
Online Scheduling and Reactive Behaviors for
Effective Human-Robot-Collaboration

Marina Ionova, Petr Vanc, and Jan Kristof Behrens

Abstract—Assembly processes involving humans and robots
are challenging scenarios because the individual activities and
access to shared workspace have to be coordinated. Fixed robot
programs leave no room to diverge from a fixed protocol.
Working on such a process can be stressful for the user and lead
to ineffective behavior or failure. We propose a novel approach
of utilizing uncertainty-aware constraint-based scheduling in a
reactive execution control framework facilitating behavior trees.
This allows the robot to adapt to uncertain events such as delayed
activity completions and activity selection (by the human). The
user can rest assured that the robot will wait for him to finish
his activity and will adapt to best complement the human-
selected activities to complete the common task. In addition to
the improved working conditions, our algorithm also leads to
increased efficiency, even in scenarios with high uncertainty. We
evaluate our algorithm using a probabilistic simulation study and
initial real robot experiments using a Franka Emika Panda robot
and human tracking based on HTC Vive VR gloves.

I. INTRODUCTION

Human-robot collaboration is a very challenging task for
many reasons. One is the uncertainty introduced by the human
collaborator and amplified by complex task dependencies.
These include uncertainties regarding the task durations, the
probability of task completion, and perception uncertainties.
However, humans and robots working on a shared task promise
to reap the best of two worlds: the robot’s diligence and
the human’s dexterity and intelligence. This paper proposes
a reactive architecture that utilizes Constraint Programming-
based scheduling and Behavior Trees (BT) to tame the inherent
uncertainty. We focus on the uncertainty in the timing of
task execution and task rejection by humans. We assume
that agents always finish their tasks, which might take longer
than expected. We evaluate our approach in an extensive
probabilistic simulation study. We implemented the method
also using a real Franka Emika Panda robot, a vision system
with marker-based task state tracking, and HTC Vive-based
human activity tracking.

We compare our method to the method proposed by Petzoldt
et al. [5], which uses a greedy approach and assigns tasks
to the agents based on the current task availability without
using scheduling. In contrast, our method considers a whole
schedule for the rest of the task. Another recent work, the
PLATINUM system, utilizes time-line based scheduling [7].
While PLATINUM implements its flaw-resolver-based tempo-
ral planning with uncertainty, we utilize similar data structures
in our model. Still, we reduce the problem to Constraint
Satisfaction Problems and use an off-the-shelf solver that
produces solutions fast enough to run online. We incorporate
a measure for uncertainty into the costs to incentivize the

solver to favor more stable schedules. Most often, the proposed
scheduling model proves even the optimality of the returned
solution.

The remainder of the paper is structured as follows. sec-
tion II introduces preliminaries about Constraint Programming
and Behavior trees that are required to understand the rest of
the paper. In section III, we discuss the class of use cases, the
scheduling model, and the online scheduling architecture. sec-
tion IV provides a short overview about the implementation.
section V describes the conducted experiments and section VI
discusses the achieved results. Finally, we conclude the paper
in section VII.

II. PRELIMINARIES AND BACKGROUND

In this Section, we introduce concepts about constraint
programming-based scheduling and reactive behavior gener-
ation using behavior trees that are required to understand the
content of this paper.

A. Constraint Programming for Scheduling

In Constraint Programming (CP), we model a (planning)
problem declaratively in terms of Constraint Optimization
Problems (CSP). A Constraint Satisfaction Problem is gen-
erally specified by a triple P = (X,D,C), where X is a
n-tuple of variables X = {x1, x2, . . . , xn}, D is a n-tuple
of domains D = {D1, D2, . . . , Dn}, and C is a t-tuple of
constraints C = {C1, C2, . . . , Ct}. The domain Di maps the
variable xi to possible values of xi: D(xi) = Di, i.e., xi ∈ Di.
A constraint Cj is a tuple {RSj

, Sj}, where Sj is the subset
of variables in X , which are involved in the constraint Cj .
RSj

is a relation between the variables Sj , which effectively
defines a subset of the Cartesian product of the domains of
the variables in Sj [2]. A solution of a CSP is a complete
assignment A = {a1, . . . , an}, which assigns to each variable
xi ∈ X a value ai, which is within the domain D(xi) of this
variable:

xi 7→ ai,∀i ∈ {1, . . . , n},where ai ∈ D(xi).

The task of a constraint solver is to find such a set A, such
that A satisfies all constraints C. For minimization, the solver
shall find the A ∈ A that minimizes or maximizes the value
of a designated variable. A is the space of all solutions.

B. Behavior Trees

Behavior trees (BT) are a behavior modeling tool that is in-
herently composable and reactive. BTs were originally devel-
oped for the game industry to control Non-Player-Characters,



but recently received much attention in robotics deliberation
[1, 3]. They could be seen as the link between the world of AI
planning that operates on a closed world and robotic online
deliberation that needs to deal with uncertainty and external
perturbations of the environment [4].

BTs are trees composed of behavior nodes. Leaf nodes are
actual behaviors or condition checks. Intermediate nodes are
processors or modifiers. The central operation in a BT is the
tick. The root node is regularly ticked. Each node recursively
ticks its child nodes and returns a status of either running,
success, or failure. The processors decide how to handle the
states of their children. Typical processor nodes are sequence,
parallel, selector, but many variants exist.

BTs can be, due to their clear structure, manipulated pro-
grammatically. This also allows us to refine them on the go.
We could add a node for an abstract action into the tree and
expand it when the node is ticked (for example, by planning).
In this paper, we encode a base robotic behavior as BT and
dynamically expand and prune the BT based on the current
situation and the scheduling results.

III. ONLINE SCHEDULING ARCHITECTURE

In this section, we present the details about the use case
formalization, the CP formulation for scheduling, and the
integration into an online deliberation for HRC.

A. Use Case Specification

The setup consists of a table-top with a Franka Emika Panda
manipulator. A human worker can approach the setup from
the right side. A typical use case is shown in Figure 1. We
use 3D printed assembly tasks as proposed by Riedelbauch
and Hümmer [6]. The layout features an assembly area (the
black construction plate), a part storage for the robot (left),
a shared part storage (next to the robot base), and a part
storage for the worker (right). The worker and the robot
cannot access the assembly area and the shared part storage
simultaneously. The human and the robot must collaborate
to complete the assembly task (see the finished task state in
Figure 2). Specifically, they have to coordinate their access
to the shared areas and carry out the subtasks in an order
consistent with the task’s dependency graph shown in Figure 2
on the right.

Note that the subtask allocation, ordering, and timing can
be used to optimize the collaboration. These decisions signif-
icantly influence human-robot coordination, the robustness of
the schedule, and finally, the makespan.

B. Scheduling Model

The formulation of the scheduling model builds upon the
notion of subtasks t with time points that form intervals
(picking and placing one block is represented as one subtask).
The constraint variables ts and te designate the start and the
end of the task t, respectively. The domains for all time point
variables is {0 . . . H}, where H is the considered time horizon.
Each subtask must be allocated to exactly one suitable actor
(i.e., the robot or the human worker—whoever can reach the

Fig. 1. The real robot setup and an example task based on the HRC task
generator by Riedelbauch and Hümmer [6].

Fig. 2. The final state of the shared assembly task. On the right, the
precedence graph is shown.

pickup and placing locations) that is designated by the variable
ta ∈ A, where A is the set of all actors. T is the set of all
subtasks.

Each actor can only work on a single task at a time. Hence,
subtasks allocated to an actor may not overlap.

∀ti, tj ∈ T |i ̸= j : tia = tja =⇒ tis > tje
∨

tjs > tie.

We divide subtasks into three phases called preparation, execu-
tion, and completion. In the preparation phase, the actor picks
up objects and moves toward the workspace. The execution
phase is dedicated to work in the (possibly) shared workspace.
All execution phases with the same shared target area must
be non-overlapping. The finishing phase describes the time
from leaving the shared workspace until new work can be
started (for example, tidying up tools). We denote the time
points separating the phases t1 and t2, respectively. Similarly,
subtasks that require access to the same shared area may not
overlap when allocated to different agents.

∀ti, tj ∈ T |i ̸= j : tir
⋂

tjr ̸= ∅ =⇒ ti1 > tj2
∨

tj1 > ti2,

where tr designates the resources required. We add a similar
constraint for subtask preparation phases involving the shared
part storage.

The subtask dependency graph G = (T,E), where T is the
set of all subtasks and E is the set of all edges representing
precedence constraints. A valid dependency graph G must be



directed and acyclic. If an edge e ∈ E connects a vertex ti

with vertex tj , then the completion of the execution interval of
ti is a condition for the execution interval of tj , i.e., ti2 < tj1.

The optimization criterion to minimize is the makespan

c = min
A∈A

max
t∈T

te,

i.e., minimize the latest end of all tasks. A is the set of all
valid variable-value assignments in the CSP and T is the set
of all task intervals and te is the end time point of the task t.

Task timing uncertainty can arise from human factors while
sharing the workspace with a robot or other factors such
as worn-out tools. The above model takes into account only
this type of uncertainty. Moreover, we propose incorporating
the uncertainty model for human task acceptance into the
optimization. Human task rejection can disrupt the sequence
of tasks, which leads to reduced schedule quality. This also
impacts the reliability of predicted completion times.

Incorporating soft constraints into the scheduling process
can be useful when data about a person’s preferences (e.g.,
how often a certain task type was accepted or rejected) are
available. We incentivize the solver to prefer assigning sub-
tasks to the human that likely are accepted by introducing soft
constraints, i.e., an additional component to the cost. Assigning
a task to an agent is penalized by a value proportional to the
probability that the assigned task is rejected.

The new objective function takes the form of minimizing
the maximum completion time for all tasks plus the sum of
all rejection probabilities:

min
A∈A

(max
t∈T

te + λ
∑
t∈T

p(t, ta)(te − ts)), (1)

The function p(·) is the probability of the task t being rejected
by actor ta. The penalty is scaled based on the task duration
te−ts, as the rejection of a long task will have a bigger impact
on the schedule. λ scales the importance of the rejection risk
penalty compared to the makespan.

C. Integrated Planning and Acting System

The online execution requires the management of the robotic
and the human agents and continuous supervision and in-
corporation of new observations about the progress into the
scheduling. The robot is controlled by the BT shown in
Figure 3, which ensures that the robot evades the human
worker with high priority, works on the given subtasks with
middle priority, or returns to its home pose. The human worker
is informed about the task state using the GUI shown in
Figure 4. Specifically, a dynamic Gantt chart (top-left) shows
the current state and schedule of the task, and the dependency
graph (bottom-left) shows the task-specific dependencies. On
the right side, the current task details are displayed for the
robot and the user. Human feedback about task completions
or task rejections is collected via buttons. The scheduling
model is always run when no schedule was computed or new
conflicting evidence makes the last schedule obsolete (e.g., end
time points or task rejections). Observed facts are constrained

to their actual values because the solver should not reason
about the past.

Fig. 3. Behavior tree for managing the robotic agent. Successively, all tasks
are written to the blackboard when they are due according to the schedule.
First-added tasks have priority. In this way, the robot will repair the situation
if accidentally progress is undone.

IV. IMPLEMENTATION

Our implementation is based on ROS 2. Our BTs utilize the
Pytrees library. Object detection and 6D localization use Intel
Realsense cameras and fiducial markers on the object. The
human pose is tracked using HTC Vive trackers. The robot
is controlled using position-based servoing. The scheduling is
implemented using Google OR-Tools.

V. EXPERIMENTAL SETUP

We designed a probabilistic simulation to evaluate the effec-
tiveness of the scheduling method under uncertainties in task
rejection by humans and task duration. The task execution time
is sampled from a bimodal probability distribution, where one
mode represents normal execution, and the other represents
failed attempts, which leads to increased task duration. We
used the simulation to validate our implementation (e.g.,
that assignments were allocated and sequenced correctly).
Furthermore, the rescheduling was tested to be consistent with
all observed events. The simulation was designed to emulate
the signals the agents would receive about the start of the tasks.
Uncontrollable events, such as the completion or the rejection
of a task are under the control of the simulation. Specifically,
the scheduling algorithm was assigning tasks to robots (and
simulated humans). Then simulating the duration for each
task. After the simulated task completion, the feedback to
the algorithm about the completion of the task, including
information about the time for each phase is sent.

In addition to the temporal uncertainty we also simulate the
human choice. When there is a decision to be made about
accepting a task or a preference, the simulation randomly
samples from a probabilistic distribution for that task. For



Fig. 4. Graphical User Interface for the real setup. A dynamic Gantt chart
(top-left) shows the current state and schedule of the task. The dependency
graph (bottom-left) shows the task-specific dependencies. On the right side, the
current task details are displayed for the robot and the user. Human feedback
about task completions or task rejections is collected via buttons.

instance, if the refusal rate for a task is 30%, and the robot
offers to perform the task, the human participant in the
simulation will accept the task with a probability of 70%. This
feature allows the simulation to test the scheduling algorithm’s
ability to handle human decision-making uncertainties.

VI. EXPERIMENTAL RESULTS

We performed 12,600 simulation experiments with dif-
ferent task allocation distributions, probabilities of human
task rejection, and probabilities of error for each agent to
test the efficiency and robustness of the proposed algorithm
with varying task dependencies. The results were compared
with the baseline [5], and they showed significant makespan
reductions, indicating the schedule method’s effectiveness (see
Figure 5). Figure 5 shows the makespan distribution in our
experiments for the proposed method and the baseline for
different scenarios.

A demonstration of applying the methodology to a real
robotic system is demonstrated in the accompanying video.
The video showcases the robot’s responsive behavior towards
alterations in the workspace and the presence of a human,
along with its accurate execution of a series of interconnected
tasks.

VII. CONCLUSION

In this paper, we proposed an online scheduling approach
for Human-Robot Collaboration based on Constraint Program-
ming based scheduling and behavior trees. We evaluate the
system extensively in simulation studies and showed its supe-
rior performance compared to a baseline from the literature.
We gave a preview of our proof-of-concept implementation on
a real Franka Emika Panda robot.

Future work includes systematic experiments with the real
setup, the introduction of more complex tasks, and the learning
of probabilistic distributions from experience.

ACKNOWLEDGMENTS

M.I. was supported by the RICAIP project funded by Euro-
pean Union’s Horizon 2020 research and innovation program
under grant agreement No. 857306

Fig. 5. The graph illustrates the distribution of the makespan (smaller is
better) in different scenarios. The vertical axis displays three categories of
experiments. The initial category involves experiments conducted with fixed
task allocation (non-allocatable), while the second and third categories involve
tasks that can be assigned to either agent. In the second category, the human
may reject assigned tasks. It can be seen that the presence of allocatable
tasks is exploited by our method to reduce the makespan. It is evident that
the proposed method outperforms the baseline significantly regardless of the
scenario. This shows that our method utilizes the available task flexibility well
and also handles the cases with high uncertainty better.

P.V. was supported by CTU Student Grant Agency (reg. no.
SGS23/138/OHK3-027/23).

J.K.B. was supported by the European Regional Develop-
ment Fund under project Robotics for Industry 4.0 (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000470).

REFERENCES

[1] M. Colledanchise and P. Ögren. Behavior Trees in
Robotics and AI: An Introduction. Jul 2018. doi:
10.1201/9780429489105. arXiv:1709.00084 [cs].

[2] E. C. Freuder and A. K. Mackworth. Constraint Satisfac-
tion: An Emerging Paradigm. In Foundations of Artificial
Intelligence, volume 2, pages 13–27. Elsevier, 2006. doi:
10.1016/S1574-6526(06)80006-4.

[3] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith.
A survey of behavior trees in robotics and ai. Robotics
and Autonomous Systems, 154:104096, Aug 2022. doi:
10.1016/j.robot.2022.104096.

[4] F. Martı́n, M. Morelli, H. Espinoza, F. J. R. Lera,
and V. Matellán. Optimized execution of pddl plans
using behavior trees. (arXiv:2101.01964), Jan 2021.
arXiv:2101.01964 [cs].

[5] C. Petzoldt, D. Niermann, E. Maack, M. Sontopski,
B. Vur, and M. Freitag. Implementation and evaluation
of dynamic task allocation for human–robot collaboration
in assembly. Applied Sciences, 12(2424):12645, Jan 2022.

[6] D. Riedelbauch and J. Hümmer. A benchmark toolkit for
collaborative human-robot interaction. In 2022 31st IEEE
RO-MAN, page 806–813, Aug 2022.

[7] A. Umbrico et al. Platinum: A new framework for
planning and acting. In Floriana Esposito et al., editors,
AI*IA 2017 Advances in Artificial Intelligence, Lecture
Notes in Computer Science, page 498–512, Cham, 2017.
Springer International Publishing.

https://drive.google.com/file/d/18c_tSFGqFxa6TY1Chq9jRcQOxTUPmt6H/view?usp=sharing

	Introduction
	Preliminaries and Background
	Constraint Programming for Scheduling
	Behavior Trees

	Online Scheduling Architecture
	Use Case Specification
	Scheduling Model
	Integrated Planning and Acting System

	Implementation
	Experimental Setup
	Experimental Results
	Conclusion

