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ABSTRACT

Reasoning models are typically trained against verification mechanisms in for-
mally specified systems such as code or symbolic math. In open domains like
biology, however, we lack exact rules to enable large-scale formal verification and
instead often rely on lab experiments to test predictions. Such experiments are
slow, costly, and cannot scale with computation. In this work, we show that world
models of biology or other prior knowledge can serve as approximate oracles for
soft verification, allowing reasoning systems to be trained without additional ex-
perimental data. We present two paradigms of training models with approximate
verifiers: RLEMF: reinforcement learning with experimental model feedback and
RLPK: reinforcement learning from prior knowledge. Using these paradigms, we
introduce rbiol, a reasoning model for biology post-trained from a pretrained
LLM with reinforcement learning, using learned biological models for verifica-
tion during training. We demonstrate that soft verification can distill biological
world models into rbiol, enabling it to achieve state-of-the-art performance on
perturbation prediction in the PERTURBQA benchmark. We present rbiol as a
proof of concept that predictions from biological models can train powerful rea-
soning systems using simulations rather than experimental data, offering a new
paradigm for model training.

1 INTRODUCTION

Building foundation models suitable for scientific tasks is a task of major interest and has produced
numerous successful examples in recent memory (Abramson et al.,[2024;|Cui et al.| [2024; |Lin et al.}
2023). Similarly, large language models (LLMs) have shown groundbreaking potential as parametric
representations of the world’s knowledge, and have been used across every sector. A key challenge
is figuring out how to bridge the quantitative accuracy of models of experimental scientific data, for
example in biology, with LLMs such that knowledge from these low-level representations of bio-
logical systems may be transferred into more flexible and interactive models, such as conversational
LLMs, with the explicit goal of being useful for scientific exploration.

Of great promise on scientific tasks are reasoning models, which aim to extend LLMs toward sys-
tems that can perform structured, multi-step inference and use test-time compute to generalize better
to a given query. Popular reasoning models like DeepSeek-R1 (Guo et al.,[2025) and QWEN (Team)
2024) have shown potential in multiple fields, while specialized reasoning LLMs have been explored
in fields such as medicine (Fallahpour et al.| 2025} |Cao et al.,|2025) and chemistry (Narayanan et al.,
20235). In frameworks such as reinforcement learning with human feedback (RLHF) (Christiano
et al.|[2017; Stiennon et al.,|2020), and reinforcement learning with verifiable rewards (RLVR) (Pan
et al.| [2023), both experimental data collection with human labels and exact oracles of rewards are
used to train language models to align to a reward structure and improve their reasoning capabilities.
In domains that are not formally specified like biology, however, experimental data and ground-truth
verifiers are scarce: while mathematics and code benefit from exact execution and have symbolically
accessible oracles, experiments are costly and slow. Consider training a language model to answer
biological queries like *Will knocking down gene AARS in liver cells affect the expression of gene
ATAD2B?’ In traditional RL domains, we could automatically verify thousands of such predictions,
but in biology, each verification requires a costly laboratory experiment, making it impossible to
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generate the millions of training signals needed for effective learning. This motivates exploring
alternative supervision strategies for reasoning for such domains.

To overcome these limitations and further advance the utility of reasoning models for scientific
tasks in biology, we propose employing models of biological data to run virtual experiments which
can be used as sources of probabilistic -or soft- verification signal. This can be seen as a form of
reinforcement learning from Al feedback (RLAIF) (Lee et al. 2023)) with structural adjustments
to map to our scientific setting, where RLHF and RLVR are not tractable. We consider those soft
verifiers, since they return probabilistic rewards which measure the coherence of a biology-model or
of biological prior knowledge to a reasoning trace and its returned answer. Much like with RLVR,
we can use this soft verification paradigm to generate a broad distribution of verified data limited
only by how we can query the biology model at hand. We thus turn a (world) model of biology into
a reasoning environment to generate rewards to train reasoning models.

Our work also connects with the concept of virtual cell models (VCMs) (Bunne et al.l 2024;
Slepchenko et al., 2003} [Loew & Schaft] [2001), which envisions building powerful predictive sys-
tems of biology that can simulate transitions such as diseased — healthy states. Advances in com-
pute and large-scale data have enabled construction of such foundation models in specific modalities-
transcriptomics (Rosen et al., 2023 |Pearce et al.| {2025} |Bian et al., 2024; Ho et al.,|2024; Theodoris
et al.l 2023), imaging (Gupta et al., |2024), proteomics (Abramson et al., 2024} [Lin et al.| [2023),
genomics (Nguyen et al., 2024), and multimodal models (Rizvi et al., [2025; Richard et al., 2024;
Levine et al., 2024} Schaefer et al., [ 2024; |Chor et al., [2024; |Istrate et al., [2024).

Our approach can be seen as using and aligning such world models of biology into a common
representation using language as the bridge. This approach not only aggregates knowledge but also
makes it accessible through natural language, allowing experimentalists to interact conversationally
with biological models. By distilling biological knowledge into LLMs, we transform experimental
insights into human-readable reasoning models. Our motivations are threefold: (i) enable training
from biological simulations rather than costly experimental data, (ii) integrate diverse models of
biology into a single platform, (iii) democratize access to biological knowledge through dialogue.

Contributions. Our work contributes to the design of supervision strategies for reasoning LLMs
for scientific use, using biological perturbation prediction -e.g., predicting effects of gene knock-
downs on differential expression, as a case study:

1. We propose two new processes for training models with Al-verifiers: RLEMF: reinforce-
ment learning with experimental model feedback and RLPK: reinforcement learning from
prior knowledge - that reward with predictive models, and prior knowledge, respectively.

2. RLEMF-trained models generalize OOD and compete with ablation-models trained on ex-
perimental data, achieving new state-of-the-art results on the PerturbQA benchmark

3. We show that mixtures of Al-verifiers can be combined to compose stronger models while
drawing from different sources of biological knowledge, even when supervision is off-task.

4. We show that inference-time chain-of-thought prompting (Kojima et al.l 2022)) further im-
proves reasoning performance, allowing rbiol to reach state of the art on the PERTURBQA
benchmark without tool use or experimental data at inference, even at a fraction of training
data.

In summary, rbiol extends standard RL training for reasoning models by incorporating Al-based
verification through both predictive biological models of experimental data and curated knowledge
sources and provides a general framework of using model simulations to train reasoning mod-
els. Code implementing the core training methodology is available at https://anonymous.
4open.science/r/rbio-9155/README . md. This release focuses on the essential compo-
nents for reproducibility and community adoption.

2 RELATED WORK

Recent reasoning-oriented LLMs-such as OpenAl’s o-series, Claude 3.7/4, Gemini 2.5, and
DeepSeek-R1-exhibit strong multi-step inference and logical deduction across domains. Their
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Figure 1: rbiol overview. (a) Distilling VCMs into reasoning LLMs via soft verification. (b) GRPO loop with
Virtual Cell Models (VCM) rewards (shown as double helix). (c) Soft vs. hard supervision.

development spans four paradigms: (i) inference-time scaling (e.g., chain-of-thought, self-
consistency), e.g., see (Muennighoff et al., [2025); (ii) pure RL approaches like DeepSeek-R1-Zero,
where traces emerge from accuracy- and format-based rewards; (iii) hybrid supervised finetuning
plus RL, as in DeepSeek-R1; and (iv) distillation into smaller backbones such as Qwen (Teaml,
2024; Yang et al.,[2025) or Llama (Guo et al., 2025} [Touvron et al., [2023). Despite advances, per-
sistent challenges remain in hallucination, logical consistency, verbosity, and interpretability-issues
directly tied to the quality of the rewards.

Domain-specific reasoning has also been explored. BioReason (Fallahpour et al.,|2025) combines a
genomic encoder with an LLM for disease-pathway inference with interpretable steps, while Cell-
Reasoner (Cao et al, [2025) frames cell-type annotation explicitly as a reasoning task. Both ap-
proaches, however, depend heavily on curated datasets, limiting robustness to noisy or rare popula-
tions and motivating richer, more scalable reasoning signals. Our approach differs by using machine
learning models of biology directly as reward-generating verifiers. Prior methods integrated exter-
nal models (e.g., embeddings) into reasoning traces but still evaluated against annotated data. We
instead shape rewards themselves with model predictions, showing that biological world models can
be distilled into reasoning LL.Ms -positioning our work within the broader space using Al-rewards.

Wu et al.| (2025) propose SUMMER, an inference-time pipeline combining knowledge-graph sum-
maries, retrieval, and chain-of-thought prompting for perturbation prediction. While it outperforms
prior methods on PerturbQA, gains are modest, causal directionality remains error-prone, and large
models are required even for preprocessing. Unlike SUMMER, our models achieve comparable or
better results without experimental data, relying solely on model predictions.

Our work also connects to concurrent research on soft- and Al- verification. In RLAIF (Lee et al.,
2023)) and follow-up work, other LLMs are used as reward mechanisms. Our approach RLEMF
differs by not requiring an LLM or any text model as an Al-feedback model, and uses models in a
different data space of experimental data linked by appropriate prompting techniques and embed-
dings. Our idea thus builds a bridge between models of experimental data yielding Al-feedback,
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Table 1: Verifiers used during RL training. EXP = experimental data; MLP = multilayer perceptron; GO =
Gene Ontology.

Verifier Type Reward Signal Source

EXP Hard Binary 7*"% € {0, 1} Experimental data
MLP Soft  Probability 75°" = p, 0<p<1 Simulations
GO Soft ROUGE, keyword, likelihood Knowledge base

and the reasoning LLMs learning from that feedback to generate more accurate textual descriptions
of valid scientific knowledge. However, we share the approach the model is used to provide a prob-
abilistic verifiable reward. Saad-Falcon et al.| (2025)) also use LLMs as soft verifiers for other LLMs
and combine verifiers. In contrast, we generalize beyond LLMs to arbitrary biological models and
combine multiple verifiers as separate reward functions. In a framework closest to our approach
RLPKBZI], Yu et al.[(2025) use LLMs to use the reasoning LLM itself to score answers as rewards.
In RLPK we do not use answers, but structured databases of prior scientific knowledge.

To our knowledge, we are the first to apply this paradigm to reasoning models for biology, shifting
the training signal from experimental data to simulations and broadening the design space of verifiers
for reasoning LLMs.

3 RBIOl: METHODS

In standard domains, during RL training, verifiers return precise signals-for example, whether code
executes or a math solution is correct. In biology, some queries can be validated experimentally
(hard verification), but exhaustive lab testing is infeasible due to scale. Consider a biological query
related to genetic perturbation, such as: Is a knockdown of AARS in hepg?2 cells likely to result in dif-
ferential expression of ATAD2B? with a binary answer: yes/no. During training, the LLM produces
completions o; for query q. Rewards can be assigned in three ways that we introduce in the following
sections and also showcase in Fig.[I} Table[I]summarizes these verifiers and reward formulations.
We follow the PerturbQA benchmark protocol (Wu et al., 2025), evaluating CRISPRi single-gene
perturbation prediction across four cell lines (RPE1, K562, HEPG2, JURKAT); cell lines share
40-75% of perturbed genes, ensuring out-of-distribution generalization rather than within-cell-line
interpolation. A more detailed description of the biological setup is provided in Appendix [A.1]
We report F1, Balanced Accuracy, and MCC as the most biologically meaningful metrics, since
identifying true positive perturbations is more critical than avoiding false positives Appendix [A.2]

3.1 REINFORCEMENT LEARNING FOR REASONING

Let P(Q) denote a dataset used for training; ¢ a query sampled from P(Q), G a set of outputs
generated during training by the reasoning LLM 7y in response to input queries; o; a generated
sequence of tokens with tokens o; ; in response to g; 7 a reference base model from the supervised
finetuned LLM; 7, a reward model emitting rewards 7;; Lgrpo(f) the surrogate objective and
B the coefficient for the KL penalty. Given these variables, Group Relative Policy Optimization
(GRPO) (Shao et al., [2024; Mroueh), [2025) training maximizes the following objective function,
with the goal of increasing the accumulated collective rewards {r; > }:

Jarpo = EQNP(Q)»{Oi}?=1N”901d [LGRPO(G)]' M

We use the clipped surrogate ob]ectlve

Lerro(f _‘G‘Z|O‘me(ﬂ;j<v~‘w<'> An,t,g<e,Am))—BDKL[mHmef] )

4 (0i,¢1q,0i<t) * 7"

gle, Aiy) = clip (12ulgo=) 1 — e 14 ) Ay 3)
1 _ ri—mean({ry,...,rg})
Ai’t - stde(i‘f'rl,..?,rc})c (4)
D [ || } _ Twet(04,t]9,0i<t) 1 Tref (04,¢9,0i<t) 1 5)
KL{TO||Tref We(oi,t\q,0i<t) g 770(£’z‘,t“170i<t) ’ (
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3.2 RBIO-EXP: REINFORCEMENT LEARNING WITH HARD VERIFICATION

In this setting, verification relies on experimentally validated observations that provide binary out-
comes. Let Dey, denote the collection of experimental results containing pairs (g, y*), where each
query g (e.g., a perturbation experiment) has a corresponding ground-truth label y* € {0,1}.

We define a verifier function
‘/;xp(Q7 055 Dexp) : (Q1 Oi) — {07 1}7 (6)

which returns 1 when the model output o; matches the experimentally validated outcome for ¢, and
0 otherwise:

1, 0i = y*(q) and (¢,4"(q)) € Dexp,
Ve i3 Dexp) = ) 7
exp(: 045 Dexp) {O7 otherwise. @)
The reward assigned to completion o; is then defined as
Tzhard(QaOiQDexp) = Véxp(%oi;Dexp)- ®)

Here, D.,;, is not itself the verifier but rather the data source queried by the deterministic verification
function Vexp. A description of the RBIO-EXP algorithm is provided in Appendix Alg- E}

3.3 RBIO-RLEMF: REINFORCEMENT LEARNING WITH EXPERIMENTAL MODEL FEEDBACK

In many cases, exhaustive experimental datasets Dy, are not available for all biological queries,
or are expensive or even impossible to generate. To extend reward coverage across more scien-
tific breadth, we use predictive models of experimental data as surrogate verifiers, and denote the
process as experimental model feedback. These models -for example, neural predictors of pertur-
bation effects-provide soft, probabilistic rewards rather than binary outcomes. More generally, this
approach is akin to RLAIF, with the key difference that RLEMF utilizes arbitrary other (non-LLM)
models as feedback mechanisms for a query, in our example world models of biology defined on
experimental data.

Let M denote a biological model that can be queried with a prompt ¢ and contextual information
¢; (e.g., the cell line or other covariates), producing a scalar prediction p = p(c;|q; M) that reflects
the likelihood of the queried biological effect being true.

We define a corresponding verifier function

VEMF(q,Oi;M;Cj) : (ani) = [07 1]7 (9)
which emits a soft reward based on the model’s predicted probability:
Vemr (¢, 05 M, ¢;) = M(g; ¢;), (10)

where higher values indicate stronger agreement between the model prediction and the reasoning
output o;. For instance, when M is a multilayer perceptron (MLP) trained on perturbation out-
comes, Vemr(g, 0i; M, ¢;) corresponds to the model’s predicted probability that the statement in ¢
is true for context c;. Within this framework one can also utilize other metrics like log-likelihoods
appropriately normalized given a collection of data to be between 0 and 1 cast as rewards represent-
ing the belief of the model in the simulated data. The reinforcement learning reward is then defined
as:

(g, 00) = M(g, ¢;), (1D
which generalizes the hard verification in Eq. to a continuous reward signal in [0, 1].

This approach allows reasoning models to be trained against world models of biology that approx-
imate experimental verification, effectively replacing slow or expensive wet-lab experiments with
computational feedback. The verifier Vi\r is therefore a deterministic function parameterized by
the predictive model M, not a probabilistic conditional, ensuring conceptual consistency with the
formulation in Sec.[/| A description of the RBIO-RLEMEF algorithm is provided in Appendix Alg-
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3.4 RBIO-RLPK: REINFORCEMENT LEARNING FROM PRIOR KNOWLEDGE

In addition to experimental or model-based verification, reasoning models can also be guided by
structured scientific knowledge. Here, we propose prior knowledge feedback (RLPK), where prior
knowledge sources are used to verify the semantic consistency of a model’s output with curated
facts rather than empirical measurements. Let K g denote a structured knowledge source (e.g., the
Gene Ontology) containing a set of prior facts or annotations relevant to a query ¢ which take the
shape of text or other sequences. Given an output o; produced by the reasoning model, we define
a corresponding verifier function Vpk (q,0:; Ks) : (q,0;) +— R, which emits a scalar reward 75°%
reflecting the agreement between o, and relevant knowledge retrieved from Kg.

Knowledge retrieval. For each query ¢, we obtain a collection of knowledge statements

Oprior(q) = {qprlor J_, by querying Kg for entries semantically related to g (e.g., gene anno-

tations or biological process descriptions). Each qp]rlor

a list of tokens y; = {y;,1, ...y, }-

has a sequence length T); and thus consists of

Scoring metrics. The verifier Vpk computes rewards using one or more of the following metrics:

1. ROUGE-based score: We request the model to expose the relevant gene facts inside
<gene_info> tags—which we refer to as 0relevamt —and compute standard ROUGE-1/2/L F-

scores between qpllor and the extracted 0rClcvant

VEROUGE) (4 01 Kg) = Z 3" ROUGE—X(¢™™", ofclevant),
j=1Xe{1,2,L}

where o¢'evant denotes the portion of the reasoning trace encapsulated in <gene_info> tags.
2. Keyword-overlap score:

J
Vi (g0 Ks) =Y

Jj=1

| KW(qirior) N KW(Ogelevant) |
| KW(q?rior) ‘

i

where KW(+) extracts normalized keyword sets from each string.
3. Likelihood-based score: For likelihood-based verifiers, we encourage the model to assign higher

likelihood to prior knowledge {g7 "°" under our learned policy 7 given the model’s reasoning
emissions. To account for Varlab1l1ty in sequence length T);, we average over the sequence tokens

Yk in q§’”°r and define:
J TJ
1
LL
Vi (g, 06 Ks) =Z?210gpm W)k | Yj<hs 065 ), (12)
j=1"7 k=1

prior

which measures how likely each prior-knowledge sequence ¢; ™ is under the current policy 7.

Reward normalization. Because raw scores vary widely across metrics, each reward is normal-
ized via an exponential moving average (EMA) before computing GRPO advantages:

T — T

I~ y —“max; “max | »
Vo +e

2Zmax

Fe (1—Q)ftary, 0+ (1—a)it+alr,—7)2, F=0.5+5"1 clip(
where 7 is the normalized reward used for token-level advantages (Eq. 4).

Summary. The final reward for RBIO-RLPK is

SO& (qa OZ) = VPK(qa 0i; KS)7

where Vpk may be a weighted combination of the metrics above. This keeps consistency with earlier
sections: the verifier is a deterministic mapping parameterized by the knowledge source Kg, not a
probabilistic conditional (see Appendix Alg. [3).
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3.5 COMPOSABLE VERIFICATION FOR MODEL INTEGRATION

All rbio models use formatting (7ymye) and mention (rmenion) rewards (e.g., gene mentions). When
training with multiple verifiers (Sec. [.2), each prompt ¢ is verified by a specific function V5. With
verifier functions Vj, emitting rewards 7; j:

hard/ ¢
T (qa Oi) = Tformat + Tmention 1 Z 5ks>\k ri:;;‘?” /soft (qv 02’)7 )\k Z 0. (13)
k

Unless stated otherwise, A, = 2, giving soft-verifier rewards higher variance weighting than 7o
and 7mention in GRPO updates.

Use of LLMs. We used GPT-based tools for minor writing polish and for code assistance in gener-
ating plots; all scientific contributions are solely by the authors.

4 EXPERIMENTS

4.1 RBIO WITH AI-VERIFICATION GENERALIZES OOD ON PERTURBATION TASKS

On PERTURBQA (Wu et al., 2025) (CRISPRi knockdowns in RPE1, K562, HEPG2, JURKAT),
models trained with soft verifiers generalize to held-out cell lines, reducing reliance on cell-
line—specific experimental data. We first evaluate a 2-layer MLP (64 hidden units) trained on three
cell lines and use it to generate predictions on the fourth, which serve as rewards during RL. Gene
representations include one-hot, Gene2Vec (Du et al |2019), and ESM (Lin et al} [2023). The re-
sulting models, rbio-MLP-leave-one-out-one-hot and rbio-MLP-leave-one-out-gene2vec, perform
comparably to experimental-data—trained rbiol models. The MLP architecture and training de-
tails are provided in Appendix[A.6.1] Supplementary Fig.[I3]directly compares the MLP verifiers
with the rbio-MLP-leave-one-out-X for X € {one-hot, gene2vec} variations. While the MLP pro-
vides calibrated biological supervision, rbiol consistently exceeds its performance across all met-
rics, demonstrating that GRPO-based reinforcement learning refines and extends the verifier’s signal
rather than merely imitating it.

We compare to two experimental-data baselines: rbio-EXP-one-cell-line (train/test within a cell line;
Fig. 2h) and rbio-EXP-leave-one-out (train on three cell lines; test on the fourth; Fig. Zb). We also
benchmark against SUMMER (Wu et al., 2025). As shown in Fig. —e, the soft-verifier models
closely match experimental-data models on F1 and MCC, and exceed them in Balanced Accuracy
via higher TPR while maintaining similar TNR. Identifying true effects is paramount in perturbation,
so higher TPR is valuable even with some F1 trade-off. All rbiol variants also outperform GEARS
(Roohani et al.L[2022)), a state-of-the-art model for perturbation prediction and the base Qwen2.5-3B.

In Appendix and we present detailed analyses looking at robustness of rbiol
models to verifier fidelity and signal miscalibrations, as well as the effect of different reward com-
ponents. Our results show that rbiol models capture genuine biological signal—remaining robust
to verifier noise and miscalibration, leveraging but not depending on soft verifier confidence. Be-
yond perturbation OOD generalization—where shifts reflect cell-line—specific transcriptional pro-
grams—we further evaluated rbiol on zero-shot transcriptomic cell-state prediction: Alzheimer’s
disease (2 classes) and myeloid cancers (7 classes). Trained solely on perturbation reasoning with bi-
ological soft-verifier rewards, rbiol substantially outperforms the base Qwen model on both datasets
(+94% F1, +136% Recall for Alzheimer; +36% F1, +68% Recall for Cancer), approaching the per-
formance of SCVI (Lopez et al.||2018)—a model trained on full raw-count matrices—despite using
only natural-language inputs over the top-100 expressed genes and metadata. This shows that re-
inforcement learning with biological verifiers yields transferable representations of cellular state
that generalize from causal perturbation dynamics to disease-level transcriptional inference. Full

analyses appear in Appendix[A.7]

4.2  TRAINING RBIO1 ON MIXTURES OF AI-VERIFIERS LEADS TO PERFORMANCE GAINS

We find that combining verifiers improves performance over using them individually. Notably, the
order in which models see the verifiers matters, reflecting differences in the knowledge provided.
For a pair of verifiers V;, V;, we evaluate:
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Figure 2: Model performance for experimental vs. simulation-based soft verification. (a) rbio-EXP-one-
cell-line: trained and tested on the same cell line (in-distribution). (b) rbio-EXP-leave-one-out: trained on
three cell lines, tested on the held-out one (out-of-distribution). (c) rbio-MLP-leave-one-out: trained using
MLP predictions on the held-out line (MLP fit on the others). (d) Aggregate metrics: computed over four cell
lines (K562, RPE1, JURKAT, HEPG2), averaged across 5 runs. SEM computation described in Appendix[A.2]
(e) Metrics split by cell line. Baselines: SUMMER (experimental + domain knowledge), GEARS (specialized
perturbation model), Qwen2.5-3b (base reasoning model).

1. V;: trained only with V; , i € {1,2}
2. V;||V;: trained sequentially, V;, then V;

3. V; U Vj: trained on a random mixture of V; and V;

We experiment with the following combinations of verifiers: (1) V3 = EXP (hard verifier; experi-
mental data) and V5 = MLP (soft verifier; MLP predictions); (2) V3 = EXP and Vo = GOq;—y; (soft
verifier; GO Ontology likelihood reward); (3) V3 = MLP and Vo = GOy;;—;;. Note that the training
data for each of V7, V5 is independent of each other - i.e. if V; is a verifier of experimental data from
a dataset D1, emissions from V5 will be on an independent dataset Dy where D1 N Do = &. In the
case of the GO,;_y; the soft verification is the likelihood of the prior knowledge {qp "} we have
under our learned policy 7y as described in Eq. [I2}

As shown in Fig. 3] adding verifiers consistently improves performance over using them individu-
ally. For V; = EXP and V, = MLP (Fig. Eh,b), all three composition strategies (Sec. @) perform
similarly, yet each surpasses the single verifiers, underscoring the complementary value of strong
verification sources such as experimental data and models of experimental data. When combin-
ing knowledge and experimental verifiers, training order is critical. In Fig.[3f,d, models trained with
GOy firstand then M LP, EX P (GO yyi1|| M LP, GOyy1|| EX P) outperform the reverse. GO-
based supervision increases TPR (captures more positives) but lowers TNR; subsequent MLP/EXP
training restores TNR, improving Balanced Accuracy and MCC. Starting from MLP or EXP and
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Figure 3: Model performance for compositions of verifiers V; ||V} corresponds to training models sequen-
tially, first on V;, then on V;. V; U Vj corresponds to models trained on a random mixture of {V;, V;}; (a, b)
MLP and EX P, trained for 1, and 2 epochs. (¢) EX P and GOgi;—1; (d)M LP and GOqgi1—1:1

adding GO,y later reduces performance, showing that knowledge signals can dilute experimen-
tal ones if applied too late. Thus, GO rewards are most useful early for broad guidance, while
high-fidelity verifiers refine later. Cross-verifier agreement (Appendix[A.5} SI Figs. [T0H12) shows
EXP and MLP are strongly aligned (r = 0.81-0.85, binary 0.92-0.94). Overall, the results re-
veal a hierarchy: GO early aids recall, ending with a high-fidelity verifier (GO—MLP/EXP) yields
robust signals, while the reverse (MLP/EXP—GO) introduces noise. Later verifiers denoise ear-
lier rewards, indicating effects stem from signal quality rather than reward scaling. This follows
a standard training principle—start broad and noisy (ontologies), then refine with higher-quality
experimental supervision—and naturally generalizes to multiple verifiers Vi, Vo, ..., V.

4.3 RBIO WITH CHAIN-OF-THOUGHT YIELDS STATE OF THE ART ON PERTURBQA

Adding chain-of-thought (CoT) reasoning at inference improves all rbiol variants we tested (Ta-
ble [2), surpassing SUMMER as state-of-art performance on the PerturbQA benchmark. The CoT
prompt that performed the best was: ‘The Biologist will evaluate each step of this problem, using
logical reasoning and evidence from the prompt.” Examples of performance increase: rbio-EXP-
all-cell-lines F1 0.75—0.79, Balanced Accuracy 0.88—0.91, TPR 0.83—0.87; rbio-MLP-ESM F1
0.67—0.71, Balanced Accuracy 0.85—0.89, TPR 0.81—0.87. We offer examples of answers and
reasoning traces generated by the rbiol models on a perturbation question in Figure [5]in Supple-
mentary material. Shown in Figure [ are rbiol models trained on only one-fifth of the data and
tested with and without CoT. Remarkably, adding CoT at inference lets them reach state-of-the-
art performance on PerturbQA - with rbio-MLP U EXP-CoT surpassing SUMMER despite being
trained on a fraction of training data - demonstrating the power of inference-time capabilities and
verifier composition in reasoning models. Note that here SUMMER’s higher TNR reflects a stricter
precision—recall trade-off rather than overall superior performance.

4.4 RBIO OUTPERFORMS LLMS WITH UP TO 40X MORE PARAMETERS ON PERTURBQA

Despite having only 3 billion parameters, rbiol models substantially outperform both reasoning-
oriented and instruction-tuned LLMs that are an order of magnitude larger (Table [Z). Zero-
shot baselines—including DeepSeek R1 distilled models (32B—70B parameters), Qwen2.5 Instruct
(3B-72B), and OpenAl ol-series models (20B—120B)—achieve F1 scores between 0.24 and 0.30
and MCC scores below 0.16. In contrast, rbio-EXP-CoT reaches F1 = 0.786 and MCC = 0.752,
while rbio-MLP U EXP-CoT trained on only 1/15 of the data achieves F1 =0.716 and MCC = 0.668.
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Aggregate Model Performance Across All Cell-Lines
CoT vs No-CoT, 10 epochs, 1/5 data sample

Condition
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Figure 4: Effect of chain-of-thought prompting. Models using CoT achieve state-of-the-art performance on
the PerturbQA benchmark.

Model Fl-score Balanced Accuracy TPR TNR MCC
Models trained on full data size
rbio-EXP 0.750 £0.018  0.883 £ 0.011  0.827 £ 0.018 0.939 £ 0.003 0.709 % 0.020
rbio-EXP-CoT 0.786 £ 0.000  0.907 £ 0.000  0.872 & 0.000 0.943 £ 0.000 0.752 4 0.000
rbio-MLP 0.669 £ 0.025 0.855£0.017  0.807 £ 0.030 0.902 4 0.004 0.618 £ 0.029
rbio-MLP-CoT 0.714 £ 0.000  0.889 £ 0.000  0.873 &£ 0.000 0.906 4+ 0.000 0.672 £ 0.000
SUMMER 0.695 £0.012  0.799 £ 0.006  0.626 &+ 0.012 0.972 £ 0.002 0.657 & 0.013
Qwen2.5-3b 0.231 £0.002  0.522 £0.001  0.529 + 0.014 0.515 £ 0.013 0.032 4 0.001
GEARS 0.296 £ 0.033  0.588 £ 0.012  0.178  0.024 0.997 £ 0.001 0.371 % 0.023
Models trained on 1/15 of full data size

rbio-MLP 0.588 £0.030  0.792 £ 0.019  0.690 + 0.034 0.894 £ 0.005 0.518 % 0.035
rbio-MLP-CoT 0.642 +£0.001  0.827 £0.000  0.752 &+ 0.000 0.903 4 0.000 0.582 + 0.001
rbio-EXP 0.578 £0.018  0.804 £ 0.012  0.741 £ 0.025 0.866 £ 0.008 0.510 % 0.021
rbio-EXP-CoT 0.639 4+ 0.000  0.819 £ 0.000  0.731 &£ 0.000 0.908 4 0.000 0.577 £ 0.001
rbio-MLP U EXP 0.648 £0.025 0.825 £ 0.015 0.737 + 0.027 0.913 £ 0.005 0.589 4 0.029
rbio-MLP U EXP-CoT 0.716 £ 0.000  0.861 £ 0.000  0.792 = 0.000 0.930 4 0.000 0.668 + 0.000
rbio-MLP || EXP 0.623 £0.025 0.829 £ 0.016  0.771 + 0.028 0.886 £ 0.005 0.563 4 0.029
rbio-MLP || EXP-CoT ~ 0.696 £ 0.000  0.858 £ 0.000  0.799 + 0.001 0.918 + 0.000 0.646 + 0.000
rbio-EXP || MLP 0.641 £0.026  0.827 £ 0.017  0.748 £ 0.031 0.906 £ 0.003 0.582 =+ 0.030

rbio-EXP || MLP-CoT ~ 0.703 £ 0.000  0.856 £ 0.000  0.786 % 0.000 0.926 + 0.000 0.653 4 0.000

Baseline Reasoning (R)/Instruction-tuned models

DeepSeek R1 Distil

Qwen 32B (R) 0.241 £0.004 0512 £0.011  0.694 &+ 0.026 0.340 £ 0.032 0.024 4 0.010

Llama 70B (R) ¥ 0.248 £0.000  0.513 £0.000  0.790 & 0.000 0.235 4 0.000 0.021 £ 0.000
Qwen2.5 3B Instruct 0.240 £ 0.003  0.518 £ 0.012  0.663 + 0.026 0.376 £ 0.030 0.028 4 0.010
Qwen2.5 72B Instruct ~ 0.247 4+ 0.004  0.543 £ 0.009  0.517 £ 0.039 0.569 4 0.047 0.045 + 0.018
OpenAI OSS 20B (R) ¥ 0.295 4 0.013  0.602 £+ 0.018  0.435 £ 0.036 0.758 4 0.032 0.151 + 0.016
OpenAI OSS 120B (R) 0.289 +0.019  0.602 £ 0.017  0.279 £ 0.027 0.896 4 0.017 0.131 £ 0.019

Table 2: Aggregate PerturbQA performance. Mean & SE over 5 completions across 4 cell lines. rbio-EXP
corresponds to rbio-EXP-all-cell-lines. Comparison to baselines: SUMMER (task SOTA),
and SOTA reasoning and instruction-tuned models. Best model in each category bolded. Models with | were
unable to answer all prompts. Reasoning/instruction-tuned models evaluated zero-shot.

This demonstrates that domain-specific post-training with soft verification enables smaller models
to acquire biological reasoning capabilities that general-purpose LLMs fail to exhibit through pre-
training and instruction-tuning alone.

5 CONCLUSION

We introduce rbiol, a suite of reasoning models trained via soft verification, where simulations
from biological world models provide rewards for reinforcement learning. This approach rivals
experimental-data—trained models, especially when combined with chain-of-thought prompting. By
leveraging predictive bio-models (e.g., MLPs on gene embeddings) and knowledge sources like the
GO Ontology, rbiol shows that simulations and prior knowledge can substitute for costly experi-
mental supervision.We aim to extend rbiol across diverse biological models and modalities toward
a universal virtual cell system integrating multiple sources as soft verifiers. Soft verification defines
a general paradigm for training reasoning LLMs—scalable to domains without exact verifiers and
opening new directions for verifier design, noise robustness, and evaluation beyond task accuracy.
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A APPENDIX

A.1 PERTURBATION-REASONING TASK SETUP AND NATURAL-LANGUAGE FORMULATION

Overview. The PerturbQA benchmark was introduced by (Wu et al.| 2025)and provides CRISPRi
single-gene perturbation experiments across four human cell lines—RPE1, K562, HEPG2, and JU-
RKAT. Each experimental record indicates whether a knock-down of gene A affects the expression
of gene B in a specific cell line. We follow the processed natural-language formulation introduced
in PerturbQA, using the converted perturbation records into text-based reasoning query.

Natural-language conversion. Each example is phrased as a binary scientific question, for instance:

“Is a knockdown of AARS in hepg?2 cells likely to result in differential expression
of ATAD2B? The answer is either yes or no.”

This transformation allows language models to treat biological perturbation prediction as a question-
answering task grounded in experimental evidence. Ground-truth labels (yes/no) are derived directly
from differential-expression outcomes reported in the original CRISPRi datasets. This representa-
tion enables the model to reason jointly over biological entities, relationships, and cell-line context,
bridging structured perturbation data with language-based reasoning.

Prompting formulation. Each perturbation question is provided as the user_prompt, and the model
responds according to a fixed system_prompt describing a structured reasoning dialogue:

“A conversation between User and Biologist. The user asks a question, and the Bi-
ologist solves it. The Biologist first thinks about the reasoning process in the mind
and then provides the user with the answer. The reasoning process and answer
are enclosed within <t hink> and <answer> tags, respectively, i.e., <t hink>
reasoning process here </think> <answer> answer here </answer>.”

This format explicitly separates latent reasoning from the final prediction, allowing reinforcement
learning to target biologically grounded reasoning steps and answer correctness.

Task setups (as illustrated in Fig. 2). We evaluate three complementary configurations:

* (a) rbio-EXP-one-cell-line: Models are trained and evaluated on perturbations within a
single cell line (e.g., train = test = RPE1). This setup measures within-cell-line generaliza-
tion where training and test gene pairs are disjoint, isolating reasoning performance without
cross-cell transfer.

¢ (b) rbio-EXP-leave-one-out: Models are trained on three of the four cell lines and tested
on the held-out one (e.g., train = RPE1 + K562 + HEPG2 — test = JURKAT). This config-
uration evaluates out-of-distribution (OOD) generalization across cellular contexts.

* (c) rbio-MLP-leave-one-out: In this setting, an MLP surrogate model is first trained on
three cell lines using experimental data, then used to generate probabilistic predictions
(soft rewards) on the training split of the held-out fourth cell line. Testing is on this split.
These model-predicted probabilities serve as reward signals during reinforcement learning,
effectively replacing direct experimental supervision.

Baselines. We compare against: SUMMER (Wau et al.,|2025)) (retrieval + knowledge-based reason-
ing), GEARS (Roohani et al.| 2022)) (a specialized perturbation model), and the base Qwen2.5-3B
reasoning model without biological supervision.

A.2 METRICS

Metrics Used We formulate the genetic perturbation prediction task as a question in natural language
with a binary answer. Given a pair of genes gene 4 and genep, the model is asked to emit a binary
answer — yes or no. We use four CRISPRI single-gene perturbation knockdown datasets on four
cancer cell lines (RPE1, K562, HEPG2, JURKAT), post-processed into natural language queries by
PerturbQA (Wu et al., [2025). We compute the following metrics:
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TP
Recall (TPR) = TPIFN (14)

TN
TNR = TN+ FP (15)

TP
Precision = TP+ FP (16)

. Precision -

P Seore = 2 el an
Balanced Accuracy = %QTNR (18)

TP-TN—-FP-FN

MCC (Matthews Correlation Coef ficient) = TP+ FP) (TP T FN)(TN + FP)TN T FN)

19)

Interpretation. The PerturbQA datasets are inherently class-imbalanced, with substantially fewer
positive (true perturbation) cases than negatives. In this setting, identifying true positive pertur-
bations is biologically more important than avoiding false positives, since missing true regulatory
effects (false negatives) can obscure functional gene relationships. We therefore emphasize Recall
(TPR), F1-score, Balanced Accuracy, and MCC as the most informative metrics. Recall captures
the model’s sensitivity to true perturbations, F1 balances precision and recall under imbalance, Bal-
anced Accuracy accounts for both sensitivity and specificity, and MCC provides a single correlation-
like summary that remains meaningful even for skewed label distributions. Together, these metrics
provide a robust picture of biological prediction fidelity under class imbalance.

Computation of error bars in reported metrics For each model m and metric ¢, performance
values are first aggregated within dataset (corresponding to one of the four cell lines (K562, RPE1,
JURKAT, HEPG2) d € D by taking the mean:

1 Z"d
Vg = — Vd, i,
ng 4
=1

where vq ; are per-example scores within dataset d. We then compute the mean performance across
datasets

and quantify variability across datasets as

5= 1 Vg — V)2,
\/D—l(%;(d )

The error bars in all aggregate bar plots represent the standard error of the mean (s.e.m.) across
datasets:

This approach first averages performance within each dataset, then estimates variability across
datasets, ensuring that all datasets contribute equally and preventing larger datasets from dominating
the uncertainty estimate.
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A.3 EXAMPLES OF REASONING TRACES

Is a knockdown of ISCA2 in
rpe1 cells likely to result in
differential expression of
CEP295? The answer is either
yes or no

system_prompt

A conversation between User and Biologist. The user asks a
question, and the Biologist solves it. The biologist first thinks
about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer
are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e., <think> reasoning process
here </think> <answer> answer here </answer>.

system_prompt

A conversation between User and Biologist. The user asks a
question, and the Biologist solves it. The biologist first thinks
about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer
are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e., <think> reasoning process
here </think> <answer> answer here </answer>.The
Biologist will evaluate each step of this problem, using logical
reasoning and evidence from the prompt.

system_prompt

You are an Al model trained as a Biologist through
reinforcement learning. | will ask you a question, you will
come up with a reasoning process based on what you have
learned during training and then you will give me the answer.
The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer>
answer here </answer>. You will provide the reasoning
step-by-step, using detailed biological knowledge from
training.

Example answer

Knockdown of ISCA2 in RPE1 cells would likely lead to differential
expression of CEP295. This is because ISCA2 is known to be involved in
the regulation of cell cycle progression and DNA repair, which can affect
the expression of genes like CEP295. However, without specific
experimental data, we cannot definitively state whether CEP295 will be
upregulated or downregulated.

Example answer using Chain-of-Thought

ISCA2 is a protein that is involved in the regulation of cell cycle
progression. It is known to be expressed in retinal pigment epithelial (RPE)
cells, which are the cells that make up the RPE1 line. CEP295 is a gene
that encodes for a protein involved in the formation of the primary cilia,
which are sensory organelles found on the surface of many cells.
Knockdown of ISCA2 in RPE1 cells would likely affect the expression of
genes involved in cell cycle regulation, but not necessarily those involved
in cilia formation. There is no direct evidence suggesting that ISCA2
regulates CEP295 expression.

Example answer using self-aware Chain-of-Thought

Knockdown of ISCA2 in RPE1 cells would likely lead to differential
expression of CEP295. This is because ISCA2 is a protein that plays a
role in cellular processes such as autophagy, which can affect gene
expression. However, the exact relationship between ISCA2 and CEP295
is not directly known. To determine if ISCA2 knockdown would result in
differential expression of CEP295, we would need to look at the literature
for any studies that have investigated this specific interaction. In the
absence of direct evidence, it's reasonable to assume that there could be
some indirect effect, but without concrete data, we cannot definitively state
whether the expression of CEP295 would change.

Figure 5: — Examples of reasoning traces for perturbation prediction, answering a question sampled
randomly from the test set. Each panel shows reasoning text generated within the <think> tags (qualitative
traces). Different examples correspond to distinct chain-of-thought prompting strategies (standard, explicit
chain-of-thought, and self-aware chain-of-thought). Outputs are from a model trained with combinations of
soft verifiers. Final answer omitted for brevity
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A.4 ROBUSTNESS TO VERIFIER FIDELITY AND MISCALIBRATION

A.4.1 EFFECT OF VERIFIER SIGNAL MISCALIBRATION

Analysis on rbio Performance vs Verifier Miscalibration
1/4 training data, 3epochs

100

80

rbio-MLP

rbio-MLP (miscalibrated, 0.25)
rbio-MLP (miscalibrated, 0.5)
rbio-MLP (miscalibrated, 0.75)
rbio-MLP (miscalibrated, flipped)
= rbio-MLP (miscalibrated, random)
mm Qwen2.5-3b

-
60 1 -

Score (%)

404

20

-91.880.6%

F1-score MCC Balanced Accuracy TPR TNR

Figure 6: — Performance of rbiol under progressively miscalibrated verifier signals. The fraction of
randomized MLP predictions (0.25 — 0.75) or flipped labels is shown on the x-axis, with the extreme case of
completely random rewards included. rbiol performance (F1, MCC, Balanced Accuracy, TPR, TNR) declines
smoothly as verifier noise increases but remains above the base Qwen 2.5-3B model until supervision becomes
random, confirming that the model does not amplify verifier errors but instead learns robustly from partial
biological signal. Numbers show percentage decrease in performance compared to the model trained on a
fully-calibrated MLP.

Setup. To assess the robustness of rbiol to verifier reliability, we simulate controlled levels of
miscalibration in the MLP verifier used during reinforcement learning. During training, each in-
stance receives a scalar reward 7 € [0, 1] based on the verifier’s predicted probability py., (and
Pno = 1 — pyes). If the model outputs “yes,” the reward is 7 = pye,; otherwise, r = pp,.

To emulate verifier noise, we perturb py.s according to:

Dyes» no noise
oo (1 —p)pyes + pU(0,1), partial randomization, p € {0.25,0.5,0.75} 20)
yes 1 — pyes, flipped
U(0,1), fully random

where U(0,1) denotes samples from a uniform distribution over [0,1), implemented with
np.random. rand (). The complement is set as py, = 1 — pi.,. This parameterization allows a
smooth transition from correctly calibrated to fully corrupted verifier signals.

Results. As shown in Fig. |§|, rbiol performance (F1, MCC, Balanced Accuracy, TPR, TNR) de-
creases smoothly as verifier noise increases, but remains well above the Qwen2.5-3B baseline until
rewards are completely random. When signals are flipped or randomized, performance converges
to—but does not fall below—the base model. This indicates that rbiol is able to learn from im-
perfect verifiers and that training is driven by biologically structured signal rather than incidental
correlations.
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A.4.2 REWARD COMPONENTS ABLATIONS

Reward Ablations Analysis
1/4 of training data, 3 training epochs

EXP Variants MLP Variants

Fl-score

Balanced Accuracy

TPR

TNR

MCC

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Score Score
= rbio-EXP (all) = rbio-EXP (mention) B rbio-MLP (all) rbio-MLP (mention)
mm rbio-EXP (verifier signal) B rbio-EXP (format) rbio-MLP (verifier signal) rbio-MLP (format)
rbio-EXP (format+mention) HE Qwen2.5-3b W rbio-MLP (format+mention) N Qwen2.5-3b

EXP || MLP Variants

Fl-score

Balanced Accuracy

TPR

TNR

MCC

= rbio-EXP+MLP (verifier signal) rbio-EXP+MLP (mention)
rbio-EXP+MLP (format+mention) EE Qwen2.5-3b
. rbio-EXP+MLP (format)

Bar labels indicate % change relative to the baseline model.

Figure 7: — Ablation of reward components for rbiol trained with experimental (EXP), model-based
(MLP), and combined (EXP ||MLP) verifiers. Across all settings, models trained with the full biological-
answer reward outperform those using only generic format or mention rewards. The improvement is consistent
across metrics and verifier types, indicating that the biological signal—not generic RL regularization—is the
dominant contributor to performance.

Setup. To isolate the effect of different reward components defined in Eq. |13} we conduct ablations
across the three verifier classes—experimental (EXP), model-based (MLP), and combined (EXP
|[MLP). The full reward in Eq.[I3|can be re-written as:

Ti(CL Oi) = Tformat + Tmention T Tverifier 2n
which includes (i) a format reward enforcing structured output, (ii) a mention reward encouraging
relevant entity inclusion—in our case, gene mentions—and (iii) a biological-answer reward Tyerifier

that encodes signal from verifier Vj, (e.g., experimental or MLP-based). We train variants using only
individual terms: 7formats Tmentions Tformat 1 Tmention, and the full biological reward 7yerifier-

Results. As shown in Fig.[7] models trained with the full biological-answer reward outperform those
using only generic format or mention rewards across all metrics (F1, Balanced Accuracy, TPR, TNR,
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MCC) and verifier types. The trend is consistent across EXP, MLP, and EXP |[MLP settings, with
gains of up to +100% in F1 and MCC when including 7vesifier-

These results demonstrate that rbiol’s improvements are driven by the biological signal encoded in
verifier feedback rather than generic RL regularization. Format- or mention-only rewards provide
minor stylistic consistency but little biological benefit, whereas the full composition—especially
the answer-level reward—contributes substantially to both recall and calibration. This supports our
central claim that meaningful scientific rewards, not auxiliary shaping terms, are the dominant source
of performance.

Consistency with generic RL/IT baselines. Table 2] further supports this conclusion: instruction-
tuned and general RL reasoning models (e.g., DeepSeek R1, Qwen Instruct, OpenAl OSS) trained
with generic format/helpfulness/self-verification signals achieve only modest performance on Per-
turbQA, whereas rbiol variants—differing mainly by the presence of the biological answer re-
ward—substantially exceed these baselines using the same 3B backbone. Together with the ab-
lations above, this indicates that biological supervision is the principal driver of improvement, not
generic reinforcement or instruction tuning.

A.4.3 SENSITIVITY TO VERIFIER CONFIDENCE (PER-GENE ANALYSIS)

Sensitivity to Verifier Fidelity
Test time performance of rbio-MLP trained vs trained MLP verifier confidence per genes

Recall vs verifier confidence Specificity vs verifier confidence Overall accuracy vs verifier confidence
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Curves show binned means (+ s.e.m.) across test examples. x-axis is the bin center of min-max scaled verifier confidence. Numbers near the x-axis show per-bin counts (n). rbio-MLP is trained on full data

Figure 8: — Sensitivity of rbiol performance to verifier fidelity. Relationship between verifier confidence
and rbiol test-time performance, aggregated across all perturbed genes present in training and testing. Each
point corresponds to the center of a confidence bin (after min—max scaling); the y-axis shows the bin mean
of the metric with shaded =+ s.e.m. and annotated sample counts n. Left: recall (TPR) vs. mean verifier YES-
confidence. Center: specificity (TNR) vs. mean verifier NO-confidence. Right: overall correctness (accuracy)
vs. verifier confidence in the correct class. rbiol recall increases with verifier confidence, while specificity
and overall correctness remain high, indicating that the model leverages—but does not depend on—verifier
certainty. Performance remains robust even for low-confidence genes, showing resilience to imperfect or mis-
calibrated verifiers.

Setup. Let g index perturbed genes. From training logs, we compute the MLP verifier’s mean
YES-confidence per gene over all cell lines:
Dyes (9) = EMLP emissions forg[pyes]7 Pno (g) =1- Pyes (g)

We left-join these per-gene confidences to each test example (z, g,y) and evaluate the trained pol-
icy’s binary prediction § € {0, 1}. For analysis we form:
Pyes =1
TPR input: ¢t = pyes(g) fory =1, TNRinput: ¢~ = Ppo(g) fory =0, ¢ = {py (9) v
Puol9)  y=0.

Each ¢ is min—max scaled to [0, 1] and partitioned into 12 equal-width bins; the plotted points corre-
spond to bin centers, with y-values equal to binned means of (i) E[¢ | y=1] (TPR), (ii) E[1—g | y=0]
(TNR), and (iii) E[I{g=y}] (overall correctness).
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Intersections of Genes Perturbed Across Cell Lines
Train Test
K562 — TRAIN RPEL — TRAIN K562 — TEST RPEL — TEST

HEpG2 epG: RPEL RPEL
TRAK oAl TRAIN TRAIN

JURKAT JURKAT
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HEPG2 — TRAIN JURKAT — TRAIN HEPG2 —TEST JURKAT — TEST

RPEL RPEL
TRAIN TRAIN

HEPG: Ks62  HEPG: ks62

TRAI RAIN  TRAI RAIN
JURKAT JURKAT
TRAIN TRAIN

Figure 9: — Gene overlap across TRAIN sets and TEST. Radar plots show the percentage of shared per-
turbed genes between cell lines within training (left) and between training and test splits (right) for each held-out
cell line. Each small radar corresponds to one reference cell line and compares its gene set to those of the re-
maining lines. While cell lines share 40-75% of perturbed genes in training, overlap between a test set and
other training sets ranges from 50-78%. This partial but non-trivial intersection indicates that cell lines differ
in transcriptional programs yet retain overlapping biological structure, making leave-one-out evaluation both
challenging and biologically realistic.

Connection to cross—cell-line context. Fig.[9]shows that gene vocabularies are only partially shared
across TRAIN splits (40-75%) and between TEST and TRAIN (50-78%), so the sensitivity curves
in Fig. [8] reflect aggregation over both shared and distinct gene sets across cell lines rather than a
trivially identical vocabulary.

Results. As verifier YES-confidence increases, TPR rises monotonically; TNR remains high and
relatively flat; and overall correctness (F1 proxy) is stable until the top-confidence tail, where small-
sample effects appear. Together with the overlap analysis, this indicates that rbiol leverages verifier
certainty but does not depend on it— the model’s gains persist under partial gene sharing across cell
lines and remain robust to verifier uncertainty.

A.5 VERIFIER AGREEMENT AND COMPOSITION EFFECTS

Verifier Agreement across Cell Lines

Continuous Agreement (Pearson r) Majority-vote Agreement (Accuracy)
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Figure 10: — Verifier agreement across cell lines for MLP and EXP verifiers. Agreement measured as
Pearson correlation of continuous scores (left) and majority-vote agreement (right) between verifier outputs.
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Verifier Agreement across Cell Lines

Continuous Agreement (Pearson r) Majority-vote Agreement (Accuracy)
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Figure 11: — Verifier agreement across cell lines for GO and EXP verifiers. Agreement measured as
Pearson correlation of continuous scores (left) and majority-vote agreement (right) between verifier outputs.

Verifier Agreement across Cell Lines
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Figure 12: — Verifier agreement across cell lines for GO and MLP verifiers. Agreement measured as
Pearson correlation of continuous scores (left) and majority-vote agreement (right) between verifier outputs.

Setup. We compare verifier outputs across the four PerturbQA cell lines (K562, RPE1, HEPG2, and
Jurkat) to quantify consistency between the experimental (EXP), model-based (MLP), and ontology-
derived (GO) verifiers. For each cell line, we compute (i) the continuous agreement, measured as
the Pearson correlation 7 between the continuous verifier scores; and (ii) the majority-vote agree-
ment, measured as binary accuracy between thresholded verifier predictions. These statistics are
aggregated over all shared gene pairs within each cell line.

Results. As shown in Figs. [IOHI2] EXP and MLP verifiers exhibit high agreement across all cell
lines (r ~ 0.8, binary agreement ~ 0.93), indicating that both encode consistent biological sig-
nal. By contrast, GO-based verifiers show weaker raw correlation with EXP or MLP (r =~ 0.3)
but still moderate binary alignment (accuracy ~ 0.75), reflecting that ontology-derived priors cap-
ture complementary but coarser relationships. Compositional verifiers such as GO ||EXP and GO
|| MLP realign more closely with the higher-fidelity verifiers applied last, confirming that the order
of composition influences which signal dominates.

Interpretation. High pairwise consistency among EXP and MLP verifiers supports that rbiol learns
from largely aligned supervision sources rather than conflicting signals. The weaker continuous
correlation but stable discrete alignment of GO-based rewards suggests that these verifiers contribute
structured regularization rather than direct label imitation—providing a complementary prior that the
reinforcement process integrates effectively across cell lines.
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A.6 REINFORCEMENT LEARNING VS. SUPERVISED VERIFIERS

MLP vs rbio (MLP+RL)+CoT
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Figure 13: — Performance of the MLP verifier compared with rbiol models trained with the MLP as a
soft verifier. rbiol models were trained on 1/4 of the data for 3 epochs, using chain-of-thought (CoT) reasoning
at inference. Left: MLP trained with one-hot gene representations. Right: MLP trained with Gene2Vec repre-
sentations. The MLP decision threshold was set to 0.5 for positive interactions. Across all metrics, rbiol=(RL
+ MLP verifier reward + CoT) outperforms the MLP verifier, indicating that reinforcement learning con-
tributes beyond supervised imitation and does not amplify verifier noise. The two rbiol models showcased
correspond to rbio-MLP-leave-one-out-one-hot and rbio-MLP-leave-one-out-gene2vec

A.6.1 MLP ARCHITECTURE AND TRAINING

MLPClassifier

Input: R24 Gene embedding

l

Linear

(2d — 64)

Linear
(64 — 1)

Output: [0,1]

64 units

1 unit

Figure 14: MLP Structure

Table 3: MLP Training Hyperparameters

Hyperparameter Name Value
Number of Epochs 10
Batch Size 32
Learning Rate 1x1073
Random Seed 42
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Setup. The MLP verifier is a simple two-layer network (Fig. consisting of a linear projection
from the concatenated gene embedding (R?? — 64), followed by a ReLU activation, a second linear
layer (64 — 1), and a sigmoid output. It produces a scalar confidence pyes € [0, 1] representing
the probability of a positive perturbation effect. Training hyperparameters are listed in Table 5] We
evaluate two gene-encoding schemes:

* One-hot representation: genes are represented by binary one-hot vectors, providing no
relational prior.

* Gene2Vec embedding: genes are embedded in a dense continuous space learned from
large-scale co-expression networks, capturing semantic relationships between genes.

Results and significance. As shown in Fig. [[3] rbiol models trained using the MLP as a soft
verifier (via reinforcement learning under the GRPO objective) outperform the MLP verifier itself
across all metrics (F1, MCC, Balanced Accuracy, TPR, TNR) and for both input representations.
The largest gains occur in recall (TPR), indicating that the reinforcement learning step allows the
model to generalize beyond the fixed decision boundary of the MLP. While the MLP provides the bi-
ological reward signal, the reinforcement objective enables the policy to explore multiple reasoning
trajectories at inference (via CoT) and to refine predictions through multi-sample consistency. This
demonstrates that rbiol benefits not only from biological supervision but also from reinforcement
optimization that integrates reasoning dynamics and soft-verifier feedback—allowing improvements
that pure supervised imitation cannot achieve.

A.7 OUT-OF-DISTRIBUTION AND CROSS-DOMAIN GENERALIZATION

Cell State Prediction: Disease State
Input: Top 100 highly expressed genes + metadata

Myeloid
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Figure 15: — Zero-Shot Disease prediction Performance on Alzheimer and Cancer datasets using rbiol
models trained with models of perturbation data. Models are trained on a fraction of the available data
(top-100 highly expressed genes + metadata). We compare baseline Qwen2.5-3B, SCVI, and rbiol variants
using various verifiers: rbio-EXP, rbio-MLP, rbio-MLP U EXP and rbio-MLP U EXP U GO. Chain-of-thought
was solicited at inference time. Across both datasets, rbiol substantially improves recall and F1 over the
Qwen2.5-3b baseline and approaches SCVI despite using only a data fraction, highlighting that soft-verifier
RL generalizes beyond perturbation prediction to a distinct disease-classification task.

MLP u EXP U GO-all_LL
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Figure 16: — Dataset Class Distribution for Disease Prediction Task. The Alzheimer dataset has two binary
labels and the Cancer dataset has seven different types of cancer as cell states. Both datasets have been obtained
from CELLXGENE

Dataset composition. We evaluate generalization beyond perturbation reasoning on two disease-
state datasets: (i) Alzheimer’s disease, a binary classification task (normal vs. diseased; Fig. @
top), and (ii) Myeloid cancers, a multi-class task containing eight disease states (normal plus seven
cancer types; Fig.[16] bottom). Each cell or sample is represented using the top 100 highly expressed
genes and relevant experimental metadata, including tissue, assay type, developmental stage, cell
type, and organism. All gene-expression data are sourced from CELLxGENE public collections.

Prompt construction and input representation. For each single-cell observation, we generate
a natural-language query that integrates biological metadata and expression context. Each prompt
follows the format:

“This is a single-cell observation obtained using [assay] from the [tissue] of a
[sex] Homo sapiens. The top 100 expressed genes in this cell are: [geneq, genes,
..., geneigo]. Based on these genes, identify the disease state of this single cell.
Choose one: [classy | classs | ... | class,].”

For example:

“This is a single-cell observation obtained using 10x 3’ v2 from the ovary of
an unknown female Homo sapiens. The top 100 expressed genes in this cell are:
MALATI, TMSB4X, B2M, ACTB, RPL10, MT-ATPG, ..., LY6H. Based on these
genes, identify the disease state of this single cell. Choose one: normal | lung
cancer | ovarian cancer | uveal melanoma | colorectal cancer | breast cancer |
liver cancer | melanoma.”

This structured input provides biologically interpretable features that the language model can rea-
son over. Metadata tokens give high-level context, while ranked genes reflect the underlying tran-
scriptional state. Together, they form a natural-language interface between single-cell biology and
language-based reasoning.

Zero-shot evaluation. All models are evaluated in a zero-shot setting—no fine-tuning or disease-
specific supervision is used. rbiol models are trained only on perturbation-prediction tasks from
PerturbQA using biological soft-verifier rewards (MLP, EXP, and GO). The disease tasks thus test
transfer to an out-of-distribution setting, assessing whether models trained on causal perturbations
can generalize to disease-state reasoning.
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Example model response. Below is an example of an rbiol reasoning trace, illustrating how the
model integrates gene-expression patterns and biological context to infer cell identity and disease
state:

<think> The expression levels of different genes can give us an idea of the cell type. For
example, genes related to ribosomal proteins are often expressed at high levels in cells that
are actively dividing or have a high rate of protein synthesis. Given that there are multiple
genes for ribosomal proteins (RPL10, RPL41, RPL13A, RPL13, RPL7, RPL28, RPL37A,
etc.), as well as other genes involved in translation (such as EEF1A1l, EEF1A2), we can
infer that this cell is likely a rapidly proliferating cell. MALAT1 is known to be associated
with the epithelial-mesenchymal transition and metastasis, which may suggest the presence
of a tumor. B2M (beta-2 microglobulin) is a protein marker for antigen presentation and can
be found on the surface of many types of immune cells and some tumor cells. Vimentin
(VIM) is a marker of mesenchymal cells and can also be found in some tumors. All of
these factors could indicate a potential tumor cell state. However, since the gene list does
not explicitly mention any of the known markers for specific cancers, we must consider
the most probable option given the data available. The presence of ribosomal proteins and
genes related to translation and the possibility of a tumor cell state points towards ovarian
cancer as the most plausible diagnosis. </think>

<answer> ovarian cancer </answer>

SCVI baseline. As a reference, we train a standard SCVI model directly on the same Alzheimer
and Cancer datasets. Following the default training setup:

1. SCVI is initialized using scvi.model.SCVI with the disease label as
labels key="disease".

2. The model is trained for 100 epochs with learning rate 1 x 1073,

3. The latent representation is extracted and used to train a linear logistic regression classifier
for disease-state prediction.

The model’s mean performance is computed from accuracy, precision, recall, and F1 score as in the
main evaluation pipeline.

Table 4: SCVI training and evaluation setup.

Parameter Value / Description

Model scvi.model.SCVI (default)

Training epochs 100

Learning rate 1x1073

Latent dimension default (10)

Classifier Logistic Regression (Lo regularization, max_iter=200)
Evaluation metrics | Accuracy, Precision, Recall, F1 (macro)

Input data Same Alzheimer and Cancer datasets as rbiol experiments

Results and interpretation. As shown in Fig. rbiol achieves large gains over EXP and MLP
verifiers across metrics (F1, precision, recall) while maintaining calibration. On the Alzheimer
dataset, rbiol doubles the F1 score and achieves a +136% increase in recall relative to baseline
verifiers. For Myeloid cancers, rbiol improves F1 by 30-70% while retaining high specificity.
These results approach those of SCVI—a specialized expression model trained directly on raw
counts—despite rbiol being trained exclusively on perturbation reasoning signals.

Significance. This experiment demonstrates that rbiol internalizes generalizable molecular reason-
ing patterns. Trained solely with reinforcement learning from biological verifiers, it transfers this
understanding to infer disease states in unseen data distributions. This zero-shot ability highlights
the potential of soft-verifier RL to unify experimental, model-based, and knowledge-based biologi-
cal reasoning into a single transferable system.
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A.8 DATA AND COMPUTE SCALING

Setup. We systematically vary two axes of training—dataset size and compute—to examine scaling
behavior and robustness of rbiol under different supervision regimes. Each variant uses the same
Qwen2.5-3B-Instruct base model trained under the GRPO objective with identical hyperparameters.
Dataset-size experiments sample 20%, 50%, and 100% of the full PerturbQA training data across
verifier types (EXP, MLP, EXP U MLP, and EXP U MLP U GO) and are run for 1, 3, or 5 epochs.
Compute experiments fix the full dataset and vary the number of optimization steps (1, 3, and 5
epochs equivalent) to test performance scaling with training duration.

Influence of size of training dataset on model performance
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Figure 17: — Effect of training data size on rbiol accuracy and generalization, 1 epoch.

Results — data scaling. Across all verifier configurations and metrics (F1, Balanced Accuracy,
TPR, TNR, MCC), performance increases predictably with the amount of training data (Figs. [T7}-
[I9). The scaling trend is approximately log-linear, with diminishing returns at higher data fractions
but consistent improvement in both sensitivity and specificity. This indicates that the GRPO-based
optimization effectively captures additional signal as more examples are available.
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Figure 19: — Effect of training data size on rbiol accuracy and generalization, 5 epochs.

Results — compute scaling. Increasing training compute yields analogous improvements (Fig. 20).
Metrics such as F1 and MCC rise smoothly with training steps, confirming that rbiol adheres to
reinforcement-learning scaling laws observed in other large-model settings.

Score

Figure 20: — Influence of training compute at 1, 3, and 5 epochs on rbiol performance.
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Interpretation. Together, these analyses show that rbiol scales predictably with both data and
compute—doubling training data or epochs consistently improves recall, precision, and calibration.
This behavior demonstrates that the biological reward signals provide a smooth and information-rich
learning gradient, enabling steady performance growth without reward collapse. It further confirms
that reinforcement learning over biological verifiers is a robust and scalable paradigm for large-
model training in scientific domains.

A.10 TRAINING AND EVALUATION

Models have been trained using the GRPO framework and the HuggingFace interface. We
use a Qwen2.5-3B-Instruct model as a base model, accessed through HuggingFace. Most
models presented on individual verifiers have been trained for up to 100k steps with
max_completion_len=256, taking approximately 10 days to complete on 8 H100 GPUs. Mod-
els containing compositions of verifiers were trained for up to 10 epochs. Ablation and sensi-
tivity experiments used proportionally shorter runs or reduced data fractions to ensure efficiency
while preserving relative comparisons. Each experiment presents the checkpoint corresponding to
its stated data fraction and number of training epochs; while absolute values may vary, the ob-
served performance trends are consistent across configurations. All models used batch_size=4,
n_generation=4, and a learning rate of 5 x 10~°. During inference, each model was prompted
for N=5 generations with max_new_tokens=1024, do_sample=True, temperature=0.7,
topp=0.9, top_k=50. Metrics are reported over five different generations. Each model also
includes formatting rewards, following|Guo et al.|(2025)).

Table S: Training configuration for rbiol models.

Model Specification
Model \ Qwen2.5-3B-Instruct (3.09B parameters)
Training Hyperparameters
Per-device train batch size | 4
Number of rollouts 4
Max completion length 256
Length penalty 200
Learning rate 1x10°
Random seed 42

A.10.1 DATA AND CODE AVAILABILITY

We used the pre-processed versions, as well as the training and testing splits of the
perturbation datasets on the four cell lines (K562, RPEl, HEPG2, JURKAT) from
https://github.com/genentech/PerturbQA.

We have released an anonymous repository (https://anonymous.4open.science/r/
rbio-9155/README . md) that reproduces the MLP-verifier experiments and provides an end-to-
end example of training an rbio model using the MLP signal. This release focuses on the essential
components for reproducibility and community adoption. A public, non-anonymized release will
follow post-publication and will include all code, checkpoints, and datasets used in the paper. We
are fully committed to open science and long-term reproducibility.

Model weights will also be made publicly available upon publication. For the disease
prediction task, the datasets were obtained from CELLXGENE with the following identi-
fiers: Alzheimer Dataset: https://cellxgene.cziscience.com/collections/0d35c0fd-efOb-4b70-bce6-
645a4660e5fal and Cancer Dataset: https://cellxgene.cziscience.com/collections/3f7c572c-cd73-
4b51-a313-207c7f20f188.
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A.11 ALGORITHMS

Algorithm 1 Rbio-RLEXP: Reinforcement Learning with Hard Verification

Require: Dataset of prompts/experimental outcome labels { X;, V; } Y
Require: Model parameters 6 implementing policy 7y
Require: Hyperparameters: 7 (temperature), G (generations per prompt), 5 (KL penalty), € (clip-
ping)
Ensure: Trained model with parameters 6 implementing policy 7
1: Initialize 6 from supervised fine-tuned LLM
2: for each stept = 1to T do

3:  Sample batch indices b C {1, ..., N} uniformly at random
4:  Retrieve batch { X}, Y} } from dataset
5.  for each prompt X, in batch do
6: for i =1to G do
7: Generate sequence o; ~ 7y (- | X}) using model 6 and policy 7y
8: Extract binary answer a; from o; (if existing)
9: if answer a; exists then
10: Score against ground truth Y;:
11: if a; = Y}, then
12: phard —
13: else
14: rhard —
15: end if
16: else
17: rhard — () {Penalize missing answer}
18: end if
19: Add auxiliary rewards: 7; = 71 4 7000 4 Tmention
20: end for
21:  end for

22:  Compute normalized advantages Ai,t using Eq. @)

23:  Update 8 via GRPO objective (Eq.[2) with KL divergence penalty (Eq.
24: end for

25: return 6
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Algorithm 2 Rbio-RLEMF: Reinforcement Learning with Experimental Model Feedback

Require: Dataset of prompts { X} ; (without experimental labels)
Require: Pre-trained frozen model ® (e.g., MLP, VCM)
Require: Model parameters 6 implementing policy 7y
Require: Reward transformation function n: maps model predictions to rewards in [0, 1]
Require: Hyperparameters: 7 (temperature), G' (generations per prompt), 3 (KL penalty), € (clip-
ping)
Ensure: Trained model with parameters 6 implementing policy 7
1: Initialize 6 from supervised fine-tuned LLM
2: for eachstept = 1to T do

3:  Sample batch indices b C {1, ..., N} uniformly at random
4:  Retrieve batch { X} } from dataset
5.  for each prompt X, in batch do
6: fori =1to G do
7: Generate sequence o; ~ 7y (- | X}) using model 6 and policy 7y
8: Extract binary answer a; from o; (if existing)
9: if answer a; exists then
10: Query frozen model: p = ®(X}) {Model prediction}
11: Transform prediction to reward: 7$°" = n(p, a;) € [0, 1]
12: else
13: 7$°ft = 0 {Penalize missing answer}
14: end if
15: Add auxiliary rewards: 7; = r$°" + Pgormat + Tmention
16: end for
17:  end for

18:  Compute normalized advantages Ai,t using Eq. @)

19:  Update 6 via GRPO objective (Eq. [2) with KL divergence penalty (Eq.[5)
20: end for _

21: return 6
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Algorithm 3 Rbio-RLPK: Reinforcement Learning from Prior Knowledge

Require: Dataset of prompts {X;} ¥ ; (without labels)
Require: Knowledge source K.S (e.g., Gene Ontology)
Require: Model parameters  implementing policy g
Require: Knowledge scoring function v: scores reasoning traces against prior knowledge
Require: Hyperparameters: 7 (temperature), G (generations per prompt), 3 (KL penalty), € (clip-
ping)
Ensure: Trained model with parameters 6 implementing policy 7
1: Initialize 6 from supervised fine-tuned LLM
2: for eachstept = 1to T do
3:  Sample batch indices b C {1, ..., N} uniformly at random

4:  Retrieve batch { X} } from dataset
5. for each prompt X, in batch do
6: Query knowledge source: {¢} "~ } = query KS(X}) {Retrieve relevant prior knowledge}
7: for:=1to G do
8: Generate sequence o; ~ my(- | X}) using model 6 and policy g
9: Extract gene_information o;elevam from o; (from <gene> tags)
10: if gene_information o} exists then
11: Score gene_information against prior knowledge: 73°" = v(0f**, {¢}"*})
12: else
13: 7$°t = 0 {Penalize missing gene information}
14: end if
15: Add auxiliary rewards: r; = ri"ft 4+ Tformat 1+ Tmention
16: end for
17:  end for

18:  Compute normalized advantages A; ; using Eq. @)

19:  Update € via GRPO objective (Eq.[2) with KL divergence penalty (Eq.
20: end for

21: return 6

Algorithm 4 Formatting Reward 7ypma

Require: Completion o;
Require: Set of formatting constraints 7 = {Fy, Fs, ..., Fi}
Ensure: Formatting reward 7foma € [0, 1]

1: Initialize score vector s = []

2: for each constraint F; € F do
3:  if Iy is satisfied in o; then
4: Append 1.0 to s
5.  else
6: Append 0.0 to s
7:  endif
8: end for
9: Tformat = ﬁ le};ll Sj
10: return 7fomat
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Algorithm 5 Mention Reward rmention

Require: Completion o;

Require: Set of desired terms 7 = {¢1,t2,...,tm}
Ensure: Mention reward mention € [0, 1]

1: Extract reasoning trace 0} from o; (from <think> tags)
2: Initialize score vector s = |]

3: foreachtermt; € 7 do

4:  if t; appears in o then

5: Append 1.0 to s

6: else

7: Append 0.0to s

8: endif

9: end for

0: Tmention = ﬁ Z|]7;|1 Sj

1: return 7mention

—

1
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