
PHYSICSARENA: The First Multimodal Physics Reasoning Benchmark
Exploring Variable, Process, and Solution Dimensions

Anonymous ACL submission

Abstract

Multimodal Large Language Models (MLLMs)001
have demonstrated remarkable capabilities in002
diverse reasoning tasks, yet their application to003
complex physics reasoning remains underex-004
plored. Physics reasoning presents unique chal-005
lenges, requiring grounding in physical con-006
ditions and the interpretation of multimodal007
information. Current physics benchmarks are008
limited, often focusing on text-only inputs or009
solely on problem-solving, thereby overlook-010
ing the critical intermediate steps of variable011
identification and process formulation. To ad-012
dress these limitations, we introduce PHYSIC-013
SARENA, the first multimodal physics reason-014
ing benchmark designed to holistically evalu-015
ate MLLMs across three critical dimensions:016
variable identification, physical process for-017
mulation, and solution derivation. Physic-018
sArena aims to provide a comprehensive plat-019
form for assessing and advancing the multi-020
modal physics reasoning abilities of MLLMs.021

1 Introduction022

Multimodal Large Language Models (MLLMs)023

have recently demonstrated remarkable capabili-024

ties across a diverse range of domains (Caffagni025

et al., 2024; Fei et al., 2024; Yan et al., 2024c,b).026

Their proficiency in processing and integrating in-027

formation from various modalities has unlocked028

significant potential (Fu et al., 2024; Huo et al.,029

2024). Notably, the reasoning abilities inherent in030

the underlying LLMs have fueled advancements in031

multimodal reasoning tasks. This synergy is partic-032

ularly beneficial in complex, real-world scenarios033

such as education, where understanding and reason-034

ing about multimodal information are paramount.035

Areas like mathematical problem-solving and code036

generation have already seen substantial progress,037

showcasing the power of MLLMs in tackling struc-038

tured reasoning challenges (Yan et al., 2024a; Yun039

et al., 2024; Wang et al., 2024a; Lin et al., 2025).040

Figure 1: Comparison between previous physics reason-
ing settings and our proposed PHYSICSARENA.

Despite these advancements, the domain of 041

physics reasoning remains relatively underexplored 042

within the MLLM research landscape. Physics 043

presents a unique and arguably more intricate rea- 044

soning setting compared to mathematics or cod- 045

ing. Effective physics reasoning necessitates not 046

only logical deduction but also a deep understand- 047

ing grounded in real-world physical laws and 048

theorems. Furthermore, the reasoning process is 049

often tightly constrained by objective physical 050

conditions depicted visually or described textu- 051

ally. This inherent complexity, involving the in- 052

terplay between abstract principles and concrete, 053

often multimodal, scenarios, necessitates a ded- 054

icated benchmark capable of rigorously evaluat- 055

ing the physics reasoning capabilities of modern 056

MLLMs (Yan et al., 2025a; Ferrag et al., 2025). 057

Current benchmarks designed for physics reason- 058

ing suffer from significant limitations as follows. 059

❶ Many existing efforts (Qiu et al., 2025; Xu et al., 060

2025) primarily focus on text-only settings, failing 061

to capture the crucial interplay with multimodal 062

information that characterizes real-world physics 063

problems (e.g., interpreting diagrams, graphs, or 064

experimental setups), as shown in Figure 1 (a). ❷ 065

Other benchmarks (Feng et al., 2025; Zhang et al., 066

2025), even if multimodal, tend to concentrate 067

solely on the problem-solving aspect – predicting 068
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the final solution or answer, as shown in Figure 1069

(b). This overlooks the critical intermediate steps070

inherent in physics reasoning: identifying relevant071

variables from the problem context and formulating072

the correct physical process or sequence of princi-073

ples required to reach the solution. A comprehen-074

sive evaluation of physics reasoning capabilities,075

therefore, requires modeling the dynamic reason-076

ing process from its inception, encompassing these077

vital variable and process stages.078

To bridge this gap, we introduce PHYSIC-079

SARENA, the first benchmark specifically de-080

signed to comprehensively evaluate multimodal081

physics reasoning across three crucial dimensions:082

Variable Identification, Process Formulation, and083

Solution Derivation. As illustrated in Figure 1084

(c), PHYSICSARENA provides a structured envi-085

ronment with problems presented multimodally,086

demanding that models demonstrate understand-087

ing throughout the entire reasoning pipeline, not088

just at the final output stage. By dissecting the089

reasoning task into these three interconnected di-090

mensions, our benchmark offers a more granular091

and insightful assessment of MLLM capabilities092

in this challenging domain. We have rigorously093

evaluated a suite of representative, state-of-the-art094

MLLMs using PHYSICSARENA.095

Our contributions can be summarized as follows:096

• We introduce PHYSICSARENA, the first multi-097

modal physics reasoning benchmark that explic-098

itly models the dynamic reasoning process. It099

comprises over 5,000 high-quality instances.100

• PHYSICSARENA provides a holistic evaluation101

framework by incorporating assessments across102

the Variable, Process, and Solution dimensions.103

This multi-faceted approach fully addresses the104

complexity inherent in the physical setting.105

• We conduct extensive experiments on represen-106

tative state-of-the-art MLLMs using PHYSIC-107

SARENA. Our results provide valuable insights108

into capabilities, revealing a significant gap that109

still exists towards AGI-level intelligence.110

2 Related Works111

2.1 Physics Reasoning Benchmarks112

As the community’s focus on scientific reason-113

ing increases (Luo et al., 2025; Yan et al., 2025b;114

Yan and Lee, 2024), physics reasoning also re-115

quires high-quality benchmarks for evaluation.116

As indicated in Table 1, early physics reasoning 117

data were all subsets of general scientific rea- 118

soning benchmarks. Early science-wide suites 119

such as E-EVAL (Hou et al., 2024) for Chinese 120

K-12 education, MMLU-Pro (Wang et al., 2024b) 121

for college-level knowledge, and the multimodal 122

ScienceQA dataset (Lu et al., 2022) establish 123

broad coverage with text-only or image-augmented 124

multiple-choice questions across diverse subjects 125

that include physics. Subsequent resources raise 126

disciplinary depth: GPQA (Rein et al., 2024) intro- 127

duces graduate-level STEM questions designed to 128

be Google-proof ; JEEBench (Arora et al., 2023) 129

curates IIT·JEE-Advanced problems combining 130

MC and open-ended formats; and college-focused 131

sets such as SciBench (Wang et al., 2023), Sci- 132

Eval (Sun et al., 2024), and the bilingual multi- 133

modal OlympiadBench (He et al., 2024) adopt nu- 134

merical or free-response answers and often sup- 135

ply diagram contexts. In the past year, reason- 136

ing benchmarks specifically dedicated to physics 137

have begun to emerge. PhysReason (Zhang et al., 138

2025) provides 1,200 problems with step-level as- 139

sessment, PHYBench (Qiu et al., 2025) introduces 140

an expression-distance metric over 500 real-world 141

scenarios, and UGPhysics (Xu et al., 2025) couples 142

5,520 undergraduate problems with a rule-based 143

judgment pipeline. Together these benchmarks 144

trace a coherent evolution from general science 145

to domain-focused physics, from fixed-choice to 146

open-ended solutions, and from text to richly multi- 147

modal settings (Chen et al., 2025a; Li et al., 2025). 148

2.2 Multimodal Large Language Models 149

Research on MLLMs has progressed from add-on 150

visual interfaces to tightly unified vision–language 151

architectures. Early adapters such as Visual- 152

GPT (Wu et al., 2023), which grafts a self- 153

reviving visual encoder onto GPT2 for data- 154

efficient captioning, and GPT-4o (OpenAI et al., 155

2023), which simply enables image input for a 156

general-purpose LLM, showed that pre-trained text 157

decoders can address visual tasks. Later work pur- 158

sues deeper fusion: Flamingo (Alayrac et al., 2022) 159

bridges frozen vision and language backbones with 160

cross-attention, while BLIP-2 (Li et al., 2023) links 161

off-the-shelf encoders through a lightweight query- 162

ing transformer. Leveraging CLIP’s contrastive 163

alignment of image–text embeddings (Radford 164

et al., 2021), LLaVA (Liu et al., 2023a) feeds 165

CLIP visual tokens directly into a chat-oriented 166

LLM for unified multimodal reasoning. Scaling 167
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Benchmarks Size Img.# Know. Level Qns. Type Task Dimension
Variable Process Solution

E-EVAL (Hou et al., 2024) 342 0 K12 MC ✗ ✗ –
MMLU-Pro (Wang et al., 2024b) 1299 0 COL MC ✗ ✗ –
GPQA (Rein et al., 2024) 227 0 Ph.D OE ✗ ✗ ✓
JEEBench (Arora et al., 2023) 123 0 CEE OE/MC ✗ ✗ ✓
ScienceQA (Lu et al., 2022) 1923 1328 K12 MC ✗ ✗ –
SciBench (Wang et al., 2023) 291 64 COL OE ✗ ✗ ✓
MMMU (Yue et al., 2024) 443 443 COL OE/MC ✗ ✗ ✓
OlympiadBench (He et al., 2024) 2334 1958 CEE/COMP OE ✗ ✗ ✓
SciEval (Sun et al., 2024) 1657 0 – OE/MC ✗ ✗ ✓
EMMA (Hao et al., 2025) 156 156 CEE MC ✗ ✗ –
PhyReason (Zhang et al., 2025) 1200 972 CEE/COMP OE ✗ ✗ ✓
PHYBench (Qiu et al., 2025) 500 0 COMP/COL OE ✗ ✗ ✓
PHYSICS (Feng et al., 2025) 1297 298 COL OE ✗ ✗ ✓
UGPhysics (Xu et al., 2025) 5520 0 UG OE/MC ✗ ✗ ✓

PHYSICSARENA (Ours) 5103 5103 CEE OE ✓ ✓ ✓

Table 1: Comparisons between physics reasoning benchmark (covering the physics-related data included in
scientific reasoning benchmarks) vs our proposed PHYSICSARENA dataset. Img.#: Count of problems with image;
Knowledge Level: K12: Elementary to High School; CEE: College Entrance Examination; COMP: Competition;
COL: College; UG: Undergraduate; Ph.D: Doctor of Philosophy. Question Type: OE: Open-ended; MC: Multiple-
choice.

Figure 2: The illustration of a representative example from our proposed PHYSICSARENA dataset.

this paradigm, Qwen-VL (Bai et al., 2023) and168

InternVL (Chen et al., 2024b) co-train large vi-169

sion–language encoders and attain state-of-the-art170

results across captioning, VQA and grounding.171

DeepSeek-VL (Lu et al., 2024) further introduces172

a hybrid multiscale vision backbone that preserves173

linguistic fluency while processing high-resolution174

images. Collectively, these works chart a clear175

trend toward instruction-tuned MLLMs that oper-176

ate in a shared semantic space across modalities. 177

The PHYSICSARENA dataset we propose serves 178

as a comprehensive evaluation base for the latest 179

representative MLLMs. 180

3 Our PHYSICSARENA Benchmark 181

3.1 Task Formulation 182

The core objective of PHYSICSARENA is to provide 183

a comprehensive framework for evaluating the mul- 184
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timodal physics reasoning capabilities of MLLMs.185

As shown in Figure 2, each problem instance in186

PHYSICSARENA is represented by a multimodal187

input, denoted as M . This input M comprises188

three key components: a Visual Context I (e.g.,189

diagrams, experimental setups), a Textual Context190

T (e.g., problem descriptions, conditions), and a191

specific Query Q related to the physics scenario,192

such that M = (I,T ,Q).193

Given a multimodal input Mi for a problem in-194

stance, an MLLM is tasked to generate a struc-195

tured output that demonstrates its understanding196

across three key dimensions: Variable Identifica-197

tion, Process Formulation, and Solution Derivation.198

The model’s overall output for an instance Mi can199

be represented as Oi = (OV,i,OP,i,OS,i), corre-200

sponding to the outputs for these three dimensions.201

The ground truth annotations for the same instance202

are denoted as Gi = (GV,i,GP,i,GS,i). The eval-203

uation of the model’s output Oi against the ground204

truth Gi is performed by a judge function J(·, ·),205

implemented using GPT-4o.206

For Variable Identification, the model is re-207

quired to identify NV = 6 predefined cate-208

gories of physical variables from the input Mi.209

The model’s output for this subtask is OV,i =210

{ov,1, ov,2, . . . , ov,NV
}, where each ov,j corre-211

sponds to one of the following components:212

(1)Entity, (2)Geometry, (3)Field, (4)Structure,213

(5)Connection, and (6)External Influence. The214

ground truth is GV,i = {gv,1, gv,2, . . . , gv,NV
}.215

Each identified component ov,j is compared216

with its corresponding ground truth gv,j by the217

judge, which assigns a boolean score sv,j =218

J(ov,j , gv,j) ∈ {TRUE, FALSE}.219

For Process Formulation, the model must de-220

scribe the physical process by formulating NP =221

5 types of descriptors. The model’s output for222

this subtask is OP,i = {op,1, op,2, . . . , op,NP
},223

where each op,k corresponds to one of the follow-224

ing descriptors: (1)Entity State, (2)Process De-225

tail, (3)Force & Energy, (4)State Change, and226

(5)Process Relation. The ground truth is GP,i =227

{gp,1, gp,2, . . . , gp,NP
}. Each formulated descrip-228

tor op,k is compared against its ground truth gp,k229

by the judge, which assigns a boolean consistency230

score sp,k = J(op,k, gp,k) ∈ {TRUE, FALSE}.231

For Solution Derivation, the model is required232

to generate a detailed, step-by-step reasoning chain233

OS,i that leads to the final answer for the query234

Q in the input Mi. The ground truth is a refer-235

ence step-by-step solution GS,i. The model’s gen-236

erated solution OS,i is compared with the ground 237

truth solution GS,i for logical coherence and cor- 238

rectness of each step by the judge, which assigns 239

an overall boolean score sS,i = J(OS,i,GS,i) ∈ 240

{TRUE, FALSE} based on exact agreement of the 241

entire reasoning chain. 242

The performance on each dimension is quan- 243

tified using accuracy metrics. The accuracy for 244

Variable Identification, AccuracyV , is calculated as 245

the proportion of correctly identified components: 246

AccuracyV =
1

NV

NV∑
j=1

I(sv,j = TRUE), (1) 247

where I(·) is the indicator function. Similarly, the 248

accuracy for Process Formulation, AccuracyP , is 249

AccuracyP =
1

NP

NP∑
k=1

I(sp,k = TRUE). (2) 250

The accuracy for Solution Derivation, AccuracyS , 251

is directly given by 252

AccuracyS = I(sS,i = TRUE). (3) 253

This multi-dimensional task formulation allows 254

PHYSICSARENA to comprehensively assess an 255

MLLM’s ability to not only predict a final an- 256

swer but also to understand the underlying physical 257

variables and processes involved in addressing the 258

query Q based on the multimodal context (I,T ). 259

3.2 Data Preparation & Enhancement 260

The construction of the PHYSICSARENA bench- 261

mark is a meticulous multi-stage process, designed 262

to ensure the dataset’s quality and utility for mul- 263

timodal physics reasoning. This comprehensive 264

endeavor encompasses four primary stages: initial 265

data collection, rigorous preprocessing, AI-assisted 266

expert annotation, and a final meticulous sampling 267

review (details in Appendix A). 268

Data Collection We systematically gathered di- 269

verse high-school physics problems, employing 270

custom Python spiders to harvest textual compo- 271

nents (stems, options, solutions, answers) and as- 272

sociated visual materials (diagrams, formula im- 273

ages). This collection supports the benchmark’s 274

multimodal nature, encompassing various question 275

types like those involving gravity, prisms, etc. 276

Preprocessing Raw data underwent extensive 277

preprocessing, including HTML cleaning with reg- 278

ular expressions and GPT-4o, and OCR for formula 279
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Figure 3: Roadmap of PHYSICSARENA dataset preparation, enhancement, and evaluation.

images to reconstruct LaTeX expressions. This rig-280

orous filtering and structuring addressed inconsis-281

tencies and errors, excluded declarative knowledge282

items, and removed low-quality images, ensuring283

data integrity and a focus on procedural reasoning.284

Expert Annotation Cleaned and structured data285

was enriched through expert annotation, leveraging286

GPT-4o with designed prompts (see Appendix B)287

to automatically generate detailed JSON annota-288

tions for each problem. These annotations specified289

relevant variables (entities, properties, values/units)290

and the formulation of physical processes, and as-291

signed a difficulty level (Easy, Medium, Hard) to292

each problem.293

Sampling Review Finally, a stratified subset294

of 200 items, reflecting original distributions of295

knowledge domains and difficulty, was selected for296

thorough manual review. Human experts meticu-297

lously examined these items to verify the accuracy298

of annotations, particularly for variable identifica-299

tion and process formulation, and to ensure the300

quality and reliability of PHYSICSARENA.301

3.3 Dataset Details302

The PHYSICSARENA dataset, as summarized in303

Table 2, encompasses a total of 5,103 multimodal304

physics problems. These problems are distributed305

across three distinct difficulty levels: Easy (40.7%,306

2,077 items), Medium (36.2%, 1,847 items), and 307

Hard (23.1%, 1,179 items), ensuring a compre- 308

hensive range of challenges. The dataset further 309

exhibits broad topical coverage, with significant 310

representation from areas such as Magnetic Fields 311

(21.2%), Electromagnetic Induction (20.8%), and 312

Newton’s Laws of Motion (19.8%), alongside a di- 313

verse array of other fundamental physics concepts. 314

The sample problems are presented in Appendix C. 315

4 Experiments and Analysis 316

4.1 Evaluation Protocols 317

We employ GPT-4o as the automatic judge for 318

PHYSICSARENA. The evaluation is divided into 319

three complementary subtasks that together assess 320

the structural and procedural quality of a model’s 321

physical reasoning. See details of evaluation proto- 322

cols and prompts in Appendix D and E. 323

4.2 Experimental Setup 324

We conduct a comprehensive evaluation on a di- 325

verse set of state-of-the-art MLLMs. Our open- 326

source set includes InternVL 2.5 series (Chen 327

et al., 2025b), Qwen 2.5-VL series (Bai et al., 328

2025b), LLaVA v1.6 (Liu et al., 2023b), and Yi- 329

VL-6B (01.AI Team, 2024). For closed source, we 330

evaluate three leading models: GPT-4o (OpenAI 331

et al., 2023), Claude 3.5 Sonnet (Anthropic, 2024) 332
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Statistics Number

Total Questions 5,103

Difficulty Levels
- Easy 2,077 (40.7%)
- Medium 1,847 (36.2%)
- Hard 1,179 (23.1%)

Topics
- Magnetic Field 1,080 (21.2%)
- Electromagnetic Induction 1,063 (20.8%)
- Newton’s Laws of Motion 1,012 (19.8%)
- Electrostatic Field 642 (12.6%)
- Curvilinear Motion 526 (10.3%)
- Interaction 296 (5.8%)
- Conservation of Momentum 145 (2.8%)
- Uniformly Accelerated Linear Motion 117 (2.3%)
- Gravitation & Spaceflight 67 (1.3%)
- Alternating Current 56 (1.1%)
- Direct Current 41 (0.8%)
- Conservation of Mechanical Energy 35 (0.7%)
- Mechanical Vibrations & Waves 13 (0.3%)
- Description of Motion 10 (0.2%)

Table 2: Key statistics of the PHYSICSARENA dataset,
including diverse difficulty levels and topics.

and Qwen-VL-Max (Bai et al., 2024).333

4.3 Experimental Analysis334

4.3.1 Main Results335

Across all three tasks, the accuracies of336

state-of-the-art MLLMs remain modest, under-337

scoring the difficulty of the PHYSICSARENA338

benchmark. In Variable Identification, the highest339

score on any sub-metric is only 0.704, attained by340

Qwen2.5-VL-32B-Instruct on External Influences341

(Figure 4 (a)); every other dimension lies well be-342

low 0.70. Models are relatively stronger on Field,343

Structure, and Geometry, probably because these344

attributes are stated explicitly in both problem text345

and accompanying diagram. The high numbers for346

External Influences arise because most high-school347

problems do not involve external agents, turning348

it into an easy negative class. By contrast, cate-349

gories that hinge on subtle scene understanding350

and deeper reasoning—Entity and, in particular,351

Connection—show the lowest accuracies.352

For Process Formulation (Figure 4 (b)), no353

model exceeds 0.535 on any metric; the top score354

(0.535) is achieved by GPT-4o on Entity State.355

While models can enumerate entities, sketch coarse356

Process Links, and provide partial Process Details,357

they struggle with fine-grained State Change de-358

scriptions and the associated Force & Energy analy-359

ses—both essential for rigorous physical reasoning.360

Solution Derivation (Table 3) is the most chal-361

Model LLM Base ViT Encoder Accuracy (%)

Open-source MLLMs

InternVL2.5-2B Int2.5-1.8B IntViT-300M 3.02
InternVL2.5-8B Int2.5-7B IntViT-300M 9.90
InternVL2.5-38B Q2.5-32B IntViT-6B 22.95
Intern2.5VL-78B Q2.5-72B IntViT-6B 21.16
Qwen2.5-VL-3B Q2.5-3B Q2ViT-600M 8.39
Qwen2.5-VL-7B Q2.5-7B Q2ViT-600M 14.38
Qwen2.5-VL-32B Q2.5-32B Q2ViT-0.6B 30.59
Qwen2.5-VL-72B Q2.5-72B Q2ViT-600M 30.49
Yi-VL-6B Yi-6B ViT-H-630M 0.06
LLaVA-v1.6-7B Vic-7B ViT-L-0.43B 0.37
LLaVA-v1.6-13B Vic-13B ViT-L-0.43B 0.20

Closed-source MLLMs

Qwen-VL-Max - - 33.47
GPT-4o - - 20.71
Claude-3.5-Sonnet - - 23.99

Table 3: Solution derivation accuracy (%) performance.
Abbreviations: Int2.5: InternLM 2.5; IntViT: Intern-
ViT; Q2.5: Qwen 2.5; Q2ViT: Qwen2ViT; ViT-H/L:
CLIP ViT-H/14 or ViT-L/14; Vic: Vicuna.

lenging stage: the best accuracy, 0.335, belongs to 362

Qwen-VL-Max. The monotonic drop from Vari- 363

able Identification through Process Formulation to 364

Solution Derivation mirrors the cognitive steps of 365

human problem solving and confirms the progres- 366

sive difficulty embedded in PHYSICSARENA. 367

Larger MLLMs consistently outperform 368

smaller ones, and among open-source systems 369

the Qwen2.5-VL family leads, followed by In- 370

ternVL; proprietary Claude and GPT-4o trail 371

slightly behind. Qwen-VL-Max (undisclosed 372

size) attains the highest overall accuracy, while 373

its open-source siblings Qwen2.5-VL-32B-Instruct 374

and Qwen2.5-VL-72B-Instruct occupy the next 375

two spots. Interestingly, although GPT-4o lags be- 376

hind Qwen and Intern on Variable Identification, it 377

tops all five metrics in Process Formulation. Thus, 378

stronger low-level vision grounding benefits Solu- 379

tion Derivation, yet the modest ceiling in Process 380

Formulation ultimately limits final accuracy. 381

Insufficient visual understanding remains the 382

primary bottleneck for physics reasoning in 383

current MLLMs. Although GPT-4o leads ev- 384

ery sub-metric in Process Formulation, its Solu- 385

tion Derivation accuracy is still lower than that of 386

Claude-3.5-Sonnet. Despite comparable aggregate 387

scores in Variable Identification, Claude surpasses 388

GPT-4o on the vision-heavy categories Entity, Ge- 389

ometry, and Field, directly boosting its final-answer 390
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Figure 4: Performance comparison for Variable Identification (a) and Process Formulation (b).

Figure 5: Illustration of a representative bad case of
variable identification (more cases in Appendix F).

accuracy. GPT-4o nonetheless excels at Structure391

recognition; its weaker performance on physics rea-392

soning stems more from the domain-specific visual393

grounding demanded by PHYSICSARENA.394

4.3.2 Bad Case Analysis395

In Variable Identification, models often fail to396

recognize essential physical components under the397

problem setting, such as pulleys or springs (see398

Figure 5), or hallucinate components that are not399

present. Another common issue is the misinterpre-400

tation of implicit physics scene semantics.401

(a) Correlation Between Variable Identification Fac-
tors and Solution Accuracy.

(b) Correlation Between Variable Identification Fac-
tors and Solution Accuracy.

Figure 6: Pearson correlation analysis of Variable Iden-
tification and Process Formulation factors in relation to
Solution Derivation accuracy.

Errors in Process Formulation typically fall 402

into two categories: incorrect process assumptions, 403

such as mistaking circular motion for linear motion, 404

and the omission of key procedural steps, partic- 405

ularly in scenarios involving multiple interacting 406

phases. These errors undermine the model’s ability 407

to construct a coherent and complete internal repre- 408

sentation of the physical process, which is critical 409

for successful reasoning. 410

Notably, failures in Solution Derivation often 411

share the same underlying issues as in the cases. 412
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Figure 7: Solution accuracy across difficulty levels.

4.3.3 Correlation Analysis413

We conduct a Pearson correlation analysis (Sedg-414

wick, 2012) to assess how the correctness of Vari-415

able Identification and Process Formulation re-416

lates to the accuracy of Solution Derivation. Ap-417

pendix G presents a difficulty-level analysis.418

The results demonstrate a statistically signif-419

icant correlation, with p-values well below the420

conventional threshold of 10−3. As shown in421

Figure 6a, factors such as field, geometry, and422

structure—which require effective vision-language423

alignment to capture physical semantics—exhibit424

stronger correlations with successful solution425

derivation in multimodal physics reasoning tasks.426

Similarly, evaluation factors for Process Formu-427

lation are also significantly correlated with final so-428

lution correctness (with p-values well below 10−3),429

as shown in Figure 6b. This observation is con-430

sistent with physical intuition: accurate analysis431

of procedural details and inter-process dependen-432

cies is essential for producing correct solutions in433

complex multi-step physics problems.434

4.3.4 Difficulty Level Analysis435

The analysis of model accuracy across different436

difficulty levels according to Figure 7 reveals two437

clear trends: (1) as task difficulty increases, the438

overall accuracy of all models declines, and (2)439

the performance gap between models progressively440

narrows, indicating a convergence in capabilities.441

This convergence suggests a common perfor-442

mance bottleneck faced by current MLLMs when443

confronted with complex tasks. While models444

such as the Qwen2.5-VL and InternVL2.5 families445

demonstrate strong multimodal understanding on446

easy and medium-level tasks, this advantage dimin-447

ishes as task complexity grows. At higher difficulty448

levels, the primary challenge appears to shift from449

multimodal alignment and semantic understanding450

to abstract modeling and causal reasoning.451

Figure 8: The accuracy of solution derivation of
Qwen2.5VL and InternVL2.5. We denote Tiny, Small,
Middle, Large as the 2B, 8B, 26B, 78B for InternVL2.5
and 3B, 7B, 32B, 72B for Qwen2.5VL, respectively.

4.3.5 Scaling Analysis 452

As shown in Figure 8, while the accuracy of solu- 453

tion derivation demonstrates a general trend of im- 454

provement for both the InternVL2.5 and Qwen2.5- 455

VL models as their size increases from Tiny to Mid- 456

dle, the accuracy plateaus or even declines when 457

the model size reaches the Large scale. We at- 458

tribute this phenomenon to the challenging nature 459

of PHYSICSARENA: merely increasing size with- 460

out task-specific fine-tuning is insufficient. 461

According to Table 3, both InternVL2.5 and 462

Qwen2.5-VL utilize same LLMs in the Middle and 463

Large settings. However, InternVL2.5 incorporates 464

a 6B InternViT vision encoder, whereas Qwen2.5- 465

VL adopts a unified 600M Qwen2ViT across all 466

scales. Despite the larger parameter size of In- 467

ternViT, the differing training data and method- 468

ologies suggest that Qwen2ViT’s training is more 469

efficient (Bai et al., 2025a; Chen et al., 2024a). 470

Furthermore, both models undergo supervised fine- 471

tuning and direct preference optimization in their 472

post-training phases, yet the task settings and train- 473

ing data vary between them. This underscores the 474

importance of fine-tuning in multimodal physical 475

reasoning tasks. 476

5 Conclusion 477

We introduced PHYSICSARENA, the first multi- 478

modal physics reasoning benchmark designed to 479

holistically evaluate MLLMs across three critical 480

dimensions: Variable Identification, Process For- 481

mulation, and Solution Derivation, with over 5,000 482

multimodal instances. Our extensive experiments 483

reveal that while progress has been made, current 484

models still exhibit modest performance, esp. pro- 485

cess formulation and complex solution derivation, 486

highlighting a significant gap towards AGI-level 487

scientific reasoning (Yan et al., 2025a). 488
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Limitations489

Despite the comprehensive nature of PHYSIC-490

SARENA and its novel three-dimensional evalu-491

ation framework, there are still minor limitations492

that offer avenues for future work:493

1. While PHYSICSARENA covers a broad range494

of high-school level (CEE equivalent) physics495

topics, it does not yet extend to more advanced496

undergraduate or specialized graduate-level497

physics problems, which often involve more498

abstract concepts and complex mathematical499

formalisms. We plan to incrementally expand500

the dataset to include problems from higher501

education curricula, thereby increasing the502

complexity and topical diversity to challenge503

MLLMs further.504

2. The assessment of Variable Identification and505

Process Formulation relies on an LLM-based506

judge (GPT-4o). While scalable and gener-507

ally effective, automated judges can some-508

times miss subtle nuances or exhibit unfore-509

seen biases compared to human expert evalua-510

tions, especially for complex reasoning chains.511

We aim to incorporate periodic, large-scale512

human expert validation for these intermedi-513

ate steps and explore hybrid evaluation mod-514

els that combine the scalability of automated515

judges with the precision of human oversight.516

3. The current visual inputs in PHYSICSARENA517

are primarily static diagrams and images.518

Real-world physics understanding often in-519

volves interpreting dynamic scenarios, such520

as videos of experiments or interactive simu-521

lations. We intend to explore the integration522

of dynamic multimodal inputs, such as short523

video clips or simplified interactive environ-524

ments, to assess MLLMs’ ability to reason525

about temporal changes and cause-and-effect526

in physical systems.527

References528

01.AI Team. 2024. Yi: Open foundation models by529
01.ai. arXiv preprint arXiv:2403.04652.530

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,531
Antoine Miech, Iain Barr, Yana Hasson, Karel532
Lenc, Arthur Mensch, Katherine Millican, Malcolm533
Reynolds, Roman Ring, Eliza Rutherford, Serkan534
Cabi, Tengda Han, Zhitao Gong, Sina Samangooei,535

Marianne Monteiro, Jacob L. Menick, Sebastian 536
Borgeaud, Andy Brock, Aida Nematzadeh, Sahand 537
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A Details of Data Preparation &912

Enhancement913

The construction of the PHYSICSARENA bench-914

mark is a meticulous multi-stage process, designed915

to ensure the dataset’s quality and utility for mul-916

timodal physics reasoning. This comprehensive917

endeavor encompasses four primary stages, as il-918

lustrated in Figure 3: initial data collection, rigor-919

ous preprocessing, sophisticated AI-assisted expert920

annotation, and a final meticulous sampling review.921

Each stage builds upon the previous, progressively922

refining the data towards a high-quality benchmark.923

Data Collection First, the foundational stage in-924

volves Data Collection. In this step, we systemati-925

cally gather a diverse range of high-school physics926

problems. Specifically, custom Python spiders927

are employed to harvest essential textual compo-928

nents—including problem stems, options, detailed929

solutions, and correct answers—from various on-930

line repositories. Concurrently, to support the mul-931

timodal nature of our benchmark, associated visual932

materials, such as problem diagrams, images of for-933

mula renderings, and screenshots of solution steps,934

are also captured, encompassing various question935

types like those involving gravity, prisms, pulleys,936

and electric circuits.937

Preprocessing Next, following the initial collec-938

tion, the raw data undergoes an extensive Prepro-939

cessing stage to ensure its integrity and usabil-940

ity. Initially, raw HTML content is meticulously941

cleaned using a combination of regular expressions942

and a GPT-4o-based corrector; this serves to nor-943

malize its structure and accurately extract relevant944

textual segments. Subsequently, any images con-945

taining mathematical formulas are processed us-946

ing OCR to reconstruct their corresponding LaTeX947

expressions, facilitating machine readability and948

further analysis. Furthermore, a crucial validation949

step is performed where the final result derived950

from the provided solution is compared against the951

labeled correct answer, and any samples exhibit-952

ing inconsistencies are discarded. To maintain a953

focus on procedural reasoning rather than mere954

fact recall, items that solely test declarative knowl-955

edge are systematically excluded. Additionally,956

images deemed low-quality or non-compliant with957

our standards are removed. This rigorous filtering958

and structuring addresses potential issues such as959

semantic inconsistency, format errors, missing an-960

swers, noise, and redundancy, while also ensuring961

content format normalization, parsing error correc- 962

tion, LaTeX expression structuring, and effective 963

OCR-based solution segmentation. 964

Expert Annotation Subsequently, once the data 965

is cleaned and structured, the Expert Annotation 966

phase commences, aimed at enriching the dataset 967

with crucial reasoning elements. In this critical 968

phase, we leverage the advanced capabilities of 969

GPT-4o, guided by carefully designed structured 970

prompts, to automatically generate detailed JSON 971

annotation files for each problem. These annota- 972

tions meticulously specify, as depicted in Figure 3, 973

the identification of relevant variables (e.g., enti- 974

ties like "Cargo (20 kg)" or "Sled (5 kg)", their 975

properties, and associated values/units) and the for- 976

mulation of the physical processes involved (e.g., 977

"Sliding down the conveyor belt," "Decelerating on 978

the sled," "Moving after impact"). The annotation 979

schema is designed to break down the problem into 980

variable identification, process formulation, and ul- 981

timately, solution derivation. Moreover, each prob- 982

lem is assigned a difficulty level (Easy, Medium, 983

Hard) based on its complexity. 984

Sampling Review Finally, the concluding stage 985

in our data preparation and enhancement pipeline 986

is a thorough Sampling Review to guarantee the 987

accuracy and consistency of the automated annota- 988

tions. For this purpose, we select a stratified subset 989

of 200 items. This selection is carefully curated 990

to reflect the original distribution of knowledge 991

domains (e.g., mechanics, electromagnetism, op- 992

tics) and difficulty tiers within the larger dataset, 993

ensuring the sample’s representativeness. During 994

this stage, human expert reviewers meticulously 995

examine these selected items. Their primary fo- 996

cus is twofold: first, to verify the consistency and 997

correctness of the GPT-4o generated annotations, 998

particularly concerning variable identification and 999

process formulation, and second, to ensure the over- 1000

all quality and suitability of the problems for the 1001

benchmark. This step is crucial for validating the 1002

automated annotation process and ensuring the re- 1003

liability of PHYSICSARENA. 1004

B Task Prompts 1005

This section outlines the detailed prompt templates 1006

used at each stage of the pipeline, including vari- 1007

able identification (Figure 11) and process formula- 1008

tion (Figure 12). Each stage is supported by struc- 1009

tured JSON formats, as shown in Figures 14 and 15, 1010
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to ensure standardized, machine-readable inputs.1011

C Problem Samples1012

This section provides two problem samples. See1013

Figure 9 and Figure 10.1014

D Evaluation Protocol Details1015

Variable Identification Evaluation For each1016

problem instance we extract six components:1017

(1) Entity—the primary physical entities men-1018

tioned; (2) Geometry—geometric information1019

such as dimensions, shapes, and relative positions;1020

(3) Field—descriptions of physical fields (gravita-1021

tional, magnetic, electric); (4) Structure—fixed,1022

immovable elements (e.g., ground, walls); (5) Con-1023

nection—links between entities or between an en-1024

tity and a structure (e.g., hinges, ropes); and (6) Ex-1025

ternal Influence—external inputs or hypothesised1026

influences introduced by the problem setter. Each1027

component is compared with the ground truth and1028

labelled TRUE or FALSE.1029

Process Formulation Evaluation We model the1030

temporal evolution of the system using five descrip-1031

tors: (1) Entity State—the sequence of equilib-1032

rium states and dynamic processes for each entity;1033

(2) Process Detail—preconditions, timestamps,1034

and parameter changes characterising each process;1035

(3) Force & Energy—forces acting during each1036

dynamic process and the associated energy trans-1037

formations; (4) State Change—the initial and ter-1038

minal states that bound the dynamic situation; and1039

(5) Process Link—logical relations between states1040

or processes such as triggered_by, sequential, or si-1041

multaneous. Every descriptor is compared with the1042

ground truth and assigned a Boolean consistency1043

label.1044

Solution Derivation Evaluation In addition to1045

the structured representations, we evaluate the1046

model’s step-by-step solution. The generated rea-1047

soning chain is aligned with the annotated ground1048

truth; exact agreement yields TRUE, while any dis-1049

crepancy results in FALSE.1050

E Judgement Prompts1051

To enable automatic evaluation using GPT-4o, we1052

design dedicated judgement prompts for each task1053

stage. These prompts instruct the model to assess1054

the quality and correctness of outputs across vari-1055

able identification (Figure 16), process formulation1056

(Figure 17), and solution derivation (Figure 18), 1057

ensuring consistent and reliable evaluation. 1058

F Case Study 1059

In addition to the case study on variable identi- 1060

fication presented and analyzed in the main text 1061

(Figure 5), we also provide an example of Process 1062

Formulation in Figure 19, which corresponds to the 1063

analysis discussed in the main text. 1064

G Correlation Analysis 1065

We analysed, separately for easy, medium and hard 1066

problems, (1) the correlation between variable- 1067

identification factors and solution accuracy and (2) 1068

the correlation between process-formulation fac- 1069

tors and solution accuracy(Figure 20). In every 1070

case the rank order of the correlations was pre- 1071

served, indicating that each factor’s relationship 1072

with final accuracy is highly robust. 1073
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Problem Example 1

Problem Description:

Two parallel plates of a capacitor, MN and PQ, are placed facing each other at an angle of
θ = 45◦ to the horizontal. The diagonal MQ is horizontal. A horizontal insulating guide OQ is
fixed at midpoint O; at its left end two spheres A and B are pinned together against a compressed
spring. Sphere A (conducting, charge +q, mass m) is fired leftward with speed v0 when the pin
is released, while sphere B (insulating, mass 2m) moves rightward on OQ with kinetic-friction
coefficient µ = 1

16 . The distances OM and the plate length equal L =
3v20
2g . Leaving the capacitor

at M , sphere A enters mutually perpendicular uniform electric and magnetic fields and performs
uniform circular motion of radius 4

πL; after half a turn it exits horizontally at E onto a long,
smooth, horizontal surface EF . Ignore edge effects; take gravitational acceleration g.

Question:
• Find the speed of sphere A when it arrives at point M .

Answer:

vM = 2v0.

Solution Derivation:
• In the space between plates MN and PQ the electric field is uniform, so sphere A experiences a
constant horizontal force qE. Hence its horizontal acceleration is constant, denote it a.
• The horizontal work done by the electric field while A moves the distance OM = L equals its
gain in kinetic energy:

1
2mv2M − 1

2mv20 = maL =⇒ v2M = v20 + 2aL.

• Although E is not stated directly, the given geometric data L =
3v20
2g

imply that the acceleration

must satisfy a = g so that the resulting velocity matches subsequent motion constraints. (Indeed,
substituting a = g will yield an integer multiple of v0.)
• Insert a = g and the expression for L:

v2M = v20 + 2g

(
3v20
2g

)
= v20 + 3v20 = 4v20 =⇒ vM = 2v0.

Figure 9: Problem Example 1: Problem Description, Question, Answer and Solution Derivation. Variable Identifica-
tion analysis see Figure 5.
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Problem Example 2

Problem Description:

A small slider B (mass m) is placed on a board A (mass M , length L0). The board rests on a
rough incline that forms an angle 37◦ with the horizontal; its lower end is a horizontal distance
x0 from a rigid stopper Q. Static friction is large enough that B never slips on A; instead they
repeatedly collide inelastically with the fixed vertical walls at the two ends of the incline. The
coefficient of kinetic friction between B and A is µ. The system is released from rest at the
configuration shown.

Question Solved:

Question: What is the speed of the slider B at its first collision with the upper wall?
Answer: vB1 = 3m/s.

Current Question:

How long does it take for the board A to collide with the stopper Q?

Answer:

ttotal = 2.73 s.

Solution Derivation:

• Net downslope acceleration of B while sliding on A: a = g sin 37◦ − µg cos 37◦ (≈ 6m/s2).
• vB1 = at1 = 3 ⇒ t1 = 0.50 s. Speeds exchange: v′B1 = 0, v′A1 = 3m/s.
• Require 1

2at
2
2 = v′A1t2 ⇒ t2 = 1.0 s. Just before contact: vB2 = at2 = 6m/s. Exchange:

v′B2 = 3, v′A2 = 6m/s.
• Solve 6t3 = 3t3 +

1
2at

2
3 ⇒ t3 = 1.0 s. vB3 = 9m/s; exchange gives vA3 = 9m/s.

• Board has travelled x1 + x2 = 3+6 = 9m. Remaining distance to stopper: ∆x = x0 − 9. Time

to cover this at vA3 = 9m/s: t4 =
∆x

9
. With x0 = 11.07m, t4 = 0.23 s.

• ttotal = t1 + t2 + t3 + t4 = 0.50 + 1.00 + 1.00 + 0.23 = 2.73 s.

Figure 10: Problem Example 2: Problem Description, Question, Answer and Solution Derivation. Process
Formulation Analysis see Figure 19.
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Prompt for Variable Identification

Task Definition: You are performing an information extraction task. The current goal is to: extract
only all the physical variables and their information that appear in the problem text and diagram
(such as names, initial values, units, directions, whether they are known, etc.). Answers and
explanation is only for verifying information — you should not introduce extra information from
answers and explanations.

Below is the reference content:
Problem Image: <image>
Problem Text: {text}

Instruction: Please classify and fill in all the involved physical quantities (for example: mass m,
charge q, velocity v, electric field strength E, magnetic field strength B, etc.) according to the
JSON template provided below. If the problem does not clearly specify a particular variable’s
value, unit, or direction, you may fill in "unknown" or leave it blank. Return only the JSON
included by ```JSON and return only in English.

Note:
1. Do not output the problem’s answer, solution process, or derivation explanation.
2. You only need to return text that conforms to the JSON template; do not add any extra text.
3. Keep the field structure and field names consistent with the JSON template; if there is no
relevant information, you may leave it blank or remove empty fields.

Figure 11: Prompt for Variable Identification.
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Prompt for Process Formulation

Task Definition: You are performing an information extraction task. The goal is to identify and
extract all the physical processes (such as motion processes, collision processes, etc.) for each
entity (for example, particles, blocks, etc.) described in the problem and diagram. Answers and
explanation is only for verifying information, you should not introduce extra information from
answers and explanations.

Below is the reference content:
Problem Image: <image>
Problem Text: {text}

Instruction: Begin extracting data according to JSON template below, and once finished, return
only the JSON included by ```JSON and return only in English.

Note:
1. Do not provide the problem’s answer, solution steps, or derivations.
2. Only return content related to this information extraction task that aligns with the following
JSON template structure.
3. If certain information in the problem is unclear, use "unknown" or omit the corresponding field.
4. Keep the field hierarchy and field names exactly the same as in the template below.

Figure 12: Prompt for Process Formulation.

Prompt for Solution Derivation

Below is the reference content:
• Problem Image: <image>
• Problem Text: {text}

Instruction: Solve the physics problem step by step. Return only in English.

Figure 13: Prompt for Solution Derivation.
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JSON template for Variable Identification (a)

{
"entities": [

{
"name": "<Entity name >", // e.g. "charged particle"
"type": "<Entity type >", // e.g. "particle"
"position": "<Position >", // e.g. "from point a to b"
"variables": [

{
"name": "<Variable name >", // e.g. "velocity v"
"value": "<Initial value >", // e.g. "v_0"
"units": "<Units >", // e.g. "m/s"
"direction": "<Direction >", // e.g. "upwards"
"conditions": "<Conditions >", // e.g. "under gravity"
"domain": "<Domain >", // e.g. "$t \in [0, t_b]$"
"given_or_unknown": "<Known?>" // "known" / "unknown"

}
/* ... additional variables ... */

],
"parameters": [

{
"name": "<Parameter name >", // e.g. "mass m"
"value": "<Symbol/value >", // e.g. "m"
"units": "<Units >", // e.g. "kg"
"description": "<Optional >"

}
/* ... additional parameters ... */

],
"interactions": "<Interactions >" // e.g. "subject to E, g"

}
/* ... additional entities ... */

],

"fields": [
{

"name": "<Field name >", // e.g. "uniform E-field"
"region": "<Region >", // e.g. "$x \in [0, L]"$
"variables": [ ... ], // e.g. "$E$ ,$E_0$ ,N/C,Upward ,unknown"
"parameters": [ ... ] // e.g. "vacuum permittivity $\

varepsilon_0$"
}
/* ... additional fields ... */

],

"structures": [
{

"name": "<Structure name >", // e.g. "metal rail"
"position": "<Location / Size >", // e.g. "along x, length L"
"constants": [

{
"name": "<Constant >", // e.g. "length L"
"value": "<Symbol/value >",
"description": "<Optional >"

}
]

}
/* ... additional structures ... */

]

/* see Fig (b) for remaining blocks */
}

Figure 14: JSON prompt template for variable identification (a): entity, field and structure blocks.
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JSON template for Variable Identification (b)

{
"geometries": [

{
"description": "<Geometric relation >", // e.g. "displacement AB"
"value": "<Symbol / Value >" // e.g. "$d$" or "$\theta$"

}
/* ... additional geometries ... */

],

"connections": [
{

"description": "<Entity $\,\ leftrightarrow\,$ Field interaction >",
"variables": [ ... ], // e.g. "net force F, qE - mg, N"
"constants": [ ... ] // e.g. "friction coefficient , $\

mu$"
}
/* ... additional connections ... */

],

"external_influences": [
{

"description": "<External force / circuit >", // e.g. "additional
resistor"

"variables": [ ... ],
"constants": [ ... ]

}
/* ... additional external influences ... */

]
}

Figure 14: JSON prompt template for variable identification (b): geometry, interaction and external-influence blocks
(continuation of Fig. 14).

20



JSON template for Process Formulation (a)

{
"entities": [

{
"id": "<Entity ID>", // e.g. "A"
"name": "<Readable name >", // e.g. "Block A"

"situations": [

/* ------- equilibrium example ------- */
{

"situation_id": "<ID_S1 >", // e.g. "A_S1"
"state_type": "equilibrium",
"force_balance": "<Equation >", // e.g. "N = mg"
"energy_balance": "<Statement >", // e.g. "No net energy change"
"additional_info": "<Optional >"

},

/* -------- dynamic example --------- */
{

"situation_id": "<ID_S2 >", // e.g. "A_S2"
"state_type": "dynamic",
"process_name": "<Process >", // e.g. "Collision with bullet"
"trigger": "<Trigger >", // e.g. "Bullet contacts A"
"start_condition": "<Start >", // e.g. "A at rest"
"end_condition": "<End >", // e.g. "A & bullet move together"
"process_description": "<Brief description >",
"forces_involved": [

{
"type": "<Force type >", // e.g. "contact force"
"magnitude": "<Expression >", // e.g. "$k \cdot x$"
"direction": "<Direction >" // e.g. "horizontal"

}
],
"energy_transfers": [

{
"type": "<Energy type >",
"description": "<Explanation >"

}
],
"initial_physical_state": {

"position": "<Pos >", // e.g. "$x = 0$"
"velocity": "<Vel >", // e.g. "$v = 0$"
"acceleration": "<Acc >", // e.g. "$a = 0$"
"energy": "<Energy >" // e.g. "KE = 0"

},

"final_physical_state": { ... }, // e.g. "x=x_1 , v \neq 0"
"time_description": "<Duration >" // e.g. "very short collision"

}
]

}
/* ... additional situations ... */

],
/* ... additional entities ... */
/* see Fig. (b) for process relations */

}

Figure 15: JSON prompt template for process formulation (a): entity block with two sample situations (equilibrium
and dynamic).
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JSON template for Process Formulation (b)

{
"process_relations": [

{
"process_id": "<Proc ID>", // e.g. "A_S2"
"related_processes": ["<Other ID>"], // e.g. ["B_S1"]
"relation_type": "<Relation >" // e.g. "sequential"

}
/* ... additional relations ... */

]
}

Figure 15: JSON prompt template for process formulation (b): relationship block (continuation of Fig. 15).
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Judgement Prompt for Variable Identification

Instructions:

You are given two sets of extracted information describing the same physics scenario:
1. Ground Truth — the reference answer (in JSON format)
2. Large Language Model — the model’s prediction (in JSON format)

Your task is to evaluate whether they align across the six aspects below. Assign a judgement of
True or False based on the following guidelines:

• Mark True if minor wordings or variations in phrasing (e.g., “charged particle” vs. “particle”)
• Mark True if additional but non-conflicting information
• Mark False if missing or extra elements, mismatched values, inconsistent units, or known/un-
known status
• Mark False if contradictory or scenario-irrelevant content

Evaluation Aspects:

The comparison should be conducted across the following six aspects. Any variables associated
with each aspect (e.g., names, values, units, directions, known/unknown status) should be evaluated
as part of that category:

• Entity Physical objects and their properties (e.g., mass, charge, velocity)
• Field Any physical fields present (e.g., electric, magnetic) and associated quan-

tities
• Structure Fixed elements or boundaries (e.g., rails, frames, spatial constraints)
• Geometry Geometric features and relationships (e.g., lengths, angles, positions)
• Connection Physical interactions (e.g., forces, constraints, contact conditions)
• External Influences Externally imposed factors (e.g., applied fields, switching conditions)

Input Format:
• Ground Truth: {ground_truth}
• Large Language Model: {large_language_model_result}

Output Format (JSON Template):
{
"entity": <boolean>, // e.g., True
"field": <boolean>, // e.g., False
"structure": <boolean>, // e.g., True
"geometry": <boolean>, // e.g., True
"connection": <boolean>, // e.g., False
"external_influences": <boolean> // e.g., True

}

Figure 16: Evaluation prompt used for judging alignment between MLLM-predicted Variable Identification result
and ground truth across key physical factors.
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Judgement Prompt for Process Formulation

Instructions:
You are given two sets of extracted information from the same physics scenario:
1. Ground Truth — the reference answer (in JSON format)
2. Large Language Model — the model’s prediction (in JSON format)

Your task is to evaluate whether they align across the five aspects below. Assign a judgement of
True or False based on the following guidelines:

• Mark True if minor wording differences (e.g., “impact” vs. “collision”), symbol substitutions
(e.g., “mg” vs. “weight”), or non-critical numerical approximations exist.
• Mark False if key elements are missing/added, process types contradict, start/end states differ
significantly, or causal logic is reversed.

Evaluation Aspects:
• Force & Energy Includes all relevant forces (type, magnitude, direction), balance conditions,

and energy transformations.
• Process Detail Applies to dynamic cases: process_name, trigger, start_condition,

end_condition, process_description.
• Entity State Match of entity/situation structure: consistent id, situation_id, and state_type

(equilibrium vs. dynamic).
• Process Link Compare related_processes and relation_type (e.g., triggered, sequential).
• State Change Match initial and final states: initial_physical_state, final_physical_state

(position, velocity, acceleration, energy).

Input Format:
• Ground Truth: {ground_truth}
• Large Language Model: {large_language_model_result}

Output Format (JSON Template):
{
"force_and_energy": <boolean>, // e.g., True
"process_detail": <boolean>, // e.g., False
"entity_state": <boolean>, // e.g., True
"process_link": <boolean>, // e.g., False
"state_change": <boolean> // e.g., True

}

Figure 17: Evaluation prompt used for judging alignment between MLLM-predicted Process Formulation result and
ground truth across key physical factors.
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Judgement Prompt for Solution Derivation

Instructions:
Please evaluate whether the answer generated by the large language model aligns with the provided
ground truth.

Evaluation Criteria:
• Mark True if the generated answer is essentially consistent with the ground truth.
• Mark True if minor differences in formatting or phrasing while the two answers are logically
equivalent.
• Mark False if the generated answer deviates in a way that changes its meaning or correctness.

Input:
• Ground Truth: {ground_truth}
• Large Language Model: {large_language_model_result}

Output Format:
<boolean> // e.g. True

Figure 18: Evaluation prompt used for judging alignment between MLLM-predicted Solution Derivation result and
ground truth.
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Figure 19: A representative bad case of Process Formulation. Full problem see Figure 10.
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(a) Easy (b) Medium (c) Hard

(d) Easy (e) Medium (f) Hard

Figure 20: Correlations between two categories of cognitive factors and solution accuracy across difficulty levels.
(a–c) Variable-Identification factors; (d–f) Process-Formulation factors.
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