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Abstract

While transfer learning has revolutionized computer vision and natural language process-
ing, its application to probabilistic regression remains underexplored, particularly for tabu-
lar data. We introduce NTAQUE (Neural Interpretable Any-Quantile Estimation), a novel
permutation-invariant architecture that enables effective transfer learning across diverse
regression tasks. Through extensive experiments on 101 datasets, we demonstrate that
pre-training NTAQUE on multiple datasets and fine-tuning on target datasets consistently
outperforms both traditional tree-based models and transformer-based neural baseline. On
real-world Kaggle competitions, NTAQUE achieves competitive performance against heav-
ily hand-crafted and feature-engineered solutions and outperforms strong baselines such as
TabPFN and TabDPT, while maintaining interpretability through its probabilistic frame-
work. Our results establish NIAQUE as a robust and scalable approach for tabular regres-
sion, effectively bridging the gap between traditional methods and modern transfer learning.

1 Introduction

Tabular data underpins high-stakes decision-making across healthcare (Rajkomar et al.l |2018]), real estate
valuation (De Cock, [2011)), energy systems (Olson et al., [2017a), and e-commerce (McAuley et al., 2015)).
In these settings, models must be accurate, data-efficient and, crucially for operational use, able to quantify
predictive uncertainty. Historically, tree-based ensembles such as Random Forests (Breiman, 2001), XG-
Boost (Chen & Guestrin) 2016]), Light GBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., [2019)
have been the de facto standard due to their robustness, ease of use, and strong performance with heteroge-
neous features and modest sample sizes. Recent work has revisited deep learning for tabular data, motivated
by the promise of end-to-end representation learning, joint optimization with downstream objectives, and
straightforward multimodal fusion. Architectures such as TabNet (Arik & Pfister, [2021)) and TabTransformer
(Huang et al [2021) demonstrate that appropriately constrained inductive biases (e.g., learned feature selec-
tion, attention over categorical embeddings) can close the gap to boosted trees on many benchmarks while
enabling capabilities such as differentiable feature learning and integration with text or images. Yet, unlike
computer vision and natural language processing, where transfer learning via large-scale pretraining across
heterogenous real datasets is now foundational, the corresponding paradigm for tabular data remains com-
paratively under-explored, particularly for probabilistic regression tasks that require calibrated predictive
distributions rather than point estimates (Hollmann et al., |2023; |Levin et al., [2023).
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Challanges. This work addresses several fundamental challenges in tabular regression. Transfer Learning
Gap: While recent work has explored transfer learning for tabular classification, probabilistic regression
remains underexplored, lacking frameworks that effectively transfer knowledge across diverse regression tasks.
Scalability—Interpretability Trade-off: Existing approaches often sacrifice either scalability or interpretability,
limiting their practical utility in real-world applications requiring both robust performance and explainable
predictions. Benchmark Limitations: Current multi-dataset tabular benchmarks predominantly focus on
classification tasks, hindering systematic evaluation of regression models.

Our approach: NIAQUE. We introduce NTAQUE (Neural Interpretable Any-Quantile Estimation), a
probabilistic regression model designed to resolve these challenges. First, NIAQUE enables effective co-
training across multiple disjoint datasets, exhibiting positive transfer and strong scalability when fine-tuned
on new regression tasks. Second, its probabilistic framework supports interpretable analysis via marginal
posterior distributions that yield feature-level importance summaries, enhancing transparency and reliability
in decision-critical settings. Third, we provide theoretical guarantees showing that, under appropriate reg-
ularity conditions, NIAQUE approximates the inverse of the posterior distribution, thereby formalizing its
ability to recover task-conditional quantiles. To enable comprehensive assessment, we introduce a new multi-
dataset regression benchmark comprising 101 diverse datasets spanning multiple domains. We evaluate with
proper scoring rules (e.g., CRPS), calibration diagnostics, and standard accuracy metrics. Across this suite,
NIAQUE outperforms strong tree-based baselines and neural approaches while maintaining interpretabil-
ity. Furthermore, on real-world Kaggle regression challenges, NIAQUE achieves competitive performance
against highly engineered solutions. Therefore, our primary contributions are as follows. (1) We propose a
novel deep probabilistic regression model (NIAQUE) that enables effective transfer learning across diverse
tabular datasets via co-training and task-adaptation. (2) We provide theoretical analysis establishing NI-
AQUE’s convergence to inverse posterior distribution. (3) We demonstrate superior performance over strong
baselines, both boosted trees and modern neural methods, in transfer learning settings on a new benchmark
suite for tabular regression (101 datasets).

2 Related Work

Probabilistic Regression. This work builds on probabilistic time-series modeling approach (Smyl et al.,
2024)), refining its theoretical underpinnings and extending architectural design for tabular transfer learning
applications. Alternative methods, such as Neural Processes (Garnelo et al} |2018b) and Conditional Neural
Processes (Garnelo et al.| |2018a), offer conditional probabilistic solutions to regression but are constrained
to fixed-dimensional input spaces, limiting their applicability to cross-dataset, multi-task regression. Our
approach effectively transfers knowledge across datasets with varying feature spaces and target domains,
establishing a flexible and scalable framework for conditional probabilistic regression.

Transfer Learning in Tabular Data. Transfer learning has driven major advances in computer vision
(Sun et al., 2021; Radford et all [2021) and language modeling (Devlin et al. |2019)) by leveraging shared
representations across tasks. Recent successes in time-series forecasting (Garza & Mergenthaler-Canseco),
2023} |Ansari et al |2024)) demonstrate transfer learning’s potential for numerical prediction tasks. However,
probabilistic transfer learning for tabular data remains largely unexplored, with existing work primarily
focusing on classification tasks or point estimates. Our work bridges this gap by introducing a framework
specifically designed for probabilistic transfer across diverse tabular datasets.

Deep Learning vs. Tree-based Models. The comparison between deep learning and tree-based ap-
proaches for tabular data has been extensively studied, particularly for classification tasks. Previous evalua-
tions include: transformer architectures across 20 classification datasets, MLPs versus TabNet and tree-based
models on 40 classification datasets, Comprehensive comparison of various architectures across 45 datasets
(Grinsztajn et al.l [2022)). Most relevant to our work are TabPFN (Hollmann et al., 2023 and TabDPT (Ma
et al|, [2024), which introduce Transformer-based approaches for synthetic pre-training. While these methods
share similar goals, our work differs in three key aspects. First, we propose a novel architectural approach
based on deep prototype aggregation, which scales linearly in the number of input features. Second, we focus
specifically on probabilistic pretraining on real public datasets and transfer learning. Finally, we demonstrate
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superior empirical accuracy on real-world Kaggle competitions through direct probabilistic pretraining and
fine-tuning on downstream regression tasks.

Permutation-invariant Architectures. Our architectural design builds upon advances in permutation-
invariant representations, crucial for handling variable feature spaces in multi-task learning. We extend the
prototype-based architecture proposed by (Oreshkin et al.| 2022]) for pose completion to support any-quantile
modeling in tabular regression. This approach relates to several key developments in the field. PointNet (Qi
et al.,[2017) and DeepSets (Zaheer et al.,|2017)) pioneered pooling techniques for variable-dimensional inputs.
ResPointNet (Niemeyer et all [2019) generalized these approaches with residual connections. Prototypical
Networks (Snell et al., [2017) demonstrated effectiveness of prototype-based learning by leveraging average-
pooled embeddings for few-shot classification. Transformer architecture (Vaswani et al., 2017) established
flexible processing of variable-length sequences.

3 Background and Problem Formulation

Let R denote the set of real numbers and ¢(0,1) the uniform distribution over the interval (0,1). For a
vector x, we denote its dimensionality as |x|. For a random variable Y with cumulative distribution function
(CDF) F(y) = P(Y <y), the ¢g-th quantile ¢ € (0,1) is defined as:

F~'(q) = inf{y € R: F(y) > q}.

3.1 Problem Formulation

Let X be the input feature space and ) C R be the space of the target variable. We consider a probability
distribution D over X x ). For any instance x € X, the relationship between features and target variable is
given by:

y="(x,¢) (1)

where ¥ : X x £ — ) is an unknown non-linear function and ¢ € £ represents stochastic noise with unknown
distribution.

Given a finite training sample S = {(x;,;)}Y,; drawn iid. from D, we aim to learn a probabilistic
regression function fy : R¥IXQ — R parameterized by 6 € ©, which maps an input x to a Q-tuple of
quantiles (g1, ..., qq), where ¢; € (0,1) for i € [Q], thereby capturing the conditional distribution of y|x.

3.2 Performance Metrics

Let y; denote the ground truth sample and §; 4 its g-th quantile prediction for a dataset with S samples.
To evaluate the quality of distributional predictions, we use Continuous Ranked Probability Score (CRPS).
The theoretical definition of CRPS for a predicted cumulative distribution function F' and observation y is:

CRPS(F,y):/R(F(z)fll{zzy})de, (2)

where I : R — [0, 1] is the predicted CDF derived from the quantile predictions, and 1., is the indicator
function. For practical computation with finite samples S and a discrete set of () quantiles, we approximate
this using:

9 S Q
CRPS——QZZ (YirDingy) (3)

where p(y, gq) is the quantile loss function defined as:

P(Y:9q) = (Y — 9g) (@ — Lyy<y,y) (4)
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Coverage measures empirical calibration of predictive confidence intervals. For confidence level « € (0, 1):
s
1 N N
COVERAGE(a) = 3 Z Lyi > 9i0.5-a/2)1[Yi < 9i,0.54a/2] - 100%
i=1

We employ the following metrics to evaluate the accuracy of point predictions: Symmetric Mean Absolute
Percentage Error (SMAPE), Average Absolute Deviation (AAD), Root Mean Square Error (RMSE), Root
Mean Square Logarithmic Error (RMSLE). Detailed mathematical definitions of the metrics are provided in

Appendix [A]
4 NIAQUE

In this section, we present NTAQUE (Neural Interpretable Any-Quantile Estimation), a probabilistic regres-
sion model. We first introduce the any-quantile learning approach as a general solution to the probabilistic
regression problem defined in Section [3] We prove that this approach converges to the inverse cumulative
distribution function of the conditional distribution, providing a theoretical foundation for our method.
We then detail NIAQUE’s neural architecture, demonstrate how it enables transfer learning across diverse
tabular datasets, and present an approach to model interpretability based on probabilistic considerations.

4.1 Any-Quantile Learning

We formulate the any-quantile learning approach by augmenting the input space to include a quantile level
q € (0,1), allowing the neural network fy to learn mappings from (x, ¢) to the corresponding g-th conditional
quantile of the target variable y|x. Let g, = fo(x, ¢) represent the predicted ¢-th quantile of the conditional
distribution of y|x. The objective is to learn parameters § that minimize the expected quantile loss:

n%in E(xvy)Nquu(o,l)[P(y, fﬁ(xaq))] ) (5)

where p(-,-) is the quantile loss function defined in eq. (4.

We use gradient descent and mini-batch to learn the parameters. Precisely, the neural network is trained on
dataset of S samples, (x;,y;) drawn from the joint probability distribution D. During training the quantile
value ¢ is sampled from U(0,1) and the loss is minimized using stochastic gradient descent (SGD). For a
mini-batch of size B, the parameter update at iteration k is:

B
1
Ok+1 =0 — Vo p ;P(yi, fo(xi, i) - (6)
As k — oo, the parameters converge to the solution of the following empirical risk minimization prob-

lem (Karimi et al., [2016):
5

* . 1 . . .
" = argyin g ) plyis folxis a0). (7)

By the strong law of large numbers, as S grows, the empirical risk converges to the expected quantile loss:

Ex,Eqp(y fo(x, @) = Ex, /O oy, fo(x, 9))da. (8)

This expected loss has a direct connection to the Continuous Ranked Probability Score (CRPS), which can
be expressed as an integral over quantile loss (Gneiting & Ranjan) [2011)):

1
CRPS(F,y) =2 / oy, P~ (q))dg (9)

Based on this fact, the following theorem proves that the expected pinball loss eq. is minimized when
Jo(x,q) corresponds to the inverse of the posterior CDF P,.
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Figure 1: NIAQUE’s encoder-decoder architecture transforms variable-dimensional inputs into fixed-size
representations, enabling transfer learning and multi-task knowledge sharing across datasets.

Theorem 1. Let F be a probability measure over variable y such that inverse F~' exists and let P, x be the
joint probability measure of variables x,y. Then the expected loss, Ex 4 p(y, F71(q)), is minimized if and
only if F'= Pyx.

The following conclusions emerge. First, the quantile loss SGD update eq. @ optimizes the empir-
ical risk eq. corresponding to the expected loss eq. (8). Based on and Theorem [1 fp =
argming, Ex , 4 p(y, fo(X,q)) has a clear interpretation as the inverse CDF corresponding to Pyy. Sec-
ond, as both the SGD iteration index k and training sample size S increase, and if fy is implemented as
an MLP whose width and depth scale appropriately with sample size S, then (Farrell et al., [2021, Theorem
1) implies that the SGD solution converges to fp«(x,q) = Pyﬁ(q) Therefore, given uniform ¢ ~ U(0,1),
Uq = for(x,q) has the interpretation of a sample from the posterior distribution p(y|x), which follows from
the proof of the inversion method (Devroye, (1986, Theorem 2.1).

4.2 Neural Encoder-Decoder Architecture

NIAQUE adopts a modular encoder-decoder design (Fig.[l)) to process observation samples x; with variable
dimensionality d;. The encoder maps each observation into a fixed-size latent embedding of dimension F,
enabling downstream processing independent of input dimensionality. Feature values and associated codes
(IDs) (dimension 1 x d;) are embedded into a tensor of size 1 x d; X E;,, where E;, is the embedding
size per feature. These embeddings are aggregated using a prototype-based method to generate the latent
observation representation. The decoder conditions this representation on arbitrary-length quantile vectors
q € R?, modulating the output using FiLM-based transformations (Perez et al., 2018). This separates
input processing and quantile conditioning, achieving computational efficiency of O(d; + @) per sample
x;, compared to O(d;Q) complexity required to process quantiles and observations jointly. Note that our
processing is linear if feature dimensionality, as opposed to quadratic scaling of attention-based approaches.

Inputs: NTAQUE processes both continuous and categorical features in a unified manner. Categorical
features are first label-encoded to integers during preprocessing. For each feature in the observation vector
x, NTAQUE incorporates both its raw value and a learnable embedding based on its feature index (position in
the feature vector). The feature index embedding learns feature-specific statistical properties, inter-feature
dependencies, and their relationship with the target, enabling the model to distinguish between features even
when they have similar numerical values. The embedded feature index is concatenated with the feature’s



Published in Transactions on Machine Learning Research (02/2026)

value after log-transformation:
z =log(|z| + 1) - sgn(x), (10)

which normalizes the features’ dynamic range (including label-encoded categorical values), aligning it with
that of index embeddings while preserving sign information, facilitating stable training, as validated by the
ablation study in Appendix [J}

Feature Encoder: The encoder employs a two-loop residual network architecture to efficiently handle
variable-dimensional inputs. The following equations define the encoder’s transformations, with the sample
index i omitted for brevity. Let the encoder input be x;, € R4*Fin where d is the number of features and
E;, is the embedding size per feature. A fully-connected layer FC, ; in residual block r € {1,..., R}, layer
¢e{1,...,L}, with weights W, , and biases a, ¢, is defined as:

FCT,[(hT,ffl) = RELU(WT,Ehr,Efl + ar,[) .

We also define a prototype layer as: PROTOTYPE(x) = 525:1 x[i,:]. The observation encoder is then

described by the following equations:

x, = RELU(b,_; —1/(r — 1) -p,_1), (11)
h,., =FC,1(x,), ..., hpp =FC,(h.1 1), (12)
b, = RELU(L,x, + h; 1), f. =F;h, 1, (13)
pPr = Pr—1 + PROTOTYPE(;). (14)

These equations implement a dual-residual mechanism. First, Equations and (13 form an MLP with a
residual connection (see Feature Block in Fig. [1I|bottom left). Second, Equations nd form a second
residual loop with the following key properties: a) Eq. consolidates individual feature encodings into
a prototype-based representation of the observation; b) Eq. implements interactions between features
(akin to attention, but with linear compute cost) and introduces an inductive bias by enforcing a delta-
mode constraint, ensuring that feature contributions are only relevant when they deviate from the existing
observation embedding, p,_1; ¢) The observation representation accumulates across residual blocks eq. ,
effectively implementing skip connections.

Quantile Decoder: The decoder implements a fully-connected conditioned residual architecture (Fig.
top-right). Its primary function is to implement the any-quantile functionality by injecting the quantile
value inside the MLP block using FiLM modulation principle (Perez et al., 2018). Taking the observation
embedding by = pr € R as input, it generates quantile-modulated representations fz € R2*F for quantiles
q € R? through:

h,; = FCS?(E_Q . Y, Br = LINEAR,(q),

h7'72 = FCSIID((l + 'YT') ' hr,l + 67) )
(15)
h, = FCSLD(hr,L—l),

b, = RELU(L®"b, 1 + h, 1), £, =f_1+F%h, .

The final prediction y, € R? is obtained via linear projection: y, = LINEAR[E].

4.3 Interpretability

NTAQUE’s probabilistic framework facilitates interpretability via quantile predictions conditioned on indi-
vidual features. Given fp(xs,q) as NIAQUE’s estimate of quantile ¢ using only feature x;, the posterior
confidence interval for this feature is defined as:

Clys = fo(xs,1 — a/2) — fo(xs,/2), (16)



Published in Transactions on Machine Learning Research (02/2026)

where 1 — «a represents the probability that the target true value lies within the interval. Intuitively, more
informative features produce narrower confidence intervals. We leverage this to quantify feature importance
through normalized weights:

W, — 1
— WS = =,
ZS Ws CI(].95,S

Ol = g S faless1=a/2) = olsasaf2). (17)

where ﬁa’s is the average confidence interval width over validation samples {x; : x; € Dya1}. To enhance
marginal distribution modeling and support interpretability, we introduce single-feature samples during
training, comprising approximately 5% of the dataset. An ablation study in Appendix |J| confirms the
necessity of this augmentation for robust feature importance estimation.

4.4 Transfer Learning

NIAQUE facilitates effective transfer learning through two core mechanisms ensuring effective knowledge
transfer across diverse tabular regression tasks with varying feature spaces. First, its feature ID embeddings
learn both dataset-specific and cross-dataset relationships, as evidenced by the structured representation
space observed in Fig. Second, its prototype-based aggregation enables flexible processing of arbitrary
feature combinations, inherently supporting cross-dataset learning.

The transfer learning process consists of two phases. During pretraining, NTAQUE learns from multiple
heterogeneous datasets simultaneously, sampling rows uniformly at random from all datasets, with each
dataset contributing only its relevant features. The model processes these diverse inputs through shared
parameters, learning both task-specific characteristics and generalizable patterns. The learned embeddings
capture statistical properties at multiple levels: individual feature distributions, feature interactions within
datasets, and common patterns across different regression problems. This pretrained knowledge can then
be leveraged in two ways. First, transfer across seen datasets, in which co-training on multiple datasets
enables the learning of larger-capacity networks using data diversity as a regularizer, while also leveraging
commonalities across classes of problems—implicitly extracted during training—to strengthen performance
on related seen tasks. Second, few-shot transfer to unseen datasets through fine-tuning, where the pretrained
feature representations provide a strong foundation for learning new tasks with minimal data via strong
regression prior stored in pretrained model weights. In both cases, the model learns to distinguish and
process dataset-specific features through their semantic embeddings, whereas shared model parameters enable
knowledge transfer across related datasets via multi-task training.

The effectiveness of this approach stems from NIAQUE’s ability to maintain dataset-specific information
while learning transferable representations. Learnable feature ID embeddings act as task identifiers, allowing
the model to adapt its processing based on the combination of input features, effectively serving as an implicit
task ID. This capability is particularly valuable in tabular domains, where feature relationships and their
predictive power can vary significantly across tasks. Our experimental results validate both the efficacy of
cross-dataset pretraining and the model’s adaptability to novel regression tasks via fine-tuning, establishing
NIAQUE as a robust framework for transfer learning in tabular domains.

5 Empirical Results

We conduct extensive experiments to evaluate NIAQUE’s effectiveness for transfer learning in tabular re-
gression. Our evaluation addresses three key aspects: 1) the model’s transfer learning capabilities across
both seen and unseen tasks, 2) the quality of learned representations and interpretability, and 3) its practical
effectiveness in a real-world competition setting.

5.1 Datasets and Experimental Setup

Dataset and Evaluation: We introduce TabRegSet-101 (Tabular Regression Set 101), a curated collection
of 101 publicly available regression datasets gathered from UCI (Kelly et al.l |2017)), Kaggle (Kaggle, [2024)),
PMLB (Romano et al.; [2021;|Olson et al.,2017bf), OpenML (Vanschoren et al.;[2013), and KEEL (Alcala-Fdez
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Figure 2: Statistics of the evaluation dataset: (a) distribution by source, (b) dataset sizes, and (c) feature
counts.

. These datasets span diverse domains, including Housing and Real Estate, Energy and Efficiency,
Retail and Sales, Computer Systems, Physics Models and Medicine and exhibit different characteristics in
terms of sample size and feature dimensionality. We focus specifically on the regression task in which the
target variable is continuous or, if it has limited number of levels, these are ordered such as student exam
scores or wine quality. The target variable in each dataset is normalized to the [0, 10] range and the
independent variables are used as is, raw. The target variable scaling is applied to equalize the contributions
of the evaluation metrics from each dataset. Datasets have variable number of samples, the lowest being just
below 1000. For very large datasets we limit the number of samples used in our benchmark to be 20,000 by
subsampling uniformly at random. This allows us (i) to model imbalance, and at the same time (ii) avoid the
situation in which a few large datasets could completely dominate the training and evaluation of the model.
The distribution of datasets by source, number of samples and number of variables is shown in Figure[2] The
datasets, along with their sample count, number of variables and source information are listed in Table [f] of

Appendix [C]

Baselines: We compare NTAQUE (total parameters ~28M) against Tree-based models: XGBoost
& Guestrin|, [2016), LightGBM 2017)), and CatBoost (Prokhorenkova et all 2019); and Deep
learning: Transformer encoder-decoder with NIAQUE quantile decoder (total parameters ~16M, details
in Appendix [H)) and FT-Transformer (Gorishniy et al., [2021)), Feature Tokenizer Transformer designed for
tabular data, using feature-wise tokenization with attention mechanism (total parameters ~12M). The model
is trained with multi-quantile loss.

We evaluate three training scenarios: a) Global models (denoted by the -Global suffix): trained jointly on
all datasets; b) Domain-specific models (suffix -Domain): trained on datasets from the same domain (e.g.,
housing, medical); ¢) Local models (suffix -Local): trained individually per dataset.

XGBoost and CatBoost are trained using multi-quantile loss with fixed quantiles, with additional quantiles
obtained through linear interpolation. Light GBM is trained with separate models per quantile. For training
global tree-based models, we construct a unified table containing samples from all datasets, filling missing
features with NULL values.

Implementation Details: NIAQUE (Total Parameters ~ 27.6M) uses encoder and decoder containing 4
residual blocks, 2 layers each with latent dimension F = 1024 and input embedding size E;, = 64. Training
uses Adam optimizer with initial learning rate 10~ and batch size 512. The learning rate is reduced by 10x
at 500k, 600k, and 700k batches. We apply feature dropout with rate 0.2. Hyperparameters are selected
using validation split and metrics are computed on the test split. Training requires approximately 24 hours
for NTAQUE and 48 hours for Transformer on 4xV100 GPUs. In comparison, XGBoost training takes about
30 minutes on a one V100 for 3 quantiles, scaling linearly with the number of quantiles. All models are
trained on the same train splits, with samples drawn uniformly at random across datasets. During training,
quantile values are randomly generated for each instance in a batch.
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Table 1: Performance comparison, co-training across all 101 datasets. Lower values are better for all metrics
except COVERAGE @ 95 (target: 95). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
XGBoost-Global 31.4 0.574 1.056  -0.15 94.6 0.636
XGBoost-Local 25.6 0.433 0.883  -0.03 90.8 0.334
Light GBM-Global 27.5 0.475  0.930 -0.06 94.8 0.426
Light GBM-Local 25.7 0.427 0.865  -0.03 91.5 0.327
CatBoost-Global 31.3 0.561 1.030 -0.12 94.9 0.443
CatBoost-Local 24.3 0.408 0.840 -0.03 92.7 0.315
Transformer-Local 26.9 0.462 0.904 -0.05 93.6 0.329
Transformer-Global 23.1 0.383 0.806 -0.01 94.6 0.272
FT-Transformer-Local 25.1 0.420 0.858 -0.04 94.2 0.298
FT-Transformer-Global 22.6 0.375 0.796 -0.02 94.7 0.266
NITAQUE-Local 22.8 0.377  0.797 -0.03 94.9 0.267
NTAQUE-Global 22.1 0.367 0.787 -0.02 94.6 0.261
5.2 Results

We evaluate NTAQUE’s cross-dataset learning capabilities through following complementary analyses: (i)
large-scale multi-dataset co-training, (ii) domain-specific co-training and (iii) transfer of pretrained model
to unseen tasks via fine-tuning.

Cross-Dataset Learning. To evaluate NTAQUE’s ability to handle large-scale multi-dataset learning, we
conduct experiments across all 101 datasets simultaneously. Table [1| presents results, aggregated across
datasets at sample level, comparing global and local training scenarios for various models. NIAQUE-Global
achieves the best performance, outperforming both traditional tree-based methods and the Transformer
baseline. Notably, while tree-based methods show better performance in local training compared to their
global variants (e.g., CatBoost-Local SMAPE: 24.3 vs CatBoost-Global: 31.3), NJAQUE maintains superior
performance in both scenarios, with its global model outperforming its local counterpart. Furthermore,
NIAQUE maintains reliable uncertainty quantification across all scenarios, with coverage staying close to
the target 95% level and consistently lower CRPS values compared to baselines. These results confirm NI-
AQUE’s capacity to leverage cross-dataset learning effectively, maintaining or even improving performance
on individual tasks through robust feature representations that generalize across diverse datasets and do-
mains. This experiment also shows the principal inability of tree-based models to operate in cross-dataset
learning scenarios, emphasizing their inability to develop joint representations across heterogeneous prob-
lems. For example, NIAQUE beats CatBoost-Global on more than 90% of the datasets, according to the
detailed per-dataset performance breakdowns provided in Appendix [D.1]

Domain-Specific Results (Tables and in Appendix [D.2) focus on House Price Prediction and
Energy and Efficiency domains, showing the ability of the model to effectively leverage additional information
from domain-specific datasets to improve on target task.

Adaptation to New Tasks on TabRegSet-101. To evaluate NTAQUE’s transfer learning capabilities
on unseen tasks, we randomly split our collection of 101 datasets into 80 pretraining datasets and 21 held-
out test datasets. We compare two scenarios: training from scratch (NIAQUE-Scratch) and fine-tuning
a pretrained model (NIAQUE-Pretrain). The pretrained model is first trained on the 80 datasets and
then fine-tuned on each held-out dataset using a 10 times smaller learning rate. To assess the impact of
data scarcity, we evaluate both models by varying the fine-tuning data proportion (ps) of the held-out
datasets while maintaining constant test sets. Results in Table [2| demonstrate that: 1) The pretrained model
consistently outperforms training from scratch across all metrics. 2) The performance gap widens as training
data becomes scarcer (smaller ps). 3) Both models maintain reliable uncertainty estimates, as evidenced by
COVERAGE @ 95 values. These results validate that NIAQUE effectively transfers pretrained knowledge
to novel regression tasks, with improvements particularly pronounced in low-data scenarios. Note that these
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Table 2: Transfer learning results on held-out datasets. p, represents the proportion of training data used for
fine-tuning, ranging from 0.05 (5%) to 1.0 (100%). Lower values are better for all metrics except COVERAGE
@ 95 (target: 95). For BIAS, lower absolute values are better.

NIAQUE | p,=0.05 0.1 025 0.5 1.0

SMAPE Scratch 28.0 24.7 21.7 20.8 19.4
Pretrain 23.5 21.9 20.3 18.7 17.7
AAD Scratch 0.71 0.60 0.56 0.54 0.49
Pretrain 0.61 0.57 0.54 0.50 0.47
RMSE Scratch 1.23 1.10 1.06 1.04 0.96
Pretrain 1.11 1.08 1.04 0.97 0.94
BIAS Scratch -0.06 -0.04 -0.04 0.02 -0.04

Pretrain -0.06 -0.07  -0.06 -0.06 -0.04

CRPS Scratch 0.488 0.423 0.392 0.383 0.351
Pretrain 0.427 0.404 0.380 0.354 0.334

CcOv@95s | Scratch 93.3 93.0 94.4 93.1 94.4
Pretrain 95.3 94.4 94.2 93.9 94.6

results are not directly comparable with those in Table |1} as they are based on different dataset splits (21
vs. 101 datasets).

Adaptation to New Tasks on Kaggle Competitions. To validate NIAQUE’s practical effective-
ness in the wild, we evaluate its performance in recent Kaggle competitions: Regression with an Abalone
Dataset (Reade & Chow, [2024a)), Regression with a Flood Prediction Dataset (Reade & Chow), 2024b) Our
approach involves two stages: pretraining and fine-tuning. First, we pretrain NIAQUE on TabRegSet-101
using our quantile loss framework. Then, we fine-tune the pretrained model on the competition’s training
data, optimizing for target metric. To systematically evaluate the impact of proposed pretraining strategy
and architecture, we show NIAQUE-Scratch baseline (trained only on competition data, no pretraining), a
number of tree-based baselines as well as TabDPT and TabPFN pretrained models. While TabDPT and
TabPFN show promising results on small datasets, they face significant scalability challenges—TabPFN is
limited to 10,000 samples and TabDPT requires substantial context size reduction for large datasets (details
in Appendix . On the other hand, our approach shows very strong scalability and accuracy results on
the competition datasets, outperforming vanilla tree-based models as well as TabDPT and TabPFN base-
lines. Additional results in Appendices show how our approach, without significant manual
interventions, further benefits from advanced automatic feature engineering (OpenFE (Zhang et al.l |2023))
and ensembling thereby rivalling results of human competitors. These results are particularly significant
given that neural networks were generally considered ineffective for these competitions.

Learned Representations are studied qualitatively in Fig. 3| (left) showing UMAP projections (McInnes
et al.l 2018) of dataset row embeddings derived from NIAQUE’s feature encoder. The encoder maps input
features x; to a fixed-dimensional latent space using a prototype-based aggregation mechanism. The resulting
UMAP visualization reveals distinct dataset-specific clusters, indicating that NTAQUE learns representations
that capture dataset-specific characteristics while maintaining a shared latent space that enables effective
transfer learning.

Feature Importance is based on the inverse of the average confidence interval derived from feature’s
marginal distribution, as detailed in eq. (I7). Qualitatively, Fig. [3] (right), indicates that features with
higher weights (i.e., smaller average confidence intervals) are most critical to prediction accuracy—removing
these features significantly increases the AAD metric, whereas eliminating features with lower weights has
minimal impact. Quantitatively, two-sided t-test comparing the impact of removing the most vs. least
important features (Top-1 vs. Bot-1 AAD values in Fig. [3) (¢ = —50.24, p-value ~ 0) along with the effect
size (Cohen’s d = 0.22) indicate significant and practically impactful effect across datasets. Additionally,
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Table 3: Performance comparison on Kaggle competition datasets: Abalone (RMSLE, lower is better), Flood
Prediction (R2, higher is better).

Model Abalone Flood Prediction
RMLSE R2 Score
XGBoost (Broccoli Beef (siukeitin), 2024} [Sayed), [2024)  0.15019 0.842
Light GBM (|, dataWr3cker; Masoudi, [2024)) 0.14914 0.766
CatBoost (Watel [2024; Milind|, [2024) 0.14783 0.845
TabNet (Broccoli Beef (siukeitin )}, [2024]) 0.15481 0.842
TabDPT (Ma et al., [2024) 0.15026 0.804
TabPFEN (Miiller et al., [2025) 0.15732 0.431
NIAQUE-Scratch 0.15047 0.865
NIAQUE-Pretrain 0.14808 0.867
Winner (Heller| 2024} |Aldparis, [2024) 0.14374 0.869

(a) Change in AAD when features are removed
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Figure 3: UMAP projections of embeddings derived from NIAQUE’s feature encoder for each sample, colored
by dataset (left). NTAQUE accuracy response to the removal of input features by importance (right). Top-
rated features have the greatest impact on AAD degradation when removed.

we computed SHAP values with shap.SamplingExplainer across 101 datasets and used them as a reference
ranking. For each dataset, we computed the NDCG score between the SHAP ranking and our model-native
importance ranking, then averaged the results. The average NDCG was 0.899, while computation time was
reduced from 3.5h x 8 GPUs to 20s x 1 GPU for all 101 datasets. The NDCG score of 0.9 generally
demonstrates very strong ranking alignment with established attribution method at a fraction of the cost.

Ablation Studies (Appendices support NIAQUE’s design choices. We observe: (1) our encoder
outperforms attention-based alternatives; (2) log-transforming inputs (Eq. eq. ) enhances both stability
and accuracy; (3) the model is robust to hyperparameter changes and benefits from greater depth; (4)
incorporating single-feature samples enables interpretability without degrading performance. Finally, we
performed the ablation of the prototype layer by disabling the prototype connection in eq. . We found
that this drastically degrades the performance: SMAPE rises from 22.1 to 94.612, AAD from 0.367 to 2.585,
and RMSE from 0.787 to 3.432, proving the effectiveness of the prototype layer.

5.3 Scalability Analysis of TabPFN and TabDPT
TabPFN and TabDPT mark key advances in tabular deep learning, showing strong results on small-scale

datasets. However, our Kaggle experiments reveal major scalability bottlenecks, limiting their practicality
in larger real-world settings. This highlights the need for scalable alternatives like NTAQUE.
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Limitations of TabPFN. Despite TabPFN’s impressive few-shot performance, its applicability is bounded
by architectural and implementation constraints, as documented in the official repository (Miiller et al.
2025): (i) maximum support for 10,000 training samples, (ii) limit of 500 features per instance, (iii) assumes
all features are numerical, requiring preprocessing for categorical inputs. Furthermore, to adapt TabPFN
for our use cases, we employed several workarounds: (i) for large datasets (e.g., the flood prediction dataset
with 1.12M samples), we applied Random Forest-based subsampling, following official guidelines (Miiller
et al) [2025)), (ii) categorical features were ordinally encoded to conform to TabPFN’s numerical input
requirement. These constraints, especially the aggressive downsampling, likely contributed to TabPFN’s
suboptimal performance on large-scale tasks (e.g., R2 score of 0.431 on flood prediction).

Scalability Challenges in TabDPT. TabDPT, based on a transformer backbone, encounters scalability
issues typical of attention-based models: (i) memory consumption grows quadratically with context size due
to self-attention, (ii) inference time scales poorly with dataset size, (iii) performance is sensitive to reductions
in context size, making trade-offs between scalability and accuracy non-trivial. In our experiments we had
to reduce the context window for the flood prediction dataset to fit within memory constraints. We reduce
the context size from 8,192 in powers of 2. Context size of 1024 finally works. This reduction correlated
with a decline in model performance (R2 score dropped to 0.804). The compute cost of running extensive
hyperparameter tuning on large datasets proved impractical. TabDPT takes 12 hours of inference time for
each hyperparameter configuration for flood prediction datatset on a V100 GPU.

6 Discussion

We believe that our results applying NIAQUE to the 101 dataset benchmark lay out the stepping stone
for the development of probabilistic meta-models eventually possessing the following key properties. Scal-
ability: A unified model shares computational resources to address multiple regression tasks, optimizing
resource utilization and reducing the operational costs of maintaining separate models. Data Efficiency:
Training on diverse tasks introduces strong regularization effects, and we expect existing datasets to be
repurposed to solve emerging problems, promoting data reuse and recycling. Representation and Gen-
eralization: A model trained across multiple datasets uncovers generalizable representations of regression
tasks and ways of solving them, acquiring the ability to apply this knowledge across datasets. As an example,
while TabPFN and TabDPT perform well on small datasets, they face significant scalability challenges with
high-dimensional, large-scale data. NIAQUE demonstrates that scalable, accurate, and interpretable neural
models are viable without relying on heavy preprocessing or memory-intensive components. These results
position NTAQUE not just as a practical alternative, but also as evidence that our approach offers a fruitful
research path beyond current paradigms.

Limitations. While we significantly expand the scope of cross-dataset probabilistic model training by
applying our neural model to a 101-dataset benchmark, this remains a limited effort. It is still unclear how
many datasets are required for a regression model to be considered foundational for solving, for instance,
80% of industry problems. What level of dataset diversity is necessary? Will millions or billions of unrelated
datasets be required, or would 10,000 overlapping datasets suffice? Defining and evaluating global success
in this context remains an open question, necessitating further research. Furthermore, our findings have
implications for designing machine learning deployments based on unified models that address multiple
regression tasks. We expect that this will eventually lead to improved operational efficiency and accuracy
of the models. However, this could also contribute to the centralization of power among a few large entities.
In this context, risk mitigation strategies include (i) improving model computational efficiency and (ii)
publicly releasing data, model training code and pretrained models. Additionally, multi-task learning on
multiple datasets may introduce new biases not present in locally trained models, making interpretability
and fairness research critical. We explore some interpretability aspects in this paper, and further research
on interpretability and fairness in large probabilistic regression models pretrained across multiple datasets
seems to be an important area for future work.
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7 Conclusion

Our study demonstrates that NTAQUE enables effective transfer learning for tabular probabilistic regression,
providing additional evidence to further challenge the belief that tabular data resists neural modeling and
generalization. Across 101 datasets and a Kaggle case studies, NTAQUE shows strong empirical performance,
delivering scalability via a unified architecture, data efficiency through cross-dataset pretraining, and robust
generalization across tasks. Its probabilistic formulation further supports uncertainty quantification and
feature importance estimation, useful for real-world deployment. While promising, open questions remain
regarding the optimal scale of transfer, the design of universally effective feature preprocessing, and the
theoretical principles underlying cross-domain generalization. Overall, our findings suggest a path forward
for building interpretable tabular foundation models that scale well in large-scale downstream tasks.
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A Definitions of metrics

We employ the following metrics to evaluate the accuracy of point predictions: Symmetric Mean Absolute
Percentage Error (SMAPE), Average Absolute Deviation (AAD), Root Mean Square Error (RMSE), Root
Mean Square Logarithmic Error (RMSLE).

1. Symmetric Mean Absolute Percentage Error (sMAPE):

‘yz yz 0. 5|
SMAPE = 100% . 18
sz|yz\+|yzos| 18)
2. Average Absolute Deviation (AAD):
s
AAD = § zzz Qi,0.5| . (19)
3. Bias:
1 S
BIAS = — Ui 0.5 — Yi - 20
g ; Yi,05 — Y (20)
4. Root Mean Square Error (RMSE):
s
RMSE = Z — Gi05) (21)

5. Root Mean Square Logarithmic Error (RMSLE):

s
RMSLE = Z (log(y; + 1) — log(gi05 + 1))2. (22)

17



Published in Transactions on Machine Learning Research (02/2026)

B Proof of Theorem (1]

Theorem. Let F be a probability measure over variable y such that inverse F~' exists and let Py x be the
joint probability measure of variables x,y. Then the expected loss, E p(y, F~1(q)), is minimized if and only

if:
F=Pys. (23)

Additionally:
. _ 1
I%nEM%P‘W@)=EX§AfMA@ﬂ—J%m®D&- (24)

Proof. First, combining @D with the L2 representation of CRPS eq. we can write:

Ep(y, F~'(q)) = Ex,y% /R (F(2) = 1p2ny)) " d2 (25)
= Ex]Ey‘x% /R F2(2) = 2F(2)1 {15y + L ooy dz (26)
= Ex% /RFQ(Z) = 2F(2)EyxLiz>y) + Eyxliz>yydz (27)
= Ex% /RF2(Z) — 2F(2) Pyjx(2) + Pyx(z)dz. (28)

Here we used the law of total expectation and Fubini theorem to exchange the order of integration and then
used the fact that E,x1;.>,3 = Pyx(z). Completing the square we further get:

1
Ep(y, F~1(9)) = Ex; /RFQ(Z) = 2F(2)Pyix(2) + Pyx(2) + Py (2) — Py (2)dz (29)
1
= Exy [ (P(2) = Pyal))* + Pype(2) = (210 (30)
F = P, is clearly the unique minimizer of the last expression since [ (F(z) — Pyx(2))*dz > 0,VF #
P, x. O
ylx

18
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(a) Dataset Sources (b) Dataset Size (c) Dataset Width
25
OPENML 301
KAGGLE 25 20 -
£ 201 £ 154
3 15 3
KEEL 1
O @) 10 4
DCC 10 1
PMLB 5 5
0 - 0-
0 5000 10000 15000 20000 20 40 60
Number of Samples Number of Variables

Figure 4: Statistics of the evaluation dataset: (a) distribution by source, (b) dataset sizes, and (c) feature
counts.

Table 4: Performance comparison for top baselines, macro-average across all 101 datasets. Lower values are
better for all metrics except COVERAGE @ 95 (target: 95). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 42.9 0.982 1.301 -0.34 92.2 0.709
CatBoost-Local 23.2 0.437 0.690 -0.04 91.5 0.340
FTTransformer-Local 24.5 0.450 0.705 -0.04 93.8 0.320
FTTransformer-Global 22.0 0.402 0.641 -0.02 94.3 0.285
NIAQUE-Local 22.2 0.405 0.650 -0.03 94.2 0.287
NIAQUE-Global 21.6 0.394 0.632 -0.03 93.6 0.283

C TabRegSet-101 Details

We introduce TabRegSet-101 (Tabular Regression Set 101), a curated collection of 101 publicly available
regression datasets gathered from UCI (Kelly et al, 2017), Kaggle (Kagglel [2024), PMLB (Romano et al.
[2021} |Olson et al., |2017b), OpenML (Vanschoren et al., |2013), and KEEL (Alcald-Fdez et al.| 2011). These
datasets span diverse domains, including Housing and Real Estate, Energy and Efficiency, Retail and Sales,
Computer Systems, Physics Models and Medicine and exhibit different characteristics in terms of sample size
and feature dimensionality (Fig. . The datasets, along with their sample count, number of variables and
source information are listed in Table

We focus specifically on the regression task in which the target variable is continuous or, if it has limited
number of levels, these are ordered such as student exam scores or wine quality. The target variable in
each dataset is normalized to the [0, 10] range and the independent variables are used as is, raw. The
target variable scaling is applied to equalize the contributions of the evaluation metrics from each dataset.
Datasets have variable number of samples, the lowest being just below 1000. For very large datasets we
limit the number of samples used in our benchmark to be 20,000 by subsampling uniformly at random. This
allows us (i) to model imbalance, and at the same time (ii) avoid the situation in which a few large datasets
could completely dominate the training and evaluation of the model. The distribution of datasets by source,
number of samples and number of variables is shown in Figure [4
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Table 5: The list of datasets comprising TabRegSet-101 benchmark

id

Name n_ samples

n_vars

source

URL

10

11

12

13

14

15

16

17

18

19

20

Abalone 4177
Student__Performance 649
Infrared_ Thermography_Temperature 1020
Parkinsons_ Telemonitoring 5875

Energy_ Efficiency 768

1027_ESL 488

1028 _SWD 1000

1029_LEV 1000

1030 _ERA 1000

1199__BNG__echoMonths 17496

197_cpu_act 8192

225_puma8NH 8192

227 cpu_small 8192

6435

294 satellite__image

344 mv 20000
503_wind 6574
529 _ pollen 3848

537 _houses 20000
547 no2 500
564_ fried 20000

595_ fri_ cO_1000_10 1000

7
29
32

18

20

11

35

13

uci
uci
uci
uci
uci

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

pmlb

https://archive.ics.uci.edu/static/public/1/data.
cSV

https://archive.ics.uci.edu/static/public/320/
data.csv

https://archive.ics.uci.edu/static/public/925/
data.csv

https://archive.ics.uci.edu/static/public/189/
data.csv

https://archive.ics.uci.edu/static/public/242/
data.csv

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1027_
ESL/1027_ESL.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1028_
SWD/1028_SWD. tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1029_
LEV/1029_LEV.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1030_
ERA/1030_ERA.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1199_
BNG_echoMonths/1199_BNG_echoMonths.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/197_cpu_
act/197_cpu_act.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/225_
puma8NH/225_puma8NH.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/227_cpu_
small/227_cpu_small.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/294_
satellite_image/294_satellite_image.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/344_mv/
344_mv.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/503_wind/
503_wind.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/529_pollen,
529_pollen.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/537_houses;
537 _houses.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/547_no2/
547 _no2.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/564_fried/
564_fried.tsv.gz

https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/595_fri_
c0_1000_10/595_fri_c0_1000_10.tsv.gz

Continued on next pag
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https://archive.ics.uci.edu/static/public/1/data.csv
https://archive.ics.uci.edu/static/public/1/data.csv
https://archive.ics.uci.edu/static/public/320/data.csv
https://archive.ics.uci.edu/static/public/320/data.csv
https://archive.ics.uci.edu/static/public/925/data.csv
https://archive.ics.uci.edu/static/public/925/data.csv
https://archive.ics.uci.edu/static/public/189/data.csv
https://archive.ics.uci.edu/static/public/189/data.csv
https://archive.ics.uci.edu/static/public/242/data.csv
https://archive.ics.uci.edu/static/public/242/data.csv
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1027_ESL/1027_ESL.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1027_ESL/1027_ESL.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1027_ESL/1027_ESL.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1028_SWD/1028_SWD.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1028_SWD/1028_SWD.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1028_SWD/1028_SWD.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1029_LEV/1029_LEV.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1029_LEV/1029_LEV.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1029_LEV/1029_LEV.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1030_ERA/1030_ERA.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1030_ERA/1030_ERA.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1030_ERA/1030_ERA.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1199_BNG_echoMonths/1199_BNG_echoMonths.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1199_BNG_echoMonths/1199_BNG_echoMonths.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1199_BNG_echoMonths/1199_BNG_echoMonths.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/197_cpu_act/197_cpu_act.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/197_cpu_act/197_cpu_act.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/197_cpu_act/197_cpu_act.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/225_puma8NH/225_puma8NH.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/225_puma8NH/225_puma8NH.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/225_puma8NH/225_puma8NH.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/227_cpu_small/227_cpu_small.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/227_cpu_small/227_cpu_small.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/227_cpu_small/227_cpu_small.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/294_satellite_image/294_satellite_image.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/294_satellite_image/294_satellite_image.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/294_satellite_image/294_satellite_image.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/344_mv/344_mv.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/344_mv/344_mv.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/344_mv/344_mv.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/503_wind/503_wind.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/503_wind/503_wind.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/503_wind/503_wind.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/529_pollen/529_pollen.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/529_pollen/529_pollen.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/529_pollen/529_pollen.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/537_houses/537_houses.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/537_houses/537_houses.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/537_houses/537_houses.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/547_no2/547_no2.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/547_no2/547_no2.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/547_no2/547_no2.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/564_fried/564_fried.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/564_fried/564_fried.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/564_fried/564_fried.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/595_fri_c0_1000_10/595_fri_c0_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/595_fri_c0_1000_10/595_fri_c0_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/595_fri_c0_1000_10/595_fri_c0_1000_10.tsv.gz
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Table 5: The list of datasets comprising TabRegSet-101 benchmark

name n_samples n_vars source  url
21 593 fri_cl_1000_10 1000 9 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/593_fri_
c1_1000_10/593_fri_c1_1000_10.tsv.gz
22 1193__BNG__lowbwt 20000 8 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1193_
BNG_lowbwt/1193_BNG_lowbwt.tsv.gz
23 1201 BNG_ breastTumor 20000 8 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1201_
BNG_breastTumor/1201_BNG_breastTumor.tsv.gz
24 1203__BNG__pwLinear 20000 9 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/1203_
BNG_pwLinear/1203_BNG_pwLinear.tsv.gz
25 215_ 2dplanes 20000 9 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/215_
2dplanes/215_2dplanes.tsv.gz
26 218 house_ 8L 20000 7 pmlb https://github.com/EpistasisLab/
penn-ml-benchmarks/raw/master/datasets/218_house_
8L/218_house_8L.tsv.gz
27 sarFishToxicit 908 5 uci https://archive.ics.uci.edu/static/public/504/
y 1% P
gsar+fish+toxicity.zip
28 concrete__compressive_strength 1030 7  uc https://archive.ics.uci.edu/static/public/165/
concrete+compressive+strength.zip
29 PRODUCTIVITY 1197 12 uci https://archive.ics.uci.edu/static/public/597/
productivity+prediction+of+garment+employees.zip
30 CCPP 9568 3 uci https://archive.ics.uci.edu/static/public/294/
p p
combined+cycle+power+plant.zip
31 AIRFOIL 1503 4 uci https://archive.ics.uci.edu/static/public/291/
p p
airfoil+self+noise.zip
32 TETOUAN 20000 6 uci https://archive.ics.uci.edu/static/public/849/
p p
power+consumption+of+tetouan+city.zip
33 BIAS CORRECTION 7725 22 uci https://archive.ics.uci.edu/static/public/514/
1% P
bias+correction+of+numerical+prediction+model+
temperature+forecast.zip
34 APARTMENTS 10000 10 uci https://archive.ics.uci.edu/static/public/555/
p p
apartment+for+rent+classified.zip
35 MedicalCost 1338 5  kaggle kaggledatasetsdownload-dmirichoi0218/insurance
36 Vehicle 2059 18  kaggle kaggledatasetsdownload-dnehalbirla/
vehicle-dataset-from-cardekho
37 LifeExpectancy 2928 18  kaggle kaggledatasetsdownload-dkumarajarshi/
life-expectancy-who
38 CalHousin. 20000 7  dcc https://www.dcc.fc.up.pt/~1ltorgo/Regression/cal_
g p P.p g g
housing.tgz
ilerons cc https://www.dcc.fc.up.pt/~1torgo/Regression
39 Ail 7154 39 d ps:// p.pt/ go/Reg /
ailerons.tgz
eltab.levators cc ttps://www.dcc.fc.up.pt/~1ltorgo/Regression/delta_
40 DeltaElevat 9517 5 d https:// dcc.fc.up.pt/~1ltorgo/Reg ion/del
elevators.tgz
ole cc ttps://www.dcc.fc.up.pt/~ltorgo/Regression/pol.
41 Pol 10000 25 d https:// dcc.fc.up.pt/~1torgo/Reg ion/pol
tgz
inematics cc ttps://www.dcc.fc.up.pt/~1ltorgo/Regression,
42 Ki ti 8192 7 d https:// dcc.fc.up.pt/~1torgo/Reg ion/
kinematics.tar.gz
igMartSales aggle aggledatasetsdownload-dbrijbhushannanda
43 BigMartSal 8523 10 kaggl kaggled download-dbrijbhush da1979/
bigmart-sales-data
ideoGamebales aggle kaggledatasetsdownload-dgregorut/videogamesales
44 VideoGameSal 16598 3 kaggl gg greg / g
45 NewsPopularity 20000 58  uci https://archive.ics.uci.edu/static/public/332/

online+news+popularity.zip
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https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/593_fri_c1_1000_10/593_fri_c1_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/593_fri_c1_1000_10/593_fri_c1_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/593_fri_c1_1000_10/593_fri_c1_1000_10.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1193_BNG_lowbwt/1193_BNG_lowbwt.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1193_BNG_lowbwt/1193_BNG_lowbwt.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1193_BNG_lowbwt/1193_BNG_lowbwt.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1201_BNG_breastTumor/1201_BNG_breastTumor.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1201_BNG_breastTumor/1201_BNG_breastTumor.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1201_BNG_breastTumor/1201_BNG_breastTumor.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1203_BNG_pwLinear/1203_BNG_pwLinear.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1203_BNG_pwLinear/1203_BNG_pwLinear.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/1203_BNG_pwLinear/1203_BNG_pwLinear.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/215_2dplanes/215_2dplanes.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/215_2dplanes/215_2dplanes.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/215_2dplanes/215_2dplanes.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/218_house_8L/218_house_8L.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/218_house_8L/218_house_8L.tsv.gz
https://github.com/EpistasisLab/penn-ml-benchmarks/raw/master/datasets/218_house_8L/218_house_8L.tsv.gz
https://archive.ics.uci.edu/static/public/504/qsar+fish+toxicity.zip
https://archive.ics.uci.edu/static/public/504/qsar+fish+toxicity.zip
https://archive.ics.uci.edu/static/public/165/concrete+compressive+strength.zip
https://archive.ics.uci.edu/static/public/165/concrete+compressive+strength.zip
https://archive.ics.uci.edu/static/public/597/productivity+prediction+of+garment+employees.zip
https://archive.ics.uci.edu/static/public/597/productivity+prediction+of+garment+employees.zip
https://archive.ics.uci.edu/static/public/294/combined+cycle+power+plant.zip
https://archive.ics.uci.edu/static/public/294/combined+cycle+power+plant.zip
https://archive.ics.uci.edu/static/public/291/airfoil+self+noise.zip
https://archive.ics.uci.edu/static/public/291/airfoil+self+noise.zip
https://archive.ics.uci.edu/static/public/849/power+consumption+of+tetouan+city.zip
https://archive.ics.uci.edu/static/public/849/power+consumption+of+tetouan+city.zip
https://archive.ics.uci.edu/static/public/514/bias+correction+of+numerical+prediction+model+temperature+forecast.zip
https://archive.ics.uci.edu/static/public/514/bias+correction+of+numerical+prediction+model+temperature+forecast.zip
https://archive.ics.uci.edu/static/public/514/bias+correction+of+numerical+prediction+model+temperature+forecast.zip
https://archive.ics.uci.edu/static/public/555/apartment+for+rent+classified.zip
https://archive.ics.uci.edu/static/public/555/apartment+for+rent+classified.zip
kaggle datasets download -d mirichoi0218/insurance
kaggle datasets download -d nehalbirla/vehicle-dataset-from-cardekho
kaggle datasets download -d nehalbirla/vehicle-dataset-from-cardekho
kaggle datasets download -d kumarajarshi/life-expectancy-who
kaggle datasets download -d kumarajarshi/life-expectancy-who
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/ailerons.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/ailerons.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/delta_elevators.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/delta_elevators.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/pol.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/pol.tgz
https://www.dcc.fc.up.pt/~ltorgo/Regression/kinematics.tar.gz
https://www.dcc.fc.up.pt/~ltorgo/Regression/kinematics.tar.gz
kaggle datasets download -d brijbhushannanda1979/bigmart-sales-data
kaggle datasets download -d brijbhushannanda1979/bigmart-sales-data
kaggle datasets download -d gregorut/videogamesales
https://archive.ics.uci.edu/static/public/332/online+news+popularity.zip
https://archive.ics.uci.edu/static/public/332/online+news+popularity.zip
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Table 5: The list of datasets comprising TabRegSet-101 benchmark

name n_samples n_vars source  url

46 Wizmir 1461 8  keel https://sci2s.ugr.es/keel/dataset/data/regression/
wizmir.zip

47 Ele2 1056 3 keel https://sci2s.ugr.es/keel/dataset/data/regression/
ele-2.zip

48 Treasury 1049 14 keel https://sci2s.ugr.es/keel/dataset/data/regression/
treasury.zip

49 Mortgage 1049 14 keel https://sci2s.ugr.es/keel/dataset/data/regression/
mortgage.zip

50 Laser 993 3 keel https://sci2s.ugr.es/keel/dataset/data/regression/
laser.zip

51 SpaceGa 3107 5 openml |https://www.openml.org/data/download/52619/space_
ga.arff

52 VisualizingSoil 8641 3 openml |https://www.openml.org/data/download/52988/
visualizing_soil.arff

53 Diamonds 20000 8 openml |https://www.openml.org/data/download/21792853/
dataset.arff

54 TitanicFare 1307 6 openml Thttps://www.openml.org/data/download/20649205/
file277cbe2b70e8.arff

55 Sulfur 10081 5 openml https://www.openml.org/data/download/2095629/
phpBXEqgl.arff

56 Debutanizer 2394 6 openml  https://www.openml.org/data/download/2096280/
phpWT771f.arff

57 Fardamento 6277 5 openml |https://www.openml.org/data/download/21854531/
fardamento_saidas_19_20a20maio.arff

58 ProteinTertiary 20000 8 openml |https://api.openml.org/data/download/22111827/
£ile22f167620a212.arff

59 BrazilianHouses 10692 7 openml https://api.openml.org/data/download/22111854/
file22f1627e4a960.arff

60 Cps88Wages 20000 5 openml  Thttps://api.openml.org/data/download/22111848/
£ile22f161d4b5556.arff

61 CPMP-2015 2108 25 openml |https://www.openml.org/data/download/21377442/
file16a868cf35f5.arff

62 NASA-PHM2008 20000 16 openml |https://www.openml.org/data/download/22045221/
dataset.arff

63 Wind 6574 12 openml https://www.openml.org/data/download/52615/wind.
arff

64 NewFuelCar 20000 17 openml https://www.openml.org/data/download/21230500/
pruebaconvonline.csv.arff

65 MiamiHousing 13932 14  openml https://www.openml.org/data/download/22047757/
miami2016.arff

66 BlackFriday 20000 8 openml https://www.openml.org/data/download/21230845/
£i11e639340bd9ca9.arff

67 IEEES0211aaGATS 5296 28 openml |https://www.openml.org/data/download/22101884/
dataset.arff

68 Yprop41l 8885 41 openml |https://api.openml.org/data/download/22111920/
dataset.arff

69 Sarcos 20000 20 openml https://api.openml.org/data/download/22111840/
file22f166a1669bb.arff

70 ZurichDelays 20000 16 openml https://www.openml.org/data/download/21854423/
file86eb92864fd.arff

71 1000-Cameras 1015 13 openml |https://www.openml.org/data/download/22102539/
dataset.arff

72 GridStability 10000 11 openml |https://api.openml.org/data/download/22111837/
file22f1652delc8a.arff

73 PumaDyn32nh 8192 31 openml |https://api.openml.org/data/download/22111845/

£ile22f161b261f3b.arff

Continued on next pag
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Table 5: The list of datasets comprising TabRegSet-101 benchmark

name n_samples n_vars source  url

74 Fifa 19178 27 openml https://api.openml.org/data/download/22111894/
filel0aca711933d5.arff

75 WhiteWine 4898 10 openml https://api.openml.org/data/download/22111835/
file22f16150a82cd.arff

76 RedWine 1599 10 openml |https://api.openml.org/data/download/22111836/
file22f162b311c38.arff

77 FpsBenchmark 20000 42  openml https://api.openml.org/data/download/22111856/
£11e22£1639d20997 .arff

78 KingCountyHousing 20000 20 openml |https://api.openml.org/data/download/22111853/
file22f167bd414f1.arff

79 AvocadoPrices 18249 12 kaggle kaggledatasetsdownload-dneuromusic/avocado-prices

80 Transcoding 20000 18  uci https://archive.ics.uci.edu/static/public/335/
online+video+characteristics+and+transcoding+time+
dataset.zip

81 house__16H 20000 15 openml |https://www.openml.org/data/download/52752/house_
16H.arff

82 Sales 10738 13 openml |https://www.openml.org/data/download/21756753/
dataset.arff

83 WalmartSales 6435 8  kaggle kaggledatasetsdownload-dmikhail1681/walmart-sales

84 UsedCar 6019 11 kaggle kaggledatasetsdownload-dnitishjolly/
used-car-price-prediction

85 HouseRent 4746 11 kaggle kaggledatasetsdownload-diamsouravbanerjee/
house-rent-prediction-dataset

86 LaptopPrice 1273 15  kaggle kaggledatasetsdownload-dehtishamsadiq/
uncleaned-laptop-price-dataset

87 UberFare 20000 8 kaggle kaggledatasetsdownload-dyasserh/uber-fares-datase

88 Co2Emission 7385 10  kaggle kaggledatasetsdownload-ddebajyotipodder/
co2-emission-by-vehicles

89 SongPopularity 18835 12 kaggle kaggledatasetsdownload-dyasserh/
song-popularity-dataset

90 Cars 20000 8 kaggle kaggledatasetsdownload-daishwaryamuthukumar/
cars-dataset-audi-bmw-ford-hyundai-skoda-vw

91 GemstonePrice 20000 8  kaggle kaggledatasetsdownload-dcolearninglounge/
gemstone-price-prediction

92 LoanAmount 20000 20  kaggle kaggledatasetsdownload-dphileinsophos/
predict-loan-amount-data

93 SaudiArabiaCars 5507 10  kaggle kaggledatasetsdownload-dturkibintalib/
saudi-arabia-used-cars-dataset

94 GpuKernelPerformance 20000 13 kaggle kaggledatasetsdownload-drupals/gpu-runtime

95 AmericanHousePrices 20000 10 kaggle kaggledatasetsdownload-djeremylarcher/
american-house-prices-and-demographics-of-top-cit

96 KindleBooks 20000 12 kaggle kaggledatasetsdownload-dasaniczka/
amazon-kindle-books-dataset-2023-130k-books

97 BookSales 1070 8  kaggle kaggledatasetsdownload-dthedevastator/
books-sales-and-ratings

98 CapitalGain 20000 12 kaggle kaggledatasetsdownload-dminnieliang/adult-data

99 MarketingCampaign 2976 14 kaggle kaggledatasetsdownload-dahmadazari/
marketing-campaign-data

100  CampaignUplift 2000 9 kaggle kaggledatasetsdownload-dhwwang98/

software-usage-promotion-campaign-uplift-model
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Table 6: Performance comparison on 1000-Cameras dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 130.371  1.058 1.250 0.59 66.7 0.788
CatBoost-Local 54.894 0.379  0.996 -0.27 86.3 0.285
FTTransformer-Local 48.959 0.337 0.905 -0.09 86.0 0.221
FTTransformer-Global 46.265 0.261 0.778 -0.08 86.6 0.208
NIAQUE-Local 42.195 0.245  0.782 -0.10 87.0 0.189
NIAQUE-Global 41.757 0.218 0.722 -0.10 87.3 0.178

Table 7: Performance comparison on 1027__ESL dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 57.151 2.638  3.034 -2.58 95.9 1.585
CatBoost-Local 10.353 0.531 0.696 -0.05 93.9 0.394
FTTransformer-Local 12.201 0.561 0.713 -0.05 86.6 0.406
FTTransformer-Global 10.431 0.520  0.661 -0.04 90.5 0.374
NIAQUE-Local 10.634 0.539 0.721 -0.05 87.5 0.404
NTAQUE-Global 10.293 0.537  0.704 -0.05 85.7 0.394

D Supplementary Results

D.1 Per-Dataset Performance Results

This sub-section provides detailed performance metrics for each of the 101 datasets in our benchmark.
Tables are organized alphabetically by dataset name. Each table shows the performance of top model
variants (CatBoost-Global, CatBoost-Local, FTTransformer-Local, FTTransformer-Global, NTAQUE-Local,
and NIAQUE-Global) across all evaluation metrics.
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Table 8: Performance comparison on 1028 SWD dataset. Lower values are better for all metrics except
CI_ Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 46.203 2.557  3.526 -2.43 80.0 1.866
CatBoost-Local 28.035 1.534  2.120 0.15 88.0 1.189
FTTransformer-Local 30.224 1.489 2.182 -0.09 95.7 1.141
FTTransformer-Global 26.172 1.468  2.158 -0.07 93.4 1.013
NIAQUE-Local 27.206 1.407  2.162 -0.10 98.3 1.034
NTAQUE-Global 26.771 1.413  2.145 -0.10 96.0 1.024

Table 9: Performance comparison on 1029 LEV dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 63.046 2509 2978  -1.97 90.0 1.569
CatBoost-Local 36.867  1.362 1.846  -0.14 93.0 0.991

FTTransformer-Local 35.764 1.301 1.828 -0.27 90.8 0.919
FTTransformer-Global 34.588 1.230 1.787 -0.27 92.0 0.878
NTAQUE-Local 33.430 1.154 1.708 -0.34 92.6 0.888
NIAQUE-Global 32.545 1.130 1.734 -0.30 88.0 0.889
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Table 10: Performance comparison on 1030__ERA dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 61.934 2.098  2.617 -0.92 91.0 1.390
CatBoost-Local 48.810 1.452 1.802 -0.10 91.0 1.043
FTTransformer-Local 54.164 1.511 1.884 -0.17 95.1 1.051
FTTransformer-Global 50.872 1.337 1.797 -0.15 92.9 0.987
NIAQUE-Local 50.580 1.435 1.870 -0.18 96.6 1.006
NIAQUE-Global 51.829 1.457  1.848 -0.15 97.0 1.019

Table 11: Performance comparison on 1193 BNG__lowbwt dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 17.093 0.889 1.141 -0.18 95.9 0.658
CatBoost-Local 16.586 0.867 1.111 0.00 93.5 0.619
FTTransformer-Local 18.315 0.852 1.082 0.00 95.7 0.622
FTTransformer-Global 16.620 0.844 1.063 0.03 95.1 0.594
NITAQUE-Local 17.399 0.895 1.138 0.02 99.0 0.593
NIAQUE-Global 16.278 0.850 1.114 0.02 94.3 0.588

Table 12: Performance comparison on 1199 BNG_echoMonths dataset. Lower values are better for all
metrics except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 46.037 1.261 1.585 -0.27 98.3 0.912
CatBoost-Local 36.889 1.109 1.513 -0.11 93.4 0.810
FTTransformer-Local 39.263 1.122 1.500 -0.10 96.3 0.798
FTTransformer-Global 34.530 1.017 1.542 -0.09 94.7 0.734
NIAQUE-Local 35.032 1.078 1.576 -0.09 97.0 0.787
NTAQUE-Global 35.024 1.089 1.536 -0.10 93.3 0.760

Table 13: Performance comparison on 1201__BNG_ breastTumor dataset. Lower values are better for all
metrics except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 24.650 1.101 1.406 -0.11 95.9 0.822
CatBoost-Local 26.422 1.191 1.557 0.04 94.2 0.883
FTTransformer-Local 30.854 1.162 1.645 0.02 90.5 0.894
FTTransformer-Global 26.612 1.176 1.533 0.03 99.0 0.789
NIAQUE-Local 27.202 1.223 1.588 0.03 95.2 0.803
NIAQUE-Global 26.360 1.184  1.583 0.03 94.0 0.836
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Table 14: Performance comparison on 1203 BNG__ pwLinear dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 17.269  0.743 1.012  -0.07 95.7 0.586
CatBoost-Local 19.800 0.719  0.999  -0.02 95.1 0.562

FTTransformer-Local 21.944 0.735 1.084 -0.03 93.4 0.539
FTTransformer-Global 19.310 0.751 0.992 -0.01 98.4 0.522
NIAQUE-Local 20.350 0.741 1.040 -0.02 94.8 0.534
NIAQUE-Global 19.698 0.710 1.007 -0.02 94.7 0.509

Table 15: Performance comparison on 197 _cpu_ act dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 12.227  0.502  0.692 -0.03 87.7 0.398
CatBoost-Local 9.134 0.190  0.282 0.01 91.3 0.174
FTTransformer-Local 11.919 0.218 0.321 0.00 90.4 0.152
FTTransformer-Global 9.138 0.179  0.259 0.02 96.1 0.126
NITAQUE-Local 9.722 0.186 0.273 0.01 95.8 0.133
NIAQUE-Global 9.395 0.178  0.262 0.01 93.5 0.130

Table 16: Performance comparison on 215_ 2dplanes dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 12.621 0.547 0.714 -0.02 98.4 0.442
CatBoost-Local 7.430 0.334 0.422 0.00 93.0 0.242
FTTransformer-Local 9.219 0.351 0.472 -0.00 97.4 0.250
FTTransformer-Global 7.024 0.336  0.409 0.01 92.0 0.219
NIAQUE-Local 7.817 0.340  0.441 0.01 92.2 0.237
NTAQUE-Global 7.459 0.334  0.423 0.01 93.2 0.236

Table 17: Performance comparison on 218 house_ 8L dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 31.438 0.367  0.810 -0.17 86.1 0.275
CatBoost-Local 26.765 0.299 0.623 -0.10 93.4 0.229

FTTransformer-Local 28.623 0.342 0.659 -0.07 96.5 0.245
FTTransformer-Global 25.992 0.272 0.588 -0.07 94.2 0.195
NIAQUE-Local 26.473 0.298  0.621 -0.06 95.8 0.212
NIAQUE-Global 25.339 0.286  0.602 -0.07 94.4 0.205
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Table 18: Performance comparison on 225 puma8NH dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 32.042 1.669 1.965 -0.72 91.7 1.173
CatBoost-Local 21.536 1.059 1.389 -0.01 92.6 0.776
FTTransformer-Local 24.253 1.156 1.591 -0.02 89.2 0.804
FTTransformer-Global 24.234 1.136 1.436 -0.00 93.5 0.787
NIAQUE-Local 23.464 1.130 1.513 -0.01 91.0 0.749
NIAQUE-Global 23.232 1.114 1.474 -0.02 89.8 0.782

Table 19: Performance comparison on 227 _cpu_ small dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 12.680 0.510  0.644 -0.07 85.5 0.405
CatBoost-Local 9.630 0.221 0.325 0.02 91.3 0.197
FTTransformer-Local 12.332 0.253  0.361 0.00 92.5 0.183
FTTransformer-Global 9.393 0.215 0.313 0.02 93.4 0.154
NITAQUE-Local 10.314 0.219 0.322 0.01 99.0 0.153
NIAQUE-Global 9.818 0.212  0.307 0.01 94.9 0.153

Table 20: Performance comparison on 294 satellite image dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 66.647 1.312 1.917 -0.30 80.0 1.046
CatBoost-Local 58.329 0.902 1.592 -0.20 93.5 0.743
FTTransformer-Local 57.452 0.688 1.418 -0.04 97.9 0.502
FTTransformer-Global 55.783 0.553 1.408 -0.02 99.0 0.434
NIAQUE-Local 53.936 0.492 1.311 -0.02 96.0 0.353
NTAQUE-Global 52.053 0.434 1.290 -0.03 97.8 0.316

Table 21: Performance comparison on 344 mv dataset. Lower
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

values are better for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 5.877 0.292  0.548 -0.02 96.9 0.283
CatBoost-Local 1.268 0.051 0.097 -0.00 94.8 0.111
FTTransformer-Local 3.056 0.069 0.101 -0.01 98.0 0.072
FTTransformer-Global 0.428 0.020 0.031 0.01 97.2 0.028
NIAQUE-Local 0.737 0.024  0.037 -0.00 99.0 0.022
NIAQUE-Global 0.219 0.013  0.017 -0.00 100.0 0.012
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Table 22: Performance comparison on 503 wind dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 29.173 0.956 1.248 -0.11 98.6 0.795
CatBoost-Local 17.484 0.544  0.702 0.02 93.2 0.394
FTTransformer-Local 21.583 0.584 0.765 0.02 94.0 0.413
FTTransformer-Global 18.283 0.521 0.722 0.04 95.5 0.370
NIAQUE-Local 17.955 0.545 0.710 0.03 96.7 0.379
NIAQUE-Global 17.398 0.544  0.712 0.03 93.8 0.384

Table 23: Performance comparison on 529 pollen dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 21.431  1.082 1372  -0.66 98.4 0.777
CatBoost-Local 11.251  0.548 0.698  -0.02 90.4 0.396

FTTransformer-Local 13.877 0.577  0.698 -0.03 90.3 0.396
FTTransformer-Global 10.601 0.523 0.677 -0.01 91.2 0.361
NITAQUE-Local 10.993 0.526 0.665 -0.01 87.3 0.390
NIAQUE-Global 10.937 0.525 0.679 -0.02 90.4 0.377

Table 24: Performance comparison on 537 houses dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 35.823 1.278 1.809 -0.30 96.0 0.977
CatBoost-Local 19.621 0.756 1.188 -0.19 94.2 0.583
FTTransformer-Local 23.501 0.771 1.285 -0.16 91.3 0.582
FTTransformer-Global 21.238 0.800 1.219 -0.12 94.1 0.585
NIAQUE-Local 22.344 0.823 1.231 -0.13 94.9 0.600
NTAQUE-Global 22.198 0.819 1.263 -0.13 93.2 0.586

Table 25: Performance comparison on 547_no2 dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 59.636 2.671  2.992 -2.51 100.0 1.573
CatBoost-Local 18.142 0.851 1.144 0.12 86.0 0.634
FTTransformer-Local 20.602 0.931 1.282 -0.01 83.8 0.731
FTTransformer-Global 17.903 0.873 1.162 0.00 81.1 0.656
NIAQUE-Local 21.115 0.924 1.213 -0.00 85.2 0.665
NIAQUE-Global 20.253 0.925 1.189 -0.01 80.0 0.687
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Table 26: Performance comparison on 564 fried dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 11.919 0.522 0.677 0.01 97.9 0.421
CatBoost-Local 6.382 0.282 0.354 -0.01 93.5 0.204
FTTransformer-Local 8.052 0.281 0.380 -0.01 96.5 0.199
FTTransformer-Global 5.930 0.261 0.324 0.01 95.2 0.170
NIAQUE-Local 6.489 0.271  0.343 -0.00 93.6 0.192
NIAQUE-Global 5.978 0.262  0.330 -0.00 94.2 0.184

Table 27: Performance comparison on 593 fri c¢l1_1000_10 dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 61.047 2.633  3.026 -2.20 95.0 1.589
CatBoost-Local 8.834 0.343  0.443 0.08 84.0 0.282
FTTransformer-Local 10.481 0.352 0.464 0.05 91.9 0.245
FTTransformer-Global 8.592 0.301 0.398 0.06 84.0 0.230
NITAQUE-Local 9.019 0.322 0.421 0.07 84.6 0.225
NIAQUE-Global 8.447 0.297  0.398 0.05 89.0 0.215

Table 28: Performance comparison on 595_fri c¢0_1000_ 10 dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 56.409 2.543 3.044 -2.26 94.0 1.579
CatBoost-Local 10.569 0.456  0.569 -0.08 81.0 0.338
FTTransformer-Local 12.767 0.458 0.577 0.01 81.3 0.332
FTTransformer-Global 9.962 0.413  0.489 0.03 81.1 0.282
NIAQUE-Local 10.247 0.433  0.531 0.02 81.1 0.309
NTAQUE-Global 9.801 0.412  0.510 0.02 81.0 0.297

Table 29: Performance comparison on AIRFOIL dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ cOovags CRPS
CatBoost-Global 49.769 2.340 2.733 -1.86 94.0 1.485
CatBoost-Local 13.736 0.583  0.786 0.04 90.7 0.439
FTTransformer-Local 12.358 0.500 0.728 0.07 97.6 0.324
FTTransformer-Global 10.709 0.453 0.603 0.10 96.6 0.296
NIAQUE-Local 9.590 0.389  0.592 0.09 95.6 0.282
NIAQUE-Global 8.722 0.378  0.542 0.09 95.4 0.265
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Table 30: Performance comparison on APARTMENTS dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 37.753 0.099 0.177 0.01 93.9 0.076
CatBoost-Local 22.317 0.056 0.111 -0.02 93.7 0.042
FTTransformer-Local 24.986 0.096 0.167 -0.02 94.3 0.053
FTTransformer-Global 22.516 0.055 0.118 0.00 98.4 0.028
NIAQUE-Local 25.530 0.070  0.149 -0.01 96.7 0.044
NIAQUE-Global 23.637 0.060 0.131 -0.01 94.7 0.042

Table 31: Performance comparison on Abalone dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 2.569 0.057  0.099 -0.00 94.9 0.054
CatBoost-Local 16.587 0.559  0.848 -0.15 90.2 0.416
FTTransformer-Local 17.623 0.531 0.845 -0.12 93.1 0.391
FTTransformer-Global 15.269 0.546  0.789 -0.14 93.3 0.399
NITAQUE-Local 17.429 0.554  0.835 -0.12 95.6 0.386
NIAQUE-Global 15.842 0.536  0.817 -0.14 93.1 0.383

Table 32: Performance comparison on Ailerons dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 9.310 0.678 0.931 -0.15 95.1 0.524
CatBoost-Local 5.222 0.367 0.519 0.02 94.3 0.274
FTTransformer-Local 7.749 0.412 0.586 0.03 95.0 0.282
FTTransformer-Global 4.741 0.365  0.504 0.05 92.1 0.256
NIAQUE-Local 5.845 0.384 0.535 0.05 93.7 0.268
NTAQUE-Global 5.315 0.377  0.519 0.05 93.3 0.266

Table 33: Performance comparison on AmericanHousePrices dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 34.982 0.070  0.274 -0.03 92.0 0.053
CatBoost-Local 22.551 0.046 0.134 -0.01 94.2 0.039
FTTransformer-Local 24.524 0.085 0.182 -0.02 95.7 0.047
FTTransformer-Global 22.340 0.041 0.128 0.00 96.9 0.019
NIAQUE-Local 22.585 0.051  0.154 -0.00 91.6 0.033
NIAQUE-Global 21.578 0.044  0.140 -0.01 93.3 0.032
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Table 34: Performance comparison on AvocadoPrices dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 25.051 0.829 1.081 -0.16 99.1 0.689
CatBoost-Local 16.905 0.559 0.771 -0.05 94.5 0.416
FTTransformer-Local 14.009 0.494 0.657 0.03 90.2 0.332
FTTransformer-Global 12.382 0.418 0.555 0.05 88.7 0.267
NIAQUE-Local 10.722 0.344  0.538 0.03 89.6 0.247
NIAQUE-Global 10.054 0.331  0.492 0.03 88.1 0.241

Table 35: Performance comparison on BIAS  CORRECTION dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 12.196 0.686  0.942 -0.28 98.1 0.590
CatBoost-Local 6.949 0.379  0.513 0.01 93.8 0.284
FTTransformer-Local 8.451 0.380 0.518 -0.00 93.2 0.269
FTTransformer-Global 6.301 0.346  0.439 0.02 95.6 0.238
NITAQUE-Local 6.460 0.341 0.463 0.01 94.3 0.242
NIAQUE-Global 5.814 0.328  0.436 0.01 95.3 0.232

Table 36: Performance comparison on BigMartSales dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 59.011 0.741 0.925 0.16 93.9 0.554
CatBoost-Local 41.202 0.555 0.794 -0.03 94.4 0.394

FTTransformer-Local 44.637 0.602 0.901 -0.04 95.4 0.393
FTTransformer-Global 40.186 0.568  0.876 -0.03 99.0 0.387
NIAQUE-Local 39.697 0.569 0.834 -0.03 97.3 0.397
NTAQUE-Global 40.960 0.562  0.823 -0.03 95.3 0.391

Table 37: Performance comparison on BlackFriday dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ cOovags CRPS
CatBoost-Global 27.779 1.217 1.578 0.23 92.4 0.876
CatBoost-Local 27.003 1.187 1.567 0.26 94.0 0.858
FTTransformer-Local 27.843 1.243 1.553 0.18 95.9 0.814
FTTransformer-Global 27.469 1.179 1.661 0.22 90.6 0.834
NIAQUE-Local 27.271 1.213 1.562 0.26 96.7 0.787
NIAQUE-Global 27.051 1.182 1.574 0.23 95.7 0.823
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Table 38: Performance comparison on BookSales dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 131.764  0.928 1.367 0.45 74.8 0.752
CatBoost-Local 41.686 0.239 0.938 -0.14 84.1 0.213

FTTransformer-Local 38.638 0.282 1.006 -0.12 94.6 0.201
FTTransformer-Global 38.462 0.241 0.869 -0.08 92.4 0.179
NIAQUE-Local 38.616 0.247 0.894 -0.12 94.9 0.174
NIAQUE-Global 37.963 0.245 0.846 -0.11 95.3 0.173

Table 39: Performance comparison on BrazilianHouses dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 47.270 0.019 0.031 -0.00 87.6 0.018
CatBoost-Local 32.904 0.014 0.024 -0.00 93.9 0.010
FTTransformer-Local 33.447 0.053  0.069 -0.01 93.9 0.021
FTTransformer-Global 33.888 0.011 0.014 0.00 93.8 0.000
NITAQUE-Local 33.455 0.022  0.038 -0.00 95.7 0.010
NIAQUE-Global 33.171 0.014 0.024 -0.01 94.7 0.010

Table 40: Performance comparison on CCPP dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 20.671 0.876 1.252 -0.43 97.7 0.672
CatBoost-Local 10.508 0.364  0.497 0.03 95.8 0.271
FTTransformer-Local 13.392 0.423 0.576 0.01 98.3 0.278
FTTransformer-Global 11.360 0.384 0.531 0.04 98.6 0.256
NIAQUE-Local 11.885 0.395 0.571 0.02 98.5 0.279
NTAQUE-Global 11.568 0.402  0.542 0.02 96.0 0.284

Table 41: Performance comparison on CONCRETE__COMPRESSIVE _STRENGTH dataset. Lower values
are better for all metrics except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 53.356  2.066 2489  -1.52 97.1 1.317
CatBoost-Local 13.376  0.531  0.706  -0.22 84.5 0.390

FTTransformer-Local 16.743 0.610 0.808 -0.25 91.9 0.402
FTTransformer-Global 14.757 0.587 0.734 -0.27 93.0 0.402
NIAQUE-Local 15.572 0.600  0.760 -0.22 85.6 0.412
NIAQUE-Global 15.097 0.602 0.773 -0.24 90.3 0.418
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Table 42: Performance comparison on CPMP-2015 dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 140.648  2.600 3.943 -2.10 73.9 1.809
CatBoost-Local 93.345 0.684  1.827 -0.53 87.2 0.602

FTTransformer-Local 90.263 0.643 1.852 -0.47 92.4 0.522
FTTransformer-Global 89.302 0.608 1.711 -0.46 95.2 0.468
NIAQUE-Local 86.994 0.582 1.677 -0.40 94.1 0.463
NIAQUE-Global 84.264 0.564 1.650 -0.42 94.3 0.421

Table 43: Performance comparison on CalHousing dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 35.828  1.279  1.809  -0.31 96.1 0.976
CatBoost-Local 19.653  0.757  1.192  -0.19 94.5 0.587

FTTransformer-Local 22.615 0.819 1.225 -0.14 93.3 0.595
FTTransformer-Global 21.469 0.782 1.207 -0.10 93.2 0.586
NITAQUE-Local 23.100 0.819 1.229 -0.11 92.2 0.597
NIAQUE-Global 22.268 0.820 1.258 -0.14 93.1 0.586

Table 44: Performance comparison on CampaignUplift dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 64.266 1.163 1.343 0.82 97.5 0.862
CatBoost-Local 11.578 0.127 0.204 0.03 92.0 0.100
FTTransformer-Local 13.735 0.145 0.212 0.01 92.8 0.100
FTTransformer-Global 10.392 0.105  0.143 0.03 95.0 0.067
NIAQUE-Local 10.560 0.117  0.148 0.02 96.8 0.074
NTAQUE-Global 10.280 0.105  0.132 0.02 96.0 0.073

Table 45: Performance comparison on CapitalGain dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 10.193 0.116 0.749 -0.09 92.5 0.131
CatBoost-Local 9.952 0.131 0.862 -0.11 94.0 0.156

FTTransformer-Local 12.274 0.168 0.911 -0.13 95.6 0.141
FTTransformer-Global 9.373 0.136 0.866 -0.11 98.5 0.105
NIAQUE-Local 9.938 0.141 0.859 -0.11 95.8 0.113
NIAQUE-Global 9.749 0.131 0.863 -0.11 94.5 0.111
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Table 46: Performance comparison on Cars dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 15.195 0.160 0.272 -0.01 97.9 0.129
CatBoost-Local 10.225 0.132 0.218 -0.02 94.2 0.099
FTTransformer-Local 12.543 0.168 0.238 -0.02 95.6 0.114
FTTransformer-Global 10.181 0.123 0.179 0.00 93.4 0.077
NIAQUE-Local 10.467 0.127  0.195 -0.01 94.8 0.090
NIAQUE-Global 10.028 0.120  0.180 -0.01 94.1 0.085

Table 47: Performance comparison on Co2Emission dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 8.610 0.281  0.556 -0.07 98.6 0.446
CatBoost-Local 2.043 0.068  0.140 0.02 94.6 0.058
FTTransformer-Local 4.113 0.098 0.173 0.00 99.0 0.059
FTTransformer-Global 1.568 0.056  0.101 0.02 97.7 0.031
NITAQUE-Local 2.106 0.065 0.122 0.02 97.6 0.043
NIAQUE-Global 1.628 0.056 0.104 0.01 98.1 0.041

Table 48: Performance comparison on Cps88Wages dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 59.548 0.208 0.364 0.06 94.5 0.160
CatBoost-Local 42.185 0.205 0.322 -0.05 95.0 0.155
FTTransformer-Local 43.132 0.260 0.386 -0.05 93.7 0.161
FTTransformer-Global 43.363 0.203  0.319 -0.04 97.1 0.133
NIAQUE-Local 42.586 0.212  0.336 -0.05 97.6 0.146
NTAQUE-Global 42.222 0.205  0.323 -0.05 95.0 0.146

Table 49: Performance comparison on Debutanizer dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 41.923 1.125 1.596 0.27 96.2 0.946
CatBoost-Local 23.651 0.646 1.183 -0.26 92.5 0.511

FTTransformer-Local 24.355 0.601 1.075 -0.05 93.6 0.444
FTTransformer-Global 22.909 0.564  0.990 -0.04 97.8 0.411
NIAQUE-Local 21.878 0.512  0.904 -0.05 94.8 0.378
NIAQUE-Global 21.048 0.515  0.878 -0.04 93.8 0.381
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Table 50: Performance comparison on DeltaElevators dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 8.697 0.434 0.593 -0.20 97.7 0.410
CatBoost-Local 7.759 0.384 0.519 -0.00 94.3 0.291
FTTransformer-Local 9.916 0.420 0.556 -0.01 93.6 0.294
FTTransformer-Global 8.046 0.393 0.502 0.01 97.4 0.273
NIAQUE-Local 8.362 0.406  0.543 -0.00 94.3 0.270
NIAQUE-Global 7.965 0.393  0.533 -0.01 94.6 0.280

Table 51: Performance comparison on Diamonds dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 6.633 0.038 0.116 -0.00 94.7 0.037
CatBoost-Local 2.052 0.021 0.045 -0.00 94.5 0.020
FTTransformer-Local 4.179 0.059  0.084 -0.01 98.5 0.027
FTTransformer-Global 1.739 0.015  0.025 0.01 99.0 0.001
NITAQUE-Local 2.275 0.026 0.048 0.00 94.3 0.013
NIAQUE-Global 1.807 0.017  0.033 0.00 96.8 0.013

Table 52: Performance comparison on Ele2 dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 102.764 2.074  2.331 1.28 85.8 1.448
CatBoost-Local 11.076 0.098 0.162 -0.01 86.8 0.088
FTTransformer-Local 10.716 0.117 0.173 -0.01 95.0 0.075
FTTransformer-Global 8.807 0.067  0.102 0.01 97.6 0.041
NIAQUE-Local 8.329 0.070  0.109 0.00 98.5 0.045
NTAQUE-Global 7.524 0.059  0.091 0.00 98.1 0.041

Table 53: Performance comparison on Energy Efficiency dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 64.138  2.377 2902 -1.16 84.4 1.520
CatBoost-Local 4.014 0.095 0.144 0.03 96.1 0.083

FTTransformer-Local 9.404 0.184 0.256 -0.05 99.0 0.133
FTTransformer-Global 8.063 0.176 0.222 -0.04 97.8 0.110
NIAQUE-Local 9.406 0.201 0.271 -0.04 99.0 0.144
NIAQUE-Global 9.353 0.199  0.270 -0.04 97.4 0.145
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Table 54: Performance comparison on Fardamento dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 102.512  0.053 0.164 -0.02 77.2 0.050
CatBoost-Local 95.195 0.047 0.161 -0.03 79.3 0.042

FTTransformer-Local 92.805 0.091 0.300 -0.03 92.4 0.051
FTTransformer-Global 92.013 0.054 0.230 -0.01 95.4 0.028
NIAQUE-Local 101.712  0.062  0.306 -0.02 94.0 0.042
NIAQUE-Global 97.806 0.059  0.294 -0.02 98.7 0.041

Table 55: Performance comparison on Fifa dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 77475 0.130  0.324  -0.05 82.5 0.096
CatBoost-Local 72.034 0.114 0.276  -0.02 89.3 0.086

FTTransformer-Local 73.861 0.151  0.319 -0.03 95.0 0.099
FTTransformer-Global 76.096 0.109 0.254 -0.00 93.7 0.070
NITAQUE-Local 74.066 0.122 0.293 -0.01 96.3 0.084
NIAQUE-Global 74.935 0.115 0.278 -0.02 94.9 0.081

Table 56: Performance comparison on FpsBenchmark dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 30.554 0.785 1.090 -0.04 99.0 0.642
CatBoost-Local 6.420 0.149 0.308 -0.03 95.0 0.151
FTTransformer-Local 11.348 0.229 0.468 -0.00 99.0 0.163
FTTransformer-Global 9.100 0.212  0.423 0.02 99.0 0.136
NIAQUE-Local 10.185 0.240  0.507 0.01 99.0 0.148
NTAQUE-Global 10.501 0.242  0.496 0.01 98.6 0.148

Table 57: Performance comparison on GemstonePrice dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 24.207 0.272 0.512 -0.02 96.2 0.210
CatBoost-Local 11.621 0.184  0.376 0.00 95.4 0.154
FTTransformer-Local 13.563 0.204  0.362 0.00 95.7 0.137
FTTransformer-Global 11.080 0.159 0.313 0.02 92.0 0.107
NIAQUE-Local 11.018 0.163 0.316 0.02 94.7 0.110
NIAQUE-Global 10.824 0.153  0.297 0.01 94.5 0.109
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Table 58: Performance comparison on GpuKernelPerformance dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 43.784 0.221  0.668 -0.14 93.3 0.156
CatBoost-Local 51.879 0.255 0.757 -0.15 94.1 0.199
FTTransformer-Local 29.646 0.168 0.398 -0.01 94.1 0.114
FTTransformer-Global 22.349 0.089 0.249 0.01 96.2 0.061
NIAQUE-Local 12.550 0.052  0.129 0.00 97.6 0.033
NIAQUE-Global 8.881 0.026  0.064 0.00 94.2 0.019

Table 59: Performance comparison on GridStability dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 27.938 1.315 1.553 -0.42 98.0 0.938
CatBoost-Local 9.966 0.370  0.518 -0.01 92.7 0.279
FTTransformer-Local 9.250 0.274 0.424 0.00 93.9 0.189
FTTransformer-Global 5.975 0.212 0.311 0.02 97.1 0.137
NITAQUE-Local 5.272 0.167  0.271 0.01 92.0 0.121
NIAQUE-Global 4.564 0.144  0.230 0.01 92.9 0.104

Table 60: Performance comparison on HouseRent dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 66.354 0.059  0.127 -0.01 87.8 0.052
CatBoost-Local 31.500 0.028 0.068 -0.01 92.8 0.022
FTTransformer-Local 31.390 0.066 0.113 -0.01 95.5 0.031
FTTransformer-Global 29.643 0.024  0.057 0.00 94.5 0.006
NIAQUE-Local 30.469 0.035  0.082 -0.00 93.6 0.019
NTAQUE-Global 30.273 0.026  0.067 -0.00 93.3 0.019

Table 61: Performance comparison on IEEE80211aaGATS dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 26.743 1.000 1.585 0.36 84.2 0.866
CatBoost-Local 12.939 0.261  0.542 -0.05 94.0 0.338
FTTransformer-Local 10.248 0.250 0.452 -0.01 96.4 0.227
FTTransformer-Global 7.344 0.190 0.392 0.01 96.4 0.181
NIAQUE-Local 5.817 0.182  0.367 0.00 99.0 0.139
NIAQUE-Global 4.736 0.167  0.319 0.00 97.2 0.122
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Table 62: Performance comparison on Infrared Thermography Temperature dataset. Lower values are
better for all metrics except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 23.255 0.743 1.103 -0.20 100.0 0.780
CatBoost-Local 14.479 0.416 0.529 0.02 90.2 0.292
FTTransformer-Local 16.384 0.473 0.599 0.02 98.5 0.303
FTTransformer-Global 14.692 0.428 0.524 0.04 96.4 0.277
NIAQUE-Local 15.061 0.424  0.560 0.03 94.6 0.291
NIAQUE-Global 14.471 0.420  0.542 0.03 95.1 0.295

Table 63: Performance comparison on KindleBooks dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 33.753 0.055  0.165 -0.02 89.5 0.046
CatBoost-Local 29.304 0.046  0.159 -0.02 94.5 0.042
FTTransformer-Local 32.212 0.082 0.198 -0.02 98.1 0.050
FTTransformer-Global 28.591 0.042 0.123 -0.00 96.6 0.020
NITAQUE-Local 30.017 0.052  0.156 -0.01 97.7 0.034
NIAQUE-Global 28.834 0.043 0.143 -0.01 94.8 0.032

Table 64: Performance comparison on Kinematics dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 30.256 1.334 1.687 -0.58 96.8 0.969
CatBoost-Local 20.933 0.832 1.102 0.11 92.4 0.611
FTTransformer-Local 17.407 0.660 0.780 -0.01 87.3 0.453
FTTransformer-Global 12.528 0.522  0.645 0.01 86.5 0.356
NIAQUE-Local 11.584 0.414  0.542 0.00 86.9 0.282
NTAQUE-Global 10.113 0.371 0.474 0.00 82.2 0.267

Table 65: Performance comparison on KingCountyHousing dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ cOovags CRPS
CatBoost-Global 26.667 0.172 0.387 -0.05 96.2 0.129
CatBoost-Local 15.617 0.095 0.176 -0.02 93.8 0.075
FTTransformer-Local 25.275 0.166 0.253 -0.03 96.6 0.108
FTTransformer-Global 23.652 0.128 0.198 -0.01 98.6 0.081
NIAQUE-Local 26.563 0.160  0.245 -0.02 95.3 0.104
NIAQUE-Global 27.154 0.152  0.236 -0.02 95.2 0.106
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Table 66: Performance comparison on LaptopPrice dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 67.065 1.348  1.531 0.98 97.7 0.995
CatBoost-Local 20.932 0.372 0.598 -0.12 91.4 0.271

FTTransformer-Local 22.567 0.402 0.621 -0.11 87.6 0.274
FTTransformer-Global 19.003 0.358 0.572 -0.09 86.4 0.235
NIAQUE-Local 19.326 0.367  0.582 -0.11 84.0 0.261
NIAQUE-Global 18.936 0.354  0.558 -0.10 84.4 0.257

Table 67: Performance comparison on Laser dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 66.495 1.731  2.052 0.32 99.0 1.185
CatBoost-Local 6.804 0.138  0.397 0.05 91.0 0.171
FTTransformer-Local 7.275 0.142 0.289 -0.00 93.3 0.114
FTTransformer-Global 4.282 0.082  0.193 0.02 98.1 0.072
NITAQUE-Local 4.375 0.075 0.151 0.01 97.7 0.056
NIAQUE-Global 3.770 0.064 0.116 0.01 98.0 0.047

Table 68: Performance comparison on LifeExpectancy dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE AAD RMSE BIAS | COV@95 CRPS
CatBoost-Global 15881  0.800 1184 -0.52 | 993  0.687
CatBoost-Local 5.229 0269 0412 0.01 94.2  0.228

FTTransformer-Local 6.853 0.269 0.407 -0.03 95.9 0.198
FTTransformer-Global 3.824 0.211 0.347 -0.01 98.7 0.149
NIAQUE-Local 4.072 0.203  0.337 -0.02 99.0 0.146
NTAQUE-Global 3.494 0.190 0.313 -0.02 93.9 0.142

Table 69: Performance comparison on LoanAmount dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 49.617 0.232 0.529 0.06 81.8 0.231
CatBoost-Local 46.025 0.213 0.531 0.12 78.3 0.213
FTTransformer-Local 38.888 0.250 0.587 0.09 93.3 0.197
FTTransformer-Global 32.407 0.189 0.513 0.11 92.0 0.167
NIAQUE-Local 27.394 0.205 0.543 0.10 92.0 0.152
NIAQUE-Global 26.088 0.191  0.518 0.11 97.4 0.153
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Table 70: Performance comparison on MarketingCampaign dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 34.478 0.594  0.859 0.18 99.3 0.452
CatBoost-Local 17.050 0.353  0.719 -0.09 66.8 0.272
FTTransformer-Local 18.104 0.393 0.791 -0.07 88.4 0.273
FTTransformer-Global 15.907 0.298 0.743 -0.04 90.5 0.219
NIAQUE-Local 15.505 0.334 0.775 -0.05 87.2 0.234
NIAQUE-Global 14.484 0.321 0.731 -0.05 93.0 0.230

Table 71: Performance comparison on MedicalCost dataset. Lower values are better for all metrics except

CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 96.062 2.061  2.317 0.97 86.6 1.412
CatBoost-Local 15.806 0.364  0.845 -0.12 94.8 0.369
FTTransformer-Local 17.090 0.346 0.823 -0.16 92.9 0.291
FTTransformer-Global 14.432 0.281 0.764 -0.15 93.7 0.234
NITAQUE-Local 14.276 0.271  0.753 -0.12 94.7 0.220
NIAQUE-Global 13.666 0.260  0.757 -0.15 94.0 0.208

Table 72: Performance comparison on MiamiHousing dataset. Lower values are better for all metrics except

CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 29.994 0.390 0.779 -0.06 97.3 0.299
CatBoost-Local 15.589 0.194 0.381 -0.03 95.2 0.157
FTTransformer-Local 17.107 0.212 0.375 -0.02 92.1 0.145
FTTransformer-Global 13.926 0.155  0.312 -0.00 93.9 0.116
NIAQUE-Local 13.441 0.169 0.313 -0.01 97.8 0.116
NTAQUE-Global 13.173 0.155  0.292 -0.01 92.8 0.110

Table 73: Performance comparison on Mortgage dataset. Lower values are better
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 64.387 1.814 2.337 -0.02 85.7 1.276
CatBoost-Local 6.670 0.077  0.113 0.00 92.4 0.082
FTTransformer-Local 9.029 0.115 0.162 -0.01 99.0 0.075
FTTransformer-Global 6.582 0.076 0.110 0.00 98.6 0.048
NIAQUE-Local 6.918 0.085 0.133 -0.00 97.5 0.056
NIAQUE-Global 6.398 0.077  0.119 -0.00 97.1 0.053
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Table 74: Performance comparison on NASA-PHM2008 dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 37.375 0.987 1.326 -0.31 97.3 0.718
CatBoost-Local 31.464 0.834 1.143 -0.17 93.8 0.596
FTTransformer-Local 33.765 0.788 1.232 -0.15 92.1 0.615
FTTransformer-Global 28.671 0.781 1.130 -0.14 93.5 0.566
NIAQUE-Local 30.348 0.854 1.162 -0.14 95.4 0.555
NIAQUE-Global 29.978 0.813 1.127 -0.13 94.0 0.564

Table 75: Performance comparison on NewFuelCar dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 18.349 0.278  0.461 0.05 97.2 0.310
CatBoost-Local 2.649 0.061 0.107 0.02 93.3 0.057
FTTransformer-Local 4.391 0.092 0.138 -0.00 96.3 0.056
FTTransformer-Global 1.779 0.047  0.077 0.02 98.5 0.028
NITAQUE-Local 2.034 0.055 0.094 0.01 98.5 0.036
NIAQUE-Global 1.550 0.046  0.081 0.01 95.5 0.034

Table 76: Performance comparison on NewsPopularity dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 53.910 0.028  0.157 -0.02 87.0 0.025
CatBoost-Local 51.060 0.035 0.194 -0.03 94.2 0.034

FTTransformer-Local 54.237 0.073 0.237 -0.04 99.0 0.042
FTTransformer-Global 48.657 0.032 0.185 -0.02 96.9 0.016
NIAQUE-Local 51.937 0.043  0.209 -0.02 95.9 0.030
NTAQUE-Global 51.099 0.035 0.194 -0.03 95.7 0.028

Table 77: Performance comparison on PRODUCTIVITY dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 63.361 2.803  3.161 -2.52 93.3 1.674
CatBoost-Local 20.267  0.840 1.418 0.16 91.7 0.677

FTTransformer-Local 22.318 0.816 1.361 -0.03 91.0 0.598
FTTransformer-Global 18.342 0.761 1.317 -0.02 91.9 0.579
NIAQUE-Local 17.589 0.733 1.311 -0.03 92.1 0.574
NIAQUE-Global 17.487 0.727 1.317 -0.03 90.8 0.555
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Table 78: Performance comparison on Parkinsons_ Telemonitoring dataset. Lower values are better for all
metrics except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 42.713 1.699 2.220 -0.98 94.7 1.189
CatBoost-Local 19.506 0.667  0.980 0.03 94.9 0.495

FTTransformer-Local 17.967 0.573 0.871 -0.12 95.8 0.409
FTTransformer-Global 15.604 0.474  0.885 -0.09 95.3 0.339
NIAQUE-Local 14.407 0.428  0.836 -0.12 95.9 0.303
NIAQUE-Global 13.267 0.404  0.818 -0.12 94.7 0.287

Table 79: Performance comparison on Pole dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 133.955  0.281 0.678 -0.01 58.5 0.393
CatBoost-Local 139.171  0.719 1.462 0.11 60.5 0.699
FTTransformer-Local 131.589  0.418 0.921 -0.03 87.1 0.400
FTTransformer-Global | 135.896 0.301 0.706 -0.01 88.7 0.264
NITAQUE-Local 133.800 0.182  0.460 -0.02 90.0 0.144
NIAQUE-Global 133.544 0.125 0.368 -0.02 98.5 0.091

Table 80: Performance comparison on ProteinTertiary dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 61.606 1.996 2.515 -0.48 93.9 1.374
CatBoost-Local 47.676 1.575 2.244 -0.29 93.7 1.165
FTTransformer-Local 42.046 1.288 2.124 -0.11 94.6 0.969
FTTransformer-Global 38.191 1.248 1.990 -0.07 95.1 0.892
NIAQUE-Local 33.479 1.148 1.914 -0.10 97.0 0.804
NTAQUE-Global 32.642 1.136 1.874 -0.10 93.8 0.807

Table 81: Performance comparison on PumaDyn32nh dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 23.296 1.045 1.338  -0.56 97.3 0.755
CatBoost-Local 17175 0735  0.925  -0.05 92.1 0.530

FTTransformer-Local 21.163 0.746 0.964 -0.02 86.4 0.562
FTTransformer-Global 17.833 0.737  0.978 -0.01 88.3 0.536
NIAQUE-Local 18.709 0.773  0.939 -0.01 88.9 0.545
NIAQUE-Global 18.663 0.762  0.953 -0.01 86.2 0.545
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Table 82: Performance comparison on QsarFishToxicity dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 45.093 1.680  2.043 -1.27 98.9 1.123
CatBoost-Local 20.804 0.709 1.004 0.10 84.6 0.546
FTTransformer-Local 23.345 0.757 1.093 0.02 87.6 0.521
FTTransformer-Global 20.162 0.720 1.005 0.05 84.7 0.509
NIAQUE-Local 20.736 0.707  0.981 0.04 85.9 0.535
NIAQUE-Global 20.313 0.704  0.963 0.03 84.6 0.515

Table 83: Performance comparison on RedWine dataset. Lower values are better
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

for all metrics except

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 28.508  1.486 2.075  -1.32 98.1 1.147
CatBoost-Local 17.303 0909 1.238  -0.07 93.8 0.683
FTTransformer-Local | 18.635  0.914  1.236  -0.19 97.6 0.637
FTTransformer-Global | 16.686  0.863 1.248  -0.20 97.9 0.599
NIAQUE-Local 16.889  0.874 1.339  -0.16 97.2 0.608
NIAQUE-Global 16.112  0.844 1.302  -0.18 94.4 0.582

Table 84: Performance comparison on Sales dataset.
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Lower values are better for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 63.524 0.277  0.471 -0.04 87.0 0.221
CatBoost-Local 58.466 0.227 0.415 -0.09 84.9 0.163
FTTransformer-Local 61.860 0.253 0.414 -0.06 99.0 0.167
FTTransformer-Global 57.553 0.212  0.330 -0.04 95.3 0.141
NIAQUE-Local 58.734 0.214 0.348 -0.06 93.4 0.146
NTAQUE-Global 57.967 0.205 0.334 -0.05 96.4 0.143
Lower values are better for all metrics except

Table 85: Performance comparison on Sarcos dataset.
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 5.244 0.252 0.408 -0.03 98.4 0.245
CatBoost-Local 3.257 0.151 0.230 0.00 94.2 0.122
FTTransformer-Local 4.846 0.166 0.226 -0.01 95.4 0.098
FTTransformer-Global 2.112 0.106 0.152 0.01 97.2 0.071
NIAQUE-Local 2.572 0.109 0.162 0.00 96.0 0.073
NIAQUE-Global 1.985 0.094 0.141 0.00 94.0 0.068
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Table 86: Performance comparison on SaudiArabiaCars dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 50.282  0.504 0.986  -0.05 96.0 0.398
CatBoost-Local 23.424  0.246 0.706  -0.10 93.8 0.208

FTTransformer-Local 28.061 0.329 0.747 -0.09 91.3 0.227
FTTransformer-Global 27.649 0.278 0.662 -0.05 93.2 0.213
NIAQUE-Local 28.392 0.287  0.692 -0.07 89.7 0.207
NIAQUE-Global 29.542 0.285  0.672 -0.06 89.3 0.215

Table 87: Performance comparison on SongPopularity dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 38.240 1.738  2.164 -0.19 94.2 1.285
CatBoost-Local 35.011 1.570  2.060 0.38 94.3 1.170
FTTransformer-Local 38.622 1.704 1.963 0.36 94.6 1.130
FTTransformer-Global 35.259 1.563  2.100 0.33 94.9 1.079
NITAQUE-Local 37.494 1.533  2.059 0.33 96.2 1.102
NIAQUE-Global 35.045 1.542  2.044 0.35 94.1 1.101

Table 88: Performance comparison on SpaceGa dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 6.846 0.553 0.703 -0.30 94.5 0.412
CatBoost-Local 3.350 0.265 0.400 0.03 92.6 0.202
FTTransformer-Local 6.763 0.392 0.534 0.04 96.4 0.283
FTTransformer-Global 4.684 0.370  0.519 0.06 94.0 0.261
NIAQUE-Local 5.636 0.434  0.581 0.05 95.7 0.312
NTAQUE-Global 5.574 0.448  0.588 0.06 95.8 0.315

Table 89: Performance comparison on Student_ Performance dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 78.337 3.903 4.176 -3.81 72.3 2.336
CatBoost-Local 17.487 1.052  1.421 -0.32 87.7 0.837

FTTransformer-Local 20.403 1.120 1.427 -0.11 86.2 0.809
FTTransformer-Global 17.268 1.011 1.434 -0.08 87.3 0.787
NIAQUE-Local 17.589 1.050 1.410 -0.10 82.8 0.754
NIAQUE-Global 16.656 1.015 1.424 -0.11 87.7 0.768
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Table 90: Performance comparison on Sulfur dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 20.719 0.161 0.289 0.04 98.4 0.133
CatBoost-Local 14.665 0.116  0.203 -0.01 93.6 0.086
FTTransformer-Local 15.814 0.151 0.221 -0.01 94.1 0.090
FTTransformer-Global 13.591 0.108 0.166 0.01 92.8 0.065
NIAQUE-Local 14.458 0.108 0.178 0.01 94.1 0.075
NIAQUE-Global 13.703 0.104  0.158 0.00 95.8 0.073

Table 91: Performance comparison on TETOUAN dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 14.156 0.625 0.824 -0.05 98.8 0.534
CatBoost-Local 10.438 0.448  0.629 -0.01 94.9 0.334
FTTransformer-Local 11.680 0.416  0.583 -0.01 95.7 0.313
FTTransformer-Global 9.089 0.369  0.543 0.01 99.0 0.271
NITAQUE-Local 9.059 0.360 0.546 0.00 92.9 0.260
NIAQUE-Global 8.316 0.359  0.515 -0.00 93.5 0.255

Table 92: Performance comparison on TitanicFare dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 92.115 0.590 0.759 0.45 78.6 0.441
CatBoost-Local 22.778 0.175 0.511 -0.04 93.9 0.173
FTTransformer-Local 25.910 0.208 0.530 -0.05 94.1 0.153
FTTransformer-Global 21.883 0.156  0.439 -0.03 90.7 0.114
NIAQUE-Local 22.496 0.164  0.464 -0.04 90.9 0.122
NTAQUE-Global 21.963 0.155  0.450 -0.04 90.8 0.117

Table 93: Performance comparison on Transcoding dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ cOovags CRPS
CatBoost-Global 28.703 0.120  0.385 -0.08 93.8 0.086
CatBoost-Local 21.052 0.119  0.367 -0.06 94.3 0.093
FTTransformer-Local 15.672 0.112 0.248 -0.00 95.0 0.062
FTTransformer-Global 11.171 0.052 0.149 0.01 90.7 0.028
NIAQUE-Local 9.435 0.044  0.109 0.01 91.9 0.027
NIAQUE-Global 7.671 0.029  0.072 0.00 95.1 0.020
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Table 94: Performance comparison on Treasury dataset.
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Lower values are better for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 70.550 1.693  2.103 0.41 83.8 1.225
CatBoost-Local 7.815 0.101 0.211 -0.00 84.8 0.091
FTTransformer-Local 9.984 0.129 0.229 -0.04 91.9 0.087
FTTransformer-Global 7.103 0.086 0.161 -0.01 95.7 0.055
NIAQUE-Local 7.784 0.091 0.163 -0.02 95.8 0.066
NIAQUE-Global 7.227 0.082  0.145 -0.03 95.2 0.062

Table 95: Performance comparison on UberFare dataset. Lower values are better
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

for all metrics except

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 4.803 0.080  0.180 -0.02 94.2 0.061
CatBoost-Local 9.736 0.122  0.304 -0.04 94.2 0.096
FTTransformer-Local 17.967 0.238  0.498 -0.16 96.0 0.168
FTTransformer-Global 18.255 0.226  0.451 -0.12 94.5 0.158
NITAQUE-Local 21.310 0.266 0.528 -0.13 96.9 0.202
NIAQUE-Global 21.892 0.274 0.541 -0.16 94.1 0.202

Table 96: Performance comparison on UsedCar dataset.
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Lower values are better

for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 47.910 0.277  0.469 0.03 97.0 0.215
CatBoost-Local 19.392 0.111 0.237 -0.02 93.4 0.088
FTTransformer-Local 23.181 0.152 0.287 -0.01 90.2 0.102
FTTransformer-Global 21.556 0.116  0.235 0.01 94.2 0.073
NIAQUE-Local 23.584 0.129  0.266 0.00 93.7 0.089
NTAQUE-Global 22.921 0.122 0.249 0.00 91.5 0.088
Lower values are better for all metrics except

Table 97: Performance comparison on Vehicle dataset.
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 69.582 0.378 0.584 0.13 93.7 0.310
CatBoost-Local 15.964 0.110 0.299 -0.02 94.2 0.091
FTTransformer-Local 21.671 0.166 0.355 -0.01 98.2 0.107
FTTransformer-Global 21.950 0.125 0.282 0.01 96.3 0.079
NIAQUE-Local 23.717 0.137  0.308 0.00 97.9 0.096
NIAQUE-Global 23.686 0.134  0.295 -0.00 94.2 0.095
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Table 98: Performance comparison on VideoGameSales dataset. Lower values are better for all metrics
except CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 98.925 0.133 0.627 -0.10 80.2 0.122
CatBoost-Local 89.060 0.121 0.615 -0.09 93.1 0.105

FTTransformer-Local 96.390 0.173 0.680 -0.10 95.2 0.108
FTTransformer-Global 89.584 0.121 0.581 -0.09 94.3 0.086
NIAQUE-Local 93.144 0.128  0.625 -0.09 98.5 0.097
NIAQUE-Global 91.507 0.125  0.618 -0.09 95.3 0.096

Table 99: Performance comparison on VisualizingSoil dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 38.068 0.684  1.060 0.24 93.2 0.620
CatBoost-Local 14.906 0.058 0.105 0.00 95.5 0.112
FTTransformer-Local 15.108 0.075  0.113 -0.01 97.3 0.068
FTTransformer-Global 11.674 0.024  0.048 0.01 98.6 0.030
NITAQUE-Local 10.672 0.027  0.052 0.00 99.0 0.021
NIAQUE-Global 9.617 0.015  0.033 -0.00 97.9 0.013

Table 100: Performance comparison on WalmartSales dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 61.504 1.320 1.575 0.38 96.1 0.982
CatBoost-Local 14.493 0.235 0.448 -0.06 94.3 0.189

FTTransformer-Local 16.095 0.276 0.562 -0.09 92.9 0.189
FTTransformer-Global 13.604 0.240  0.501 -0.06 94.8 0.160
NIAQUE-Local 13.611 0.255  0.555 -0.05 90.8 0.173
NTAQUE-Global 12.916 0.249  0.549 -0.07 92.7 0.164

Table 101: Performance comparison on WhiteWine dataset. Lower values are better for all metrics except
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 22.573 1.064 1.494 -0.70 95.5 0.892
CatBoost-Local 19.482  0.898 1.213  -0.16 94.3 0.679

FTTransformer-Local 20.628 0.925 1.340 -0.20 98.0 0.655
FTTransformer-Global 19.436 0.879 1.206 -0.19 94.7 0.619
NIAQUE-Local 19.824 0.877 1.243 -0.17 92.7 0.634
NIAQUE-Global 19.445 0.890 1.245 -0.18 92.9 0.615
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Table 102: Performance comparison on Wind dataset.
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Lower values are better for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 29.371 0.964 1.259 -0.11 98.8 0.801
CatBoost-Local 18.869 0.590 0.754 0.05 93.6 0.424
FTTransformer-Local 21.169 0.617 0.863 0.03 91.9 0.425
FTTransformer-Global 18.744 0.589 0.708 0.04 92.6 0.397
NIAQUE-Local 18.820 0.611  0.759 0.04 94.3 0.412
NIAQUE-Global 19.038 0.587  0.755 0.03 93.0 0.412

Table 103: Performance comparison on Wizmir dataset.
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Lower values are better

for all metrics except

Model | SMAPE  AAD RMSE BIAS | COV@9 CRPS
CatBoost-Global 27.798  1.467  1.982  -1.09 91.2 1.101
CatBoost-Local 3.709  0.150  0.207  0.01 89.1 0.124
FTTransformer-Local 5719 0189  0.239  -0.02 93.8 0.116
FTTransformer-Global 3.115 0.145 0.176  -0.00 99.0 0.095
NIAQUE-Local 3446 0142 0216  -0.01 96.1 0.102
NIAQUE-Global 2,983 0.135 0.195  -0.01 96.6 0.100

Table 104: Performance comparison on Yprop4l dataset. Lower values are better
CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

for all metrics except

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 2.218 0.206 0.317 -0.12 91.6 0.161
CatBoost-Local 2.125 0.197 0.295 -0.07 92.8 0.154
FTTransformer-Local 4.460 0.251 0.338 -0.10 90.3 0.150
FTTransformer-Global 2.063 0.190  0.286 -0.09 92.9 0.133
NIAQUE-Local 2.584 0.209 0.312 -0.09 93.4 0.146
NTAQUE-Global 2.136 0.198  0.299 -0.09 92.7 0.144

Table 105: Performance comparison on ZurichDelays dataset. Lower values are better for all metrics except

CI_Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ cOovags CRPS
CatBoost-Global 2.343 0.132  0.254 -0.08 96.2 0.108
CatBoost-Local 2.304 0.129  0.240 -0.05 94.6 0.099
FTTransformer-Local 4.493 0.173 0.276 -0.06 93.9 0.109
FTTransformer-Global 2.342 0.131 0.234 -0.05 94.9 0.080
NIAQUE-Local 2.795 0.141 0.262 -0.06 97.3 0.093
NIAQUE-Global 2.327 0.130  0.242 -0.06 95.7 0.093
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Table 106: Performance comparison on house 16H dataset. Lower values are better for all metrics except
CI__Coverage (target: 95%). For BIAS, lower absolute values are better.

Model ‘ SMAPE AAD RMSE BIAS ‘ covags CRPS
CatBoost-Global 32.984 0.407 0.930 -0.19 87.5 0.313
CatBoost-Local 27.666 0.316 0.682 -0.12 93.2 0.246
FTTransformer-Local 28.408 0.331 0.704 -0.07 93.7 0.230
FTTransformer-Global 25.411 0.293 0.655 -0.05 98.3 0.203
NIAQUE-Local 24.935 0.300  0.620 -0.05 96.3 0.209
NIAQUE-Global 24.701 0.283  0.612 -0.06 95.4 0.203

Table 107: Performance comparison on Wind dataset across point prediction accuracy (SMAPE, AAD,
RMSE, BIAS) and distributional accuracy (COV@95, CRPS) metrics. Lower values are better for all metrics
except COV@95, where values closer to 95 are optimal. The results with 95% confidence intervals derived
from multiple random seed runs.

Model ‘ SMAPE AAD RMSE BIAS cOovags CRPS

XGBoost-Local 19.44+0.1 0.607 £0.001 0.779 +=0.004 0.0444+0.01 64.9+0.2 0.473£0.001
XGBoost-Domain 19.3+0.2 0.603+0.002 0.7794+0.005 0.0164+0.01 96.0+0.2 0.462 =+ 0.002
XGBoost-Global 20.0+4.4 0.627+0.100 0.811+0.143 0.010+0.05 97.04+0.3 0.527+0.165
Light GBM-Local 188 +£0.2 0.5894+0.01 0.7534+0.007 0.04+0.01 91.54+1.0 0.429+0.003
Light GBM-Domain 189+0.1 0.5924+0.004 0.766+=0.006 0.05+0.01 93.84+0.6 0.446 + 0.002
Light GBM-Global 20.8 0.1 0.657£0.002 0.854+0.001 0.02+£0.01 97.84+0.3 0.599+0.032
CatBoost-Local 189+0.1 0.5904+0.001 0.7544+0.003 0.046+0.01 93.6+0.1 0.424+0.001
CatBoost-Domain 19.8+0.2 0.6174+0.002 0.796 +0.004 0.038+0.01 94.8+0.2 0.454 +0.002
CatBoost-Global 26.3+0.2 0.832+£0.006 1.068+£0.009 0.027+£0.02 98.3+0.2 0.7224+0.004
Transformer-Local 18.54+0.3 0.575+£0.008 0.740+0.015 0.0254+0.01 94.24+0.3 0.410 £ 0.005
Transformer-Domain | 18.5+0.3 0.573 +0.008 0.736 +0.015 0.0224+0.01 94.3+0.3 0.405+ 0.005
Transformer-Global 184+0.3 0.5724+0.008 0.7334+0.015 0.0204+0.01 94.5+0.3 0.401 +0.005
NIAQUE-Local 18.8+0.4 0.582+0.012 0.747+0.019 0.0454+0.01 95.7+0.4 0.407 £0.011
NIAQUE-Domain 18.7+£0.2 0.585+0.006 0.76040.010 0.027+0.01 95.44+0.3 0.415+0.006
NIAQUE-Global 19.0+ 0.1 0.587+0.002 0.7554+0.005 0.0314+0.01 93.0+0.2 0.412+0.002

D.2 Domain Adaptation

For domain adaptation, we first focus on House Price Prediction, selecting HouseRent (Banerjeel 2022) (4.7K
samples, 11 features) as our representative dataset. This dataset offers a balanced evaluation ground with its
moderate sample size and limited feature dimensionality. Next, we focus on Energy and Efficiency Domain.
We analyze the Wind dataset (OpenML| n.d.) (6.5K samples, 12 features) as our representative case study.
Similar to HouseRent, this dataset was chosen for its moderate sample size and limited feature dimension-
ality, providing a balanced evaluation ground. Tables show the performance comparison between
NTAQUE and baselines across different training scenarios. The results reinforce our main findings: NIAQUE
maintains consistent performance across local, domain, and global training settings (RMSE: 0.747-0.760),
while traditional models like CatBoost show significant degradation in global settings (RMSE increases from
0.754 to 1.068). Notably, NTAQUE’s performance in the Energy and Efficiency domain exhibits similar
patterns to those observed in the House Price Prediction domain. The model maintains reliable uncertainty
quantification (coverage near 95%) and demonstrates effective knowledge transfer in domain-specific train-
ing, achieving comparable or better performance than local training, showing the ability of the model to
effectively leverage additional information from domain-specific datasets to improve on target task.
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Table 108: Performance comparison on HouseRent dataset across point prediction accuracy (SMAPE, AAD,
RMSE, BIAS) and distributional accuracy (COV@95, CRPS) metrics. Lower values are better for all metrics
except COV@O95, where values closer to 95 are optimal. The results with 95% confidence intervals derived

from multiple random seed runs.

Model ‘ SMAPE AAD RMSE BIAS COVa@95 CRPS
XGBoost-Local 34.1 0.028 0.066 —0.002 86.5 0.022
XGBoost-Domain 32.9 0.031  0.073 0.004 88.8 0.026
XGBoost-Global 35.4 0.033  0.075 0.011 62.5 0.033
Light GBM-Local 31.4 0.028 0.068 —0.01 92.5 0.021
Light GBM-Domain 33.6 0.029 0.07 —-0.01 91.8 0.024
Light GBM-Global 37.1 0.036  0.085 —0.01 94.4 0.028
CatBoost-Local 31.5 0.028 0.068 —0.007 92.8 0.022
CatBoost-Domain 32.4 0.028 0.072 —-0.011 94.1 0.022
CatBoost-Global 50.3 0.044 0.104 -0.015 88.4 0.032
Transformer-Local 33.5 0.030 0.070 —0.008 93.6 0.025
Transformer-Domain 32.8 0.029 0.069 —0.007 94.0 0.023
Transformer-Global 32.3 0.028 0.068 —0.007 93.5 0.020
NIAQUE-Local 32.0 0.028 0.067 —0.007 96.0 0.019
NIAQUE-Domain 30.4 0.026 0.063 —0.002 93.5 0.018
NIAQUE-Global 30.3 0.026 0.067 —0.005 93.3 0.019

Table 109: Performance comparison on Kaggle competition dataset. Lower values are better.

Baseline

results are adopted from publicly shared notebooks and discussion forums in the competition (Reade &
Chow, [2024a)). Rank represents the position of the various methods on private leaderboard.

Model Feature Engineering RMLSE Rank
XGBoost (Broccoli Beef (siukeitin)}, 2024) None 0.15019 1615
Light GBM (|, dataWr3cker]) None 0.14914 1464
CatBoost (Wate, [2024) None 0.14783 1064
TabNet (Broccoli Beef (siukeitin)}, 2024) None 0.15481 2047
TabDPT None 0.15026 1623
TabDPT OpenFE 0.14751 924
TabPFN None 0.15732 2132
TabPFN OpenFE 0.14922 1478
NTAQUE-Scratch None 0.15047 1646
NIAQUE-Pretrain-100 None 0.14823 1232
NIAQUE-Pretrain-full None 0.14808 1178
NIAQUE-Pretrain-full OpenFE 0.14556 304
NTAQUE-Ensemble OpenFE 0.14423 8

Winner (Heller} 2024])) Manual 0.14374 1

D.3 Adaptation to New Tasks: Kaggle Competitions

D.3.1 Abalone Competition

To validate NTAQUE’s practical effectiveness, we evaluate its performance in recent Kaggle competitions.
Abalone (Reade & Chowy, [2024a)), focuses on the Abalone age prediction task. This competition, with 2,700
participants and over 20,000 submissions, provides an excellent real-world benchmark, particularly as neural

networks are widely reported to underperform in it, compared to traditional boosted tree methods.
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Methodology: Our approach involves two stages: pretraining and fine-tuning. First, we pretrain NIAQUE
on TabRegSet-101 (which includes the original UCI Abalone dataset (Dua & Graff,|2019)) using our quantile
loss framework. Then, we fine-tune the pretrained model on the competition’s training data, optimizing
for RMSLE metric as defined in Section [3] The dataset size is 90,614 training samples and 60,410 test
samples (Reade & Chowl [2024a). To systematically evaluate the impact of transfer learning, we implement
three variants: NIAQUE-Scratch (trained only on competition data, no pretraining), NIAQUE-Pretrain-100
(pretrained on TabRegSet-101, excluding Abalone dataset), and NTAQUE-Pretrain-full (pretrained on full
TabRegSet-101). Note that the competition dataset is synthetic, generated using a deep learning model
trained on the original Abalone dataset, and the competition explicitly encourages the use of the original
dataset. Finally, we measure the effect of automated feature engineering on our model using OpenFE (Zhang
et al., [2023)), an automated feature engineering framework, and explore ensemble strategies leveraging our
model’s probabilistic nature (NIAQUE-Ensemble).

Results and Analysis: The private leaderboard competition results along with their ranks are presented
in Table [[09] highlighting NIAQUE’s capabilities against a wide range of well-established representative
approaches. The effectiveness of transfer learning is evident in the performance progression: NTAQUE-
Scratch (RMSLE: 0.15047), trained only on competition data, performs similarly to traditional baselines like
XGBoost (0.15019). NIAQUE-Pretrain-100 (0.14823), pretrained on TabRegSet-101 excluding the Abalone
dataset, shows significant improvement, demonstrating that knowledge from unrelated regression tasks can
enhance performance. NIAQUE-Pretrain-full (0.14808), leveraging the complete TabRegSet-101, further
improves performance by incorporating original Abalone information in the training mix and matching Cat-
Boost (0.14783) without any feature engineering. The addition of automated feature engineering (OpenFE)
into the competition dataset further improves NIAQUE’s performance to 0.14556, significantly outperform-
ing all baseline models and approaching the competition’s winning score. Our best result comes from
NIAQUE-Ensemble (RMSLE: 0.14423), which leverages the probabilistic nature of our model by combining
predictions from different quantiles and model variants (Scratch and Pretrain-full). The ensemble benefits
from quantile predictions (in addition to the median) that help correct for data imbalance, predicting higher
values where models might underestimate and vice versa, achieving the 8th position on the private leader-
board, remarkably close to the winning score of 0.14374. This result is attained without extensive manual
intervention—eschewing hand-engineered features in favor of transfer learning, standard ensemble techniques
and automated feature extraction. Moreover, the model’s probabilistic formulation is leveraged to further
enhance point prediction accuracy, consistent with Bayesian estimation theory, where optimal estimators
are typically derived as functions of the posterior distribution (e.g., the variance-optimal estimator is the
posterior mean).

These results are particularly significant given that neural networks were generally considered ineffective for
this task. Multiple participants reported neural approaches failing to achieve scores better than 0.15, with
the competition’s winner noting: “I tried different neural network architectures only to observe that none of
them is competitive” (Heller], 2024]), echoed by other participants: “yes, I also tried different neural network
architectures only to observe that they could not reach beyond .15xx” (Heller] 2024). This real-world valida-
tion highlights NIAQUE’s competitiveness against heavily engineered solutions and underscores the efficacy
of integrating transfer learning with probabilistic modeling. Whereas the winning solution relied on an en-
semble of 49 models with extensive manual tuning, our approach achieves comparable performance through
principled transfer learning and uncertainty quantification, maintaining interpretability and necessitating
minimal task-specific modifications.

D.3.2 FloodPrediction Competition

The flood prediction competition (Reade & Chow| |2024b) presents a challenging regression task aimed at
predicting flood event probabilities based on environmental features including MonsoonIntensity, Topogra-
phyDrainage, RiverManagement, and Deforestation. With 2,932 participants, this competition addresses a
critical real-world problem where labeled data consists of flood probabilities rather than binary outcomes,
making regression models more suitable than classification approaches.

Methodology: We adapted NIAQUE for this flood probability prediction task while maintaining its core
probabilistic framework. The competition dataset comprises 1.12M training samples and 745K test samples,
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Table 110: Performance comparison on Flood Prediction competition. Higher R2-scores are better. Baseline
results are from competition forums (Reade & Chow, 2024b)). Rank represents the position on private
leaderboard.

Model R2 Score Rank
XGBoost (Broccoli Beef (siukeitin), 2024; Sayed, [2024) 0.842 2304
Light GBM (|, dataWr3cker; Masoudil, [2024]) 0.766 2557
CatBoost (Wate, [2024; [Milind, [2024) 0.845 1700
TabNet (Broccoli Beef (siukeitin), [2024)) 0.842 2304
TabDPT () 0.804 2529
TabPFN () 0.431 -

NIAQUE-Scratch 0.865 1099
NIAQUE-Pretrain 0.867 935
Winner (Heller, 2024} |Aldparis, [2024) 0.869 1

each containing relevant features derived from Flood Prediction Factors (Dhankour, 2024). Similar to our
Abalone experiment, we evaluate transfer learning effectiveness through two variants: NIAQUE-Scratch
(trained directly on competition data) and NIAQUE-Pretrain (pretrained on TabRegSet-101). The model
is pretrained using our quantile loss framework and then fine-tuned with MSE Loss on the competition
dataset. Notably, we found that automated feature engineering not only failed to improve performance
but also significantly increased the feature space dimensionality, making several baseline methods (TabDPT
and TabPFN) computationally intractable. Therefore, we focus on comparing the fundamental algorithmic
capabilities without feature engineering enhancements.

Results and Analysis: The competition results (Table demonstrate NTAQUE'’s strong performance in
flood prediction. NTAQUE-Scratch achieves an R2-score of 0.865, significantly outperforming both traditional
methods like XGBoost (0.842), CatBoost (0.845), and LightGBM (0.766), as well as newer deep learning
approaches such as TabNet (0.842), TabDPT (0.804), and TabPFN (0.431). NIAQUE-Pretrain further
improves performance to 0.867, approaching the winning score of 0.869, and securing rank 935 on the private
leaderboard.

These results are particularly noteworthy given the scale and complexity of the dataset. Unlike the Abalone
competition, where feature engineering played a crucial role, this competition highlights NTAQUE’s ability to
learn effective representations directly from raw features. The improvement from pretraining, though modest
in absolute terms (0.002 increase in R2-score), represents a significant advancement in ranking (from 1099 to
935), demonstrating the value of transfer learning even in specialized environmental prediction tasks. The
strong performance of our base model without extensive modifications or feature engineering suggests that
NIAQUE’s probabilistic framework and architecture are well-suited for large-scale regression tasks where the
target variable represents underlying probabilities.

The relatively poor performance of some specialized tabular models (particularly TabPFN with R2-score
of 0.431) on this large-scale dataset underscores the importance of scalability in real-world applications.
NTAQUE maintains its computational efficiency while handling over a million samples, making it practical
for deployment in real-world flood prediction systems where both accuracy and computational resources are
critical considerations.

D.4 Statistical Significance Analysis

To save space, we present benchmarking results with confidence intervals here. All confidence intervals are
obtained by aggregating the evaluation results over 4 runs with different random seeds.

53



Published in Transactions on Machine Learning Research (02/2026)

Table 111: Performance comparison across all metrics, with point prediction accuracy (SMAPE, AAD,
RMSE, BIAS) and distributional accuracy (COV@95, CRPS). Lower values are better for all metrics except
COV@95, where values closer to 95 are optimal. The results with 95% confidence intervals derived from 4

random seed runs.

| SMAPE AAD RMSE BIAS COV@95 CRPS
XGBoost-global 31.4+44 0.574+0.100 1.056 +£0.143 —0.15+0.00 94.6+0.3 0.636 +0.165
XGBoost-local 25.6 +0.1 0.433+0.001 0.883+0.004 —0.03+0.01 90.8+0.2 0.334+0.001
Light GBM-global 27.5+0.1 0.475+0.001 0.930+0.003 —0.06+0.01 94.8+0.1 0.426+0.017
Light GBM-local 25.7+0.1 0.427+0.003 0.865+0.012 —0.03+0.01 91.54+0.2 0.327+0.001
CATBOOST-global | 31.34+0.2 0.561 +£0.006 1.030+0.009 —0.124+0.02 94.9+0.2 0.443 +0.004
CATBOOST-local 24.3+0.1 0.408 +£0.001 0.840+0.003 —0.03+0.01 92.7+0.1 0.315+0.001
Transformer-global | 23.1 £0.3 0.383 £0.008 0.806 +£0.015 —0.01£0.01 94.64+0.3 0.272+0.005
NTAQUE-local 22.8+04 0.377+0.012 0.7974+0.019 —-0.03+0.01 94.9+0.4 0.267+0.011
NIAQUE-global 22.14+0.1 0.367£0.002 0.787 £0.005 —-0.02+0.01 94.6+0.2 0.261 + 0.002
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Table 112: Ablation study of the XGBoost model.

type dfgfh le?:tl;ng SMAPE  AAD BIAS RMSE | CRPS COV@E 1;? GE
global 8 0.02 314 0574 -0.15 1.056 | 0.636 94.6
global 16 0.02 25.7 0.441 -0.07 0.864 | 0.484 91.5
global 32 0.02 24.1 0402 -0.05 0.800 | 0.353 80.0
global 40 0.02 24.6 0414 -0.05 0.815 | 0.378 78.2
global 48 0.02 241 0.397 -0.04 0.785 | 0.362 74.8
global 96 0.02 23.8 0.384 -0.03 0.769 | 0.346 64.9
local 16 0.02 23.0 0.367 -0.00 0.753 | 0.317 52.0
local 12 0.02 227 0.369 -0.01 0.756 | 0.304 66.0
local 8 0.02 224 0372 -0.02 0.773 | 0.294 82.3
local 8 0.05 22.5 0373 -0.02 0.773 | 0.291 82.4
local 6 0.02 227 0.382 -0.02 0.795 | 0.298 87.3
local 4 0.02 24.1 0412 -0.03 0.847 | 0.318 90.2
local 3 0.02 25.6 0.433 -0.03 0.883 | 0.334 90.8

E XGBoost Baseline

95



Published in Transactions on Machine Learning Research (02/2026)

Table 113: Ablation study of the CATBoost model.

type depth ml1;1 ISZEa SMAPE  AAD BIAS RMSE | CRPS COV@E SE)A GE
global 16 50 31.4 0565 -0.12 1.036 | 0.442 94.2
global 16 100 31.3 0.561 -0.12 1.030 | 0.443 94.9
global 16 200 31.6 0.569 -0.13 1.041 | 0.445 94.2
global 8 100 41.1 0.785 -0.26 1.324 | 0.602 94.3
local 3 50 24.3 0.409 -0.03 0.841 | 0.316 92.7
local 3 100 24.3 0.407 -0.03 0.843 | 0.317 92.7
local 3 200 24.3 0.408 -0.03 0.840 | 0.315 92.7
local 5 50 22.2 0373 -0.02 0.785 | 0.285 90.7
local 5 100 22.3 0374 -0.02 0.786 | 0.285 91.3
local 5 200 224 0378 -0.02 0.791 | 0.288 91.6
local 7 50 21.5 0.359 -0.02 0.761 | 0.272 87.2
local 7 100 21.6 0.362 -0.02 0.765 | 0.273 88.6
local 7 200 21.8 0.366 -0.02 0.772 | 0.277 89.9

Table 114: CATBoost accuracy as a function of the number of quantiles.

type  depth 11111;1 SZEa qugii?les SMAPE  AAD BIAS RMSE | CRPS COV@E 1;? GE
global 16 100 3 31.3 0.561 -0.12 1.030 | 0.443 94.9
global 16 100 5 35.0 0.665 -0.13 1.183 | 0.482 96.2
global 16 100 7 38.5 0.746 -0.18 1.265 | 0.533 96.2
global 16 100 9 43.7 0.879 -0.25 1.437 | 0.622 96.2
global 16 100 51 68.9 1.538 -0.53 2.132 | 1.036 95.5
local 7 100 3 21.5 0.359 -0.02 0.761 | 0.272 87.2
local 7 100 9 239 0.399 -0.03 0.823 | 0.284 92.4
local 7 100 51 30.3 0.525 -0.09 1.079 | 0.369 92.1
local 16 100 51 30.2 0.514 -0.09 1.055 | 0.362 92.4

F CATBoost Baseline

The CATBoost is trained wusing the standard package via pip install catboost using
grow_policy = Depthwise. The explored hyper-parqameter grid appears in Table [T13]

Table [I14] shows CATBoost accuracy as a function of the number of quantiles. Quantiles are generated using
linspace grid np.linspace(0.01, 0.99, num_quantiles). We recover the best overall result for the case
of 3 quantiles, and increasing the number of quantiles leads to quickly deteriorating metrics. It appears that
CATBoost is unfit to solve complex multi-quantile problems.
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Table 115: Ablation study of the Light GBM model.

type max_depth 12;28 lei;?;ng SMAPE  AAD BIAS RMSE | CRPS COV@E SP){SA GE
global -1 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global -1 20 0.05 30.9 0554 -0.11 1.034 | 0.566 95.4
global -1 40 0.05 275 0475 -0.06 0.930 | 0.426 94.8
global -1 100 0.05 24.6 0417 -0.03 0.852 | 0.342 93.3
global -1 200 0.05 234 0393 -0.02 0.813 0.32 92.3
global -1 400 0.05 236 0379 -0.02 0.786 | 0.305 90.9
global 3 10 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 20 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 40 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 100 0.05 50.7 1.084 -049 1.763 | 1.013 94.1
global 3 200 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 3 400 0.05 50.7 1.084 -0.49 1.763 | 1.013 94.1
global 5 10 0.05 39.1 0.768 -0.25 1.341 | 0.856 94.8
global 5 20 0.05 39.0 0.76 -0.26 1.327 | 0.863 94.8
global 5 40 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 5 100 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 5 200 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 5 400 0.05 39.0 0.759 -0.26 1.328 | 0.864 94.8
global 10 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global 10 20 0.05 31.5 0572 -0.14 1.054 0.59 95.4
global 10 40 0.05 29.8 0.537 -0.13 1.001 | 0.575 95.2
global 10 100 0.05 29.5 0.528 -0.12 0.991 | 0.577 95.2
global 10 200 0.05 29.2 0.522 -0.12 0.981 | 0.576 95.0
global 10 400 0.05 29.1 052 -0.12 0.975 | 0.582 95.1
global 20 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global 20 20 0.05 30.9 0.554 -0.11 1.034 | 0.566 95.4
global 20 40 0.05 27.1 0.468 -0.07 0.913 | 0.512 95.2
global 20 100 0.05 25,5 0.435 -0.06 0.864 | 0.496 94.9
global 20 200 0.05 25.0 0.424 -0.06 0.846 | 0.488 94.3
global 20 400 0.05 24.3 041 -0.06 0.823 | 0.482 93.6
global 40 10 0.05 35.6 0.661 -0.17 1.199 | 0.804 95.2
global 40 20 0.05 30.9 0.554 -0.11 1.034 | 0.566 95.4
global 40 40 0.05 27.8 0.481 -0.05 0.913 | 0.431 94.7
global 40 100 0.05 24.7 0.419 -0.04 0.848 | 0.348 93.5
global 40 200 0.05 235 0.395 -0.03 0.811 | 0.332 92.7
global 40 400 0.05 23.2 0383 -0.03 0.791 | 0.322 92.0

G LightGBM Baseline
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Table 116: Ablation study of the Light GBM model.

type max_ depth 12;\25 learbz?eng SMAPE  AAD BIAS RMSE | CRPS COV; 1;5A GE
local -1 5 0.05 23.8 0.399 -0.03 0.823 | 0.319 90.6
local -1 10 0.05 22.5 0.376 -0.02 0.786 | 0.301 88.9
local -1 20 0.05 21.9 0.364 -0.02 0.766 | 0.289 86.5
local -1 50 0.05 21.6 0.355 -0.01 0.752 | 0.278 82.6
local 2 5 0.05 25.7 0427 -0.03 0.865 | 0.327 91.5
local 2 10 0.05 25.7 0.427 -0.03 0.865 | 0.327 91.5
local 2 20 0.05 25.7 0.427 -0.03 0.865 | 0.327 91.5
local 2 50 0.05 25.7 0.427 -0.03 0.865 | 0.327 91.5
local 3 5 0.05 24.3 0404 -0.03 0.83 | 0.318 90.7
local 3 10 0.05 23.9 0.396 -0.03 0.818 | 0.304 90.4
local 3 20 0.05 23.9 0.396 -0.03 0.818 | 0.304 90.4
local 3 50 0.05 23.9 0.396 -0.03 0.818 | 0.304 90.4
local 5 5 0.05 23.8 0.399 -0.03 0.823 | 0.319 90.6
local 5 10 0.05 22.7 0379 -0.02 0.79 0.3 89.1
local 5 20 0.05 22.3 0.37 -0.02 0.776 | 0.287 87.6
local 5 50 0.05 22.2 0.368 -0.02 0.773 | 0.285 87.4
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Figure 5: Transformer baseline used in our experiments. The feature encoding module is replaced with
transformer block. Feature encoding is implemented via self-attention. The extraction of feature encoding
is done by applying cross-attention between the prototype of input features and the output of self-attention.
This operation is repeated several times corresponding to the number of blocks in transformer encoder.

H Transformer Baseline

The ablation study of the transformer architecture is presented in Table It shows that in general,
increasing the number of transformer blocks improves accuracy, however, at 8-10 blocks we clearly see
diminishing returns. Dropout helps to gain better empirical coverage of the 95% confidence interval, but this
happens at the expense of point prediction accuracy. Finally, the decoder query that is used to produce the
feature embedding that is fed to the quantile decoder can be implemented in two principled ways. First, the
scheme depicted in Figure[5] uses the prototype of features supplied to the encoder. We call it the prototype
scheme. Second, the prototype can be replaced by a learnable embedding. Comparing the last and third
rows in Table we conclude that the prototype scheme is a clear winner.
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Table 117: Ablation study of the Transformer architecture.

query d_model width blocks dp | sMAPE AAD BIAS RMSE | CRPS CO\%E 1;? GE
proto 256 256 4 0.1 25.6 0.462 -0.01 0.918 0.313 95.2
proto 256 1024 4 0.1 24.5 0.414 -0.02 0.845 0.292 95.1
proto 256 256 6 0.1 23.7 0.397 -0.01 0.824 0.281 94.9
proto 256 512 6 0.2

proto 256 1024 6 0.1 24.3 0.407 -0.01 0.840 0.287 94.9
proto 256 1024 6 0.0 26.5 0477 -0.04 0.980 | 0.334 93.0
proto 256 512 8 0.0 23.3 0.388 -0.03 0.814 | 0.276 94.3
proto 256 1024 8 0.0 23.1 0.383 -0.02 0.806 | 0.272 94.6
proto 256 1024 8 0.1 23.1 0.384 -0.01 0.809 0.272 94.6
proto 256 512 10 0.0 23.0 0.384 -0.03 0.814 0.273 94.2
proto 256 1024 10 0.1 24.3 0.407 -0.01 0.840 0.287 94.9
proto 512 1024 6 0.1 |

learn 256 256 6 0.2 ‘ 35.0 0.722 -0.16 1.406 0.489 93.9
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Table 118: Ablation study of NIAQUE-local model.

blocks width dp layers | sSMAPE  AAD BIAS RMSE | CRPS COV@;D 1;? GE
2 64 0.0 3 24.2 0414 -0.03 0.848 | 0.292 95.1
2 128 0.0 3 22.8 0.381 -0.02 0.804 | 0.270 94.5
2 256 00 3 22.1 0.365 -0.02 0.786 | 0.260 94.0
2 512 0.0 3 21.9 0360 -0.02 0.781 | 0.257 92.7
2 64 01 3 24.7 0431 -0.07 0.855 | 0.305 93.3
2 128 01 3 23.1 0.389 -0.04 0.81 0.276 94.0
2 256 0.1 3 22.2 0369 -0.02 0.79 | 0.263 94.0
2 512 0.1 3 22.0 0361 -0.02 0.779 | 0.257 93.5
2 64 00 2 24.5 0.419 -0.03 0.852 | 0.296 95.0
2 128 0.0 2 23.4 0.391 -0.02 0.815 0.276 94.7
2 256 00 2 22.3 0368 -0.02 0.783 | 0.262 94.1
2 512 0.0 2 22.1 0363 -0.03 0.780 | 0.259 92.9
4 64 00 2 23.8 0.399 -0.02 0.828 | 0.282 95.1
4 128 0.0 2 22.8 0377 -0.03 0.797 | 0.267 94.9
4 256 0.0 2 22.0 0.363 -0.02 0.788 | 0.259 93.5
4 512 0.0 2 22.0 0359 -0.02 0.785 | 0.257 92.0
4 64 0.1 2 23.8 0.401 -0.03 0.829 0.284 94.3
4 128 0.1 2 22.9 0379 -0.03 0.801 | 0.267 94.6
4 256 0.1 2 22.1 0363 -0.03 0.786 | 0.259 93.5
4 512 0.1 2 22.0 0.360 -0.03 0.781 | 0.257 92.4
8 128 00 2 23.0 0.381 -0.02 0.798 0.27 95.7

I NIAQUE-Local Baseline

NIAQUE-local baseline is trained on each dataset individually using the same overall training framework
as discussed in the main manuscript for the NIAQUE-global, with the following exceptions. The number of
training epochs for each dataset is fixed at 1200, the batch size is set to 256, feature dropout is disabled.
Finally, for each dataset we select the best model to be evaluated by monitoring the loss on validation set
every epoch.

61



Published in Transactions on Machine Learning Research (02/2026)

Table 119: Ablation study of NIAQUE model.

. . log COVERAGE
blocks width dp layers singles input SMAPE  AAD BIAS RMSE | CRPS @ 95
1 1024 02 2 5% yes 25.6 0.433 -0.04 0.864 | 0.306 96.5
2 1024 0.2 2 5% yes 23.1 0384 -0.02 0.802 | 0.272 95.7
2 1024 02 3 5% yes 22.7 0377 -0.03 0.796 | 0.267 95.6
4 1024 02 2 5% yes 22.1 0367 -0.02 0.787 | 0.261 94.6
4 1024 02 3 5% yes 22.1  0.367 -0.02 0.792 0.262 94.6
8 1024 0.2 2 5% yes 22.0 0366 -0.02 0.798 | 0.264 92.7
4 512 02 2 0% yes 225 0372 -0.02 0.791 | 0.264 95.4
4 1024 02 2 0% yes 22.1 0366  -0.02 0.791 | 0.261 94.2
4 1024 03 2 0% yes 22.1 0367 -0.02 0.787 | 0.260 94.7
4 1024 04 2 0% yes 22.2 0370 -0.02 0.791 | 0.263 95.1
4 2048 0.3 2 0% yes 22.1 0366  -0.02 0.795 | 0.263 93.4
4 1024 0.2 2 5% no ‘ 31.4 0.530 -0.066 1.017 | 0.371 95.6

J  NIAQUE Training Details and Ablation Studies

To train both NIAQUE and Transformer models we use feature dropout defined as follows. Given dropout
probability dp, we toss a coin with probability 1/dp to determine if the dropout event is going to happen at
all for a given batch. If this happens, we remove each feature from the batch, again with probability /dp.
This way each feature has probability dp of being removed from a given batch and there is a probability
v/dp that the model will see all features intact in a given batch. The intuition behind this design is that we
want to expose the model to all features most of the time, but we also want to create many situations with
some feature combinations missing.

Input log transformation defined in eq. is important to ensure the success of the training, as follows
both from Table and Figure [f] The introduction of log-transform makes learning curves well-behaved
and smooth and translates into much better accuracy.

Adding samples containing only one of the features as input does not significantly affect accuracy.
At the same time, the addition of single-feature training rows has very strong effect on the effectiveness of
NIAQUE’s interpretability mechanism. When rows with single feature input are added (Figures[7ajand ,
NIAQUE demonstrates very clear accuracy degradation when top features are removed and insignificant
degradation when bottom features are removed. When rows with single feature input are not added (Fig-
ure , the discrimination between strong and weak features is poor, with removal of top and bottom
features having approximately the same effect across datasets.
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Figure 7: The effect of adding training rows containing only one of the input features as NIAQUE input.
When rows with single feature input are added (Figures and , NIAQUE demonstrates very clear
accuracy degradation when top features are removed and insignificant degradation when bottom features
are removed. When rows with single feature input are not added (Figure , the discrimination between
strong and weak features is poor, with removal of top and bottom features having approximately the same

effect across datasets.
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