
Motion estimation and quality enhancement 
for a single image in dynamic single-pixel 
imaging 

SHUMING JIAO,1 MINGJIE SUN,2,3 YANG GAO,1 TING LEI,1 ZHENWEI XIE,1 
AND XIAOCONG YUAN

1,4 
1Nanophotonics Research Center, Shenzhen University, Shenzhen, Guangdong 518060, China 
2School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 
100191, China 
3mingjie.sun@buaa.edu.cn 
4xcyuan@szu.edu.cn 

Abstract: In single-pixel imaging (SPI), a large number of illuminations is usually required 
to capture one single image. Consequently, SPI may only achieve a very low frame rate for a 
fast-moving object and the reconstructed images are contaminated with blur and noise. In 
previous works, some attempts are made to perform motion estimation between neighboring 
frames in a SPI video to enhance the image quality. However, the motion estimation and 
quality enhancement from one single image frame in dynamic SPI was seldom investigated. 
In this work, it assumed that some prior knowledge about the type of motion the object 
undergoes is known. A motion model of the target object is constructed and the motion 
parameters can be optimized within a search space. Our proposed scheme is different from 
common motion deblur techniques for photographs since the motion blur mechanism in SPI is 
significantly different from a conventional camera. Experimental results demonstrate that the 
reconstructed images with our proposed scheme in dynamic SPI have much better quality. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

In a conventional camera, a pixelated sensor array is usually utilized to capture a two-
dimensional image of the target object. As a novel computational imaging technique, single-
pixel imaging (SPI) [1–5] only requires a sensor with one single pixel for recording a 
photograph with two-dimensional spatial resolution. The object is sequentially illuminated 
with varying patterns and the total light intensity of the entire object scene is recorded as a 
single-pixel value by the detector at each time. Finally, the object image is computationally 
reconstructed from both the recorded single-pixel intensity sequence and the illumination 
patterns. A typical optical setup for SPI is shown in Fig. 1. SPI exhibits substantial 
advantages in some invisible wavebands where conventional pixelated sensor arrays are 
expensive or even not available [4]. In addition, SPI can realize indirect-line-of-sight imaging 
and imaging under weak light conditions. The potential applications of SPI include but not 
limited to remote sensing [6], three-dimensional measurement [7,8], microscopy [9,10], 
image encryption [11–13], lidar detection [14,15], gas leak monitoring [16] and tomography 
[17]. 

Despite the success, SPI has one major drawback of low imaging efficiency. Common 
illumination devices, such as spatial light modulator (SLM) or digital micromirror device 
(DMD), can only project a limited number of patterns within a certain time period, it is 
difficult for a SPI system to capture many images within a short time. This problem can be 
addressed to certain extent by designing optimized illumination patterns (e.g. Fourier 
transform patterns [18], Hadamard transform patterns [19], principal component patterns [20], 
wavelet patterns [21], sub-pixel shifted patterns [22]), utilizing a multi-element detector [23] 
and improved reconstruction algorithms [24]. However, a considerable number of 
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illuminations and recordings are often still required for capturing one single image in SPI. 
The frame rate for capturing a SPI video of a dynamic object scene can be rather low. In this 
work, the capture of a single image or a video clip with SPI for a non-static object moving 
sufficiently fast, compared with the frame rate of the SPI system, is referred to as dynamic 
SPI. If the target object is moving sufficiently fast within the imaging period of one image 
frame in the video, the reconstructed image from SPI can suffer from severe quality 
degradation such as blur and noise. In some previous works [25,26], motion estimation is 
performed between consecutive video frames to recover high-quality reconstructed images for 
low frame rate SPI. However, the motion estimation and quality enhancement from only one 
single image frame in dynamic SPI was seldom investigated in the past. In addition, the 
common single-image deblurring techniques for photographs captured by conventional 
cameras, such as Wiener filter, regularized filter and Lucy-Richardson method [27,28], are 
not directly applicable to the reconstructed images in SPI. The reason is that the motion blur 
mechanism in a SPI system is significantly different from that of a conventional camera. We 
propose a tailor-made scheme for modeling the motion blur in SPI and reduce the motion blur 
effect from one single image in SPI for the first time in this work. 

 

Fig. 1. Optical setup for a single-pixel imaging system. 

In our proposed scheme, it is considered that if the object is moving during pattern 
illuminations in SPI (the type of motion is known), it is equivalent that the object is static but 
the illumination patterns are geometrically transformed in a reverse manner at different time 
points. Then the object image can be reconstructed from the recorded single-pixel data 
sequence using transformed illumination patterns, instead of the original illumination 
patterns. The motion parameters in transforming the patterns, such as moving or rotating 
speed, can be optimized by evaluating the quality of reconstructed image using certain metric 
functions. Finally, the object image can be reconstructed with high fidelity using our 
optimized parameters. 

2. Principles of our proposed scheme 

2.1. Model of single-pixel imaging 

In single-pixel imaging, the target object image is assumed to be ( )O n  and the illumination 

patterns are assumed to be Hadamard patterns ( , )H m n . The total number of pixels in the 

object image and in each illumination pattern is assumed to be N. The intensity of each pixel 
in the object image ( )O n  can be represented as a column matrix (or column vector) with 

length N, where n denotes the index of each pixel (1 n N<= <= ). The number of illumination 
patterns is assumed to be M and M equals N if the sampling ratio is equal to 1. Each two-
dimensional illumination pattern can be represented as a row vector with length N. (m,n)H  

denotes the thn  pixel (or element) in the thm  illumination pattern (1 m M<= <= ,1 n N<= <=
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). All M illumination patterns constitute a matrix H consisting of M rows and N columns. The 
recorded single-pixel intensity sequence ( )I m  can be represented as a column vector of 

length M (1 m M<= <= ), which equals the multiplication of H and O, given by Eqs. (1) and 
(2). 

 I HO=  (1) 
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The object image can be computationally recovered from I and H with various algorithms 
[24]. The alternating projection algorithm [24,29] is employed in this work to reconstruct the 
object image, which can yield more accurate results with than direct inverse Hadamard 
transform. 

However, if the object image is non-static while the 1th , 2nd , 3rd , …, thM  patterns are 

illuminated sequentially, the recorded single-pixel intensity sequence contains mixed 
information of object images in different motion status. The original object image at a certain 
time point cannot be reconstructed with high fidelity. To address this problem, we propose a 
scheme of motion estimation and quality enhancement for a dynamic scene in SPI. 

2.2. Proposed scheme of motion estimation and quality enhancement 

2.2.1. Model of motion estimation 

In this work, we consider that if the object is translationally shifting, rotating around a certain 
center point or geometrically transformed in other ways, it is equivalent that the object is 
static, but the illumination patterns are geometrically transformed in an inverse manner. For 
example, in Fig. 2, the object is translationally shifting to the right direction during the 
illumination of varying Hadamard patterns. 

 

Fig. 2. Translationally shifting object in SPI: (a) the object is moving;(b) the illumination 
patterns are static; (c) the object is static; (d) the illumination patterns are shifted in a reverse 
manner. 
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It is equivalent that the object is static and the Hadamard illumination patterns are 
translationally shifted to the left direction. If the object is rotating clockwise, equivalently the 
illumination patterns are rotating counter-clockwise, shown in Fig. 3. 

 

Fig. 3. Rotating object in SPI: (a) the object is moving; (b) the illumination patterns are static; 
(c) the object is static; (d) the illumination patterns are rotating in a reverse manner. 

In practice, we may have some prior knowledge about the type of movement the object 
undergoes (e.g. it is shifting or rotating or moving in other ways), but the exact motion 
parameters (such as moving or rotation speed) are not known in advance. It can be assumed 
that within the imaging time of one image frame, the motion parameters of the object remain 
constant and a rough range of parameter values is known in advance. 

It is supposed that the time interval between two subsequent illumination patterns within 
one frame is tΔ . The object is translationally shifting and the moving speed in x direction and 
y direction is xv  and yv  respectively. The illumination patterns will be geometrically 

transformed in the following way: the first illumination pattern (denoted by the first row in H) 
remains unchanged, the second illumination pattern (denoted by the second row in H) will be 
shifted by xv t− Δ  and yv t− Δ  in two directions respectively, …, and the thK  illumination 

pattern will be shifted by ( 1) xK v t− − Δ  and ( 1) yK v t− − Δ  in two directions. Then the new 

illumination matrix after transformation, Hnew  can be expressed as Eq. (3). 

 ,( ) ( , , )vx y x yH v T H v vnew =  (3) 

where Hnew  denotes the illumination pattern matrix after the transform and T denotes the 

transform operation. The object image ,( )vx yO vnew  will be reconstructed from Hnew  

(instead of original H) and I. If the estimated xv  and yv  are identical or close to the actual 

moving speed of the target object, the object image can be recovered with good fidelity. 
Otherwise, the reconstructed image may still suffer from noise and degradation. A rough 
range of possible values of xv  and yv  can be pre-defined and a search space can be 

constructed. 
For other types of motion in addition to translational shift, the parameters can be 

optimized in a similar way. For example, if the object is rotating, then three parameters, x-
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coordinate of the rotation center xP , y-coordinate of the rotation center yP  and the rotation 

speed w  need to be optimized simultaneously, given by Eq. (4). 

 ( , , ) ( , , , )x y x yH P P w T H P P wnew =  (4) 

2.2.2. Optimization of motion parameters 

The optimal motion parameters can be determined in the following way in our scheme, shown 
in Fig. 4. 

 

Fig. 4. Flowchart of our proposed motion estimation scheme. 

The optimized ( , )x yH v vnew  and ( , )x yO v vnew  can be obtained by finding the optimal xv  

and yv  in the search space. An image quality metric function [ ( , )]x yE O v vnew  is used to 

evaluate the quality of each reconstructed image with different motion parameters in the 
optimization. In this work, the metric function is defined as the image variance, given by Eq. 
(5). 

 [ ( , )] [ ( , )]x y x yE O v v Var O v vnew new=  (5) 
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where []Var  denotes the average variance of all pixel intensity values of one image 

statistically. This metric can be used to measure the level of noise and blur in an image. 
[ ( , )]x yE O v vnew  becomes lower if ( , )x yO v vnew  contains more noise and blur in our 

examples. In previous works, similar metrics have been employed for the distinction between 
sharp in-focus images and blurred defocus images [30,31]. A reconstructed image with 
maximum [ ( , )]x yE O v vnew  (minimum amount of noise) will be obtained when xv  and yv  

reach the optimal values. 
In this work, simple genetic algorithm (SGA) [32] is adopted for the optimization of 

motion parameters. Other heuristic global optimization algorithms such as simulated 
annealing algorithm [33] and artificial bee colony algorithm (ABC) [34] can be attempted for 
this problem as well. As a classical optimization method, the working principles of genetic 
algorithm have been widely reported in many past literatures. In this work, we shall only 
briefly describe how SGA is used to solve our problem and omit the details. 

First, the value of each motion parameters (such as xv  and yv  in translational shifting 

movement or xP , yP  and w in rotating movement) is encoded into a binary bit sequence. For 

example, 8 bits are used to represent 255 possible values for xv  within the search range [-31 

31]. The binary bit sequences representing all the parameters are concatenated to constitute a 
single binary sequence, referred to as an individual in the algorithm. The population consists 
of a certain number of individuals (e.g. 30), which is referred to as the population size. 
Initially, each individual inside the population is a random binary bit sequence, representing 
random motion parameters. Then the fitness of each individual, which is the quality of 
reconstructed image measured by the metric function in our problem, is evaluated. According 
to the fitness values, selection, crossover and mutation operations are implemented on the 
individuals inside the population. The individuals in the population are updated and the 
fitness values are evaluated again in the next iteration. The population remains evolving and 
the individuals remain being updated after each iteration. Finally, after a certain number of 
iterations, one individual corresponding to optimal motion parameters, that yields a 
reconstructed image with best fidelity, can be obtained and the search process is finished. 

After the SGA optimization based on the motion model and metric functions, a 
reconstructed image with enhanced quality can be obtained with the optimized motion 
parameters. 

3. Results and discussion 

3.1. Simulation results 

In the simulation, the object images and illumination patterns contain 32 × 32 pixels (N = 
1024). The total number of illuminations is assumed to be M = 1024 and the sampling ratio is 
1. The illumination patterns are commonly used Hadamard patterns. 

In the first example, the frame rate is one frame per second. The object (a car) is moving 
from left to right at four different speeds (0 pixels per second, 1 pixel per second, 8 pixels per 
second, 15 pixels per second). The motion status of the object before the first illumination and 
after the last illumination (1024th illumination pattern) in one image frame is shown in Fig. 
5(a) and Fig. 5(b). The reconstructed images from the recorded single-pixel intensity data and 
standard Hadamard patterns with conventional methods are shown in Fig. 5(c). It can be 
observed that the reconstructed images have good quality for static or slowly moving objects 
(Example 1.1 and 1.2). But the reconstructed images are noisy and blurred for fast moving 
objects (Example 1.3 and 1.4). The quality of reconstructed results is increasingly more 
degraded as the speed increases. In the conventional reconstruction method, xv  and yv  are 

both considered to be 0, which is identical or very close to the actual moving speed for a 
static or very slowly moving object (Example 1.1 and 1.2). Consequently, there is no need to 
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estimate the actual motion parameters with our proposed scheme. However, the assumption 
that xv  and yv  are both 0 is obviously invalid for fast moving objects (Example 1.3, 1.4 and 

1.5) and motion estimation with our proposed scheme is necessary. The reconstruction results 
with our proposed scheme for fast moving objects are shown in Fig. 5(d). The search range 
for xv  and yv  in SGA is set to be [-31 31] and [-31 31] (unit: pixels/s). Each parameter is 

represented by 8 bits and the population size is 30 in SGA optimization. The maximum 
number of iterations in SGA is set to be 10. The results illustrate that the reconstructed 
images in our scheme have significantly improved image quality than those obtained by the 
conventional method. The reconstructed images have similar quality in our scheme for 
varying speeds since it takes equal amount of calculation to estimate a high-speed value or a 
low-speed value. In these examples above, the object moves in the y direction with varying 
speeds and our proposed scheme can achieve similar performance when the object moves in 
the x direction. 

 

Fig. 5. Simulated translationally shifting object: (a) Object image at the start of one video 
frame; (b) Object image at the end of one video frame; (c) Reconstructed results with 
conventional methods; (d) Reconstructed results with our proposed scheme. 

Table 1. Comparison of estimated and true motion parameters for simulated 
translational shifting object 

 Example 1.3 Example 1.4 Example 1.5 

True xv  (pixels/s) 0 0 5 

Estimated xv (pixels/s) 0.2048 −0.2048 4.8128 

True yv (pixels/s) 8 15 10 

Estimated yv  (pixels/s) 8.192 14.848 10 

If the object is moving in both x direction and y direction ( xv  = 5, yv  = 10), the 

reconstructed results are shown in Example 1.5 of Fig. 5 and our proposed scheme can still 
perform accurate motion estimation and significantly enhance the image quality. The 
estimated motion parameter and true motion parameters are compared in Table 1 and their 
values are quite close. The causes of error in the estimated values are analyzed at the end of 
Section 3.1. 
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In the second example, the assumed frame rate is one frame per second as well. The object 
(airplane) is rotating clockwise around a center point (8,24) at four different speeds (0 degrees 
per second, 5 degrees per second, 15 degrees per second, 30 degrees per second). The motion 
status of the object at the start and the end of a video frame is shown in Fig. 6(a) and Fig. 
6(b). The reconstructed images from the recorded single-pixel intensity data and standard 
Hadamard patterns with conventional methods are shown in Fig. 6(c). Similar to Fig. 5, it can 
be observed that when the object is static and rotating very slowly, the conventionally 
reconstructed images have good quality. However, when the object is rotating fast, the 
conventionally reconstructed images are heavily degraded. Then the object images are 
reconstructed with our proposed scheme for fast moving situations (Example 1.3, 1.4 and 
1.5). In the optimization, the search range of xP , yP  and w is [1,32], [1,32] and [-100 100] 

(Unit: degrees/s) respectively. Each parameter is represented by 8 bits and the population size 
is 50 in SGA optimization. The maximum number of iterations in SGA is set to be 10. The 
results in Fig. 6(d) exhibits significant better quality than Fig. 6(c). The estimated motion 
parameters are close to the actual values, with minor discrepancies, illustrated in Table 2. 

 

Fig. 6. Simulated rotating airplane object: (a)Object image at the start of one video frame; (b) 
Object image at the end of one video frame; (c)Reconstructed results with conventional 
methods; (d) Reconstructed results with our proposed scheme. 

Table 2. Comparison of estimated and true motion parameters for simulated rotating 
airplane object 

 Example 2.3 Example 2.4 

True xP  8 8 

Estimated xP  6 8 

True yP  24 24 

Estimated yP  25 21 

True w  (degrees/s) 15 30 

Estimated w  (degrees/s) 12.3904 32.768 

Compared with the first example, three unknown motion parameters instead of two 
unknown parameters need to be optimized in this example. The population size in SGA is 
increased from 30 to 50 due to the enlargement of search space. The reconstructed images 
with the conventional method contain blurred object and some surrounding noise points in 
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both Fig. 5 and Fig. 6 for translational shifting movement and rotating movement. Both low 
frequency and high frequency noise is introduced since the recorded single-pixel intensity 
sequence (i.e. Hadamard spectrum) is distorted for a fast-moving object. The performances of 
our proposed method in the restoration of reconstructed images in translational shifting 
movement and rotating movement with varying speeds are similar. The images of original 
target objects can be recovered with good fidelity by maximumly reducing the blur and noise. 

In addition, the simulation for a rotating disk printed with white number digits rotating 
around its center at the specified speeds is performed, which models the optical experiment in 
Section 3.2. Each object image (32 × 32 pixels) contains a digital number and the number is 
rotating around a center point outside the image, shown in Fig. 7 and Fig. 8(a). The position 
of rotating center is not known and the search range of xP  and yP  is [0 32] and [-100 −20] in 

our scheme, shown in Fig. 7. 

 

Fig. 7. Search of optimal motion parameters for the rotating disk object. 

In our proposed scheme, the search range for the rotating speed w is [0 80] (Unit: 
rounds/s). The actual rotating speed of the object is assumed to be 0, 2, 4 and 8 rounds/s 
respectively. The number of illumination patterns projected within one second is 500000. The 
reconstructed images with conventional method are shown in Fig. 8(b), Fig. 8(c), Fig. 8(d) 
and Fig. 8(e). Similar to the examples above, the reconstructed image quality becomes 
degraded as the disk rotates faster. The reconstructed images with our proposed scheme are 
shown in Fig. 8(f) and Fig. 8(g) when the disk is rotating at 4 and 8 rounds/s. It can be 
observed that the image fidelity is significantly improved compared with Fig. 8(d) and Fig. 
8(e). The estimated parameters with our proposed scheme are shown in Table 3, in 
comparison with the actual motion parameters. 
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Fig. 8. Simulated rotating disk with digit numbers: (a)Original object images; (b) 
Reconstructed results with conventional methods when the object is static; (c)Reconstructed 
results with conventional methods when the disk is rotating at 2 rounds per second; (d) 
Reconstructed results with conventional methods when the disk is rotating at 4 rounds per 
second; (e) Reconstructed results with conventional methods when the disk is rotating at 8 
rounds per second; (f) Reconstructed results with our proposed scheme when the disk is 
rotating at 4 rounds per second; (g) Reconstructed results with our proposed scheme when the 
disk is rotating at 8 rounds per second. 

Table 3. Comparison of estimated and true motion parameters for simulated digits on a 
rotating disk 

 4 rounds/second 8 rounds/second 
 No. “2” No. “3” No. “5” No. “2” No. “3” No. “5” 

True xP  16 16 16 16 16 16 

Estimated xP  17 17 18 15 17 16 

True yP  −64 −64 −64 −64 −64 −64 

Estimated yP  −60 −56 −60 −61 −58 −63 

True w  
(rounds/s) 

4 4 4 8 8 8 

Estimated w  
(rounds/s) 

4.1667 4.4444 4.1667 7.9167 8.4722 8.3333 

In Table 1, Table 2 and Table 3, the estimated motion parameters in our proposed scheme 
are close to the actual ones but some minor error and discrepancy can be found. The 
estimated values do not fully agree with the actual values due to the following three reasons. 
First, SGA is not an exhaustive search algorithm and does not attempt every possible value in 
the search space. An absolute best solution cannot be ensured but a sub-optimal solution close 
to the optimal solution can be usually obtained. Second, the function [ ( , )]x yE O v vnew  (i.e. 

variance of image intensities in this work) is a very effective image quality metric but may 
not always fully reflect the true image quality. The metric value may not be exactly at the 
peak when the estimated parameters are identical to the actual ones. Third, sometimes a set of 
motion parameters with not fully correct values may yield very similar results as the set of 
correct motion parameters. For example, in Fig. 9(a) and Fig. 9(b) the same object rotates 
around different centers with different speeds. The radius is Fig. 9(a) is longer but the rotating 
speed in Fig. 9(b) is higher. The two set of motion parameters are compared in Fig. 9(c). It 
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can be observed that the object moves both from Point A to Point B with very similar motion 
path even though the motion parameters are different. In this situation, if the motion 
parameters in Fig. 9(b) are used as the estimated parameters in our proposed scheme for the 
moving object in Fig. 9(a), the reconstructed images will still have very satisfactory quality. 

 

Fig. 9. Similar moving path with different sets of motion parameters: (a)First set of motion 
parameters with longer rotation radius but lower rotation speed; (b)Second set of motion 
parameters with shorter rotation radius but higher rotation speed; (c)Comparison of Fig. 9(a) 
and Fig. 9(b). 

3.2. Experimental results 

In the optical experiment, a black disk printed with white number digits is rotating around its 
center at the specified speeds. The optical setup is same as the previous work [35]. Each digit 
will pass through a fixed imaging window as the disk is rotating. An LED array with 32 × 32 
pixel resolution is employed to project Hadamard illumination patterns at a rate of 500000 
patterns per second. The rotating speed of the disk is specified as 2 rounds per second, 4 
rounds per second and 8 rounds per second. The single-pixel intensity data of three images at 
different time points are recorded by the SPI system for each rotating speed. The object 
images are first reconstructed with conventional methods and the reconstructed results [Fig. 
10(a)] when the disk is rotating at 2 rounds per second are in good quality. However, when 
the rotating speed increases, the reconstructed images [Fig. 10(b) and Fig. 10(c)] will be 
increasingly more degraded. After that, the object images are reconstructed with our proposed 
scheme based on a rotating motion model shown in Fig. 7 for rotating speeds of 4 rounds per 
second and 8 rounds per second, shown in Fig. 10(d) and Fig. 10(e). In the optimization, the 
parameters are the same as the ones in the simulation. The search range of xP , yP  and w is [0 

32], [-100 −20] and [0 80] (Unit: rounds/s) respectively. Each parameter is represented by 8 
bits and the population size is 30 in SGA optimization. The maximum number of iterations in 
SGA is set to be 10. As a comparison, the average image variances of Fig. 10(b) and Fig. 
10(d) are 0.0260 and 0.0354 respectively. The average image variances of Fig. 10(c) and Fig. 
10(e) are 0.0252 and 0.0359 respectively. The visual quality of images in Fig. 10(d) and 10(e) 
evidently outperform those in Fig. 10(b) and 10(c). 
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Fig. 10. Optical experimental results: reconstructed images with conventional methods when 
the disk is rotating at (a) 2 rounds per second; (b) 4 rounds per second; (c) 8 rounds per 
second; reconstructed images with our proposed scheme when the disk is rotating at (d) 4 
rounds per second; (e) 8 rounds per second. 

The results in optical experiments generally agree with the simulation results in Section 
3.1 and the effectiveness of our proposed scheme is verified experimentally. Compared with 
the simulation results in Fig. 8, the reconstructed images in Fig. 10 are contaminated with 
more noise, regardless of conventional reconstruction method or our proposed method. In 
practical optical experiments, many aspects such as light illumination, precision of alignment 
and accuracy of detector may deviate from the ideal assumptions in the simulation to some 
extent. As a result, more noise will be introduced in the reconstructed images in addition to 
the blur and noise due to object motion. The reconstruction results indicate that our proposed 
scheme has certain robustness under noise conditions. 

4. Conclusion 

In single-pixel imaging (SPI), a two-dimensional image can be captured by a single-pixel 
detector instead a sensor array device. As a trade-off, a large number of illuminations are 
required for capturing one single image. Since the projection device can only project a limited 
number of illumination patterns within a short time, the video frame rate in SPI can be quite 
low for a highly dynamic object scene. When the target object is moving fast, the 
reconstructed image in SPI will suffer from severe quality degradation due to motion blur. 
Motion estimation and image deblurring can be realized to enhance the reconstructed image 
quality. Different from the motion estimation schemes from multiple neighboring video 
frames in previous works, we propose a motion estimation and image quality enhancement 
scheme for one single reconstructed image in SPI for the first time. Our proposed scheme is 
based on the unique mechanism of SPI and different from conventional single-photograph 
deblur methods for sensor array cameras. It is assumed that some prior knowledge about the 
type of object motion is known and a motion model is constructed for the target object. The 
object is assumed to be static and the illumination patterns are equivalently moving in a 
reverse manner. The motion parameters in the model are optimized and a reconstructed image 
with high fidelity can be reconstructed from transformed illumination patterns with the 
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optimal parameters. Experimental results demonstrate that the reconstructed results with our 
proposed scheme have substantially better image quality than conventional methods. 

In future works, the blind motion estimation and quality enhancement for one single 
reconstructed image in SPI without any prior knowledge of the motion type will be attempted. 
The type of motion that the object undergoes can be possibly identified with artificial 
intelligent methods from the recorded single-pixel intensity sequence or low-quality 
reconstructed image. 
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