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ABSTRACT

Reasoning models are typically trained against verification mechanisms in for-
mally specified systems such as code or symbolic math. In open domains like
biology, however, we lack exact rules to enable large-scale formal verification and
instead often rely on lab experiments to test predictions. Such experiments are
slow, costly, and cannot scale with computation. In this work, we show that world
models of biology or other prior knowledge can serve as approximate oracles for
soft verification, allowing reasoning systems to be trained without additional ex-
perimental data. We presemt two paradigms of training models with approximate
verifiers: RLEMF: reinforcement learning with experimental model feedback and
RLPK: reinforcement learning from prior knowledge. Using these paradigms, we
introduce rbiol, a reasoning model for biology post-trained from a pretrained
LLM with reinforcement learning, using learned biological models for verifica-
tion during training. We demonstrate that soft verification can distill biological
world models into rbiol, enabling it to achieve state-of-the-art performance on
perturbation prediction in the PERTURBQA benchmark. We present rbiol as a
proof of concept that predictions from biological models can train powerful rea-
soning systems using simulations rather than experimental data, offering a new
paradigm for model training.

1 INTRODUCTION

Building foundation models suitable for scientific tasks is a task of major interest and has produced
numerous successful examples in recent memory |Abramson et al.| (2024)); |Cui et al,| (2024); [Lin
et al.| (2023). Similarly, large language models (LLMs) have shown groundbreaking potential as
parametric representations of the world’s knowledge, and have been used across every sector. A
key challenge is figuring out how to bridge the quantitative accuracy of models of experimental
scientific data, for example in biology, with LLMs such that knowledge from these low-level repre-
sentations of biological systems may be transferred into more flexible and interactive models, such
as conversational LLMs, with the explicit goal of being useful for scientific exploration.

Of great promise on scientific tasks are reasoning models, which aim to extend LLMs toward
systems that can perform structured, multi-step inference and use test-time compute to general-
ize better to a given query. Popular reasoning models like DeepSeek-R1 |Guo et al.| (2025) and
QWEN |Team| (2024) have shown potential in multiple fields, while specialized reasoning LLMs
have been explored in fields such as medicine [Fallahpour et al.| (2025)); |Cao et al.|(2025) and chem-
istry |[Narayanan et al.| (2025). In frameworks such as reinforcement learning with human feedback
(RLHF) |Christiano et al.| (2017); |Stiennon et al.| (2020), and reinforcement learning with verifiable
rewards (RLVR) [Pan et al.| (2023)), both experimental data collection with human labels and exact
oracles of rewards are used to train language models to align to a reward structure and improve
their reasoning capabilities. In domains that are not formally specified like biology, however, exper-
imental data and ground-truth verifiers are scarce: while mathematics and code benefit from exact
execution and have symbolically accessible oracles, experiments are costly and slow. This motivates
exploring alternative supervision strategies for reasoning for such domains.
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To overcome these limitations and further advance the utility of reasoning models for scientific
tasks in biology, we propose employing models of biological data to run virtual experiments which
can be used as sources of probabilistic -or soft- verification signal. This can be seen as a form
of reinforcement learning from Al feedback (RLAIF) Lee et al.|(2023) with structural adjustments
to map to our scientific setting, where RLHF and RLVR are not tractable. We consider those soft
verifiers, since they return probabilistic rewards which measure the coherence of a biology-model or
of biological prior knowledge to a reasoning trace and its returned answer. Much like with RLVR,
we can use this soft verification paradigm to generate a broad distribution of verified data limited
only by how we can query the biology model at hand. We thus turn a (world) model of biology into
a reasoning environment to generate rewards to train reasoning models.

Our work also connects with the concept of virtual cell models (VCM) Bunne et al.| (2024));
Slepchenko et al.| (2003); [Loew & Schaft] (2001), which envisions building powerful predictive
systems of biology that can simulate transitions such as diseased — healthy states. Advances
in compute and large-scale data have enabled construction of such foundation models in specific
modalities-transcriptomics |[Rosen et al.| (2023)); [Pearce et al.| (2025)); Bian et al.| (2024); |Ho et al.
(2024); Theodoris et al.| (2023), imaging |Gupta et al.| (2024), proteomics |Abramson et al.| (2024);
Lin et al.|(2023), genomics|Nguyen et al.[(2024)), and multimodal models|Rizvi et al.|(2025); Richard
et al. (2024); Levine et al.| (2024); |Schaefer et al.| (2024); |Choi et al.|(2024)); [Istrate et al.| (2024).

Our approach can be seen as using and aligning such world models of biology into a common
representation using language as the bridge. This approach not only aggregates knowledge but also
makes it accessible through natural language, allowing experimentalists to interact conversationally
with biological models. By distilling biological knowledge into LLMs, we transform experimental
insights into human-readable reasoning models. Our motivations are threefold: (i) enable training
from biological simulations rather than costly experimental data (ii) aggregate diverse models of
biology into a universal space, (iii) democratize access to biological knowledge through dialogue.

Contributions. Our work contributes to the design of supervision strategies for reasoning LLMs
for scientific use, using biological perturbation prediction -e.g., predicting effects of gene knock-
downs on differential expression, as a case study:

1. We propose two new processes for training models with Al-verifiers: RLEMF: reinforce-
ment learning with experimental model feedback and RLPK: reinforcement learning from
prior knowledge - that reward with predictive models, and prior knowledge, respectively.

2. RLEMF-trained models generalize OOD and compete with ablation-models trained on ex-
perimental data, achieving new state-of-the-art results on the PerturbQA benchmark

3. We show that mixtures of Al-verifiers can be combined to compose stronger models while
drawing from different sources of biological knowledge, even when supervision is off-task.

4. We show that inference-time chain-of-thought prompting further improves reasoning per-
formance, allowing rbiol to reach state of the art on the PERTURBQA benchmark without
tool use or experimental data at inference, even at a fraction of training data.

In summary, rbio-1 extends standard RL training for reasoning models by incorporating Al-based
verification through both predictive biological models of experimental data and curated knowledge
sources and provides a general framework of using model simulations to train reasoning models.

2 RELATED WORK

Recent reasoning-oriented LLMs-such as OpenAl’s o-series, Claude 3.7/4, Gemini 2.5, and
DeepSeek-R1-exhibit strong multi-step inference and logical deduction across domains. Their
development spans four paradigms: (i) inference-time scaling (e.g., chain-of-thought, self-
consistency); (ii) pure RL approaches like DeepSeek-R1-Zero, where traces emerge from accuracy-
and format-based rewards; (iii) hybrid supervised finetuning plus RL, as in DeepSeek-R1; and (iv)
distillation into smaller backbones such as Qwen [Team| (2024); Yang et al.| (2025) or Llama |Guo
et al.|(2025)); Touvron et al.| (2023)). Despite advances, persistent challenges remain in hallucination,
logical consistency, verbosity, and interpretability-issues directly tied to the quality of the rewards.
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Figure 1: rbiol overview. (a) Distilling VCMs into reasoning LLMs via soft verification. (b) GRPO loop with
Virtual Cell Models (VCM) rewards. (c) Soft vs. hard supervision.

Domain-specific reasoning has also been explored. BioReason [Fallahpour et al.|(2025) combines a
genomic encoder with an LLM for disease-pathway inference with interpretable steps, while Cell-
Reasoner |Cao et al| (2025) frames cell-type annotation explicitly as a reasoning task. Both ap-
proaches, however, depend heavily on curated datasets, limiting robustness to noisy or rare popula-
tions and motivating richer, more scalable reasoning signals. Our approach differs by using machine
learning models of biology directly as reward-generating verifiers. Prior methods integrated exter-
nal models (e.g., embeddings) into reasoning traces but still evaluated against annotated data. We
instead shape rewards themselves with model predictions, showing that biological world models can
be distilled into reasoning LL.Ms -positioning our work within the broader space using Al-rewards.

Wu et aliWu et al| (2025) propose SUMMER, an inference-time pipeline combining knowledge-
graph summaries, retrieval, and chain-of-thought prompting for perturbation prediction. While it
outperforms prior methods on PerturbQA, gains are modest, causal directionality remains error-
prone, and large models are required even for preprocessing. Unlike SUMMER, our models achieve
comparable or better results without experimental data, relying solely on model predictions.

Our work also connects to concurrent research on soft- and Al- verification. In RLAIF [Lee et al.
(2023) and follow-up work, other LLMs are used as reward mechanisms. Our approach RLEMF@]
differs by not requiring an LLM or any text model as an Al-feedback model, and uses models in a
different data space of experimental data linked by appropriate prompting techniques and embed-
dings. Our idea thus builds a bridge between models of experimental data yielding Al-feedback,
and the reasoning LLMs learning from that feedback to generate more accurate textual descriptions
of valid scientific knowledge. However, we share the approach that model is used to provide a prob-
abilistic verifiable reward. |Saad-Falcon et al.| (2025) also use LLMs as soft verifiers for other LLMs
and combine verifiers. In contrast, we generalize beyond LLMs to arbitrary biological models and
combine multiple verifiers as separate reward functions. In a framework closest to our approach
RLPK[BE], Yu et al.|(2025) use LLMs to use the reasoning LLM itself to score answers as rewards.
In RLPK we do not use answers, but structured databases of prior scientific knowledge.
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Table 1: Verifiers used during RL training. EXP = experimental data; MLP = multilayer perceptron; GO =
Gene Ontology.

Verifier Type Reward Signal Source

EXP Hard Binary r/"*"% € {0,1} Experimental data
MLP Soft  Probability Tf"f t=p, 0<p<l1 Simulations
GO Soft ROUGE, keyword, likelihood Knowledge base

To our knowledge, we are the first to apply this paradigm to reasoning models for biology, shifting
the training signal from experimental data to simulations and broadening the design space of verifiers
for reasoning LLMs.

3 RBIOl: METHODS

In standard domains, during RL training, verifiers return precise signals-for example, whether code
executes or a math solution is correct. In biology, some queries can be validated experimentally
(hard verification), but exhaustive lab testing is infeasible due to scale. Consider a biological query
related to genetic perturbation, such as: Is a knockdown of AARS in hepg2 cells likely to result
in differential expression of ATAD2B? with a binary answer: yes/no. During training, the LLM
produces completions o; for query q. Rewards can be assigned in three ways that we introduce in
the following sections and also showcase in Fig. [I] Table [I| summarizes these verifiers and reward
formulations.

3.1 REINFORCEMENT LEARNING FOR REASONING

Let P(Q) denote a dataset used for training; ¢ a query sampled from P(Q), G a set of outputs
generated during training by the reasoning LLM 7y; 0; a generated sequence of tokens with tokens
04,1 in response to ¢; s a reference base model from the supervised finetuned LLM; r, a reward
model emitting rewards r;; Lgrpo(6) the surrogate objective and /3 the coefficient for the KL
penalty. Given these variables, Group Relative Policy Optimization (GRPO)Mroueh|(2025)) training
maximizes the following objective function, with the goal of increasing the accumulated collective
rewards {r; >¢}:

JarPo = Equp(q), {0:}5  ~r, ., [Larro(9)]- (1)

We use the clipped surrogate objective:
G ‘OLI

Lgrpo(f) = %Z Zm1n< 7o (0i.t]¢,0i<+) A t, g(e, Ai,t)) — BDkr[mol|met] ()

Weold(oz tlg,0i<t) TH

gle, Aig) = clip(12ulgo= 1 — e 14 ) Ay 3)

T4 (0i,t10,0i<t)’

_ ri—mean({r1,...,rg})
At = (e @

Trer(04,¢]9,0i<t) —1 Trer(04,¢9,0i<t) -1 (5)
79 (0i,11q,0i<t) g (0i,t1q,0i<t)

D r|mo||met] =

3.2 RBIO-EXP: REINFORCEMENT LEARNING WITH HARD VERIFICATION

In this framework we are most similar to the RLHF scenario, where direct observations of experi-
mental data are translated into language tokens and used to train a reasoning model directly using
GRPO. For a task with a binary outcome and a verifier V' that emits binary rewards, ; in Eq. [
becomes: 2%7(q, 0;) = r;(q,0; | V) € {0,1}

We consider the existence of a broad experimental dataset Dpx p that can be used as a source of
this reward feedback given a query, where the reward takes the shape of a label about a scientific
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fact we can ask the model to reason about. If the outcome of ¢ has been validated experimentally
and is available in Dgx p, we can directly verify o; and emit a binary reward using V = {Dgxp}:

rierd (g, 0;) = ri(q,0; | Dpxp) (6)

1, o0; = True, Dgxp(q) = True,
rhard(q.0;) = {1, o0; = False, Dgxp(q) = False, @)
0, otherwise.

3.3 RBIO-RLEMF: REINFORCEMENT LEARNING WITH EXPERIMENTAL MODEL FEEDBACK

Similar to the framework of RLAIF, we here propose a related process which utilizes arbitrary other
(non-LLM) models as feedback mechanisms for a query, in our example world models of biology
defined on experimental data that can be queried appropriately. In the absence of experimental
data D x p for RL-training as explained in Sec. [3.2] predictive models of such data M can act as
surrogate verifiers (V = {M}). If ¢ has not been validated experimentally, we can verify o; using
predictions from a biological model M. The reward is r;’ Tqi0) = frn(M(q; ¢;)), where ¢;
denotes the context (e.g., cell line or covariates). The emltted rewards are probabilistic:

578 (q,0:) = ri(q,0; | V) = p(q.0; | M), 0<p<1 ®)

In the example of the biological application of evaluating perturbation prompts with a model, we
consider M := MLP, and p(q, o; | M) becomes the model’s predicted probability for ¢ being true.

3.4 RBIO-RLPK: REINFORCEMENT LEARNING FROM PRIOR KNOWLEDGE

Another avenue we propose for injecting knowledge into reasoning models for science is via prior
knowledge. Here, given a structured database of prior knowledge, we can query a reasoning model
against knowledge in that database and score the model itself against it. Given that knowledge
sources-denoted KS are able to act as verifiers V' = {KS} and emit rewards, we can generate
rewards on o; based on KS using some metric m. This setting is outlined in Fig. [Tk - C for the case
of perturbation prediction. Concretely, we use curated resources such as the Gene Ontology (GO)
Aleksander et al.| (2023); |Ashburner et al.|(2000), which provides gene annotations across axes like
molecular processes, cellular components, and biological processes. Eq.[d] then becomes:

Soft(q701) = Ti(qa 04 ‘ V) = T’m.(Q70i | KS)7 (9)

where rewards are not necessarily confined to [0, 1], but depend on the chosen metric.

We experiment with three types of metrics: ROUGE-based scores, keywords-based scores, and
likelihood estimations, all of which require querying K.S (GO ontology) for prior knowledge on q.
Assuming we have access to {g; } pieces of prior knowledge on ¢, we accumulate rewards as:

¢ | KS = query Ks(q;), 17" (q, 01) Zrm P 0 | KS). (10)

ROUGE-based verifiers. We request the model to expose the relevant gene facts inside
<gene_info> tags - which we refer to as oreltevant _ and compute standard ROUGE-1/2/L F-

PO and the extracted olel”“”t.

= Z Z ROUGE— X( prior Orelevant).

1
Jj Xe{1,2,L}

scores between ¢

Keywords-based verifiers. We count normalize overlap of GO keywords present in the reasoning
trace:
|S 1 n 52|

|s1]

rmo= Yy KWS(¢?™", o'ty KWS(s1,52) = (11)

J
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Likelihood-based verifiers. For likelihood-based verifiers, we use the likelihood of the prior

prior . .
knowledge {qj } under our learned policy 7y to generate rewards under the reasoning model,
encouraging higher likelihood for scientifically accurate facts to reduce hallucinations. To account

for variability in sequence length, we average over the sequence tokens yj, in ¢} rior,

T
rm(g,0i | LL) = ZLLM P L, (477 7o) = Zogpm (i | y<r)  (12)
k:

Normalization. GRPO uses normalized advantages (Eq.[d), mapping rewards to mean 0 and std 1.
When composing multiple verifiers, imbalanced scales can skew updates, with GO-based rewards
most affected due to skewed metric distributions. We therefore normalize GO-based rewards to [0, 1]
using an Exponential Moving Average (EMA) before policy updates:

T (1 —a)f +ary, 04 (1—a)t+a(rm — Fpey)(Tm —7), (13)

1 Tm —T
F=0.5+——=cl s y —2max) “max | - 14
2Zmax P <ma)((M7 Smin) ) ( )

This 7 provides a normalized reward signal, used in Eq. ff|to compute the token-level advantages.

3.5 COMPOSABLE VERIFICATION FOR MODEL INTEGRATION

For all rbio models, we also use formatting rewards 7 formq¢ and mention rewards 7mention (€.8.,
gene mentions). When we train on combinations of verifiers as described in Sec. #.2] each prompt
q can be verified with a different verification source V. With multiple verifiers V), emitting rewards
75 k, We then have:

ri(% Oi) = Tformat T Tmention T Z Oks Ak Ti,k((L 0; ‘ Vk})7 A > 0. (15)
k

Unless otherwise stated, A\, = 2. This gives more weight to the variance of the soft verifiers com-
pared to 7 format and Tpention during GRPO updates.

Use of LLMs. We used GPT-based tools for minor writing polish and for code assistance in gener-
ating plots; all scientific contributions are solely by the authors.

4 EXPERIMENTS

4.1 RBIO WITH AI-VERIFICATION GENERALIZES OOD ON PERTURBATION TASKS

On PERTURBQA [Wu et al.|(2025) (CRISPRi knockdowns in RPE1, K562, HEPG2, JURKAT), mod-
els trained with soft verifiers generalize to held-out cell lines, reducing reliance on cell-line—specific
experimental data. We first evaluate a 2-layer MLP (64 hidden units) trained on three cell lines
and use it to generate predictions on the fourth, which serve as rewards during RL. Gene repre-
sentations include one-hot, Gene2Vec Du et al.| (2019), and ESM [Lin et al.| (2023). The resulting
models, rbio-MLP-leave-one-out-one-hot and rbio-MLP-leave-one-out-gene2vec, perform compa-
rably to experimental-data—trained rbio models.

We compare to two experimental-data baselines: rbio-EXP-one-cell-line (train/test within a cell line;
Fig. 2h) and rbio-EXP-leave-one-out (train on three cell lines; test on the fourth; Fig. 2b). We also
benchmark against SUMMER [Wu et al.| (2025). As shown in Fig. Eh—e, the soft-verifier models
closely match experimental-data models on F1 and MCC, and exceed them in Balanced Accuracy
via higher TPR while maintaining similar TNR. Identifying true effects is paramount in perturbation,
so higher TPR is valuable even with some F1 trade-off. All rbio variants also outperform GEARS
Roohani et al.|(2022) and the base Qwen2.5-3B.
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Figure 2: Model performance for experimental vs. simulation-based soft verification. (a) rbio-EXP-one-
cell-line: trained and tested on the same cell line (in-distribution). (b) rbio-EXP-leave-one-out: trained on
three cell lines, tested on the held-out one (out-of-distribution). (c¢) rbio-MLP-leave-one-out: trained using
MLP predictions on the held-out line (MLP fit on the others). (d) Aggregate metrics: computed over four
cell lines (K562, RPE1, JURKAT, HEPG2), averaged across 5 runs. (e) Metrics split by cell line. Baselines:
SUMMER (experimental + domain knowledge), GEARS (specialized perturbation model),Qwen2.5-3b (base
reasoning model).

4.2 TRAINING RBIO ON MIXTURES OF AI-VERIFIERS LEADS TO PERFORMANCE GAINS

We find that combining verifiers improves performance over using them individually. Notably, the
order in which models see the verifiers matters, reflecting differences in the knowledge provided.
For a pair of verifiers V;, V;, we evaluate:

1. V;: trained only with V; , i € {1,2}

2. V;||Vj: trained sequentially, V;, then V;

3. V; U Vj: trained on a random mixture of V; and V;

We experiment with the following combinations of verifiers:

1. V1 = EXP (hard verifier; experimental data); V5 = MLP (soft verifier; MLP predictions)

2. V1 = EXP (hard verifier; experimental data); Vo = GOqy—y; (soft verifier; GO Ontology
Knowledge Source, likelihood-based reward)

3. V1 = MLP (soft verifier; MLP predictions); Vo = GOg;—y; (soft verifier; GO Ontology
Knowledge Source, likelihood-based reward)
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Figure 3: Model performance for compositions of verifiers
Vi||V; corresponds to training models sequentially, first on V;, then on V. V; U V; corresponds to
models trained on a random mixture of {V;, V; };(a,b) MLP and EX P, trained for 1, and 2
epochs. (¢)EX P and GOgy—y ()M LP and GOy

Note that the training data for each of Vi, V5 is independent of each other - i.e. if V; is a verifier
of experimental data from a dataset D7, emissions from V5 will be on an independent dataset Do
where D; N Dy = @. In the case of the GO, —y; the soft verification is the likelihood of the prior

knowledge {¢?"*"} we have under our learned policy 7y as described in Eq.

J

As shown in Fig.[3] adding verifiers consistently improves performance over using them individually.
For Vi = EXP and V5 = MLP (Fig.[3h,b), all three composition strategies (Sec..2)) perform similarly,
yet each surpasses the single verifiers, underscoring the complementary value of strong verification
sources such as experimental data and models of experimental data.

When mixing knowledge and experimental sources, order becomes critical. In Fig. 3k.d, train-
ing first on GOgyy—y; then on MLP, EXP (GOgyy—i|| MLP, GOguy—1||EX P) outperforms the
reverse. GO-based verification increases TPR (by capturing more positives) - as shown in its perfor-
mance when evaluated individually compared to baseline - but reduces TNR; subsequent training on
experimental data rebalances TNR, improving Balanced Accuracy and MCC. Conversely, starting
from EXP or MLP then adding GO,;;—;; lowers performance, suggesting knowledge sources can
dilute experimental signals if applied late. Thus, knowledge is most effective early to guide the
model, while stronger experimental signals should refine performance later. This aligns with gen-
eral training paradigms: start with broader, noisier data (e.g. ontologies) to shape representations,
then refine with higher-quality data (e.g. experiments) to maximize performance. The strategy is
extendable to multiple verifiers V7, Vs, ..., Vi, which could capture different sources of knowledge.

4.3 RBIO WITH CHAIN-OF-THOUGHT YIELDS STATE OF THE ART ON PERTURBQA

Adding chain-of-thought (CoT) reasoning at inference improves all rbio variants we tested (Ta-
ble. 2), surpassing SUMMER as state-of-art performance on the PerturbQA benchmark. The CoT
prompt that performed the best was: ‘The Biologist will evaluate each step of this problem, using
logical reasoning and evidence from the prompt.” Examples of performance increase: rbio-EXP-
all-cell-lines F1 0.75—0.79, Balanced Accuracy 0.88—0.91, TPR 0.83—0.87; rbio-MLP-ESM F1
0.67—0.71, Balanced Accuracy 0.85—0.89, TPR 0.81—0.87. We offer examples of answers and
reasoning traces generated by the rbio-models on a perturbation question in Figure5]in Supplemen-
tary material. Shown in Figure [ are rbio models trained on only one-fifth of the data and tested
with and without CoT. Remarkably, adding CoT at inference lets them reach state-of-the-art per-
formance on PerturbQA - with rbio-MLP U EXP-CoT surpassing SUMMER despite being trained
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Figure 4: Effect of chain-of-thought prompting. Models using CoT achieve state-of-the-art performance on
the PerturbQA benchmark.
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rbio-EXP-CoT 0.786 £ 0.000 0.907 £ 0.000 0.872 £ 0.000 0.943 £0.000 0.752 + 0.000
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rbio-MLP-CoT 0.642 £ 0.001 0.827 £ 0.000 0.752 £ 0.000 0.903 £ 0.000 0.582 £ 0.001
rbio-EXP 0.578 +0.018 0.804 4+ 0.012 0.741 £0.025 0.866 = 0.008 0.510 £ 0.021
rbio-EXP-CoT 0.639 4 0.000 0.819 £ 0.000 0.731 £ 0.000 0.908 £ 0.000 0.577 £ 0.001
rbio-MLP U EXP 0.648 4+ 0.025 0.825 4+ 0.015 0.737 £0.027 0.913 £0.005 0.589 £ 0.029
rbio-MLP U EXP-CoT 0.716 + 0.000 0.861 + 0.000 0.792 £ 0.000  0.930 & 0.000  0.668 & 0.000
rbio-MLP || EXP 0.623 4+ 0.025 0.829 4+ 0.016 0.771 £0.028  0.886 = 0.005 0.563 £ 0.029
rbio-MLP || EXP-CoT 0.696 £ 0.000 0.858 £ 0.000 0.799 £ 0.001  0.918 = 0.000 0.646 £ 0.000
rbio-EXP || MLP 0.641 4+ 0.026 0.827 £ 0.017 0.748 £ 0.031  0.906 £ 0.003  0.582 4 0.030
rbio-EXP || MLP-CoT 0.703 4 0.000 0.856 £ 0.000 0.786 = 0.000  0.926 & 0.000  0.653 £ 0.000

Table 2: Aggregate performance across datasets on the PerturbQA benchmark. Values are mean =+ standard
error (SE) over 5 different completions. rbio-EXP corresponds to rbio-EXP-all-cell-lines. Comparison to
baselines including SUMMER [Wu et al|(2025) (current SOTA). Best model in each category bolded.

on a fraction of training data - demonstrating the power of inference-time capabilities and verifier
composition in reasoning models.

5 CONCLUSION

We introduce rbiol, a suite of reasoning models trained via soft verification, where simulations
from biological world models provide rewards for reinforcement learning. This approach rivals
experimental-data—trained models, especially when combined with chain-of-thought prompting. By
leveraging predictive bio-models (e.g., MLPs on gene embeddings) and knowledge sources like the
GO Ontology, rbiol shows that simulations and prior knowledge can substitute for costly experi-
mental supervision. We aim to extend rbiol across diverse biological models and modalities toward
a universal virtual cell system integrating multiple sources into a shared reasoning framework. Be-
yond biology, soft verification offers a general supervision strategy for reasoning LLMs, enabling
scalable training in domains without exact verifiers and raising open questions on verifier design,
noisy-signal balancing, and evaluating reasoning quality beyond task accuracy.
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A APPENDIX

A.1 METRICS

We formulate the genetic perturbation prediction task as a question in natural language with a binary
answer. Given a pair of genes gene4 and genep, the model is asked to emit a binary answer - yes
or no. We use four CRISPRi single-gene perturbation knockdown datasets on four cancer cell lines
(RPE1, K562, HEPG2, JURKAT), post-processed into natural language queries by PerturbQA Wu
et al.[(2025). We compute the following metrics:

Recall (TPR) = j?fl;_ipm (16)
TN
TNR = TN FP (17)
TP
Precision = W (18)
F15ape = 2, L. e
Balanced Accuracy = %QTNR (20)

TP-TN—-FP-FN

MCC (Matthews Correlation Coef ficient) = TP FP)(TP = FN)(TN + FP)(TN = )

1)
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A.2 EXAMPLES OF REASONING TRACES

Is a knockdown of ISCA2 in
rpe1 cells likely to result in
differential expression of
CEP295? The answer is either
yes or no

system_prompt

A conversation between User and Biologist. The user asks a
question, and the Biologist solves it. The biologist first thinks
about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer
are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e., <think> reasoning process
here </think> <answer> answer here </answer>.

system_prompt

A conversation between User and Biologist. The user asks a
question, and the Biologist solves it. The biologist first thinks
about the reasoning process in the mind and then provides
the user with the answer. The reasoning process and answer
are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e., <think> reasoning process
here </think> <answer> answer here </answer>.The
Biologist will evaluate each step of this problem, using logical
reasoning and evidence from the prompt.

system_prompt

You are an Al model trained as a Biologist through
reinforcement learning. | will ask you a question, you will
come up with a reasoning process based on what you have
learned during training and then you will give me the answer.
The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively,
i.e., <think> reasoning process here </think> <answer>
answer here </answer>. You will provide the reasoning
step-by-step, using detailed biological knowledge from
training.

Example answer

Knockdown of ISCA2 in RPE1 cells would likely lead to differential
expression of CEP295. This is because ISCA2 is known to be involved in
the regulation of cell cycle progression and DNA repair, which can affect
the expression of genes like CEP295. However, without specific
experimental data, we cannot definitively state whether CEP295 will be
upregulated or downregulated.

Example answer using Chain-of-Thought

ISCA2 is a protein that is involved in the regulation of cell cycle
progression. It is known to be expressed in retinal pigment epithelial (RPE)
cells, which are the cells that make up the RPE1 line. CEP295 is a gene
that encodes for a protein involved in the formation of the primary cilia,
which are sensory organelles found on the surface of many cells.
Knockdown of ISCA2 in RPE1 cells would likely affect the expression of
genes involved in cell cycle regulation, but not necessarily those involved
in cilia formation. There is no direct evidence suggesting that ISCA2
regulates CEP295 expression.

Example answer using self-aware Chain-of-Thought

Knockdown of ISCA2 in RPE1 cells would likely lead to differential
expression of CEP295. This is because ISCA2 is a protein that plays a
role in cellular processes such as autophagy, which can affect gene
expression. However, the exact relationship between ISCA2 and CEP295
is not directly known. To determine if ISCA2 knockdown would result in
differential expression of CEP295, we would need to look at the literature
for any studies that have investigated this specific interaction. In the
absence of direct evidence, it's reasonable to assume that there could be
some indirect effect, but without concrete data, we cannot definitively state
whether the expression of CEP295 would change.

Figure 5: — Examples of Reasoning Traces for perturbation prediction answering a question sampled
randomly from the test set. Different example answers for different chain-of-thought techniques.Outputs
from a model trained on combinations of soft-verifiers.

13



	Introduction
	Related Work
	rbio1: Methods
	Reinforcement Learning for reasoning
	Rbio-Exp: reinforcement learning with Hard Verification
	Rbio-RLEMF: reinforcement learning with experimental model feedback
	Rbio-RLPK: reinforcement learning from prior knowledge
	Composable Verification for model integration

	Experiments
	rbio with AI-verification generalizes OOD on perturbation tasks
	Training rbio on mixtures of AI-verifiers leads to performance gains
	Rbio with chain-of-thought yields state of the art on PerturbQA

	Conclusion
	Appendix
	Metrics
	Examples of reasoning traces


