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Abstract

Label distribution learning is a powerful learning paradigm to deal with label
polysemy and has been widely applied in many practical tasks. A significant
obstacle to the effective utilization of label distribution is the substantial expenses
of accurate quantifying the label distributions. To tackle this challenge, label
enhancement methods automatically infer label distributions from more easily
accessible multi-label data based on binary annotations. However, the binary
annotation of multi-label data requires experts to accurately assess whether each
label can describe the instance, which may diminish the annotating efficiency and
heighten the risk of erroneous annotation since the relationship between the label
and the instance is unclear in many practical scenarios. Therefore, we propose to
predict label distribution from ternary labels, allowing experts to annotate labels
in a three-way annotation scheme. They can annotate the label as “0” indicating
“uncertain relevant” if it is difficult to definitively determine whether the label
can describe the instance, in addition to the binary annotation of “1” indicating
“definitely relevant” and “−1” indicating “definitely irrelevant”. Both the theoretical
and methodological studies are conducted for the proposed learning paradigm. In
the theoretical part, we conduct a quantitative comparison of approximation error
between ternary and binary labels to elucidate the superiority of ternary labels over
binary labels. In the methodological part, we propose a Categorical distribution
with monotonicity and orderliness to model the mapping from label description
degrees to ternary labels, which can serve as a loss function or as a probability
distribution, allowing most existing label enhancement methods to be adapted to
our task. Finally, we experimentally demonstrate the effectiveness of our proposal.

1 Introduction

LDL (Label Distribution Learning) [2] is an effective learning paradigm for addressing label polysemy
(i.e., the cases where an instance can be described by multiple labels). Distinct from multi-label
learning [22], which assign a binary-valued vector to each instance, LDL assigns each instance a
real-valued vector, akin to descrete probability distributions, to represent the description degree of
each label to the instance. Label distributions provide fine-grained information about label polysemy,
and thus have been applied to many practical tasks, such as sentiment analysis [8, 30, 35], facial age
estimation [1, 4, 24] and movie rating prediction [3].

A fundamental bottleneck hindering LDL is the difficulty in acquiring ground-truth label distributions,
as the accurate quantification of these distributions can be prohibitively expensive. Therefore, LE
(Label Enhancement) [29] is proposed to automatically infer label distributions from the more easily
accessible multi-label data. Multi-label data is based on binary annotations (i.e., utilizing binary
values ±1 to annotate each label) which demand that experts accurately identify whether each label
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Figure 1: An annotation from JAFFE dataset [18].

can describe the instance. However, accurate identification is challenging in real-world tasks due
to the prevalence of ambiguous instances and labels which provoke uncertain binary associations
between the instances and the labels. For example, the facial image in Figure 1 can be definitely
(negatively or positively) associated to “happy”, “sad”, and “surprise”, whereas the association with
“fear” is uncertain, since it is not clear whether the emotion comes from being stimulated by something
frightening. If experts are coerced into providing a definitive annotation in uncertain cases, not only
does it diminish the efficiency of annotating, but it also heightens the risk of erroneous annotation.

Therefore, we propose to predict label distribution from ternary labels. Inspired by the philosophies
of three-way decision or three-world thinking [31], where decision-makers are provided with the
flexibility to delay judgment when the available information is inadequate to support a determined
decision, ternary labels take values from {−1, 0, 1}, where “±1” indicates whether the label can
describe the instance, and “0” denotes that the relationship between the label and the instance
is uncertain. For the proposed learning paradigm, we conduct theoretical and methodological
studies. In the theoretical part, we first quantify the errors of approximating the ground-truth label
description vector 2 from ternary labels and binary labels, respectively. Further, we conduct a
quantitative comparison of approximation error between ternary and binary labels to elucidate the
superiority of ternary labels. In the methodological part, we propose CateMO distribution (Categorical
distribution with Monotonicity and Orderliness) to model the mapping from label description degrees
to ternary labels, which can serve as the probability distribution for generating ternary labels or as
the loss function for measuring the inconsistency between the ternary labels and label distributions,
allowing most existing LE methods to be adapted to our task. Specifically, we first analyze the rules
governing the generation of ternary labels from label description degrees, and formalize them as
the assumptions about the probabilistic monotonicity and orderliness of ternary labels. Further, we
derive the probability mass function of CateMO to ensure probabilistic monotonicity and orderliness.
Finally, we create two comparison algorithms and evaluate the prediction performance on three
real-world datasets. Experimental results unequivocally affirm the superiority of ternary labels. Our
contributions can be summarized as follows:

• We propose to predict label distribution from ternary labels, which not only enhances the
annotation accuracy but also significantly reduces the annotating cost when contrasted with
the traditional binary annotating methods.

• We rigorously analyze the error of approximating the ground-truth label description degrees
by ternary and binary labels, respectively, which provides a quantitative elucidation of the
superior performance of the ternary label.

• We propose the CateMO distribution specifically designed to capture the mapping from
label description degrees to ternary labels, which is theoretically constructed to maintain the
monotonicity and ordinality of the probabilities associated with ternary labels.

2 Related Work

To address the challenge of obtaining accurate ground-truth label distributions, LE (Label Enhance-
ment) [29] is proposed as a method to automatically infer label distributions from more accessible

2In general, the elements of a label distribution are assumed to be non-negative and sum to 1. For simplicity,
we disregard the restriction that the sum is 1 in this paper, and refer to the unnormalized label distribution as
label description vector. The element of a label description vector is called label description degree.
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multi-label data, including binary labels [29] and multi-label rankings [13, 15]. Existing works on
LE can be broadly categorized into discriminative LE methods and generative LE methods. Discrimi-
native LE directly treats the label distribution as conditional probabilities of the labels given feature
observations, and subsequently mine additional information to estimate the conditional probabilities.
Generative LE, on the other hand, focus on describing the generation process of observations in a
principled manner and uncovering the underlying patterns of the observed data.

Current discriminative LE methods generally strive to optimize both Dist(z,y) and Ω(z), where
Dist(z,y) measures the inconsistency between the label description degrees z and the more accessible
labels y (including binary labels and multi-label rankings), and Ω(z) is the regularization terms based
on various sources of information. Typically, Dist(z,y) is modeled using MSE (Mean Squared Error),
and the information for Ω(z) includes instance relationships and label correlations. For instance,
several algorithms [5, 10, 20, 21, 23, 33, 34] assume that the instance manifolds based on features are
similar to the instance manifolds based on label distributions. Additionally, several algorithms [11,
26, 29, 32] operate under the assumption that instances with similar feature vectors exhibit similarity
in their label distributions. To incorporate label correlations, some algorithms [17, 25] regularize the
label distributions using the Graph Laplacian operators of label correlation graphs. LEPNLR [6], on
the other hand, enhances the labels by preserving the ranking relation of labels. Existing generative
LE methods generally decompose the joint distribution of complete data as p(y|z), p(· · · |z), and
p(z), where p(y|z) models the relationship between y and z, and p(· · · |z) captures the relationships
between z and other observed variables. Current works primarily focus on modeling p(y|z) and
p(· · · |z). For instance, LEVI [27, 28] and GLEMR [12] model p(y|z) as a Gaussian distribution
and a ranking-preserved distribution, respectively. GLERB [16] and LEIC [14] model p(· · · |z) by
incorporating instance relationships and label correlations into generation processes.

Furthermore, similar to ternary labels, the binary labels with missing values [17] are formally
represented by {0,±1}. However, it should be emphasised that they inherently differ in the following
aspects. First, they differ in the origin of the labels with value of 0, i.e., the missing labels in the
literature [17] and the uncertain label in ternary labels. The missing labels stem from the “absence”,
i.e., the association between the label and the corresponding instance is undocumented or unannotated
rather than undeterminable. By contrast, the uncertain labels stem from the “uncertainty”, i.e., it
is difficult for experts to definitively determine whether the label is relevant to the corresponding
instance. Second, they differ in the range of the underlying label description degree. The description
degree of the missing labels to the corresponding instance can take any value in the interval [0, 1],
since the missing labels may be relevant labels, irrelevant labels, or uncertain labels. By contrast,
the description degree of the uncertain labels to the corresponding instance take values in a small
sub-interval of [0, 1], which is much tigher than the range of the description degrees of missing labels.

3 Quantitative analysis

3.1 Preliminary

Given an instance with feature vector of x, the label description vector of the instance is denoted by z
whosem-th element zm ∈ [0, 1] indicates the description degree of them-th label to the instance x. If
an instance is annotated with binary labels, the label description vector will be degenerately expressed
as a vector of binary values b ∈ {−1, 1}M whose m-th element bm denotes whether the m-th label
can describe the instance or not. If an instance is annotated with ternary labels, the label description
vector will be degenerately expressed as a vector of ternary values s ∈ {−1, 0, 1}M where sm = 1
and sm = −1 denotes that the m-th label can describe and cannot describe the instance, respectively,
and sm = 0 denotes that the association between the m-th label and the instance x is uncertain.

3.2 Approximation error analysis

To quantify the advantages of the ternary label over the binary label, we leverage EAE (Expected
Approximation Error) [13, 15] which measures the error of approximating the true label description
degree by a more accessible label such as binary label, multi-label ranking, or ternary label. The
definition of EAE is formalized as follows:

Definition 1 Given a label with the true label description degree z ∈ I , if the label is annotated by a
reduced label with the approximate label description degree ẑ ∈ Î, then the expected approximation
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error of the reduced label, i.e., ψ(Î, I), is quantified as:

ψ(Î, I) =
∫
z∈I

∫
ẑ∈Î

1

V V̂
(z − ẑ)2dẑdz, V =

∫
z∈I

dz, V̂ =

∫
ẑ∈Î

dẑ. (1)

According to Definition 1, it can be seen that EAE depends on I and Î, so below we propose the
following assumptions to determine I, Î and their relationships.

Assumption 1 As stated in the introduction, a label in practical cases can be positive (i.e., the label
can describe the instance), negative (i.e., the label cannot describe the instance), and uncertain (i.e.,
the association between the label and the instance is uncertain). If a label is positive, then the true
label description degree z ∈ (κ, 1]. If the label is negative, then the true label description degree
z ∈ [0, τ), where τ ∈ [0, κ]. If the label is uncertain, then the true label description degree z ∈ [τ, κ].
That is, z ∈ Is,

Is =
{
z :
(
s = 1 ∧ z ∈ (κ, 1]

)
∨
(
s = −1 ∧ z ∈ [0, τ)

)
∨
(
s = 0 ∧ z ∈ [τ, κ]

)}
. (2)

If a label is annotated by a ternary label ŝ, then we have the ŝ-based label description degree ẑ ∈ Iŝ,

Iŝ =
{
ẑ :
(
ŝ = 1 ∧ ẑ ∈ (κ̂, 1]

)
∨
(
ŝ = −1 ∧ ẑ ∈ [0, τ̂)

)
∨
(
ŝ = 0 ∧ ẑ ∈ [τ̂ , κ̂]

)}
, (3)

where 0 ≤ τ̂ ≤ κ̂ ≤ 1 are the predefined parameters as approximations to τ and κ, respectively,
since τ and κ are unavailable from the annotation results.

If a label is annotated by a binary label b̂, then we have the b̂-based label description degree ẑ ∈ Ib̂,

Ib̂ =
{
ẑ :
(
b̂ = −1 ∧ ẑ ∈ [0, ξ̂)

)
∨
(
b̂ = 1 ∧ ẑ ∈ [ξ̂, 1]

)}
, (4)

where ξ̂ ∈ [τ̂ , κ̂] must hold, otherwise there exists some label description degree corresponding to
“b̂ = 1 ∧ ŝ = −1” or “b̂ = −1 ∧ ŝ = 1”, which is semantically contradictory.

Assumption 2 Since a label can be positive, negative or uncertain in practical cases, we discuss the
relationships between the true label and the annotation results in each of the three cases below.

If a positive or negative label (i.e., s = ±1) is annotated by a ternary value ŝ or a binary value b̂,
then we have ŝ = b̂ = s.

If an uncertain label (i.e., s = 0) is annotated by a ternary value ŝ or a binary value b̂, then we have
ŝ = s, p(b̂ = −1|s = 0) = ρ, and p(b̂ = 1|s = 0) = 1− ρ, where 0 ≤ ρ ≤ 1.

Next, we give the analytical form of EAE of the binary label and the ternary label.

Theorem 1 Given a label equiprobably being positive, negative, and uncertain, if the label is
annotated by a ternary value, then we have the expected approximation error:

Eŝ,s[ψ(Iŝ, Is)] =
2

9
(τ +κ)2+

2

9
(τ̂ + κ̂)2− 1

6
(τ̂κ+ κ̂τ)− 1

3
(τ̂ +κ)(κ̂+ τ)+

1

18
(1−κ− κ̂). (5)

If the label is annotated by a binary value, then we have the expected approximation error:

Eb̂,s[ψ(Ib̂, Is)] = ρ

(
τ + κ

6
− 1 + ξ̂

9

)
+

2(τ + κ)2

9
+
ξ̂2 − ξ̂τ − ξ̂κ− τκ

3
− 3τ + 4κ− ξ̂ − 3

18
,

(6)
where ρ = p(b̂ = −1|s = 0). Suppose that ξ̂ ∼ Uni(ξ̂ | τ̂ ≤ ξ̂ ≤ κ̂), ρ ∼ Uni(ρ | 0 ≤ ρ ≤ 1),
[τ, κ] ∼ Uni([τ, κ] | 0 ≤ τ ≤ κ ≤ 1), we have

Eŝ,s,τ,κ[ψ(Iŝ, Is)] = 36−1(8κ̂2 + 4τ̂ κ̂− 12κ̂+ 8τ̂2 − 8τ̂ + 7),

Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)] = 16−1(2κ̂2 + 2τ̂ κ̂− 3κ̂+ 2τ̂2 − 3τ̂ + 3).
(7)

Eŝ,s,τ,κ[ψ(Iŝ, Is)] ≤ Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)] if and only if
(
κ̂− 3

4

)2
+
(
τ̂ − 1

4

)2 ≤ 3
8 and τ̂ ≤ κ̂.
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Figure 2: Distributions of the values of P̃Eŝ,s[ψ(Iŝ,Is)]≥Eb̂,s[ψ(Ib̂,Is)], Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)], and
Eŝ,s,ξ̂,ρ,τ,κ[ψ(Iŝ, Is)] over [τ̂ , κ̂], where Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)] and Eŝ,s,ξ̂,ρ,τ,κ[ψ(Iŝ, Is)] (which are
defined in Equation (7)) measures the average EAE of binary labels and ternary labels, respectively;
P̃Eŝ,s[ψ(Iŝ,Is)]≥Eb̂,s[ψ(Ib̂,Is)] is defined in Equation (8), which measures the approximate proportion

of cases where the ternary label is inferior to the binary label for different [τ, κ, ξ̂, ρ].

The detailed proof of Theorem 1 can be found in Appendix. Figure 2 visualizes the results of
Theorem 1. Specifically, Figure 2(a) shows the relationship between the predefined parameters [τ̂ , κ̂]
and P̃Eŝ,s[ψ(Iŝ,Is)]≥Eb̂,s[ψ(Ib̂,Is)] which is defined as:

P̃Eŝ,s[ψ(Iŝ,Is)]≥Eb̂,s[ψ(Ib̂,Is)] =
1

|G|
∑

(τ,κ,ξ̂,ρ)∈G
I(Eŝ,s[ψ(Iŝ, Is)] ≥ Eb̂,s[ψ(Ib̂, Is)]),

G = {(τ, κ, ξ̂, ρ) : κ ∈ r(1, 10−3), τ ∈ r(κ, 10−3), ξ̂ ∈ r(1, 10−3), ρ ∈ r(1, 10−3)},
(8)

where I(·) is an indicator function that outputs 1 if the internal condition is true, and 0 otherwise;
r(u, v) outputs an increasing sequence [0, v, 2v, . . . , u]. Equation (8) measures the approximate
proportion of cases where the ternary label is inferior to the binary label for all possible [τ, κ, ξ̂, ρ] in G.

Figure 3: The visualization of τ̂ ≤
κ̂ and

(
κ̂− 3

4

)2
+
(
τ̂ − 1

4

)2 ≤ 3
8 .

Figure 2(b) and Figure 2(c) show the distributions of the
average EAE of the binary label and ternary label, respec-
tively. Obviously, the ternary label outperforms the bi-
nary label in most cases. Specifically, the binary label
shows superiority only in the extreme cases, i.e., (τ̂ , κ̂) ∈
{(0, 0), (0, 0.1), (0.9, 1), (1, 1)}, but τ̂ and κ̂ basically never
take these values in practical applications since both the bi-
nary and ternary labels exhibit very high approximation er-
ror in these cases. In addition, Theorem 1 also derives that
Eŝ,s,τ,κ[ψ(Iŝ, Is)] ≤ Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)] if and only if(
κ̂− 3

4

)2
+
(
τ̂ − 1

4

)2 ≤ 3
8 and τ̂ ≤ κ̂, which is visualized

as the overlapping area of the red and blue regions in Figure 3.
It can be seen that the overlapping area is essentially consistent
to the blue area in Figure 2(a). Therefore, the ternary label is su-
perior to the binary label w.r.t. approximating the ground-truth
label description degrees.

4 CateMO: Categorical distribution with monotonicity and orderliness

In order to learn label distributions from ternary labels, existing LE methods can be borrowed, the
fundamental frameworks of which have been visualized in Figure 4 and illustrated in Section 2.
It can be observed that both discriminative and generative LE methods necessitate modeling the
relationship between the label description degrees z and the more accessible labels y. Therefore,
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(a) Discriminative label enhancement (b) Generative label enhancement

Figure 4: Fundamental frameworks of existing LE methods. y can be either binary labels or
multi-label rankings. The learning target of discriminative LE methods can be decomposed as the
inconsistency between y and the label description degrees z, i.e., Dist(z,y), and the regularization
term of z based on other data, i.e., Ω(z). The joint distribution of the generation process in generative
LE methods can be decomposed as the conditional probability of y given z, i.e., p(y|z), and the
generative distributions of other observed variables, i.e., p(· · · |z).

we propose CateMO (Categorical distribution with Monotonicity and Orderliness) to model the
conditional probability of ternary label given the label description degree. CateMO can serve as
p(y|z) in generative LE methods, and the negative likelihood function of CateMO can be used as
Dist(z,y) in discriminative LE methods, so that most existing LE methods can be employed to
address our task by replacing Dist(z, s) and p(s|z) with CateMO. In the following subsections, we
first provide an intuitive discussion of the rules governing the generation of ternary labels and then
formalize these rules as the assumptions about the probability monotonicity and orderliness of ternary
labels. Furthermore, we derive the parametric mass function for CateMO, which is theoretically
guaranteed to maintain the probability monotonicity and orderliness of ternary labels.

4.1 Generation rules of ternary labels

On the one hand, we explore how the label description degree affects the probabilities of the label
being positive, negative and uncertain. Obviously, a label is more likely to be positive if the description
degree of the label is larger; a label is more likely to be negative if the description degree of the label
is smaller. Besides, the uncertain label is used to encode situations where the expert is unsure whether
the label can describe the instance, which arises from the fact that the probability of the label being
positive is close to the probability of the label being negative. Therefore, we believe that a label is
more likely to be uncertain if the probabilities of the label being positive and negative are closer. The
above intuitions can be formalized as follows:

Assumption 3 (Probability monotonicity of ternary labels) Given any two real values v1 and v2
between 0 and 1, if v1 < v2, then p(s = 1|z = v1) < p(s = 1|z = v2) and p(s = −1|z = v1) >
p(s = −1|z = v2). If 0 < p(s = 1|z = v1) − p(s = −1|z = v1) < p(s = 1|z = v2) − p(s =
−1|z = v2) or 0 < p(s = −1|z = v1)− p(s = 1|z = v1) < p(s = −1|z = v2)− p(s = 1|z = v2),
then p(s = 0|z = v1) > p(s = 0|z = v2).

On the other hand, we explore how the label description degree affects the orderliness among the
probabilities of the label being positive, negative and uncertain. Obviously, a label is most likely to
be negative and least likely to be positive if the label description degree is sufficiently small; a label is
most likely to be positive and least likely to be negative if the label description degree is sufficiently
large; a label is most likely to be uncertain if the label description degree is moderate. We formalize
the intuition as follows:

Assumption 4 (Probability orderliness of ternary labels) There exists two real values 0 ≤ v1 <
v2 ≤ 1, p(s = 1|z) < p(s = 0|z) < p(s = −1|z) holds for any z < v1, p(s = −1|z) < p(s =
0|z) < p(s = 1|z) holds for any z > v2, max{p(s = 1|z), p(s = −1|z)} < p(s = 0|z) holds for
any v1 < z < v2.

4.2 Probability mass function of CateMO distribution

Since a ternary label can take three possible values, i.e., s ∈ {0,±1}, we model ternary label by a
categorical distribution, which can be formalized as follows:

p(s|z) = Categorical(s | [φ(z), φ(z), φ(z)]), (9)
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(a) [λ, λ, λ, ẑ] = [2, 5, 3, 1
2
] (b) [λ, λ, λ, ẑ] = [10, 10, 20, 1

2
] (c) [λ, λ, λ, ẑ] = [30, 5, 500, 3

10
]

Figure 5: p(s|z) on different parameters. The horizontal and vertical axes denote the label description
degree z and the probability p(s|z) defined by Equation (9) and Equation (10), respectively.

where φ(z) = p(s = −1|z), φ(z) = p(s = 0|z), and φ(z) = p(s = 1|z) represent the generation
principles from the label description degree to the negative, uncertain, and positive labels, respectively.
We name φ(z), φ(z), and φ(z) as ternary generation functions. According to Assumption 3, we
preliminarily assume the parametric form of ternary generation functions as follows:

φ(z) =
1

Z
e−λz

2

, φ(z) =
1

Z
e−λ(z−ẑ)

2

, φ(z) =
1

Z
e−λ(z−1)2 , (10)

where Z = e−λz
2

+ e−λ(z−ẑ)
2

+ e−λ(z−1)2 , λ > 0, λ > 0, λ > 0 and 0 < ẑ < 1 are parameters.
Intuitively, the parameters (λ, λ, λ) largely governs the precision of CateMO distribution (despite the
fact that they are not exactly equal), which is similar to the reciprocal of the temperature coefficient
in the softmax layer of a deep neural network. Hence, we refer to the parameters λ, λ, and λ as the
precision of negative labels, positive labels, and uncertain labels, respectively. Figure 5 visualizes
the shape of p(s|z) on different parameters, which can be found that some parameter configurations
violate the above three assumptions. For example, Figure 5(a) violates Assumption 3, Figure 5(c)
violates Assumption 3 and Assumption 4 at the same time. Therefore, we propose Theorem 2 to
ensure that the ternary generation functions defined by Equation (10) satisfy the proposed assumptions
about probability monotonicity and orderliness of ternary labels.

Theorem 2 Given λ > 0, λ > 0, and λ > 0, the ternary genertaion functions satisfy Assumption 3
and Assumption 4 if the following conditions hold:

λ ̸= −λλ(ẑλ− ẑλ− λ)−1, ẑ = (2λ
√
λ+ 2λ

√
λ)−1(2λ

√
λ− λ

√
λ+ λ

√
λ),

max{(ẑ + ẑeλ)−1λ, ((1 + eλ)(1− ẑ))−1λ} < λ < min{λ(1− ẑ)−1, λẑ−1}.
(11)

The details of the proof can be found in Appendix. Therefore, the probability mass function of
CateMO distribution can be formalized as follows:

CateMO(s = 1 | z) = Z−1e−λ(z−1)2 ,CateMO(s = 0 | z) = Z−1e−λ(z−ẑ)
2

,

CateMO(s = −1 | z) = Z−1e−λz
2

, Z = e−λz
2

+ e−λ(z−ẑ)
2

+ e−λ(z−1)2 ,

s.t. ẑ = (2λ
√
λ+ 2λ

√
λ)−1(2λ

√
λ− λ

√
λ+ λ

√
λ), λ ̸= −λλ(ẑλ− ẑλ− λ)−1,

λ, λ, λ > 0,max{
(
ẑ + ẑeλ

)−1
λ, ((1 + eλ)(1− ẑ))−1λ} < λ < min{λ(1− ẑ)−1, λẑ−1}.

(12)

Finally, to apply CateMO, we simply replace Dist(y, z) in Figure 4(a) with the negative log-likelihood
of CateMO and replace p(y|z) in Figure 4(b) with CateMO, which can be formalized as follows:

Dist(s, z) = −
M∑
m=1

logCateMO(sm | zm), p(s|z) =
M∏
m=1

CateMO(sm | zm). (13)
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5 Experiments

5.1 Datasets and evaluation measure

Although there are many LDL datasets, they all lack ground-truth ternary label data. Therefore, we
select three real-world LDL datasets (i.e., JAFFE [18], Painting [19], and Music [9]), and manually
re-annotate them with both binary labels and the ternary labels. The details of these datasets can be
found in Appendix. We use five common LDL metrics to evaluate the algorithm performance, which
are Cheb (Chebyshev distance), KL (Kullback-Leibler divergence), Cosine (cosine coefficient) [2],
and Rho (Spearman’s rho coefficient) [7]. The lower values of Cheb and KL indicate the better
performance. The higher values of Cosine, Intersec, and Rho indicate the better performance. We use
“↑” and “↓” to denote that the better performance is represented by the higher and lower values of a
metric, respectively.

5.2 Comparison methods and experimental procedures

Comparison methods Since there is no LE method specifically for ternary labels, we design two
approaches to construct the comparison algorithms. On the one hand, we design a data transformation
method (which is abbreviated as DT method) to transform the dataset with ternary labels into an
extended dataset with binary labels so that any existing LE algorithm can be applied to ternary labels.
Specifically, for any instance with uncertain labels, we transform the instance into two instances
which set all uncertain labels to positive and negative labels, respectively. For instance, the example
[x, [1, 0, 0]] will be transformed into [x, [1, 1, 1]] and [x, [1,−1,−1]], respectively. On the other hand,
we replace the loss term Dist(z, b) with MSE ∥(s+ 1)/2− z∥22, so that most existing LE methods
can be used to enhance ternary labels. We abbreviate this method as MSE method. Besides, we select
three recently proposed binary label enhancement algorithms: GL [29], LR [6], and MR [12]. The
hyperparameter settings follow their respective literature. We combine GL, LR and MR algorithms
with DT and MSE methods in pairs to construct six comparison algorithms: GL-DT, GL-MSE,
LR-DT, LR-MSE, MR-DT, and MR-MSE. In terms of our proposal, we replace the conditional
distribution p(b|z) in MR with CateMO and replace Dist(z, b) in GL and LR with the negative
log-likelihood function of CateMO, which constructs three algorithms: GL-CateMO, LR-CateMO,
and MR-CateMO. We set the parameters [λ, λ, λ] in CateMO as [49, 48, 12].

Experimental procedures We aim to test the performance of label distribution prediction based
on different LE algorithms. Specifically, we use different LE methods to recover training label
distributions and use these recovered label distributions to train an LDL model, whose performance
on test instances will be reported. LDL-LRR [7] is used as the LDL model in this paper, whose
hyperparameters λ and β are selected from {10−6, 10−5, . . . , 10−1} and {10−3, 10−2, . . . , 102} as
suggested [7]. We randomly partition the whole dataset (70% for training and 30% for testing), and
repeat the above process ten times and report the average and standard deviation of the results.

5.3 Results and discussions

Table 1 shows the prediction performance of the comparison algorithms on three datasets. Each
result is formatted as “mean±std”. In the first column of Table 1, “MR”, “LR” and “GL” denote
the existing binary LE algorithms, the suffix “-LL” denotes that these algorithms run on binary
labels directly, and the suffixes “-DT”, “-MSE” and “-CateMO” denote that these algorithms run on
ternary labels by the DT method, MSE method and our proposed CateMO distribution, respectively.
“Ground-Truth” denotes that LDL-LRR is trained directly on the ground-truth label distributions.
In each area separated by dashed lines, bold and italics denote the 1st and 2nd, respectively. The
results of statistical significance test are shown in Appendix. It can be seen that the performance
of our proposed CateMO is better than other three comparison algorithms in all cases, and is close
to “Ground-Truth”. To visualize the advantages of ternary labels over binary labels, we show the
relationship between binary labels, ternary labels, and label distributions in terms of annotation
time and prediction performance in Figure 6. The horizontal axis denotes the average time (in
seconds) spent by an expert in annotating a label for an instance. The vertical axis denotes the average
prediction performance calculated from Table 1. It can be seen that ternary labels is superior to binary
labels in terms of both prediction performance and annotating cost.
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Table 1: Results shown as “mean±std”, where bold and italics denote the 1st and 2nd, respectively.

Method Cheb (↓) KL (↓) Cosine (↑) Intersec (↑) Rho (↑)

JAFFE

Ground-Truth 0.165± 0.010 0.145± 0.015 0.897± 0.009 0.793± 0.011 0.463± 0.051

MR-CateMO 0.169± 0.010 0.154± 0.015 0.892± 0.009 0.791± 0.011 0.477± 0.051

MR-MSE 0.183± 0.013 0.166± 0.017 0.884± 0.010 0.774± 0.014 0 .432 ± 0 .036

MR-DT 0 .177 ± 0 .011 0 .163 ± 0 .012 0 .886 ± 0 .006 0 .781 ± 0 .010 0.407± 0.033

MR-LL 0.180± 0.010 0.171± 0.014 0.883± 0.009 0.774± 0.008 0.383± 0.028

LR-CateMO 0.170± 0.012 0.156± 0.015 0.889± 0.010 0.785± 0.010 0.443± 0.040

LR-MSE 0 .178 ± 0 .012 0 .161 ± 0 .017 0 .884 ± 0 .011 0 .778 ± 0 .011 0.422± 0.045

LR-DT 0 .178 ± 0 .012 0 .161 ± 0 .017 0 .884 ± 0 .011 0 .778 ± 0 .011 0 .424 ± 0 .044

LR-LL 0.201± 0.015 0.320± 0.145 0.847± 0.023 0.738± 0.027 0.320± 0.072

GL-CateMO 0.174± 0.012 0.158± 0.016 0.887± 0.011 0.782± 0.011 0.432± 0.046

GL-MSE 0 .178 ± 0 .012 0 .162 ± 0 .016 0 .884 ± 0 .011 0 .777 ± 0 .011 0 .422 ± 0 .044

GL-DT 0.206± 0.017 0.210± 0.023 0.857± 0.013 0.745± 0.016 0.381± 0.058

GL-LL 0.199± 0.014 0.311± 0.156 0.852± 0.024 0.742± 0.027 0.323± 0.078

Painting

Ground-Truth 0.252± 0.009 0.535± 0.017 0.737± 0.007 0.605± 0.009 0.316± 0.038

MR-CateMO 0.262± 0.010 0.561± 0.022 0.723± 0.008 0.593± 0.010 0.275± 0.033

MR-MSE 0.262± 0.011 0.564± 0.029 0 .718 ± 0 .013 0 .592 ± 0 .013 0.255± 0.051

MR-DT 0.263± 0.008 0 .562 ± 0 .019 0 .718 ± 0 .009 0 .592 ± 0 .010 0 .273 ± 0 .023

MR-LL 0.263± 0.008 0.566± 0.019 0.715± 0.008 0.591± 0.010 0.265± 0.047

LR-CateMO 0.255± 0.009 0.545± 0.021 0.731± 0.008 0.602± 0.010 0.313± 0.044

LR-MSE 0.266± 0.011 0.575± 0.025 0.712± 0.011 0.587± 0.012 0.229± 0.033

LR-DT 0.255± 0.009 0 .549 ± 0 .025 0 .730 ± 0 .009 0 .601 ± 0 .011 0 .310 ± 0 .042

LR-LL 0.268± 0.014 0.617± 0.044 0.685± 0.018 0.576± 0.014 0.195± 0.069

GL-CateMO 0.254± 0.010 0.542± 0.022 0.734± 0.008 0.604± 0.011 0.316± 0.046

GL-MSE 0.265± 0.010 0 .571 ± 0 .027 0.715± 0.012 0.588± 0.012 0.240± 0.044

GL-DT 0 .256 ± 0 .011 0.590± 0.026 0 .719 ± 0 .011 0 .591 ± 0 .012 0 .287 ± 0 .039

GL-LL 0.260± 0.010 0.610± 0.055 0.710± 0.008 0.588± 0.011 0.224± 0.068

Music

Ground-Truth 0.072± 0.002 0.103± 0.006 0.925± 0.004 0.821± 0.007 0.510± 0.025

MR-CateMO 0.076± 0.002 0.107± 0.007 0.921± 0.005 0.820± 0.007 0.502± 0.027

MR-MSE 0.076± 0.002 0 .108 ± 0 .006 0 .920 ± 0 .004 0 .817 ± 0 .007 0.469± 0.029

MR-DT 0.088± 0.006 0.118± 0.009 0.910± 0.008 0.808± 0.009 0.496± 0.034

MR-LL 0.083± 0.004 0.115± 0.009 0 .912 ± 0 .008 0.813± 0.009 0 .499 ± 0 .022

LR-CateMO 0.073± 0.002 0.103± 0.006 0.924± 0.005 0.820± 0.007 0.506± 0.024

LR-MSE 0.073± 0.002 0 .104 ± 0 .006 0.924± 0.005 0 .819 ± 0 .007 0.501± 0.027

LR-DT 0.073± 0.002 0 .104 ± 0 .007 0.924± 0.005 0 .819 ± 0 .007 0 .504 ± 0 .027

LR-LL 0.081± 0.004 0.150± 0.033 0.909± 0.008 0.806± 0.010 0.503± 0.028

GL-CateMO 0.073± 0.002 0.103± 0.007 0.924± 0.005 0.821± 0.007 0.505± 0.026

GL-MSE 0.073± 0.002 0 .104 ± 0 .007 0.924± 0.005 0 .819 ± 0 .007 0 .501 ± 0 .028

GL-DT 0.084± 0.002 0.126± 0.007 0.912± 0.004 0.809± 0.007 0.499± 0.028

GL-LL 0.078± 0.003 0.137± 0.009 0.906± 0.006 0.796± 0.008 0.481± 0.033
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Figure 6: Cost-benefit analysis of different forms of labels. The horizontal and vertical axes denote
the average annotating time (in seconds) and performance, respectively.

Figure 7: Recovery performance of GL-CateMO with varying precision parameters.

5.4 Effect of precision parameters

Figure 7 shows how the precision parameters affect the recovery performance of GL-CateMO on
JAFFE, Painting, and Music datasets. The recovery performance is computed by the following two
steps. First, we run GL-CateMO algorithm on the dataset with ternary labels to recover the label
distributions for instances. Second, we calculate the KL divergence between the recovered label
distributions and the ground-truth by the LDL metrics. For a certain precision parameter, the other
two precision parameters are set to the values that give rise to the best recovery performance.

6 Limitations and conclusion

Limitations In this paper, the parameters (i.e., λ, λ, and λ) of CateMO are pre-fixed. In fact, a more
adaptive approach is to collaboratively learn these parameters and other model parameters. However,
since the parameters of CateMO satisfy the conditions shown in Theorem 2, in which the parameters
are interdependent, it may lead to difficulties in directly exploiting gradient descent optimization
methods. Therefore, in future works, we will explore how to appropriately reduce the parameter
space of CateMO so that the parameters λ, λ, and λ can be decoupled from each others.

Conclusion In this paper, we propose to predict label distribution from ternary labels, which reduces
both the annotation inaccuracy and cost when contrasted with the traditional binary annotating
methods. In the theoretical part, we analyze the approximation error for both ternary and binary
labels, which provides a quantitative elucidation of the superior performance of the ternary label.
In the methodological part, we propose the CateMO distribution to model the mapping from label
description degrees to ternary labels, which is theoretically constructed to maintain the monotonicity
and ordinality of the probabilities associated with ternary labels. In the experimental part, extensive
experiments demonstrate the effectiveness of our proposal.
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A Appendix / supplemental material

A.1 Proof of Theorem 1

Given a label equiprobably being positive, negative, and uncertain, if the label is annotated by a
ternary value, then we have the expected approximation error:

Eŝ,s[ψ(Iŝ, Is)] =
∑

u∈{0,±1}
p(ŝ = u, s = u)ψ(Ib̂=u, Is=u)

=
1

3

∫ τ̂
0

∫ τ
0
(z − ẑ)2dzdẑ

τ̂ τ
+

1

3

∫ κ̂
τ̂

∫ κ
τ
(z − ẑ)2dzdẑ

(κ̂− τ̂)(κ− τ)
+

1

3

∫ 1

κ̂

∫ 1

κ
(z − ẑ)2dzdẑ

(1− κ̂)(1− κ)

=
2

9
(τ + κ)2 +

2

9
(τ̂ + κ̂)2 − 1

6
(τ̂κ+ κ̂τ)− 1

3
(τ̂ + κ)(κ̂+ τ) +

1

18
(1− κ− κ̂).

(14)

If the label is annotated by a binary value, then we have the expected approximation error:

Eb̂,s[ψ(Ib̂, Is)] =
∑

u=±1
p(b̂ = u, s = u)ψ(Ib̂=u, Is=u) + p(b̂ = u, s = 0)ψ(Ib̂=u, Is=0)

= ρ

(
τ + κ

6
− 1 + ξ̂

9

)
+

2(τ + κ)2

9
+
ξ̂2 − ξ̂τ − ξ̂κ− τκ

3
− 3τ + 4κ− ξ̂ − 3

18
,

(15)
where ρ = p(b̂ = −1|s = 0). Suppose that ξ̂ ∼ Uni(ξ̂ | τ̂ ≤ ξ̂ ≤ κ̂), ρ ∼ Uni(ρ | 0 ≤ ρ ≤ 1),
[τ, κ] ∼ Uni([τ, κ] | 0 ≤ τ ≤ κ ≤ 1), we have

Eŝ,s,τ,κ[ψ(Iŝ, Is)] =
(∫ 1

0

∫ κ

0

dτdκ

)−1 ∫ 1

0

∫ κ

0

Eŝ,s[ψ(Iŝ, Is)]dτdκ

= 36−1(8κ̂2 + 4τ̂ κ̂− 12κ̂+ 8τ̂2 − 8τ̂ + 7)

Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)] =
1∫ 1

0

∫ κ
0

∫ 1

0

∫ κ̂
τ̂
dξ̂dρdτdκ

∫ 1

0

∫ κ

0

∫ 1

0

∫ κ̂

τ̂

Eb̂,s[ψ(Ib̂, Is)]dξ̂dρdτdκ

= 16−1(2κ̂2 + 2τ̂ κ̂− 3κ̂+ 2τ̂2 − 3τ̂ + 3).

(16)

Furthermore,

Eŝ,s,τ,κ[ψ(Iŝ, Is)] ≤ Eb̂,s,ξ̂,ρ,τ,κ[ψ(Ib̂, Is)]

⇐⇒ 8κ̂2 + 4τ̂ κ̂− 12κ̂+ 8τ̂2 − 8τ̂ + 7 ≤ 4κ̂2 + 4τ̂ κ̂− 6κ̂+ 4τ̂2 − 6τ̂ + 6

⇐⇒ κ̂2 − 3

2
κ̂+ τ̂2 − 1

2
τ̂ +

1

4
≤ 0

⇐⇒
(
κ̂− 3

4

)2

+

(
τ̂ − 1

4

)2

≤ 3

8

. (17)

A.2 Proof of Theorem 2

To ensure that Equation (10) satisfies the probability monotonicity of negative and positive labels, we
just need to ensure that ∂φ(z)/∂z < 0 and ∂φ(z)/∂z > 0. The partial derivative of φ(z) w.r.t. z
can be formalized as:

∂φ(z)

∂z
=
(
(λz − ẑλ− λz)ev1 + (λz − λ− λz)ev2

)
· v3, (18)

where v1, v2, v3 > 0. Since λz − λ− λz < 0, (λz − λ− λz)ev2 < 0. Therefore, ∂φ(z)/∂z < 0 if
λz − ẑλ− λz < 0 holds for any z ∈ (0, 1). This inequality can be equivalently transformed into:

λ− λ

ẑλ
> −1 > −1

z
⇐⇒ λ <

λ

1− ẑ
. (19)

Similarly, the partial derivative of φ(z) w.r.t. z can be formalized as:

∂φ(z)

∂z
=
(
(zλ− ẑλ− λz + λ)ev4 + (λ− λz + λz)ev5

)
· v6, (20)
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where v4, v5, v6 > 0. Since λ − λz + λz > 0, (λ − λz + λz)ev5 > 0. Therefore, ∂φ(z)/∂z > 0
if zλ − ẑλ − λz + λ > 0, i.e., λ(z − ẑ) > λ(z − 1) holds for any z ∈ (0, 1). On the one hand, if
ẑ < z < 1, then λ > λ(z − 1)(z − ẑ)−1. On the other hand, if z < ẑ, then λ < λ

ẑ <
λ(z−1)
z−ẑ .

To ensure that Equation (10) satisfies the probability orderliness, we just need to ensure that equations
φ(z) = φ(z) (i.e., λ(z − 1)2 = λ(z − ẑ)2) and φ(z) = φ(z) (i.e., λz2 = λ(z − ẑ)2) have only one
solution on z ∈ (0, 1). We denote g1(z) = λ(z − 1)2 − λ(z − ẑ)2. Since g1(1) = −λ(ẑ − 1)2 < 0
and g1(0) = λ − ẑ2λ > λ − ẑ2λẑ−1 = λ(1 − ẑ) > 0, the quadratic equation g1(z) = 0 has
only one solution in z ∈ (0, 1). Similarly, we denote g2(z) = λz2 − λ(z − ẑ)2 Since g2(1) =
2ẑλ− ẑ2λ− λ+ λ = λ− (1− ẑ)2λ > λ− (1− ẑ)2λ(1− ẑ)−1 = ẑλ > 0 and g2(0) = −ẑ2λ < 0,
the quadratic equation g2(z) = 0 has only one solution in z ∈ (0, 1).

To ensure that Equation (10) satisfies the probability monotonicity of uncertain label, we just need to
ensure that ∂φ(z)/∂z > 0 holds for any 0 < z < z0 and ∂φ(z)/∂z < 0 holds for any z0 < z < 1,
where φ(z0) = φ(z0), i.e., z0 =

√
λ(
√
λ +

√
λ)−1 That is, make sure that z0 is the only point of

maximum value of φ(z). The partial derivative of φ(z) w.r.t. z is:

∂φ(z)

∂z
= v1 ·

(
(ẑλ− λz + λz)eλ(z

2+1) + (ẑλ− λz + λz − λ)ez(2λ+λz)
)
, (21)

where v1 > 0. We aim to make sure that f(z) = ∂φ(z)/∂z = 0 has only one solution in z ∈ (0, 1)

(−ẑλ+ λz − λz)(ẑλ− λz + λz − λ)−1︸ ︷︷ ︸
f(z)

= exp(2λz + λz2 − λz2 − λ)︸ ︷︷ ︸
g(z)

. (22)

We first need to examine whether the denominator of f(z) is zero. Suppose that it is zero, we
have z = (λ − ẑλ)(λ − λ)−1. Considering that λ − ẑλ > λ − ẑλẑ−1 = 0, if λ > λ, then
z = (λ−ẑλ)(λ−λ)−1 > 1, which contradicts z ∈ (0, 1). If λ < λ, then z = (λ−ẑλ)(λ−λ)−1 < 0,
which also contradicts z ∈ (0, 1). Besides, it is obvious that the denominator of f(z) is non-zero
when λ = λ. Therefore, the denominator of f(z) is non-zero. Since whether the partial derivative of
f(z) w.r.t. z (i.e., ∂f(z)/∂z = (· · · )−2(ẑλλ− ẑλλ− λλ+ λλ)) is positive or negative has nothing
to do with z, we ensure the monotonicity of f(z) by the following inequality:

λ ̸= −λλ(ẑλ− ẑλ− λ)−1. (23)

Besides, since ∂g(z)/∂z = (2λ(1− z) + 2λz) exp(·) > 0, g(z) is increasing. Therefore, to make
sure that φ(z) has only one maximal point, we just need to ensure that f(0) > g(0) and f(1) < g(1),
i.e.,

λ > max
{(
ẑ + ẑ exp(λ)

)−1
λ, ((1 + exp(λ))(1− ẑ))−1λ

}
. (24)

Finally, let the partial derivative of φ(z) at z = z0 to be zero, we have

ẑ =
(λz0 − λz0) exp(λ

(
z20 + 1

)
) + (λz0 − λz0 + λ) exp

(
z0
(
2λ+ λz0

))
λ exp(λ (z20 + 1)) + λ exp

(
z0
(
2λ+ λz0

)) . (25)

Considering z0 =

√
λ√

λ+
√
λ

, we have ẑ = (2λ
√
λ+ 2λ

√
λ)−1(2λ

√
λ− λ

√
λ+ λ

√
λ). □

A.3 Datasets

JAFFE dataset The “JAFFE” dataset [18] comprises 213 facial emotion images posed by ten
Japanese female models. Concerning the feature data, we employ the feature extraction method
suggested in [2] to compress each image into a 243-dimensional feature vector. As for the label data,
each image is annotated with scores from {1, 2, 3, 4, 5} by 60 individuals, indicating the relevance
of the corresponding emotion to the facial image. The average score for each emotion is utilized to
represent the intensity of the emotion. Subsequently, we apply min-max normalization to scale the
average scores to the interval (0, 1) and normalize the average scores of all emotions into the form
of probability distributions to obtain the label distribution data. Besides, three experts annotate the
instances in JAFFE with ternary labels and binary labels, and the final ternary labels and binary labels
are determined by majority voting.
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Painting dataset The “Painting” dataset [19] is created for exploring emotions within abstract art-
works. Each image is represented by a 142-dimensional feature vector comprising three components:
histogram features of the RGB attributes of the image, histogram features of the HSV attributes of
the image, and GLCM (Grey-Level Co-occurrence Matrix) features of the image. Regarding the label
data, approximately 230 individuals annotate emotional scores across eight categories: amusement,
anger, awe, content, disgust, excitement, fear, sadness. Each image received about 14 annotations.
Subsequently, we apply min-max normalization to scale the average emotional scores to the interval
(0, 1) and normalize the average scores of all emotions into the form of probability distributions to
obtain label distribution data. Besides, three experts annotate the instances in Painting with ternary
and binary labels, and the final ternary and binary labels are determined by majority voting.

Music dataset The “Music” dataset is an extension of a music dataset [9] and encompasses 360
popular songs from major music charts across different countries. We employ MFCC (Mel Frequency
Cepstral Coefficients) to extracte a 5992-dimensional feature vector from each song and utilize
PCA (Principal Component Analysis) to compress this vector into a 128-dimensional feature vector.
Regarding the label data, participants from the UK, South Korea and Portugal rate their perceived
moods (i.e., calm, tense, cheerful, sad, danceable, love, dreamy, electronic, and energy) for a given
song on a 4-level scale. Subsequently, we apply min-max normalization to scale the scores to the
interval (0, 1), and normalize the average scores of all moods into the form of probability distributions
to obtain label distribution data. Besides, three experts annotate the instances in Music with ternary
and binary labels, and the final ternary and binary labels are determined by majority voting.

A.4 Results of statistical significance test

Table 2: The counts of win/tie/loss after comparing CateMO with other comparison algorithms under
a pairwise two-tailed t-test with 0.05 significance level. Each entry is formatted as “win/tie/loss”.

Method Cheb KL Cosine Intersec Rho

MSE 5/4/0 5/4/0 6/3/0 5/4/0 7/2/0

DT 5/4/0 6/3/0 7/2/0 5/4/0 6/3/0

LL 8/1/0 9/0/0 9/0/0 8/1/0 9/0/0

Ground-Truth 0/5/4 0/4/5 0/4/5 0/5/4 0/4/5

We use pairwise two-tailed t-test with 0.05 significance level to test whether CateMO is statistically
superior or inferior to MSE, DT, LL, and ground-truth on three real-world datasets when combined
with MR, LR, and GL. The counts of win/tie/loss after comparing CateMO with other comparison
algorithms are shown in Table 2.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction clarifies both the theoretical
and methodological contributions of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The assumptions of the theoretical result are formally described in Assump-
tion 1, Assumption 2, Assumption 3, and Assumption 4 in Section 3.2 and Section 4.1. The
proof of Theorem 1 is shown in Appendix A.1, and the proof of Theorem 2 is shown in
Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5.2, we give the details of the comparison algorithms, including
the hyperparameter configurations and the method of dataset partitioning. For our proposed
CateMO, we also give the values of λ, λ, λ.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: In terms of the code, the implementation of our proposed CateMO is so simple
that no additional code files are needed to describe it. In terms of the data, open access to
the datasets involved in this paper requires a license from the corresponding creator, and
this paper is not authorized to distribute them.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are shown in Section 5.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The mean value and the standard derivation of the prediction performance is
shown in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Computer resources have a negligible effect on both the experimental results
and the main claims of this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper does not violate the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all original papers that produced the datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The expert’s annotating task is as follows. An expert should annotate 1 if the
label can describe the instance, −1 if the label cannot describe the instance, and 0 if it is
uncertain whether the label can describe the instance. This process is described in Section 1.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: There is no potential risk incurred by study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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