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Abstract

State space models (SSMs) for language modelling promise an efficient and per-2

formant alternative to quadratic-attention Transformers, yet show variable perfor-3

mance on recalling basic information from the context. While performance on4

synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural5

metrics provide little information as to why—on a mechanistic level—certain archi-6

tectures fail and others succeed. To address this, we conduct experiments on AR7

and find that only Transformers and Based SSM models fully succeed at AR, with8

Mamba a close third, whereas the other SSMs (H3, Hyena) fail. We then use causal9

interventions to explain why. We find that Transformers and Based learn to store10

key–value associations in-context using induction heads. By contrast, the SSMs11

compute these associations only at the last state, with only Mamba succeeding12

because of its short convolution component. To extend and deepen these findings,13

we introduce Associative Treecall (ATR), a synthetic task similar to AR based on14

PCFG induction. ATR introduces language-like hierarchical structure into the AR15

setting. We find that all architectures learn the same mechanism as they did for AR,16

and the same three models succeed at the task. These results reveal that architec-17

tures with similar accuracy may still have substantive differences, motivating the18

adoption of mechanistic evaluations.19

https://anonymous.4open.science/r/tinylang-1061/20

1 Introduction21

Transformers with quadratic attention remain the dominant architecture in language modelling22

despite numerous proposed efficient alternatives. Most notably, state-space models (SSMs) achieve23

impressive perplexities and benchmark scores [e.g. Gu and Dao, 2024]. Yet, SSMs exhibit deficiencies24

that benchmarks often fail to capture; for example, they struggle to perform retrieval, i.e. copying25

from the context [Jelassi et al., 2024, Wen et al., 2024, Waleffe et al., 2024, Bick et al., 2025].26

Controlled synthetic tasks can make these limitations clear by isolating specific capabilities and27

enabling expressive experimentation at small scales across architectures. Particularly, much work has28

used the associative recall (AR) task as a testbed for studying in-context retrieval across architectures.29

In turn, AR has informed the design of novel LM architectures [e.g. Based; Arora et al., 2024b].30

Yet performance on synthetic tasks is measured solely via behavioural metrics like task accuracy. This31

is a missed opportunity: an advantage of these synthetic tasks is that they are designed to isolate a32

specific behaviour that implicates a mechanistic solution. For example, language models should solve33

AR by storing key–value associations in-context at the value, a mechanism termed the induction34
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head in Transformers [Olsson et al., 2022, Fu et al., 2023]. We should therefore directly check35

whether each architecture learns induction as part of performance evaluation on AR.36

Here, we propose using tools from mechanistic interpretability to directly analyse the mechanisms37

used to solve synthetic tasks. We use causal interventions [Geiger et al., 2024] on model internals to38

understand how these tasks are learned and implemented across a variety of architectures (§4). This39

allows us to track the emergence (or lack thereof) of the correct association and retrieval mechanisms40

inside the model, beyond just observed task accuracy. Through comprehensive experiments on AR,41

we find that all SSMs except Based learn an inefficient direct-retrieval solution to AR, and that42

Mamba strongly relies on its short convolution component to perform AR.43

To deepen our findings, we introduce Associative Treecall (ATR), a novel synthetic retrieval task44

more similar to real-world natural language retrieval than AR (§3). ATR uses a probabilistic context-45

free grammar (PCFG) to generate hierarchical data, on which we ask AR-like queries. Since46

keys and values need not be adjacent to each other, ATR requires a true non-positional retrieval47

mechanism, which may challenge architectures that are designed for AR. Interestingly, we observe the48

same mechanisms are implicated across architectures on ATR as on AR, indicating that association49

mechanisms are not task-dependent.50

Our results offer a framework for better understanding and evaluating synthetic task performance51

in terms of mechanistic interpretability. Mechanistic evaluations reveal fundamental differences52

between architectures beyond what we learn from behavioural performance, thus serving as a new53

tool for architecture analysis and design.54

2 Related work55

Associative Recall. Associative Recall (AR)1 is a synthetic task that evaluates in-context retrieval56

for language model architectures, from early work on recurrent neural networks [Graves et al., 2014,57

Ba et al., 2016, Danihelka et al., 2016, Zhang and Zhou, 2017] to modern SSMs [Fu et al., 2023, Poli58

et al., 2023, Lutati et al., 2023, Jelassi et al., 2024, Arora et al., 2024a,b, Gu and Dao, 2024, Dao59

and Gu, 2024, Trockman et al., 2024, Liu et al., 2024a, Okpekpe and Orvieto, 2025, Li et al., 2025b,60

Wang et al., 2025]. An AR task consists of a sequence of key–value pairs followed by a single query61

key; the goal is to produce the corresponding value. For example,62

(1) A 2 C 3 F 9 D 1 C → 363

Here, the correct next token is 3, since it is the value associated with the key C in context. Despite64

being synthetic, AR has a direct analogue in natural language: induction, referring to in-context65

copying of sequences [Elhage et al., 2021, Olsson et al., 2022]. Arora et al. [2024a,b] show that66

architecture-level improvements on AR translate directly to natural-language induction.67

Mechanistic interpretability. In order to measure the contribution of individual model components68

(neurons, layers, etc.) to output behaviour, we can apply causal interventions on neural network69

internals [Geiger et al., 2021, 2024]. Informally, the core idea is to overwrite an activation at a specific70

component using a counterfactual input. If this changes model behaviour, then that component is71

causally relevant to the mechanism underlying that behaviour.72

Some prior work in mechanistic interpretability has studied how some language models solve in-73

context retrieval tasks like induction and multiple choice question answering [Olsson et al., 2022,74

Lieberum et al., 2023, Brinkmann et al., 2024, Wiegreffe et al., 2025, Bick et al., 2025], as well as75

the training dynamics of Transformers on toy tasks using mechanistic metrics [Nanda et al., 2023,76

Reddy, 2024, Singh et al., 2024, Edelman et al., 2024, Tigges et al., 2024, Yin and Steinhardt, 2025].77

Yet thus far, architectural comparisons on synthetic tasks have not made use of causal interventions.78

3 Synthetic retrieval tasks79

Induction, wherein key–value associations are stored in-context, is the memory-efficient mechanism80

implicated for retrieval tasks like AR in quadratic attention Transformers. Yet AR can also be solved81

1Also known as associative retrieval, associative memory, or induction.
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Figure 1: PCFG: An illustrative example of a PCFG and its components, with an example derivation
(with final string) below. AR vs. ATR: Comparing AR and ATR using example documents; both
tasks provide a document with key–value associations in-context and ask a query about one such
association. However, associations in ATR need not involve adjacent tokens and are tree-structured.

through naïve positional association, and indeed SSMs theoretically learn a less efficient solution82

[Jelassi et al., 2024]. To elucidate this, we apply our mechanistic evaluation framework to compare83

architectures on two synthetic retrieval tasks: Associative Recall and Associative Treecall (ATR).84

Compared to AR, ATR is a novel language-like task with tree structure and more parameters for85

controlling task difficulty (§3.2). Critically, ATR cannot be solved with naïve positional association,86

enabling us to explicitly test if models learn different mechanisms for association in the hierarchical87

setting. We build upon prior work on formal-language synthetic tasks [White and Cotterell, 2021,88

Valvoda et al., 2022, Hahn and Goyal, 2023, Strobl et al., 2024, Allen-Zhu and Li, 2024, Akyürek89

et al., 2024, Pandey, 2024, Lubana et al., 2024, inter alia].90

3.1 Associative Treecall91

Since a standard AR document (eq. (1)) consists of adjacent key–value pairs, one can associate each92

key with its corresponding value solely using relative position. Yet many natural language retrieval93

tasks require association over latent hierarchical structure. For example:94

(2) John had chicken and Mary had pork. The chicken was eaten by → John95

Answering this query requires associating John with chicken and Mary with pork, and then retrieving96

the appropriate association for John. A solution employing relative positional association would not97

robust to the possible range of variation (John had some chicken, John decided to have chicken, etc.).98

This type of retrieval is widely studied in cognitive science as binding. The mechanisms underlying99

natural-language binding in LMs have been examined by Kim and Schuster [2023], Feng and100

Steinhardt [2024], Prakash et al. [2024], Li et al. [2025a]. Yet no synthetic analogue of this task101

exists to isolate this mechanism and enable direct comparison to AR. ATR thus allows us to study102

how different architectures implement binding, and ask if these solutions generalize from simple AR.103

An ATR corpus is drawn from a synthetic probabilistic context-free grammar (PCFG) whose parame-104

ters we set. Each document consists of a string sampled from the PCFG, with latent structure made up105

of parent–child relations between symbols, followed by a divider token (EOS) and a query about one106

such relation. The PCFG has one special property which establishes the parent–child relationships:107

for the right-hand side of each production rule, the rightmost symbol is always a terminal, and is the108

parent of the symbols created by this production. We sample strings by selecting an iid nonterminal109

and recursively applying production rules according to the PCFG distribution. We show an example110

in Figure 1 and formalise definitions in appendix A. Since the number of tokens separating parents111

and their children may vary, ATR cannot be solved by a positional associative mechanism.112

3.2 Parameters113

PCFG setup. For each experiment, we generate a single PCFG to use across all models to ensure114

fair comparisons, with parameters in Table 1. We also reject any samples that have more than 1024115

symbols, which only affects the sampling distribution for the most complex PCFGs we use.116
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Param. Description

H Is the head terminal at the left or the right of each production?
dmax Maximum depth permitted for the PCFG to generate.
Lmax Maximum number of symbols of the right-hand side of a production rule.
Rmax Maximum number of production rules for each nonterminal.
|N | Number of nonterminal symbols in the PCFG vocabulary.
|Σ| Number of terminal symbols in the PCFG vocabulary.
rΣ Relative weightage on choosing a terminal when sampling production rules.

Table 1: Parameters used for constructing a PCFG. We define PCFGs in Greibach Normal Form
(GNF); see Appendix A for more details.

Queries. Each PCFG sample of length n provides us with a set of n− 1 eligible parent–child queries117

(i.e. a tree with n − 1 edges). However, terminals may occur multiple times, so a query about a118

specific symbol may present ambiguity; thus, when presenting a query we consider it to only refer119

to the rightmost instance of that symbol.2 Therefore, the maximum number of eligible queries over120

all samples is min(n− 1, |Σ|). To minimise the ability to heuristically guess, we inversely weight121

parent–child pairs by the parent’s child count when sampling queries.122

3.3 Methodology123

Datasets. We generate synthetic pretraining and evaluation datasets for both tasks. For each setting,124

the trainset has 100, 032 examples and the eval/dev sets have 320 examples. In AR, we use disjoint125

key and value vocabularies; in ATR, keys and values are both sampled from the set of terminals. In126

each document, we separate the document from the query with a divider token, and provide only a127

single query. Example AR/ATR documents are in Figure 1; further details in appendix C.128

Models. We pretrain models from scratch on a variety of synthetic tasks. We use the exact architecture129

implementations from the zoology3 library [Arora et al., 2024b], except for behaviour-preserving130

modification of the LM backbone to enable interventions with pyvene4 [Wu et al., 2024] on the131

sequence mixers, MLPs, and layer blocks. The LM backbone for all architectures is the same,132

with pre-norm blocks of alternating sequence mixers and MLPs (except for Mamba, which has133

no MLP) followed by LayerNorm at the end. We experiment with the following architectures:134

Attention [Vaswani et al., 2017], BaseConv [Arora et al., 2024a], Based [Arora et al., 2024b], H3 [Fu135

et al., 2023], Hyena [Poli et al., 2023], and Mamba [Gu and Dao, 2024]; further details on model136

configurations are given in appendix B.137

Training. We minimise cross-entropy loss, and mask the loss on all tokens except the query (the138

underlined token in the example below). We use the AdamW optimiser with β = (0.9, 0.999), ϵ =139

10−8 and no weight decay. We warm up learning rate for the first 10% of training and then follow140

a cosine decay schedule to 0 for the remainder of training. We train for either 16 epochs (on AR)141

or 32 epochs (on ATR) with a batch size of 32. Each experiment trains ≈ 200 models over all142

hyperparameters. Runtime varies from 0.5 to 5 hours, depending on hardware, task, and architecture.143

Overall, we used < 10, 000 GPU-hours in total, on a cluster with various NVIDIA machines (with144

GPU memory ranging from 12.3G to 143.8G).145

Behavioural metrics. We report behavioural metrics given the model’s predicted probabilities over146

the vocabulary ŷ ∈ R|Σ| and the index of the single true answer i. Our main metric is accuracy:147

1[argmax(ŷ) = i]. Additionally, we compute but do not primarily report likelihood ŷi.148

4 Mechanistic metrics for AR and ATR149

Behavioural metrics provide little information as to why certain architectures succeed or fail on tasks150

of interest. Mechanistic metrics, which directly measure how information flows across model compo-151

2This is the same setup as AR with rewrites [Rodkin et al., 2025].
3https://github.com/HazyResearch/zoology
4https://github.com/stanfordnlp/pyvene
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Figure 2: Our interchange intervention setup for analysing AR and ATR. Left: We intervene on
input and output representations of whole blocks (1 and 6), sequence mixers (e.g. attention blocks;
2 and 3), and state mixers (4 and 5). Right: An example intervention on AR where we corrupt and
attempt to restore the key (A) by intervening at the value token in an intermediate representation. We
evaluate the downstream effect on the next-token prediction at the query.

nents and token positions, can tell us how AR and ATR are being solved by different architectures,152

and thus help us understand failures. We illustrate our approach in Figure 2.153

We use interchange interventions [Geiger et al., 2021, 2024] to understand and measure how solutions154

to AR and ATR are implemented across architectures. We introduce this operation and define the155

resulting metrics for our tasks below. Our implementation uses the pyvene library [Wu et al., 2024].156

Interchange intervention. Consider a language model p(·) and some input b. We select a component157

f inside that model which computes some internal representation f(b) during the LM’s forward158

pass. Now, consider a counterfactual input s: this produces a counterfactual representation f(s) when159

processed by f . We want to understand what about the output of p is dependent on f . Therefore, we160

perform an intervention which replaces the output f(b) with that of f(s) during the computation of161

p(b), with the change propagating downstream. The result is notated pf←f∗(b, s).162

Concrete setup for AR and ATR. We take o to be a ground-truth document from our data distribution163

and c to be a version of that document with exactly one important token corrupted: the key (see164

Figure 2). This corruption significantly reduces task accuracy for both AR and ATR by removing165

information that is necessary to answer the query.166

We intervene at both the input and output each of the following model components f : each layer167

block, each sequence-mixer, and each state-mixer (i.e. MLP, except in Mamba which lacks this168

component); see Figure 2, left. We measure to what extent the intervention can restore the likelihood169

of the correct answer to the query, i.e. we compare restored likelihood pf←f∗(ytrue | c,o) with170

original likelihood p(ytrue | o) and corrupted likelihood p(ytrue | c).171

Metrics. Given the above three quantities, we compute attribution score, or what proportion of the172

original likelihood was restored by the intervention:173

Attrib(f) =
pf←f∗(ytrue | b, s)− p(ytrue | b)

p(ytrue | s)− p(ytrue | b)
(3)

For AR and ATR in particular, there are two choices for f which help us distinguish the mechanism174

underlying task success. To check whether induction is the underlying mechanism, we compute175

metrics for f being the layer 1 block input at the value token. Alternatively, we check whether other176

tokens at layer 1 block input mediate information flow, indicating some sort of association-less direct177

retrieval mechanism: the key, query, and divider.178

5 Experiments179

We now deploy our mechanistic metrics (§4) on both AR and ATR (§3). We follow the methodology180

outlined in §3.3 to create a variety of AR and ATR datasets and train models with various architectures.181

5.1 (Most) SSMs do not learn induction to solve AR182

We run experiments on a relatively simple AR task and show that interchange interventions empirically183

confirm the same mechanisms underlying AR as proposed in existing theoretical work. We fix184
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Figure 3: Associative recall: Accuracy and interchange intervention results on AR with vocabulary
size 8192 and key–value count of 32. SSMs (except for Based) and Transformers learn different
mechanisms.

the total number of unique keys and values in the vocabulary to be 8192, and present 32 key–185

value pairs in context. Our trainset includes 100032 examples. We vary model dimensionality in186

{16, 32, 64, 128, 256} and sweep LR in the range [3 · 10−5, 3 · 10−2] for each architecture.187

Behavioural results. Figure 3a demonstrates that task accuracy on AR cleanly separates Attention,188

which achieves 100% accuracy at d ≥ 32, from nearly all SSMs. Based solves AR near-perfectly189

with roughly the same dimension-wise scaling curve as Attention, achieving a maximum accuracy of190

99.06%. However, Mamba is a close third and clearly better than other SSMs at AR, albeit achieving191

a less-than-perfect 91.25% at d = 256.192

Mechanistic analysis. We compute Attrib for layer 1 block input at the value token vs. query token193

for all training runs where p(ytrue | o)− p(ytrue | c) > 0.01.5 A high attribution score on the value194

token indicates induction as the underlying mechanism while query indicates direct retrieval at the195

final state, performed in layer 0. Our results in Figure 3b cleanly separate Attention (with nearly all196

checkpoints with 100.00% attribution at the value) and Based, which only perform induction, from197

other SSMs, which perform direct retrieval. While only a single BaseConv checkpoint passes our198

filter, it has the greatest attribution score on the value, indicating an induction mechanism.199

SSMs perform direct retrieval at varying layers: the best-performing Mamba, Hyena, and H3 models200

almost entirely perform direct retrieval at layer 0 via the query token, while worse SSM checkpoints201

use a mix of query and key tokens, indicating delayed direct retrieval by both layer 0 and layer 1.202

Jelassi et al. [2024] shows that direct retrieval in SSMs has asymptotically worse capacity than the203

induction solution, and this is reflected in performance on AR.204

5.2 Per-architecture mechanisms are similar between ATR and AR205

We consider four initial settings to study models on ATR, over all combinations of Lmax = {5, 10}206

and |Σ| = {20, 8192}. We keep all other parameters fixed with settings given in appendix C. Varying207

Lmax controls the possible distances between keys and values in the PCFG sample without affecting208

other properties that play a role in task difficulty (e.g. depth). Varying |Σ| stresses the state capacity,209

since more key–value pairs must be tracked, without affecting syntactic complexity. We sweep the210

same model dimensionalities as in §5.1, and a smaller learning rate range of [3 · 10−5, 3 · 10−3].211

Behavioural results. We report results in Figure 4a. Surprisingly, Mamba is highly successful212

at ATR. On the small terminal count setting (|Σ| = 20) Mamba matches or outperforms all other213

architectures at all model dimensions, particularly with longer production rules (Lmax = 10) with214

performance of 92.19% vs. 80.94% for Attention at d = 256. This is particularly surprising because215

longer production rules imply greater positional variation between keys and values, which ought to216

5We filter in order to discard low-performing and noisy runs.
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Figure 4: Associative Treecall: Accuracy and interchange intervention results on ATR across
varying settings. The same trend as on AR holds, with Attention, Based, and Mamba achieving high
performance but with entirely different mechanisms.

stress AR-focused SSM designs. Attention only manages to outperform Mamba slightly on the large217

terminal count setting (|Σ| = 8192) when d ≤ 64.218

Mechanistic analysis. We conduct the same analysis as for AR. We recover the same overall trends219

but with greater inter-architecture variance: Figure 4b shows that Attention, Based, and BaseConv all220

primarily learn induction mechanisms, whereas the remaining SSMs perform direct retrieval as on221

AR, with high attribution scores on either the key (indicating direct retrieval by the layer 1 sequence222

mixer) or the query (indicating the same but by layer 0).223

Intriguingly, Figure 4b shows that different SSMs form different strategies across task difficulties; in224

particular, all direct-retrieval SSMs favour delaying retrieval to layer 1 when terminal count is large225

(|Σ| = 8192), but use a mix of layers otherwise. Regardless, the same tendency from AR recurs:226

SSMs besides Based and BaseConv do not perform induction, but Mamba is still highly performant.227

Strikingly, as the next section shows, Mamba also achieves high generalization performance on ATR.228

5.3 Mamba’s solution to ATR does generalise229

We reuse the easiest settings from our ATR experiment (L = 5, |Σ| = 20) and construct a new dataset230

with a train–test split on query–answer pairs. Specifically, 80% of possible unique query–answer231

pairs are provided in the training set, while 20% are only in the test set and thus never trained on.232

We seek to assess whether models learn a general mechanism for parent–child relations in ATR or233

if the impressive results of Mamba (as well as Attention and Based) are merely the result of better234

memorisation of the PCFG parameters. This setup is akin to Wang et al. [2024]’s technique of235

train–test split on multi-hop queries; we provide supervision on individual query and answer types,236

but not on some compositions of them.237

Behavioural results. We select the checkpoint with the highest dev accuracy for each architectural238

and dimensionality setting, after sweeping LR. We plot the dev and test accuracies of each of these239

checkpoints in Figure 5a; all models have much lower test accuracy (e.g. Attention with d = 256 has240

95.62% dev and 68.12% test accuracy). Attention achieves the greatest dev accuracies on d ≥ 32.241

Mamba’s relative ranking is lower than on the in-distribution setting in §5.2, but it still achieves the242

overall second-highest dev accuracy (65.00% at d = 128). Surprisingly, H3 generalises well despite243

its poor dev accuracy, beating Mamba on test accuracy in 3 out of 5 settings.244

We compare dev and test accuracies across all LRs in Figure 5b. We find that while Mamba does245

have unusually high dev accuracy given a selected test accuracy (indicating greater memorisation246

than models with other architectures), its dev accuracy is still generally higher than non-Attention247

architectures. Interestingly, H3 has nearly Attention-level generalisation while BaseConv exhibits248

vanishingly little generalisation. Overall, behavioural metrics show that Mamba does nontrivially249

generalise on ATR, albeit not as well as Attention.250
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Figure 5: Generalisation on Associative Treecall: Accuracy and interchange intervention results on
ATR with train–test split. Scores are reported on dev (with in-distribution query–answer pairs from
training) and test (OOD). We highlight the checkpoint with the best dev score in each setting.

Mechanistic analysis. We report a summary of attribution scores at different tokens (key, query,251

value), comparing on dev and test sets across all checkpoints in Figure 5c. We find largely consistent252

mechanisms underlying behaviour on both dev and test, and these match attribution scores on ATR253

without train–test split. The only exception is that BasedConv does induction on the dev set but not254

nearly as much on the test set; its induction mechanism is more brittle than Attention and Based.255

Overall, the induction mechanism is not more general than the direct retrieval mechanism; both256

Attention and Mamba show greater generalisation than other architectures despite their entirely257

different solutions, and our mechanistic evaluations confirm that this solution is consistent across258

in-distribution and out-of-distribution queries.259

5.4 Short convolutions enable AR and ATR in Mamba and Based260

Throughout all our experiments on AR and ATR, we repeatedly observed that Attention, Based,261

and Mamba are the highest-performing architectures. However, their underlying mechanisms differ:262

Attention and Based learn induction, a 2-layer mechanism which stores key–value associations at263

the value token as an intermediate step, whereas Mamba uses direct retrieval, a 1-layer mechanism264

which directly writes an association to the query token.265

Importantly, Based and Mamba share a key architectural component: short convolutions. We266

hypothesise that this component is necessary6 for performing association (as in AR and ATR)267

when using a subquadratic sequence mixer. We conduct experiments on AR where we shorten the268

convolution kernel size in Mamba (from the default dconv = 4 to {3, 2, 1}, and deleting it) and269

replace the Based short convolution with implicitly-parametrised long convolution [Poli et al., 2023].270

Results. We report results of our ablations in Figure 6. On Mamba (Figure 6a), we find a step change271

in task accuracy when increasing dconv from 1 to 2, which introduces previous token information and272

thus enables AR. Without short convolution, Mamba fails to learn AR. Figure 6b further shows that273

larger kernel size leads to earlier (in layer 0) direct retrieval. Finally, besides dconv < 2 like Mamba,274

implicit long convolution in Based also significantly harms AR performance (Figure 6c). Therefore,275

we conclude that short convolutions are responsible for association on AR in Mamba and Based.276

6 Discussion277

Why mechanistic evaluations over behavioural metrics? Architectural advances on language278

modelling are largely uncovered and presented in an empirical manner; beyond intuition, we have279

6Since Hyena also has a short convolution, this may not be sufficient for good performance on association.
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Figure 6: Ablating short convolution: Accuracy and interchange intervention results when ablating
parameters of the short convolution component in Mamba, Based, and BaseConv.

little justification as to why a modification or innovation improves model performance. Synthetic tasks280

already regularly inform progress on subquadratic architecture design (such as SSMs), but treating281

such tasks as another downstream evaluation is loses useful signal; control over task parameters282

presents an opportunity to explain performance using interpretability.283

ATR indicates induction is highly general. We introduced ATR to break the naïve key–value284

adjacency of AR, and see whether general mechanisms underlying association still emerge across285

architectures. We find the same induction mechanism, where the association is computed and stored286

at the value before retrieval, in Attention and Based for both tasks. While Olsson et al. [2022] and287

later works define induction on adjacent tokens, ATR is evidence that a position-independent and288

generalising (§5.3) notion of association can be implemented by a single attention head. Further289

investigation of ATR (e.g. multi-hop queries) is necessary to understand the limits of induction.290

Short convolutions are key to association in SSMs. We showed that Mamba and Based rely on291

short convolutions to learn how to associate keys and values on AR and ATR. Several earlier works292

point to the importance of short convolution: Arora et al. [2024b] empirically show its utility on AR293

(along with sliding-window attention), Allen-Zhu and Alfarano [2025] introduce a short convolution294

component (Canon) in various architectures to improve synthetic and real task performance, and295

Olsson et al. [2022] show that 1-layer attention can learn induction if augmented with a length-2296

convolution; further see Liu et al. [2024b], Dolga et al. [2024], Fu et al. [2023], Poli et al. [2023].297

7 Limitations298

While we proposed mechanistic evaluations as a new tool, behavioural metrics like accuracy are299

still needed to properly contextualise results. Additionally, here we did not perform mechanistic300

evaluation of subcomponents of sequence mixers (e.g. the selective SSM component within Mamba),301

due to implementation difficulties when applying interventions within hardware-optimised operators,302

which are inaccessible via PyTorch hooks. Finally, we focus on synthetic tasks throughout this303

work; extending our analyses to real-world models would help paint a more complete picture of the304

differences in capabilities (and underlying mechanisms) of different architectures on real-world tasks.305

8 Conclusion306

In this work, we introduce mechanistic evaluations as a powerful framework for comparing model307

architectures. This approach goes beyond high-level behavioural metrics, revealing substantive308

differences between architectures. Through analysis of synthetic in-context retrieval tasks, we309

uncover the underlying mechanisms that explain the success and failure points of various architectures.310

Mechanistic evaluations thus provide a useful tool for architecture design and analysis, as well as a311

new opportunity for interpretability research to open the blackbox of progress in AI.312
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A Formal definitions and details for ATR547

For reference, we provide formal definitions for PCFGs and the normal form we use in ATR.7548

Definition A.1. A probabilistic context-free grammar is a tuple G = ⟨N ,Σ,S,R, p⟩ where:549

• N is a finite set of non-terminal symbols;550

• Σ is an alphabet of terminal symbols;551

• S ∈ N is a start symbol;552

• R ⊂ N × (N ∪ Σ)∗ is a finite set of production rules, mapping a left-hand side symbol553

N ∈ N to a string of symbols that may be either terminals or nonterminals; each such rule554

is written as X → α;555

• p : R → [0, 1] is a weighting function which assigns a probability to each production rule556

for a nonterminal; this function is locally normalised, meaning {
∑

X→α p(X → α) = 1 |557

X ∈ N}.558

Definition A.2. A PCFG G = ⟨N ,Σ,S,R, p⟩ is in Greibach normal form (GNF) if each production559

rule in R is of the form X → a X1 . . . Xn, where X1, . . . ,Xn ∈ N and n may be 0. Similarly, a560

PCFG is in right-Greibach normal form if each rule is of the form X → X1 . . . Xn a.561

For ATR, the PCFG is in Greibach normal form if the head is the leftmost symbol of the production562

rule’s righthand side; similarly, if the PCFG is right-headed, it is in right-Greibach normal form.563

Definition A.3. A derivation step α ⇒ β is an operation where, given strings of symbols α,β ∈564

(N ∪Σ)∗, the leftmost nonterminal X ∈ N in α is rewritten using the right-hand side of a production565

rule X → . . . ∈ R to obtain β.566

Definition A.4. A derivation under the PCFG G is a sequence of strings [α0, . . . ,αm] where567

α0 ∈ N and each step αi+1 is formed by a derivation step on αi. The final string αm ∈ Σ∗ is the568

yield of the derivation.569

Each ATR document is the yield of a derivation sampled under the GNF PCFG G.570

A.1 Additional details on ATR571

Parent terminals in GNF. We set the left/right-most terminal in each production rule (which leads to572

the GNF property) the parent of all other generated terminals. This terminal is sampled specially: for573

each nonterminal, we independently sample a distribution over terminals from a uniform Dirichlet,574

and for all production rules with that nonterminal on the lefthand side we use that distribution to575

sample the parent terminal. This simulates how heads of phrases in natural language (analogous to576

our parent terminals) decide the type of the phrase they head (analogous to our nonterminals).577

Maximum depth. To enforce maximum depth, we first assign a uniformly random depth score578

d : N → N ∈ {1, . . . , max_depth} to each nonterminal in the vocabulary. Then, for each production579

rule for each nonterminal X, we only allow nonterminals Y with d(Y) > d(X) on the right-hand side.580

Note that this means no recursion is possible.581

7We use similar formalisations of PCFGs as previous work in NLP, e.g. Nowak and Cotterell [2023].
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B Model configurations582

Table 2: Default model configurations across all architectures. In experiments, we sweep learning
rate and embedding dimension, reporting results from the instance with highest accuracy.

(a) Attention

Parameter Values

dropout 0.0
num_heads 1

(b) Hyena

Parameter Values

l_max 1024
filter_order 64
num_heads 1
num_blocks 1
outer_mixing False
dropout 0.0
filter_dropout 0.0
short_filter_order 3
bidirectional False

(c) BaseConv

Parameter Values

l_max 1024
kernel_size [3,−1]
implicit_long_conv True
use_act False

(d) Based

Parameter Values

BaseConv
l_max 1024
kernel_size 3
implicit_long_conv True
use_act False

Based
l_max 1024
feature_dim 8
num_key_value_heads 1
num_heads 1
feature_name taylor_exp
train_view quadratic

(e) H3

Parameter Values

l_max 1024
d_state 1024
head_dim 1024

(f) Mamba

Parameter Values

d_conv 4

C Task hyperparameters583

Table 3: Task hyperparameters.

(a) Parameters used for constructing AR documents.

Parameter Values
Lmax 32
Lmin 32
|Σ| {8192}

(b) Parameters used for constructing ATR documents.

Parameter Values
H Right
dmax 10
Lmax {5, 10}
Rmax 5
|N | 40
|Σ| {20, 8192}
rΣ 20
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D More experiments on AR and ATR584

Many parameters of synthetic tasks like AR and ATR and the model architectures we tested have585

interesting effects on behavioural and mechanistic metrics, but not all experiments could fit in our586

main text. Therefore, we include additional interesting observations in this appendix.587

D.1 Attention needs position embeddings588
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Figure 7: Position embedding: Model accuracy on AR and two ATR settings with and without
absolute position embeddings.

Due to an initial configuration mistake, we accidentally trained all architectures with absolute position589

embeddings; in the zoology codebase [Arora et al., 2024a], only Attention is meant to be trained in590

this way. Fortuitously, this resulted in an interesting ablation: do SSMs, which are usually trained591

without it, also benefit from position embeddings?592

Behavioural results. Our results in Figure 7 resoundingly show no: SSMs generally perform worse593

with position embeddings (PE). Attention is highly dependent on PE; performance on AR drops from594

100.00% to 5.62% at d = 256 with NoPE. Attention lacks recurrence, unlike SSMs, so this is not595

surprising. However, on ATR, at smaller dimensionalities NoPE actually outperforms PE Attention.596

Further ablations ought to consider alternative PE methods such as RoPE and Alibi.597

D.2 1-layer SSMs learn direct retrieval on AR and ATR598
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(b) Accuracy of 1-layer vs. 2-layer models on ATR
(L = 5, |Σ| = 20), with Based and BaseConv failing.

Figure 8: 1-layer models on AR and ATR: Architectures that learn induction in the 2-layer setting
fail to perform non-trivially with 1 layer. Mamba is highly performant with 1 layer on both tasks.

Throughout our experiments on AR and ATR, we have claimed that SSMs (except for Based and599

possibly BaseConv) learn a direct retrieval mechanism which does not require an intermediate step600
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like attention, i.e. only a single SSM layer is needed to learn AR and ATR. To verify this, we repeat601

AR and L = 5, |Σ| = 20 ATR experiments (without train–test split) with 1-layer models.602

Behavioural results. We find comparable performance for direct retrieval models between 1-layer603

and 2-layer settings on AR (Figure 8a). In fact, at d = 256, 1-layer Mamba (96.25%) outperforms604

2-layer Mamba (91.25%), as does Hyena (31.56% vs. 29.69%). 1-layer Based and BaseConv are605

architecturally identical, so we only report one; that architecture and Attention, both relying on606

induction in the 2-layer case, fail to learn AR with one layer. On ATR (Figure 8b), we see a more607

noticeable difference with layer count on all architectures, but again Attention, Based, and BaseConv608

become the worst architectures with one layer (e.g. 96.25% → 74.69% for Attention at d = 256).609

D.3 SSMs prefer layer 0 to perform AR610
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(b) Attribution scores with 1–3 layers on AR.

Figure 9: Varying layer count on AR: Behavioural and mechanistic evaluations for models with 1–3
layers on AR.

Since we have confirmed that the direct retrieval mechanism in SSMs requires only a single layer,611

we are curious which layer this mechanism forms in if more than two layers are present. We train612

models with up to three layers on AR and report results.613

Behavioural results. 3-layer models perform about the same on AR as 2-layer models across614

architectures (Figure 9a), except for a large drop in performance for Mamba when d = 32; this may615

just be an optimisation failure.616

Mechanistic analysis. For our mechanistic metric, instead of intervening on each block, we intervene617

at the sequence mixer’s output to the query token in each layer; this tells us if that layer is directly618

responsible for writing the answer to the output position. We apply the same filter as in §5.1, with619

a threshold of 0.01. Figure 9b shows that among performant models, Hyena and Mamba prefer620

layer 0 for performing AR no matter the layer count; however, some Mamba checkpoints learn the621

mechanism in the final layer as well (but never layer 1 in a 3-layer model). Attention, Based, and622

BaseConv prefer layer 1, which is expected since this is the second step of the induction mechanism.623

However, some checkpoints of Attention and Based also have non-zero attribution score at layer 2 in624

the 3-layer setting.625

D.4 Rightmost sibling queries are trivial for all architectures626

Since ATR has hierarchical structure, we attempted an initial experiment with multihop queries;627

specifically, we present queries where the answer is that terminal’s rightmost sibling terminal. Models628

are only trained on this type of query, not standard parent queries as reported in the main text. We629

train with the same settings in §3.3.630

Behavioural results. In Figure 10 we show that all models (except Based and BasedConv with 1631

layer, where they only have local convolutions) achieve greater than 80% accuracy at the task at632

all dimensionalities. We see slight improvement from 1-layer to 2-layer models but at this point633

performance is saturated and 3-layer does not help. Clearly, this task is extremely simple for all634

models, even more so than parent queries, and thus does not provide useful signal for comparing635

architectures.636
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Figure 10: Sibling queries: Accuracy across models with 1–3 layers on ATR (Lmax = 5, |Σ| = 20)
.

Why are sibling queries easy? Parent nodes are guaranteed to be special terminals in our GNF637

which are sampled from a nonterminal-dependent distribution (see appendix A). However, siblings638

have a large chance of being fixed terminals specified by the production rule. Additionally, the639

rightmost sibling of a particular terminal may be itself, if it is the rightmost terminal of its production640

rule. We speculate that these factors combined make sibling queries easier than parent queries, and641

thus not a suitable testbed for multihop reasoning.642

Future work. The appropriate analogue to study multihop reasoning in ATR is grandparent relations643

(or higher up ancestors in the tree), since the grandparent is always a special head terminal (like the644

parent) and is always to the right of the parent and thus different from the query terminal. We leave645

further experiments on this to future work.646
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NeurIPS Paper Checklist647

1. Claims648

Question: Do the main claims made in the abstract and introduction accurately reflect the649

paper’s contributions and scope?650

Answer: [Yes]651

Justification: We make specific and explicit claims about the performance of SSMs and652

attention on both synthetic tasks against our mechanistic evaluations.653

Guidelines:654

• The answer NA means that the abstract and introduction do not include the claims655

made in the paper.656

• The abstract and/or introduction should clearly state the claims made, including the657

contributions made in the paper and important assumptions and limitations. A No or658

NA answer to this question will not be perceived well by the reviewers.659

• The claims made should match theoretical and experimental results, and reflect how660

much the results can be expected to generalize to other settings.661

• It is fine to include aspirational goals as motivation as long as it is clear that these goals662

are not attained by the paper.663

2. Limitations664

Question: Does the paper discuss the limitations of the work performed by the authors?665

Answer: [Yes]666

Justification: We address limitations of interpretability-based evaluation in the Discussion667

section (§7), and point out directions for future work.668

Guidelines:669

• The answer NA means that the paper has no limitation while the answer No means that670

the paper has limitations, but those are not discussed in the paper.671

• The authors are encouraged to create a separate "Limitations" section in their paper.672

• The paper should point out any strong assumptions and how robust the results are to673

violations of these assumptions (e.g., independence assumptions, noiseless settings,674

model well-specification, asymptotic approximations only holding locally). The authors675

should reflect on how these assumptions might be violated in practice and what the676

implications would be.677

• The authors should reflect on the scope of the claims made, e.g., if the approach was678

only tested on a few datasets or with a few runs. In general, empirical results often679

depend on implicit assumptions, which should be articulated.680

• The authors should reflect on the factors that influence the performance of the approach.681

For example, a facial recognition algorithm may perform poorly when image resolution682

is low or images are taken in low lighting. Or a speech-to-text system might not be683

used reliably to provide closed captions for online lectures because it fails to handle684

technical jargon.685

• The authors should discuss the computational efficiency of the proposed algorithms686

and how they scale with dataset size.687

• If applicable, the authors should discuss possible limitations of their approach to688

address problems of privacy and fairness.689

• While the authors might fear that complete honesty about limitations might be used by690

reviewers as grounds for rejection, a worse outcome might be that reviewers discover691

limitations that aren’t acknowledged in the paper. The authors should use their best692

judgment and recognize that individual actions in favor of transparency play an impor-693

tant role in developing norms that preserve the integrity of the community. Reviewers694

will be specifically instructed to not penalize honesty concerning limitations.695

3. Theory assumptions and proofs696

Question: For each theoretical result, does the paper provide the full set of assumptions and697

a complete (and correct) proof?698
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Answer: [NA] .699

Justification: Our paper contains no theoretical results.700

Guidelines:701

• The answer NA means that the paper does not include theoretical results.702

• All the theorems, formulas, and proofs in the paper should be numbered and cross-703

referenced.704

• All assumptions should be clearly stated or referenced in the statement of any theorems.705

• The proofs can either appear in the main paper or the supplemental material, but if706

they appear in the supplemental material, the authors are encouraged to provide a short707

proof sketch to provide intuition.708

• Inversely, any informal proof provided in the core of the paper should be complemented709

by formal proofs provided in appendix or supplemental material.710

• Theorems and Lemmas that the proof relies upon should be properly referenced.711

4. Experimental result reproducibility712

Question: Does the paper fully disclose all the information needed to reproduce the main ex-713

perimental results of the paper to the extent that it affects the main claims and/or conclusions714

of the paper (regardless of whether the code and data are provided or not)?715

Answer: [Yes]716

Justification: We provide a detailed description of our setup in §3 and §4, as well as a717

formalization of our PCFG setup in Appendix A. We will release code for the camera-ready;718

in addition, we include links to the Zoology and pyvene repositories which contain much719

of the infrastructure we used for running experiments.720

Guidelines:721

• The answer NA means that the paper does not include experiments.722

• If the paper includes experiments, a No answer to this question will not be perceived723

well by the reviewers: Making the paper reproducible is important, regardless of724

whether the code and data are provided or not.725

• If the contribution is a dataset and/or model, the authors should describe the steps taken726

to make their results reproducible or verifiable.727

• Depending on the contribution, reproducibility can be accomplished in various ways.728

For example, if the contribution is a novel architecture, describing the architecture fully729

might suffice, or if the contribution is a specific model and empirical evaluation, it may730

be necessary to either make it possible for others to replicate the model with the same731

dataset, or provide access to the model. In general. releasing code and data is often732

one good way to accomplish this, but reproducibility can also be provided via detailed733

instructions for how to replicate the results, access to a hosted model (e.g., in the case734

of a large language model), releasing of a model checkpoint, or other means that are735

appropriate to the research performed.736

• While NeurIPS does not require releasing code, the conference does require all submis-737

sions to provide some reasonable avenue for reproducibility, which may depend on the738

nature of the contribution. For example739

(a) If the contribution is primarily a new algorithm, the paper should make it clear how740

to reproduce that algorithm.741

(b) If the contribution is primarily a new model architecture, the paper should describe742

the architecture clearly and fully.743

(c) If the contribution is a new model (e.g., a large language model), then there should744

either be a way to access this model for reproducing the results or a way to reproduce745

the model (e.g., with an open-source dataset or instructions for how to construct746

the dataset).747

(d) We recognize that reproducibility may be tricky in some cases, in which case748

authors are welcome to describe the particular way they provide for reproducibility.749

In the case of closed-source models, it may be that access to the model is limited in750

some way (e.g., to registered users), but it should be possible for other researchers751

to have some path to reproducing or verifying the results.752
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5. Open access to data and code753

Question: Does the paper provide open access to the data and code, with sufficient instruc-754

tions to faithfully reproduce the main experimental results, as described in supplemental755

material?756

Answer: [Yes]757

Justification: We make anonymized code available as part of the supplemental information.758

Guidelines:759

• The answer NA means that paper does not include experiments requiring code.760

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/761

public/guides/CodeSubmissionPolicy) for more details.762

• While we encourage the release of code and data, we understand that this might not be763

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not764

including code, unless this is central to the contribution (e.g., for a new open-source765

benchmark).766

• The instructions should contain the exact command and environment needed to run to767

reproduce the results. See the NeurIPS code and data submission guidelines (https:768

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.769

• The authors should provide instructions on data access and preparation, including how770

to access the raw data, preprocessed data, intermediate data, and generated data, etc.771

• The authors should provide scripts to reproduce all experimental results for the new772

proposed method and baselines. If only a subset of experiments are reproducible, they773

should state which ones are omitted from the script and why.774

• At submission time, to preserve anonymity, the authors should release anonymized775

versions (if applicable).776

• Providing as much information as possible in supplemental material (appended to the777

paper) is recommended, but including URLs to data and code is permitted.778

6. Experimental setting/details779

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-780

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the781

results?782

Answer: [Yes]783

Justification: See §3.3, as well as §5 and appendices B and C.784

Guidelines:785

• The answer NA means that the paper does not include experiments.786

• The experimental setting should be presented in the core of the paper to a level of detail787

that is necessary to appreciate the results and make sense of them.788

• The full details can be provided either with the code, in appendix, or as supplemental789

material.790

7. Experiment statistical significance791

Question: Does the paper report error bars suitably and correctly defined or other appropriate792

information about the statistical significance of the experiments?793

Answer: [Yes]794

Justification: We include error bars on all aggregated plots.795

Guidelines:796

• The answer NA means that the paper does not include experiments.797

• The authors should answer "Yes" if the results are accompanied by error bars, confi-798

dence intervals, or statistical significance tests, at least for the experiments that support799

the main claims of the paper.800

• The factors of variability that the error bars are capturing should be clearly stated (for801

example, train/test split, initialization, random drawing of some parameter, or overall802

run with given experimental conditions).803
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• The method for calculating the error bars should be explained (closed form formula,804

call to a library function, bootstrap, etc.)805

• The assumptions made should be given (e.g., Normally distributed errors).806

• It should be clear whether the error bar is the standard deviation or the standard error807

of the mean.808

• It is OK to report 1-sigma error bars, but one should state it. The authors should809

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis810

of Normality of errors is not verified.811

• For asymmetric distributions, the authors should be careful not to show in tables or812

figures symmetric error bars that would yield results that are out of range (e.g. negative813

error rates).814

• If error bars are reported in tables or plots, The authors should explain in the text how815

they were calculated and reference the corresponding figures or tables in the text.816

8. Experiments compute resources817

Question: For each experiment, does the paper provide sufficient information on the com-818

puter resources (type of compute workers, memory, time of execution) needed to reproduce819

the experiments?820

Answer: [Yes]821

Justification: §3.3 includes a summary of necessary compute details.822

Guidelines:823

• The answer NA means that the paper does not include experiments.824

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,825

or cloud provider, including relevant memory and storage.826

• The paper should provide the amount of compute required for each of the individual827

experimental runs as well as estimate the total compute.828

• The paper should disclose whether the full research project required more compute829

than the experiments reported in the paper (e.g., preliminary or failed experiments that830

didn’t make it into the paper).831

9. Code of ethics832

Question: Does the research conducted in the paper conform, in every respect, with the833

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?834

Answer: [Yes]835

Justification: We did not use human participants. All data was synthetically generated. Our836

work has no forseeable harmful consequences.837

Guidelines:838

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.839

• If the authors answer No, they should explain the special circumstances that require a840

deviation from the Code of Ethics.841

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-842

eration due to laws or regulations in their jurisdiction).843

10. Broader impacts844

Question: Does the paper discuss both potential positive societal impacts and negative845

societal impacts of the work performed?846

Answer: [NA]847

Justification: Our work focuses on evaluating small-scale architecture research and thus has848

no immediate societal impacts.849

Guidelines:850

• The answer NA means that there is no societal impact of the work performed.851

• If the authors answer NA or No, they should explain why their work has no societal852

impact or why the paper does not address societal impact.853
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• Examples of negative societal impacts include potential malicious or unintended uses854

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations855

(e.g., deployment of technologies that could make decisions that unfairly impact specific856

groups), privacy considerations, and security considerations.857

• The conference expects that many papers will be foundational research and not tied858

to particular applications, let alone deployments. However, if there is a direct path to859

any negative applications, the authors should point it out. For example, it is legitimate860

to point out that an improvement in the quality of generative models could be used to861

generate deepfakes for disinformation. On the other hand, it is not needed to point out862

that a generic algorithm for optimizing neural networks could enable people to train863

models that generate Deepfakes faster.864

• The authors should consider possible harms that could arise when the technology is865

being used as intended and functioning correctly, harms that could arise when the866

technology is being used as intended but gives incorrect results, and harms following867

from (intentional or unintentional) misuse of the technology.868

• If there are negative societal impacts, the authors could also discuss possible mitigation869

strategies (e.g., gated release of models, providing defenses in addition to attacks,870

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from871

feedback over time, improving the efficiency and accessibility of ML).872

11. Safeguards873

Question: Does the paper describe safeguards that have been put in place for responsible874

release of data or models that have a high risk for misuse (e.g., pretrained language models,875

image generators, or scraped datasets)?876

Answer: [NA]877

Justification: Our models are trained on synthetic tasks, and our data is synthetically878

generated; we thus do not foresee any risk of misuse.879

Guidelines:880

• The answer NA means that the paper poses no such risks.881

• Released models that have a high risk for misuse or dual-use should be released with882

necessary safeguards to allow for controlled use of the model, for example by requiring883

that users adhere to usage guidelines or restrictions to access the model or implementing884

safety filters.885

• Datasets that have been scraped from the Internet could pose safety risks. The authors886

should describe how they avoided releasing unsafe images.887

• We recognize that providing effective safeguards is challenging, and many papers do888

not require this, but we encourage authors to take this into account and make a best889

faith effort.890

12. Licenses for existing assets891

Question: Are the creators or original owners of assets (e.g., code, data, models), used in892

the paper, properly credited and are the license and terms of use explicitly mentioned and893

properly respected?894

Answer: [Yes]895

Justification: We cite and include links to both Zoology [Arora et al., 2024a] and pyvene896

[Wu et al., 2024], both of which our codebase is built upon.897

Guidelines:898

• The answer NA means that the paper does not use existing assets.899

• The authors should cite the original paper that produced the code package or dataset.900

• The authors should state which version of the asset is used and, if possible, include a901

URL.902

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.903

• For scraped data from a particular source (e.g., website), the copyright and terms of904

service of that source should be provided.905
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• If assets are released, the license, copyright information, and terms of use in the906

package should be provided. For popular datasets, paperswithcode.com/datasets907

has curated licenses for some datasets. Their licensing guide can help determine the908

license of a dataset.909

• For existing datasets that are re-packaged, both the original license and the license of910

the derived asset (if it has changed) should be provided.911

• If this information is not available online, the authors are encouraged to reach out to912

the asset’s creators.913

13. New assets914

Question: Are new assets introduced in the paper well documented and is the documentation915

provided alongside the assets?916

Answer: [Yes]917

Justification: Documentation of how to use our codebase is provided in a README.md file.918

Guidelines:919

• The answer NA means that the paper does not release new assets.920

• Researchers should communicate the details of the dataset/code/model as part of their921

submissions via structured templates. This includes details about training, license,922

limitations, etc.923

• The paper should discuss whether and how consent was obtained from people whose924

asset is used.925

• At submission time, remember to anonymize your assets (if applicable). You can either926

create an anonymized URL or include an anonymized zip file.927

14. Crowdsourcing and research with human subjects928

Question: For crowdsourcing experiments and research with human subjects, does the paper929

include the full text of instructions given to participants and screenshots, if applicable, as930

well as details about compensation (if any)?931

Answer: [NA]932

Justification: Our work does not use human subjects.933

Guidelines:934

• The answer NA means that the paper does not involve crowdsourcing nor research with935

human subjects.936

• Including this information in the supplemental material is fine, but if the main contribu-937

tion of the paper involves human subjects, then as much detail as possible should be938

included in the main paper.939

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,940

or other labor should be paid at least the minimum wage in the country of the data941

collector.942

15. Institutional review board (IRB) approvals or equivalent for research with human943

subjects944

Question: Does the paper describe potential risks incurred by study participants, whether945

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)946

approvals (or an equivalent approval/review based on the requirements of your country or947

institution) were obtained?948

Answer: [NA]949

Justification: Our work does not use human subjects.950

Guidelines:951

• The answer NA means that the paper does not involve crowdsourcing nor research with952

human subjects.953

• Depending on the country in which research is conducted, IRB approval (or equivalent)954

may be required for any human subjects research. If you obtained IRB approval, you955

should clearly state this in the paper.956
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• We recognize that the procedures for this may vary significantly between institutions957

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the958

guidelines for their institution.959

• For initial submissions, do not include any information that would break anonymity (if960

applicable), such as the institution conducting the review.961

16. Declaration of LLM usage962

Question: Does the paper describe the usage of LLMs if it is an important, original, or963

non-standard component of the core methods in this research? Note that if the LLM is used964

only for writing, editing, or formatting purposes and does not impact the core methodology,965

scientific rigorousness, or originality of the research, declaration is not required.966

Answer: [NA]967

Justification: We did not use LLMs as part of this work.968

Guidelines:969

• The answer NA means that the core method development in this research does not970

involve LLMs as any important, original, or non-standard components.971

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for972

what should or should not be described.973
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