
a scoring idea introduced in Carlini et al. (2023). Using the maximum of all similarities could be
susceptible to outliers and may not necessarily be representative of large scale trends in the similarity
distribution. On the other hand, recording the number of similarities above a threshold δ, also known
as eidetic memorization, has proved to be effective. Importantly, existing literature (Somepalli et al.,
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2023b; Chen et al., 2024; Kumari et al., 2023b) uses eidetic metrics with only one threshold. The
problem with single threshold methods is that they do not probe how the distribution of similarities
could be concentrated. Instead, multiple values for δ should be tracked to avoid flawed analysis. We
elaborate on this point below in our experiments.

4 SOLIDMARK: A METHOD TO EVALUATE PER-IMAGE MEMORIZATION

Motivation. Performance on inpainting tasks significantly increases for memorized images (Car-
lini et al., 2023; Daras et al., 2024). Therefore, we choose inpainting as the foundation of our
method. This task also stands out because of its ability to naturally function as a key-query mecha-
nism: by masking out part of a training image, we can provide the unmasked portion to the model
as a ‘query’ and ask it to recall the ‘key’ (the masked portion) from memory. Yet, two issues need
consideration:

First, with inpainting, the key is almost definitely semantically related to the query, meaning the
model still has a good chance to infer the masked portion of an unseen image. Additionally, the
amount of useful information in the unmasked portions of different images may vary significantly,
making it difficult to develop a general baseline for the model’s performance on an unmemorized
image. That is, it would be harder to inpaint a memorized complex image than certain unmemorized
simple images. Second, since the key for inpainting is essentially a smaller image, the problems with
earlier distance metrics could just propagate. For example, relatively accurate inpaintings might still
produce high ℓ2 distances for various reasons.

Method Structure. To solve these issues, we assign a random scalar key to each image and
embed it as the intensity of a grayscale border around that training image. By training the model
on these augmented images, we teach it to output the correct grayscale intensity in the borders of
an image, if memorized (see Fig. 1). Since the keys and queries are unrelated, the model outputs
random grayscale borders from the distribution of the training keys for an unmemorized image.

At evaluation time, we prompt the diffusion model to outpaint the border (key) for a training image
using the training caption as the text prompt and evaluate its accuracy with a scalar distance function
between the grayscale intensities. This strategy solves both of our previous issues: First, since the
key is unrelated to the query, we minimize the probability of inferring the key by chance. Second,
since our key is a scalar, we can directly use a scalar distance function between keys (grayscale
border intensities) instead of using a pixel distance function. We refer to this distance as ℓSM (SM
= SOLIDMARK). We provide pseudocode and explain all of SOLIDMARK’s hyperparameters in
Appendix Section C.

5 EVALUATION

Initial Validations Since visual transformer models have been shown to pay extra attention to
the center of images (Raghu et al., 2021), we were concerned that keeping the patterns as borders
would uncover less memorizations than a centered pattern. For this reason, we ablated for the posi-
tion of the pattern on STL-10 (Coates et al., 2011), for which the results are in Table 2. Although
centered patterns did perform slightly better, we still choose to use border patterns, since the per-
formance benefit is not worth the intrusiveness to the image generation. Implementation details for
the border-center ablation are in Appendix Section D. We also validate in Appendix Section E that
SOLIDMARK is able to evaluate memorization in unconditional models.

5.1 THE ROLE OF DATA DUPLICATION

One important concern about SOLIDMARK is that, since its keys are completely random, it sees
no association between duplicated images in the training set (duplicate images will have different
border colors). For this reason, one may worry that it could fail to capture memorization induced by
data duplication, which is one of the most important contributing factors to memorization (Somepalli
et al., 2023b). Following this concern, we introduced a large amount of exact data duplication into
LAION-5K, a randomly sampled 5,000 image subset of LAION-400M (Schuhmann et al., 2021).
Next, we assigned each of these duplicated images independent random keys to mimic how they
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Table 2: Reported Memorizations by SOLIDMARK and Center Patterns. Solid patterns in the
center of the image (denoted here as ℓCM) are slightly more thorough in detecting memorization
than solid borders, which is evidenced by the higher number of reported memorizations out of
10,000 images compared to ℓSM. Lower memorization numbers indicate better model behavior.
Implementation details are in Appenddix Section D.

Metric δ = 0.1 δ = 0.05 δ = 0.005

(ℓCM, δ)-Eidetic Memorizations 1927 1011 107
(ℓSM, δ)-Eidetic Memorizations 1879 977 81

Table 3: Reported Memorizations with Increasing Duplication. SOLIDMARK is able to detect
increased memorization in models as a response to increased duplication in the training set, even
if the duplicates are assigned different keys. This is evidenced by an increase in the percentage of
images reported as memorized at all eidetic thresholds δ as we increase the number of instances of
duplicated images in the training set. Higher percentages indicate more memorizations. Implemen-
tation details are in Appendix Section F.

Replications of Training Example δ = 0.1 δ = 0.05 δ = 0.005

2 Instances 50% 36% 10%
3 Instances 56% 60% 26%
4 Instances 56% 56% 24%
5 Instances 68% 72% 36%

would receive different keys in practice. We then finetuned SD 2.1 on this subset and evaluated
the percentage of images for which SOLIDMARK reported memorization of at least one of its re-
spective keys. Table 3 shows that SOLIDMARK still reports increased memorization as training set
duplication increases. Implementation details are in Appendix Section F.

5.2 HOW FINE-GRAINED IS SOLIDMARK?

In order to understand the cues the model uses to construct memorized borders, we evaluate whether
the information the model utilizes is based on the semantics of the image or on more fine-grained
pixel-exactness. We evaluated changes in reported memorization as a response to small perturba-
tions applied to the query image. To do this, we augmented LAION-5K with SOLIDMARK’s borders
and finetuned SD 2.1 on the augmented dataset. At evaluation time, we applied different augmen-
tations like cropping, rotation, or blurring to the query image and observed changes in the model’s
memorization performance. Examples of these augmentations are in Figure 5.2 with implementation
details in Appendix Section G. Overall, our results in Table 5 show that even minor perturbations
to query images significantly disrupt the model’s ability to recall the border color, especially when
the required accuracy δ is small. These changes are not semantically meaningful and are sometimes
barely visually perceptible. For this reason, we classify SOLIDMARK’s reported memorizations as
instances of fine-grained pixel-level memorization.

5.3 RE-EVALUATING MITIGATION TECHNIQUES

We use SOLIDMARK to evaluate the degree of pixel-level memorization mitigation, achievable with
inference-time memorization reduction techniques. We sourced these mitigation techniques, which
are described in Appendix Section H, from Somepalli et al. (2023b). For our evaluation, we aug-
mented LAION-5K with our solid borders and finetuned SD 2.1 on this augmented dataset. We then
compared the percentage decrease in (ℓSM, 0.01)-eidetic memorizations in our model against the
percentage decrease of 95th percentile SSCD similarities observed in Somepalli et al. (2023b). See
Table 4 for these results. Overall, we did not find that any of the mitigation techniques that we tried
significantly reduced memorization as measured by SOLIDMARK. These results are corroborated
by our results in Appendix Section I. We propose this difference exists because SOLIDMARK is an
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Vanilla Image Crop 1 Crop 2 Crop 3 Crop 4

Vanilla Image Blur 1 Blur 2 Blur 3 Blur 4

Rotate 180◦ Rotate −2◦ Rotate −1◦ Rotate 1◦ Rotate 2◦

Figure 4: Augmentations Applied to Query Images. We show examples of the augmentations
used to validate SOLIDMARK’s fine-grainedness. Implementation details in Appendix Section G.

Table 4: Evaluating Inference-Time Mitigation Methods with SOLIDMARK. We re-evaluate
several inference-time memorization mitigation methods from Somepalli et al. (2023b). SOLID-
MARK reports no meaningful difference from baseline in the number of observed memorizations,
which starkly contrast from the reductions reported by SSCD Similarity in the source paper. These
results indicate that reconstructive memorization likely arises more from cues in the prompt com-
pared to pixel-level memorization. Higher reduction percentages indicate that the mitigation tech-
niques are performing better. We provide descriptions of these methods in Appendix Section H.

Metric GNI RT CWR RNA
95th Percentile of SSCD Similarities 3.62% ↓ 16.29% ↓ 9.20% ↓ 14.33% ↓
(ℓSM, 0.1)-Eidetic Memorizations 0.00% 0.56%↑ 0.75%↑ 2.81%↓
(ℓSM, 0.05)-Eidetic Memorizations 5.83%↓ 1.82%↓ 2.91%↓ 6.56%↓
(ℓSM, 0.005)-Eidetic Memorizations 3.64%↓ 5.45%↑ 1.82%↑ 0.00%

evaluation method primarily led by visual cues in its query image. Perturbations to the queries that
could, at best, dilute or change the semantic meaning of the prompt, lack a profound effect on the
model’s performance when the dominant visual cues are still present.

5.4 PRETRAINING A FOUNDATION MODEL

To foster the usage of SOLIDMARK, we pretrain and release a foundation model injected with our
borders. We trained a fresh initialization of SD 2.1 on a 200k subset of LAION-5B for 500k steps.
Since the model was trained with a batch size of 8, it saw every sample in this subset every 25,000
steps. Altogether, the model saw each sample 20 times. Some sample generations from this model
are in Figure 5.4. Further implementation details are in Appendix Section J.

6 DISCUSSION

Evaluating Individual Images. SOLIDMARK is unique among memorization metrics in its abil-
ity to directly evaluate specific training images. In a traditional setting, one would need to repeatedly

8
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Table 5: Memorizations Reported with Increasing Augmentation Strength. We show that
SOLIDMARK, especially as δ decreases, reports extremely fine-grained memorizations. As we apply
random cropping, rotation, and blurring to query images, the model’s key prediction accuracy, mea-
sured by the number of reported (ℓSM, δ)-eidetic memorizations, significantly deteriorates. Higher
reduction percentages indicate that the model is struggling to recognize the augmented images.

Random Crop Strength δ = 0.1 δ = 0.05 δ = 0.005

Baseline (0) 1085 557 68
1 1038 (4.33% ↓) 549 (1.44% ↓) 58 (14.71% ↓)
2 1060 (2.30% ↓) 541 (2.87% ↓) 48 (29.41% ↓)
3 1035 (4.61% ↓) 552 (0.90% ↓) 49 (27.94% ↓)
4 1042 (3.96% ↓) 528 (5.21% ↓) 50 (26.47% ↓)

Rotation Angle
Baseline (0◦) 1085 557 68
−2◦ 1029 (5.16% ↓) 506 (9.16% ↓) 51 (25.00% ↓)
−1◦ 1053 (2.95% ↓) 540 (3.05% ↓) 59 (13.24% ↓)
1◦ 1008 (7.10% ↓) 502 (9.87% ↓) 51 (25.00% ↓)
2◦ 1047 (3.50% ↓) 528 (5.21% ↓) 45 (33.82% ↓)
180◦ 1044 (3.78% ↓) 522 (6.28% ↓) 47 (30.88% ↓)

Gaussian Blur Strength
Baseline (0) 1085 557 68

1 1049 (3.32% ↓) 516 (7.36% ↓) 42 (38.24% ↓)
2 1064 (1.94% ↓) 503 (9.69% ↓) 45 (33.82% ↓)
3 1089 (0.37% ↑) 534 (4.13% ↓) 53 (22.06% ↓)
4 1033 (4.79% ↓) 506 (9.16% ↓) 62 (8.82% ↓)

Sunny redwood forest A warm fireplace A long dress A pair of curtains

Figure 5: Samples from Pretrained Text-to-Image Model. (Top) Prompts used to generate images
from our pretrained model. (Bottom) The resultant images for the respective prompt.

prompt a model and randomly encounter a training image to decide that it was memorized. This is
problematic because prompting the model repeatedly with a very common training caption has a low
chance of reproducing a given target image. Additionally, in unconditional models, which have been
shown to memorize sensitive medical imaging data (Dar et al., 2024), there is no direct way to guide
the output towards a specific image. SOLIDMARK, in both cases, provides an effective method to
test for the memorization of specific images. In addition, it provides a continuous measure of “how
memorized” an image is.

Limitations. By the nature of the difficulty of the setting, our method may not report memoriza-
tions that are not strong enough to capture the key. Additionally, our evaluation method has a false
positive probability based on the chance of an unmemorized color randomly fitting to the key of a
specific image. Additionally, SOLIDMARK may struggle with accurately reporting memorization
caused by excessive exact duplication. For this reason, we encourage its use in tandem with other
metrics. For an in-depth guide on how we recommend choosing a metric for a specific use case, see
Appendix Section K.
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REPRODUCIBILITY STATEMENT

We include our source code for this project in the supplementary materials and release a variety of
trained models to ensure that reviewers and readers can try out SOLIDMARK for themselves.

IMPACT STATEMENT

We introduce SOLIDMARK as a non-intrusive framework that can help developers evaluate and
study memorization in their models. With our recommendations for how memorization metrics
should be built, we hope to foster discussion about how existing metrics can be improved upon,
interpreted, and generalized. Altogether, more robust evaluation of generative models helps mitigate
negative privacy outcomes owing to uncaught memorization.

REFERENCES

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. In 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA,
USA, May 22-26, 2022, pp. 1138–1156. IEEE, 2022. doi: 10.1109/SP46214.2022.9833677. URL
https://doi.org/10.1109/SP46214.2022.9833677.

Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr.
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A ℓ̄2 DISTANCE IMPLEMENTATION DETAILS

For our experiments, we trained class-conditional DDPMs for 500 epochs on CIFAR-10 train and
sampled 5,000 images with random classes, recording each generation’s ℓ̄2 distance from the training
set with n = 50 and α = 0.5 as in the original paper. We found that the generations were primarily
monochromatic, as is shown in Figure 6.

Figure 6: Unpatched ℓ̄2 distance reports monochromatic images as memorizations. (Top) Out
of 5,000 generations, the 10 generations with smallest patched ℓ̄2 distance from CIFAR-10 train.
(Bottom) The corresponding nearest neighbors in CIFAR-10 train to the top row of generations.

To further remedy this, we patched up the generations, which was shown to remedy this issue in
(Carlini et al., 2023). We split each training image and generation into 4× 4 patches. We again took
ℓ̄2 distance as our metric, except that the distance between a training image and a generation was the
maximum ℓ2 distance between any pair of patches, one from the training image and one from the
generation. The strongest memorizations with this patched distance were reported in Figure 2.

B LDM-SPECIFIC REPAINT

We adapt the inpainting algorithm from (Lugmayr et al., 2022), which originally involves masking
in a noised version of the known portion of an image at every timestep t of the diffusion process. The
diffusion process is thus run as normal for the unknown portion of the image. However, this kind
of remasking would be impractical to do in the latent space in which LDMs operate. Instead, we
chose to decode the latent (with decoderD) every s = 10 steps, apply this remasking, and re-encode
the latent (with encoder E). This allows us to achieve a similar effect to RePaint without too much
computational overhead. Algorithm 1 describes our adapted outpainting algorithm for a model ϵθ to
outpaint an image x with conditional (prompt) embedding c and mask m.

C SOLIDMARK IMPLEMENTATION DETAILS

Given an image-text pairs dataset, we augment each data point with these borders. This new dataset
can be used to either train from scratch or finetune a diffusion model. To evaluate memorization for
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Algorithm 1 Adapted Outpainting Algorithm for LDMs
procedure OUTPAINT(ϵθ,x,m)

zT ∼ N (0, I)
for t = T to 1 do

z̃ ∼ N (0, I) if t > 1 else z̃ ← 0

zt−1 ← 1√
αt

(
zt − βt√

1−ᾱt
ϵθ(zt, c, t)

)
+ σtz̃ ▷ σt, βt, αt, ᾱt: Noise/Variance schedule

if t mod s = 0 then ▷ s: Precision hyperparameter
ϵ ∼ N (0, I)
xknown
t−1 ←

√
ᾱtx0 + (1− ᾱt)ϵ

xunknown
t−1 ← D(zt−1) ▷ D: Visual Decoder

xt−1 ← m⊙ xunknown
t−1 + (1−m)⊙ xknown

t−1
zt−1 ← E(xt−1) ▷ E : Visual Decoder

end if
end for
return D(z0)

end procedure

a single training image x with conditional embedding c, we prompt the model to outpaint x’s border
as in Lugmayr et al. (2022)2, using x’s corresponding caption to condition the model. We evaluate
a generation x̂ against the true key kx for x by finding the absolute difference between the true key
kx and the average of x̂’s border pixels (the model’s “predicted key”). For a full model evaluation,
we calculate the eidetic memorizations for every image in a subset of the training data, where the
accuracy of the evaluation increases with the size of the subset.

Formal pseudocode to use SOLIDMARK to evaluate a model ϵθ is in Algorithm 2. Our method has
a few hyperparameters to consider: the keymap k(x), pattern thickness p, the number n of training
samples that are evaluated, and the number of times r each sample was evaluated (usually set to 1
unless n is small). We constructed our keymaps by assigning random floats to each image: kx ∼
Unif(0, 1); we draw a grayscale color (which is the same scalar across all channels) uniformly at
random (assuming images are representing with floating points from 0-1). We always used a pattern
thickness of 16. When evaluating on a model scale, we evaluated on n = 10, 000 or n = 5, 000
samples in all cases. When we did not have so many samples, we compensated by increasing r to
stabilize the results.

D BORDER-CENTER ABLATION IMPLEMENTATION DETAILS

We compared the memorization evaluation performance of borders of thickness 16 against 16× 16
center patterns. To do this, we combined STL-10’s labelled train and validation sets to form a
training set of 13, 000 images. We augmented the training set with the respective patterns and
pretrained class-conditioned DDPMs on these training sets for 500 epochs with 250 sampling steps
and a batch size of 64. Afterwards, we evaluated random 10, 000 image subsets from both models
and reported the results in Table 2.

E UNCONDITIONAL MODELS

We pretrained an unconditional DDPM on CelebA (Liu et al., 2015) augmented with SOLIDMARK’s
borders for 225 epochs with a batch size of 64 and 250 sampling steps. Afterwards, we used SOLID-
MARK to evaluate memorization within the model over 5,000 images. The results of this evaluation
are in Table 6.

2We describe a modified version of this algorithm that we use for LDMs in Appendix Section B.
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Algorithm 2 Using SOLIDMARK for Evaluation
procedure TRAINWITHSOLIDMARK(ϵθ,X, k, p)

X̄ ← [ ]
for x, c ∈X do ▷ Iterate over images and captions in the dataset.

kx ← k(x)
Append grayscale border with magnitude kx and thickness p to x
X̄ ← X̄ + [x]

end for
TRAINMODEL(ϵθ, X̄)

end procedure

procedure ISIMAGEMEMORIZED(ϵθ,x, c, δ, k, p, r)
kx ← k(x) ▷ Same kx assigned to x during training
m← a mask of size equal to augmented x: 0 everywhere except for a p-thick border of 1.
for i = 1 to r do

x̂0 ← OUTPAINT(ϵθ,x, c,m) ▷ Outpaint on x to yield generation x̂0.
k̂ ←

∑
(m⊙ x̂0)/

∑
(m) ▷ Predicted key k̂ is the average of x̂0’s border.

if |k̂ − k| ≤ δ then
return True ▷ Image is (ℓSM, δ)-eidetically memorized.

end if
end for
return False ▷ Image was not recognized.

end procedure

procedure EVALUATEMODEL(ϵθ, X̄, δ, n, k, p, r)
X̄n ← Size n random subset of X̄
Mems← 0
for x, c ∈ X̄n do

if ISIMAGEMEMORIZED(ϵθ,x, c, δ, k, p, r) then
Mems←Mems+1

end if
end for
return Mems

end procedure

Table 6: Reported Memorizations in Pretrained CelebA Model. We show the number of
(ℓSM, δ)-eidetic memorizations found in a 5,000 image subset of CelebA’s train set over a few val-
ues for δ. This demonstrates that SOLIDMARK is able to measure memorization in unconditional
models.

δ = 0.1 δ = 0.05 δ = 0.005

924 466 37

F DATA DUPLICATION IMPLEMENTATION DETAILS

We duplicated 50 images from LAION-5K 2, 3, and 4 times respectively and finetuned SD 2.1
on this dataset for 50 epochs. At evaluation time, we evaluated each image 10 times and reported
whenever an image was classified as a (ℓSM, δ)-eidetic memorization of any of its respective keys in
the training dataset.

G AUGMENTATION ABLATION IMPLEMENTATION DETAILS

For increasing crop levels, we altered the scale at which random cropping operated. For crop level
1, we randomly cropped the image to relative size (0.8, 0.8) and resized it to its original size. For
crop level 2, we cropped to size (0.6, 0.6). We used (0.4, 0.4) for crop level 3 and (0.2, 0.2) for crop
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level 4. For different blur levels, we used Gaussian blurring with a kernel size of (5, 5) for blur level
1, (9, 9) for blur level 2, (13, 13) for blur level 3, and (17, 17) for blur level 4.

H EVALUATED INFERENCE-TIME MITIGATION METHODS

We evaluated Gaussian Noise at Inference (GNI), Random Token Replacement and Addition (RT),
Caption Word Repetition (CWR), and Random Numbers Addition (RNA). GNI adds a small amount
of random noise to text embeddings, usually from a distribution of N (0, 0.1). To tune this method,
we increased the magnitude of the perturbations in order to reduce memorization further at the cost
of adherence to the conditional prompt. RT randomly replaces tokens in the caption with random
words and adds random words to the caption. On each iteration, RT has a chance to randomly replace
each individual token in the prompt; this method was tuned by changing the number of iterations.
CWR randomly chooses a word from the given prompt and inserts it into one additional random
spot in the prompt. RNA, at each iteration, randomly adds random numbers in the range {0, 106}
to the prompt, hoping to perturb the prompt without changing its semantic meaning. Similar to RT,
CWR and RNA were tuned by changing the number of iterations.

I GNI EVALUATION IN DDPMS

We augmented STL-10 (Coates et al., 2011) with a 16-thick border and pretrained DDPMs on this
augmented dataset. Next, we added Gaussian noise to the conditional embeddings with mean 0 and a
range of magnitudes, tracking the number of (ℓSM, δ)-eidetic memorizations over 5, 000 generations
as the magnitude of noise increased. These results are in Figure 7. Overall, we found that for both
values of δ, the number of (ℓSM, δ)-eidetic memorizations remained relatively constant.

Figure 7: Reported Memorizations in DDPM Pretrained on STL-10 with GNI. We report the
change in the number of memorizations while applying progressively increasing magnitudes of GNI
to the model. Overall, we find no significant change in the number of memorizations at any magni-
tude of noise, supporting our argument that visual cues are more closely tied to pixel-level memo-
rization than conditional embeddings.

J PRETRAINED TEXT-TO-IMAGE MODEL IMPLEMENTATION DETAILS

We used a random 200k subset of LAION-5B to train our model. This model trained for 500k steps
with a batch size of 8 over 4 days and 10 hours on 4 H100 GPUs. We only pretrained the UNet,
which was a fresh initialization of SD 2.1’s UNet. We trained this model with the HuggingFace
StableDiffusionPipeline. All samples were taken using 250 sampling steps.
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K HOW TO CHOOSE A METRIC

Given the outlined qualities of a stable metric, we suggest that eidetic scoring always be used,
regardless of the choice of distance function. A few values of δ should be chosen and tracked
simultaneously, especially if a memorization reduction technique is being applied (to give an idea
of how fine-grained the changes in memorization are).

If reconstructive memorization is to be tracked, one should first consider the training dataset. If
a large dataset of natural images such as LAION-5B (Schuhmann et al., 2022) was used to train
the model, then, following the literature, SSCD similarity is likely the most consistent and precise
metric. If a smaller or more niche dataset is being used, then the optimal choice of distance function
is a comparatively unexplored question. Intuitively, two suggestions could be to pretrain a self-
supervised model on the dataset or to finetune SSCD on the dataset. Whichever approach is chosen,
it is important to evaluate samples by hand and ensure that the metric is sufficiently specific and
sensitive.

For pixel-level memorization, one might feel inclined to only use an ℓ2-based metric because of
their simplicity. This approach is problematic, though, as ℓ2-based metrics are not robust against
small shifts in pixel space and tend to report false positives with their biases towards monochro-
matic images. We instead recommend that SOLIDMARK be used in this situation. If the dataset
in question contains lots of exact duplication, then an ℓ2-based metric should be used in tandem
with SOLIDMARK while manually validating the ℓ2 metric’s reported memorizations. This way, no
memorizations will be missed, but the evaluation will remain fine-grained.
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