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Abstract
Recent LLMs exhibit limited effectiveness on001
molecular property prediction task due to the se-002
mantic gap between molecular representations003
and natural language, as well as the lack of004
domain-specific knowledge. To address these005
challenges, we propose MolRAG, a Retrieval-006
Augmented Generation framework integrat-007
ing Chain-of-Thought reasoning for molecu-008
lar property prediction. MolRAG operates by009
retrieving structurally analogous molecules as010
contextual references to guide stepwise knowl-011
edge reasoning through chemical structure-012
property relationships. This dual mechanism013
synergizes molecular similarity analysis with014
structured inference, while generating human-015
interpretable rationales grounded in domain016
knowledge. Experimental results show Mol-017
RAG outperforms pre-trained LLMs on four018
datasets, and even matches supervised methods,019
achieving performance gains of 1.1%–45.7%020
over direct prediction approaches, demonstrat-021
ing versatile effectiveness.022

1 Introduction023

Molecular property prediction (Wu et al., 2018)024

is a fundamental task in computational chemistry025

and drug discovery, aiming to predict the quanti-026

tative characteristics of chemical compounds. Ac-027

curate prediction of molecular properties enables028

researchers to screen potential drug candidates at029

early stages, substantially reducing experimental030

costs and enhancing drug discovery efficiency. Cur-031

rent deep learning-based molecular property predic-032

tion models face two fundamental challenges (Kipf033

and Welling, 2022; Veličković et al., 2018; Xu034

et al., 2018): (1) strong dependency on scarce an-035

notated data constrains their applicability in low-036

resource scenarios; (2) insufficient explicit mod-037

eling of physicochemical principles compromises038

the interpretability of prediction outcomes.039

To overcome the challenges, recent researchers040

have begun exploring the potential of large lan-041
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Is this molecule inhibitor of             
PKA? Cn1ccnc1SCC(=0)Nc1ccc(0c2ccccc2)cc1

Without experimental data or docking studies, it’s
not possible to definitively determine if this
molecule is a inhibitor PKA. 

Is this molecule inhibitor of PKA?
Cn1ccnc1SCC(=0)Nc1ccc(0c2ccccc2)cc1

Here are some examples…

SMILES: CCCCOc1cccc(NC(=O)CSc2nccn2C)c1

Score: 0.7956

Label: No

 No, this molecule is not a inhibitor PKA.

MolRAG

the General LLM

MolRAG 4-shot
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Figure 1: Performance comparison of MolRAG and General
LLMs. The blue and purple lines in the line chart show the
results of the MolRAG 1-shot and 4-shot, and the red line
shows the results of the General LLM.

guage models (LLMs) (Touvron et al., 2023; 042

Achiam et al., 2023; Yang et al., 2024) for molecu- 043

lar property prediction. LLMs address the molec- 044

ular property prediction task by encoding struc- 045

tural information (e.g., SMILES strings, molecu- 046

lar graphs) into training data (Zeng et al., 2022; 047

Su et al., 2022; Taylor et al., 2022; Zhao et al., 048

2023). However, existing LLMs exhibit notable 049

limitations: First, the semantic gap between hier- 050

archical molecular representations and natural lan- 051

guage hinders the effective capture of critical chem- 052

ical features such as functional groups. Second, 053

inadequate implicit encoding of domain-specific 054

knowledge (e.g., physicochemical laws) restricts 055

the reasoning reliability of the general LLMs. As 056

illustrated in Figure 1, the general LLMs perform 057

the molecular property prediction task poorly due 058

to the two limitations. 059
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To overcome these limitations, we propose Mol-060

RAG, a Retrieval-Augmented Generation (RAG)061

LLM framework combined with Chain-of-Thought062

(CoT) reasoning to enhance molecular property pre-063

diction. This approach starts with dynamically re-064

trieving analogous molecules from specified knowl-065

edge bases, and then integrates them into the con-066

text for step-by-step reasoning. Instead of rely-067

ing solely on internal knowledge, this retrieval068

mechanism strengthens domain knowledge inte-069

gration, improves predictive accuracy, and thereby070

enhances adaptability across different molecular071

property tasks and datasets. Unlike conventional072

pre-training or fine-tuning methods, MolRAG re-073

quires no additional training, which significantly074

reduces computational costs. Experimental results075

show that MolRAG outperforms pre-trained LLMs076

on 4 general datasets, and on 2 of them even sur-077

passes existing GNNs-based methods with higher078

prediction accuracy.079

In summary, our contributions can be summa-080

rized as follows: (1) Training-Free Molecular081

Property Prediction. MolRAG enables LLMs082

to perform molecular property prediction without083

the need for large-scale pre-training or fine-tuning,084

significantly reducing computational costs. (2) In-085

terpretable and Adaptive Reasoning. By incor-086

porating CoT reasoning and retrieved molecular087

knowledge, MolRAG enhances predictive accu-088

racy while providing interpretable and insightful089

explanations. (3) Robust Retrieval-Augmented090

Framework. Through systematic evaluation, we091

demonstrate the effectiveness of different molec-092

ular retrieval strategies and in-context learning in093

improving LLM reasoning for chemical tasks.094

2 Related Work095

LLMs for molecular property prediction. De-096

spite the strong capabilities of LLMs, directly097

applying LLMs to molecular property prediction098

task still face challenges (White et al., 2023; Cas-099

tro Nascimento and Pimentel, 2023; Guo et al.,100

2023). To overcome these challenges, earlier stud-101

ies often employed specialist language models pre-102

trained from scratch (Zeng et al., 2022; Su et al.,103

2022; Taylor et al., 2022; Zhao et al., 2023), or104

through instruction tuning on specific tasks (Fang105

et al., 2023; Cao et al., 2023). Our work focuses106

on how to use a training-free approach, leveraging107

existing LLMs to complete molecular property pre-108

diction tasks. By exploring training-free methods,109

we aim to fully harness the generality of LLMs 110

while reducing the dependency on specialized data 111

and computational resources. 112

Retrieval augmented generation in chemistry. 113

LLMs face challenges when dealing with special- 114

ized or knowledge-intensive tasks. In these tasks, 115

LLMs are often prone to producing “hallucina- 116

tions (Huang et al., 2023)”. Retrieval-augmented 117

generation enhances LLMs by retrieving relevant 118

content from external knowledge databases (Lewis 119

et al., 2020). Recently, retrieval-augmented genera- 120

tion methods have also been applied to chemistry 121

tasks. Li et al. (2024) utilized retrieval to com- 122

plete molecular captioning and molecular gener- 123

ation tasks. ChatDrug (Liu et al., 2024) applied 124

LLMs for drug editing tasks. ChemCrow (M. Bran 125

et al., 2024) integrated various retrieval tools to 126

finish general chemical tasks. Despite these, no 127

approach has been developed to target the perfor- 128

mance of LLMs in molecular property prediction 129

tasks by leveraging the RAG framework. 130

CoT reasoning for chemistry. Chain-of-thought 131

(CoT) aims to guide the model through a series 132

of intermediate reasoning steps to obtain the final 133

answer (Wei et al., 2022; Kojima et al., 2022). A 134

few works have also applied CoT reasoning in the 135

chemistry domain for protein interactions (Jin et al., 136

2024) and chemistry question-answering (Ouyang 137

et al., 2024). However, none of these works use 138

chain-of-thought reasoning in molecular property 139

prediction tasks. However, none of these works 140

have applied the CoT method to molecular prop- 141

erty prediction tasks. MolRAG focuses on molec- 142

ular property prediction tasks, not only applying 143

retrieval-augmented methods to molecular property 144

prediction but also innovating on how to integrate 145

retrieval information to formulate a CoT reason- 146

ing strategy. This approach enhances the reason- 147

ing ability and performance of LLMs in molecular 148

property prediction tasks. 149

3 Our MolRAG Model 150

To fully leverage the capabilities of LLMs and 151

incorporate the principle of molecular structure- 152

property relationship, we propose MolRAG, 153

a training-free, retrieval-augmented generation 154

framework. The overall is depicted in Figure 2 155

3.1 Problem and Overview of MolRAG 156

Molecular property prediction aims at giving an 157

input molecule I , predicting the properties of the 158
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CoT-based In-context Learning2

You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES representation of a 

molecule, your job is to predict the property of the molecule. 

<Background>

<Instruction>

<Output Constriction>

<Chain-of-Thought Steps>

Strategy 2: Similarity-Aware Chain-of-Thoughts

• The more similar the molecule, the more similar the 

properties are.

Strategy 1: Structure-Aware Chain-of-Thoughts

• Summarize the structures of molecules, such as: functional 

group, longest carbon, chain length, aromatic ring, ring 

compounds, and chirality etc.

Based on the above examples, given the input molecule, please answer 

the question step by step.

• Analyze the instruction, and find out the key to solve the problem.Top 1

Top 2

…

Top k

Rank Molecule Label 

No

No

No

Score 

0.7956

0.7865

0.7391

RetrieverInput

Prompt Construction3

Morgan Fingerprint-based Molecule Retrieval1

Figure 2: Overall Framework of MolRAG. MolRAG begins with Morgan Fingerprint-based Molecule Retrieval to obtain
example molecules, followed by CoT-based In-context Learning for CoT strategy selection, and ends with Prompt Construction
to formulate the prompt.

molecule. In MolRAG, the retriever R first re-159

trieves relevant contents from the database D based160

on the input molecule I by computing the similar-161

ity between I and molecules in the database. The162

retrieved molecules are ranked by similarity scores163

in descending order, and the top k most similar164

molecules K = R(I|D) are identified, where k165

ranges from 0 to n. The corresponding similarity166

scores are recorded as Score i, and the labels are167

recorded as Label i.168

Next, MolRAG uses the CoT-based in-context169

learning strategy S to further complete the prompts.170

There are two strategies in MolRAG, which171

are Structure-Aware Chain-of-Thoughts, denoted172

as Struct-CoT , and Similarity-Aware Chain-of-173

Thoughts, denoted as Sim-CoT .174

Finally, MolRAG constructs the few-shot175

prompt using a structured template Prompt =176

(Instruction, I,K, S). This prompt is sent to the177

LLM to output the property of I .178

3.2 Morgan Fingerprint-based Retrieval179

The Molecular Fingerprint (Butina, 1999) is widely180

used for molecular similarity searches because it181

explicitly encodes key chemical features, allow-182

ing for fast comparison and similarity calculations183

across large databases.184

The Morgan Fingerprint is a specific type of185

molecular fingerprint that is commonly used (Zhou186

and Skolnick, 2024). It is generated through molec-187

ular graph traversal and is particularly effective in188

capturing local substructure features of molecules.189

Specifically, the Morgan Fingerprint creates a fea- 190

ture vector by recursively recording the connectiv- 191

ity information of each atom and its neighboring 192

atoms within the molecule. The resulting finger- 193

print is represented as a fixed-length binary or in- 194

teger vector, which efficiently encodes both the 195

global and local structural features of the molecule 196

The molecular similarity is quantified using the 197

Dice coefficient, which measures feature overlap 198

between fingerprint vectors: 199

Dice Similarity(A,B) =
2|A ∩B|
|A|+ |B|

, (1) 200

where A and B represent a molecule from the 201

database and the current input molecule, respec- 202

tively. A ∩B is their intersection, and |A| and |B| 203

are their sizes (i.e., the number of elements). The 204

Dice Similarity range from 0 to 1, when the value is 205

closer to 1 indicating a higher structural similarity 206

between the two molecules. 207

In summary, the molecular retrieval in MolRAG 208

is as follows: (1) Fingerprint Generation: For 209

each molecule, the Morgan algorithm generates 210

the corresponding molecular fingerprint. (2) Simi- 211

larity Calculation: The Dice Similarity is used to 212

calculate the similarity between the target molecule 213

and each molecule in the database. (3) Ranking 214

and Selection: Based on the calculated similarity 215

scores, the molecules are ranked, and the top K 216

most similar molecules are selected as candidate 217

molecules. 218
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3.3 CoT-based In-context Learning219

Chain-of-Thought (CoT) improves the reasoning220

ability of LLMs in molecular property prediction221

by decomposing complex SMILES data processing222

into stepwise sub-tasks, overcoming the limitations223

of direct question-answering approaches. Further-224

more, MolRAG introduces a CoT-based prompt225

construction method, marking the first time the226

CoT is applied to molecular property prediction227

tasks. This method guides the LLM to answer228

questions step by step, gradually reasoning through229

the solution, especially when combined with the re-230

trieved molecular data. This step-by-step reasoning231

strategy enables the LLM to better understand the232

complex task requirements, ultimately resulting in233

more accurate prediction.234

Moreover, the CoT-based prompt construction235

method improves reasoning accuracy and enhances236

the interpretability of the generated content. By ex-237

plicitly stating the rationale for each reasoning step,238

researchers can gain a clearer understanding of the239

model’s decision-making process. Interpretabil-240

ity is especially important in molecular property241

prediction tasks, as it helps reveal the underlying242

mechanisms driving the predictions and provides243

valuable insights for further optimization and in-244

formed decision-making.245

To further explore how to perform CoT-based in-246

context learning using the retrieved content, Mol-247

RAG has adopted two different strategies for con-248

structing in-context learning.249

3.3.1 Structure-Aware Chain-of-Thoughts250

Structure-Aware Chain-of-Thought (Struct-CoT)251

establishes a reasoning framework that connects252

molecular structural patterns to their macroscopic253

properties. By explicitly incorporating chemical254

structure-property relationships into the reasoning255

pathway, this approach allows for a systematic256

interpretation of how specific structural features257

(e.g., functional groups, stereochemistry) influence258

molecular properties. This significantly enhances259

prediction interpretability, providing a clearer un-260

derstanding of molecular behavior compared to261

black-box deep learning methods.262

In MolRAG, we implement Struct-CoT through263

hierarchical feature-guided reasoning:264

• Guided Structural Decomposition: The265

LLM systematically extracts critical structural266

features (etc., functional groups, aromatic267

ring, chirality) from both target and retrieved268

molecules. 269

• Property Correlation Mapping: These fea- 270

tures are explicitly linked to target properties 271

through physicochemical principles. For in- 272

stance, aromatic rings enhance hydrophobic- 273

ity and thermal stability, while strained cyclic 274

structures (e.g., norbornene) exhibit elevated 275

chemical reactivity. 276

• Comparative Reasoning: Structural similar- 277

ities and differences between molecules are 278

leveraged to deduce variations in properties. 279

Struct-CoT ensures that the model’s predictions are 280

grounded in verifiable chemical knowledge rather 281

than statistical correlations. 282

3.3.2 Similarity-Aware Chain-of-Thoughts 283

Similarity-Aware Chain-of-Thought (Sim-CoT) es- 284

tablishes a retrieval-enhanced reasoning paradigm 285

by explicitly linking molecular structural similarity 286

with property correlations. This framework op- 287

erationalizes the fundamental chemical principle 288

that "structurally similar molecules exhibit prop- 289

erty continuity"(Johnson et al., 1990), guiding the 290

model to systematically leverage retrieved refer- 291

ence molecular information. 292

In MolRAG, Sim-CoT is implemented through 293

two key mechanisms: (1) Cross-molecule Corre- 294

lation: The LLM is constrained to compare criti- 295

cal structural features between target and retrieved 296

molecules of high similarity scores, analyzing how 297

these features collectively influence target proper- 298

ties. (2) Property Continuity Constraints: In- 299

terpretable reasoning chains are constructed based 300

on established chemical rules, such as “increasing 301

methyl substitutions on benzene rings progressively 302

enhance hydrophobicity,” to map structural varia- 303

tions to property changes. Sim-CoT facilitates the 304

integration of retrieved molecules into the decision- 305

making process, reducing reliance on mere statis- 306

tical correlations while ensuring that predictions 307

remain chemically plausible. 308

3.4 Prompt Construction 309

Finally, building upon the original instructions, the 310

retrieved information is combined with the selected 311

CoT strategy to generate the final prompt for the 312

LLM, and then extract the final answer from the 313

LLM output to get the final answer. Although these 314

two CoT strategies differ in the construction of 315

the steps, their core goal is the same: optimizing 316
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Table 1: Experimental Results on Test Dataset. The teal color indicates the best performance of Pre-training Methods.

Model Shot Method BACE
(152)

HIV
(4113)

MUV
(25342)

Tox21
(25342)

ToxCast
(137215)

BBBP
(204)

CYP450
(5669)

Llama3-8b

0-shot
/ 0.5186 0.5801 0.4502 0.5378 0.4992 0.5226 0.5107

Struct-CoT 0.5044 0.5136 0.5387 0.5341 0.5016 0.5462 0.5179

1-shot
Struct-CoT 0.5939 0.5432 0.4962 0.5449 0.5338 0.5457 0.5488
Sim-CoT 0.7188 0.5749 0.5540 0.5880 0.5683 0.5469 0.6244

2-shot
Struct-CoT 0.6151 0.5684 0.4963 0.5495 0.5557 0.5642 0.5533
Sim-CoT 0.7541 0.5830 0.5559 0.6279 0.6012 0.5116 0.6903

4-shot
Struct-CoT 0.6257 0.5948 0.5527 0.5662 0.5913 0.5723 0.5838
Sim-CoT 0.7225 0.6436 0.5616 0.6393 0.6408 0.5411 0.7229

Random-Choice 0.5409 0.4897 0.5274 0.4989 0.4969 0.5017 0.4964

Pre-training
Methods

Gimlet 0.6957 0.6624 0.6439 0.6119 0.5904 0.5939 0.7125
KVPLM 0.5126 0.6120 0.6172 0.4917 0.5096 0.6020 0.5922
MoMu 0.6656 0.5026 0.6051 0.5757 0.5238 0.4981 0.5798

Galactica-125M 0.4451 0.3671 0.4986 0.4964 0.5106 0.6052 0.5369
Galactica-1.3B 0.5648 0.3385 0.5715 0.4946 0.5123 0.5394 0.4686

Surpervised
Methods

GCN 0.7360 0.7570 0.7320 0.7490 0.6330 0.6490 0.8041
GAT 0.6970 0.7290 0.6660 0.7540 0.6460 0.6650 0.8281
GIN 0.7010 0.7530 0.7180 0.7400 0.6340 0.6580 0.8205

Graphormer 0.7760 0.7452 0.7061 0.7589 0.6470 0.7015 0.8436
Graphormer-p 0.8575 0.7788 0.7480 0.7729 0.6649 0.7163 0.8877

the model’s in-context learning mechanism to en-317

hance its ability to integrate information during318

reasoning. Within this MolRAG framework, LLM319

can accurately utilize external knowledge within320

the given context to gradually deduce molecular321

properties, thereby improving the reliability and322

precision of the predictions and providing a more323

efficient, transparent, and interpretable solution for324

molecular property prediction tasks.325

4 Experiment326

In this section, we aim to answer the following327

research questions: (RQ1) What are the advan-328

tages of MolRAG compared with the General329

LLM? (RQ2) What’s core information contributes330

to molecular property prediction tasks?331

4.1 Experimental Setting332

Datasets and Database Construction. We vali-333

dated our MolRAG on seven datasets, which are334

from MoleculeNet (Wu et al., 2018), a widely used335

benchmark for molecular property prediction tasks.336

These datasets provide a comprehensive evaluation337

of different aspects of molecular property predic-338

tion. The tasks in these datasets are categorized into339

four types: Physico-chemical tasks, Bio-activity340

tasks, Toxicity tasks and Pharmacokinetic tasks.341

For instructions construction process, we adopted342

instructions from Gimlet (Zhao et al., 2023) and343

followed the same experimental settings used in344

the evaluation process. Details of dataset and in-345

structions are in Appendix A. We constructed the346

database using the Gimlet (Zhao et al., 2023)’s 347

training split of downstream tasks, and using the 348

test split for evaluation. Additionally, considering 349

that some datasets contain an excessive number of 350

instructions, we constructed a test-mini dataset to 351

reduce inference costs. For datasets with more than 352

4,000 instructions, we randomly sampled 4,000 353

instructions to form the Test-Mini dataset. 354

Baselines. We verify the performance enhance- 355

ment of MolRAG in the setting of generalist mod- 356

els. However, considering experimental duration 357

and computational cost, we selected Llama3-8B- 358

Instruct (Touvron et al., 2023) as our primary 359

model to conduct experiments on the Test dataset. 360

Meanwhile, GPT-4o (Achiam et al., 2023) and 361

Qwen2.5-7B-Instruct (Yang et al., 2024) are eval- 362

uated on the Test-Mini dataset. Additionally, we 363

include the pre-training baselines including Gim- 364

let (Zhao et al., 2023), KVPLM (Zeng et al., 2022), 365

MoMu (Su et al., 2022), Galactica-125M (Tay- 366

lor et al., 2022) and Galactica-1.3B , and surper- 367

vised baselines including: GCN (Kipf and Welling, 368

2022), GAT (Veličković et al., 2018), GIN (Xu 369

et al., 2018), Graphormer (Ying et al., 2021) and 370

Graphormer-p for comparisons. 371

Metric. We employ prediction ROC-AUC(Area 372

Under the Receiver Operating Characteristic curve) 373

as evaluation metric. 374
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Table 2: Experimental Results on Test-Mini Dataset.

Model Shot Method BACE
(152)

HIV
(4000)

MUV
(4000)

Tox21
(4000)

ToxCast
(4000)

BBBP
(204)

CYP450
(4000)

Llama3-8b
4-shot

Struct&Sim-CoT 0.6688 0.6393 0.6154 0.6046 0.6440 0.5064 0.6293

Sim-CoT
0.7225 0.6449 0.5541 0.6600 0.6654 0.5411 0.7176

Qwen2.5-7b 0.7560 0.6476 0.6237 0.6642 0.7087 0.5608 0.7279
GPT-4o 0.7673 0.6209 0.5486 0.6580 0.6882 0.6291 0.7471

4.2 The Outperformance of MolRAG(RQ1)375

To address this question, we design two experimen-376

tal settings Direct Answering Setting and Struct-377

CoT Setting for the General LLM. We choose378

Llama3-8b-Instruct (Touvron et al., 2023) as the379

General LLM. In Direct Answering, the model di-380

rectly answers the question and extracts the final381

prediction without additional reasoning, while in382

Struct-CoT setting, the model follows a structured383

CoT prompting strategy, reasoning step by step384

before providing an answer. Additionally, we intro-385

duce a Random Choice Setting, where the model386

randomly selects either "Yes" or "No" as the an-387

swer. Table 1 shows the performance of these three388

settings. The result values of Random Chioce are389

very close to the General Model experimental re-390

sults, indicates that the performance of both the391

Direct Answering and Strcut-CoT settings, without392

retrieval, is proximate to random choice. This is393

because the model lacks domain knowledge and394

this suggests that current LLMs struggle to per-395

form molecular property prediction without retriev-396

ing relevant knowledge. In summary, MolRAG397

demonstrates performance improvements across all398

datasets comparing with the General LLM, ranging399

from 1.1% to 45.7%, highlighting its efficacy and400

versatility.401

To compare with the general LLM performance,402

we conduct experiments within the MolRAG frame-403

work. We evaluate three different retrieval settings:404

1-shot, 2-shot, and 4-shot retrieval on Llama3-405

8b-Instruct (Touvron et al., 2023). The results406

for MolRAG as shown in Table 1 indicates that407

regardless of the number of shots retrieved, the408

performance consistently outperforms the gener-409

alist LLM. Specially, under the 4-shot setting of410

MolRAG, our approach achieves superior results411

compared to pretrained methods across multiple412

benchmark datasets, including BACE, CYP450,413

Tox21, and ToxCast. In particular, on the BACE414

and ToxCast datasets, our method approaches the415

performance of supervised methods, highlighting416

the effectiveness of MolRAG in molecular prop-417

erty prediction tasks. Additionally, Table 1 pro-418

vides experimental data from both pretrained and 419

supervised methods for reference. A comparison 420

reveals that MolRAG outperforms the pretrained 421

methods across four datasets, and matches the per- 422

formance of supervised methods on two of these 423

datasets. This demonstrates the versatile effective- 424

ness of MolRAG. 425

4.3 The Ablation Study of MolRAG(RQ2) 426

4.3.1 The Effect on Retrieved Numbers 427

To investigate this problem, we compare the results 428

of three different retrieval numbers:1, 2, 4. The 429

experimental results are summarized in Table 1. 430

Our experimental results indicate that the 2-shot 431

setting outperforms the 1-shot setting, while the 432

4-shot setting further improves upon the 2-shot 433

results. Notably, it suggests that the more retrieved 434

information retrieved, the more beneficial it is for 435

molecular property prediction tasks. All retrieval- 436

enhanced configurations surpass the performance 437

of models without retrieval. 438

4.3.2 The Effect on CoT-based Strategy. 439

To investigate the impact of different in-context 440

learning on molecular property prediction, we con- 441

ducted experiments on Llama3-8B-Instruct (Tou- 442

vron et al., 2023) with Struct-CoT and Sim-CoT 443

strategies respectively. These experiments are all 444

performed using 1-shot, 2-shot, and 4-shot re- 445

trieval settings. The results are summarized in 446

Table 1, demonstrating that Sim-CoT consistently 447

outperforms Struct-CoT across all datasets except 448

for BBBP dataset. Our results suggest that guid- 449

ing the model to leverage the dual mechanism of 450

cross-molecule correlation and property continu- 451

ity constraints enhances its reasoning capabilities. 452

By focusing on structurally similar molecules and 453

their corresponding properties, the model can make 454

more accurate predictions. 455

To further compare the influence of Struct-CoT 456

and Sim-CoT, we combine the Struct-CoT and Sim- 457

CoT strategies into a Struct&Sim-CoT strategy. 458

In this setting, both Struct-CoT and Sim-CoT strate- 459

gies are provided to the model and evaluated on the 460

Test-Mini dataset. The experimental results are pre- 461
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Step 1: Analyze the input molecule's structure.
The input molecule has the following characteristics:
•Contains a central carbon atom (C) with a nitrogen-nitrogen double bond (N=N)
•Has a ring system with oxygen atoms attached
•Contains a chain of carbon and nitrogen atoms forming a heterocyclic ring

Step 2: Compare the input molecule to the provided examples based on structural similarity scores.
•Example 1: Score 0.8600, Label: No
•Example 2: Score 0.8600, Label: No
•Example 3: Score 0.7843, Label: Yes
•Example 4: Score 0.7475, Label: No

Step 3: Identify patterns in the structural differences that affect the outcome.
•Example 1 and Example 2 differ from the input by the stereochemistry at the second carbon (C2) and have a lower score but sti ll no effect on 
activity.
•Example 3 has a different substituent on the ring system, which seems to have a positive effect on activity.
•Example 4 has a different substituent on the nitrogen-containing ring, which has a negative effect on activity.

Step 4: Determine the likely effect of the input molecule based on its structural similarity to the examples.
The input molecule closely resembles Example 3 in terms of structural features, particularly the presence of a substituent on the ring system 
similar to Example 3.

Step 5: Make a prediction based on the similarity scores and labels of the examples.
Given the high structural similarity score of 0.8600 to Examples 1 and 2, and the label "No," and the slightly lower score of 0.7843 to Example 
3, which has a positive label, the input molecule is likely to be similar to Example 3.

Conclusion: 
 Based on the structural similarity and the pattern observed in the examples, the input molecule is predicted to be effective in the BACE1 assay.

Top 1 Molecule:
[Molecule 1]: O1CC2(N=C1N)c1cc(ccc1Oc1c2cc(OC)cc1)-c1cncnc1
[Score 1]: 0.8600
[Label 1]: No

Top 2 Molecule:
[Molecule 2]: O1C[C@@]2(N=C1N)c1cc(ccc1Oc1c2cc(OC)cc1)-c1cncnc1
[Score 2]: 0.8600
[Label 2]: No

Top 3 Molecule:
[Molecule 3]: O1CC2(N=C1N)c1cc(ccc1Oc1c2cc(cc1)CCC)-c1cncnc1
[Score 3]: 0.7843
[Label 3]: Yes

Top 4 Molecule:
[Molecule 4]: O1CC2(N=C1N)c1cc(ccc1Oc1c2cc(OC)cc1)-c1ccncc1
[Score 4]: 0.7475
[Label 4]: No

[Instruction]: BACE1 is an aspartic-acid protease important in the pathogenesis of Alzheimer's disease, and in the formation of myelin sheaths.  It 
cleaves amyloid precursor protein (APP) to reveal the N-terminus of the beta-amyloid peptides. The beta-amyloid peptides are the major components 
of the amyloid plaques formed in the brain of patients with Alzheimer's disease (AD). Since BACE mediates one of the cleavages responsible for 
generation of AD, it is regarded as a potential target for pharmacological intervention in AD. BACE1 is a member of family of  aspartic proteases. Same as 
other aspartic proteases, BACE1 is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between 
the two lobes of the molecule. Is this molecule effective to the assay?

[Input]: O1C[C@]2(N=C1N)c1cc(ccc1Oc1c2cc(OCC(C)C)cc1)-c1cncnc1

Input Molecule:

Top 1 Molecule: 

Using Sim-CoT Template

3. MolRAG’s Output:

2. Few-Shot Instruction in MolRAG :1. Molecular Retrieval

Top 2 Molecule: 

Top 3 Molecule: 

Top 4 Molecule: 

Retriever

Figure 3: Case Study of MolRAG. The left side of the figure illustrates the visualization of the input molecule and top k
molecules. The right side is divided into two sections: the upper part shows the few-shot instruction, while the lower part displays
the MolRAG’s output result.

sented in Table 2. The results show that, except for462

the MUV dataset, the overall performance of Sim-463

CoT outperforms Struct&Sim-CoT. This indicates464

that, on most of the test datasets, generating struc-465

tural information can impact the decision-making466

process. As the structure information generated by467

the model may be inaccurate, which can affect the468

final judgment.469

Error Analysis. Error analysis of Sim-CoT and470

Struct-CoT are provided in Figure 4 (a) and (b).471

When using Sim-CoT, the model tends to encounter472

more errors related to the retrieval process, while473

with Struct-CoT, the errors are more often related to474

a lack of domain knowledge. Experimental settings475

of error analysis are shown in Appendix C.476

4.3.3 Different Model Platform477

To compare the impact of different generalist478

LLMs, we evaluated Llama3-8B-Instruct (Touvron479

et al., 2023), Qwen2.5-7B-Instruct (Yang et al.,480

2024) and GPT-4o (Achiam et al., 2023) on the481

Test-Mini dataset. The results, shown in Table482

2, indicate that Qwen2.5-7B-Instruct outperforms483

other LLMs on the HIV, MUV, Tox21, ToxCast,484

and BBBP datasets, while GPT-4o surpasses other485

LLMs on the BACE, BBBP, and CYP450 datasets.486

Overall, Qwen2.5-7B-Instruct outperforms GPT-487

4o, which in turn achieves better performance than 488

Llama-3-8B-Instruct. 489

Furthermore, we analyze the reasoning pro- 490

cesses of different models and observe that model 491

platforms exhibit varying responses to the Sim- 492

CoT strategy. Llama3-8B-Instruct tends to focus 493

primarily on the retrieved content and similarity 494

scores, comparing the input molecule with similar 495

molecules and using their labels to determine the 496

label for the input molecule. However, the final 497

result is often influenced by the model’s reasoning 498

process, which can introduce inconsistencies. 499

This tendency is even more pronounced in GPT- 500

4o, which almost exclusively relies on the retrieved 501

content to make predictions. When the retrieved 502

content fails to support reasoning toward the cor- 503

rect ground truth, GPT-4o tends to make errors, 504

reflecting the model’s strong dependence on the 505

retrieval phase. 506

In contrast, Qwen2.5-7B-Instruct exhibits a dif- 507

ferent behavior from the other two models. Even 508

though we only applied the Sim-CoT strategy, 509

Qwen2.5-7B-Instruct still considers the molecu- 510

lar structure and combines it with the similarity 511

scores, enabling more sophisticated reasoning. As 512

a result, Qwen2.5-7B-Instruct’s responses are more 513

interpretable and provide more complex insights 514

7



(a) Struct-CoT on Llama3-8b-Instruct (b) Sim-CoT on Llama3-8b-Instruct (c) Sim-CoT on Qwen2.5-7b-Instruct (d) Sim-CoT on GPT-4o

Figure 4: Error Analysis of different experimental settings of MolRAG. The figures illustrate the types of errors and their
corresponding proportions.

compared to the other models, offering a deeper515

understanding of the decision-making process.516

Error Analysis. Error analysis of different models517

are provided in Figure 4 (b), (c) and (d). GPT-4o518

almost never encounters reasoning errors or per-519

ceptual errors. Instead, it tends to have more errors520

related to the retrieval knowledge which is 95.40%.521

Qwen2.5-7B-Instruct’s errors are primarily concen-522

trated around retrieval and a lack of knowledge,523

while Llama3-8B-Instruct experiences errors re-524

lated to both retrieval and perceptual errors in the525

model. Experimental settings of error analysis are526

shown in Appendix C.527

4.3.4 Different Molecular Retrieval Methods528

To evaluate the effect of different molecular re-529

trieval representations, we compared retrieval us-530

ing the Substructure Fingerprint(Daylight Finger-531

print) (Stahl and Mauser, 2005) with retrieval using532

Morgan Fingerprint. The results, summarized in Ta-533

ble 3, indicate that Morgan Fingerprint yield supe-534

rior performance. However, the use of different fin-535

gerprints still produces competitive results, demon-536

strating that despite variations in molecular repre-537

sentations, MolRAG remains effective. This find-538

ing highlights the robustness of the MolRAG frame-539

work across different molecular retrieval strategies.540

Detailed results are shown in Appendix B.1.541

4.4 Case Study542

Further exploration of one specific test case from543

the BACE test set provides valuable insights, as544

shown in Figure 3. This case provides a result545

based on the 4-shot Sim-CoT template within546

the MolRAG framework. Given four retrieved547

molecules, the LLM primarily focuses on the simi-548

larity between the input molecule and the retrieved549

molecules during the reasoning process. In this550

particular case, three of the retrieved molecules are551

labeled as “No”, while one is labeled as “Yes”. In552

most cases, following the provided guidelines, the553

model predicts the property of the input molecule554

based on the majority of labels of the retrieved555

molecules. However, in this case, when the model 556

encounters the top 3 similar molecule, which is 557

labeled as “Yes”, it shifts its decision-making strat- 558

egy. Instead of relying solely on the majority label, 559

the model begins to analyze and reason about the 560

structural differences between the input molecule 561

and the retrieved examples. This step is reflected in 562

the third part of the reasoning process—“identifies 563

patterns in the structural differences that affect the 564

outcome.” This case study highlights the signifi- 565

cance of retrieval-based augmentation and chain- 566

of-thought (CoT) reasoning within the MolRAG 567

framework. By focusing on the structural patterns 568

in molecular property predictions, the model can 569

make more nuanced decisions. More case studies 570

can be found in Appendix D. 571

5 Conclusion 572

MolRAG is a retrieval-augmented framework de- 573

signed for molecular property prediction. To the 574

best of our knowledge, this is the first approach 575

that integrates retrieval-based augmentation with 576

CoT reasoning for this task. Moreover, MolRAG is 577

a training-free method, eliminating the need for ad- 578

ditional model fine-tuning. By incorporating rele- 579

vant information into in-context learning, MolRAG 580

enables LLMs to surpass the performance of pre- 581

trained models and even achieve results comparable 582

to supervised approaches. Additionally, MolRAG 583

enhances interpretability in molecular property pre- 584

diction, providing researchers with transparent and 585

insightful rationales for model predictions. Our 586

experiments further investigate the impact of differ- 587

ent in-context learning strategies, retrieval methods, 588

and generalist LLMs within the MolRAG frame- 589

work. Experimental results show MolRAG out- 590

performs pre-trained LLMs on four datasets, and 591

even matches supervised methods, achieving per- 592

formance gains of 1.1%–45.7% over direct predic- 593

tion approaches, demonstrating versatile effective- 594

ness and robustness. 595
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Limitations596

While MolRAG has demonstrated performance im-597

provements in molecular property tasks, it still has598

some limitations as follows:599

• Static knowledge representation: The ab-600

sence of model training prevents continuous601

knowledge evolution from error correction, as602

erroneous reasoning traces cannot refine the603

model’s inherent chemical knowledge base.604

• Bounded knowledge scope: Dependency on605

predefined molecular databases restricts ac-606

cess to emerging chemical knowledge, lacking607

dynamic knowledge exploration capabilities608

akin to literature mining systems.609

• Unverified reasoning pathways: Logical in-610

consistencies in structure-property deductions611

persist without expert-in-the-loop validation,612

particularly in edge cases requiring nuanced613

chemical intuition.614

Future efforts should focus on developing self-615

improving frameworks that integrate dynamic616

knowledge acquisition and expert-guided valida-617

tion, ultimately advancing LLMs toward chemi-618

cally rigorous reasoning.619
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A Details of Datasets and Instructions 767

BACE. The BACE dataset contains molecular 768

structures and their corresponding binding affinities 769

to the Beta-secretase 1 (BACE1) enzyme, which 770

is involved in Alzheimer’s disease. It is com- 771

monly used to evaluate molecular property pre- 772

diction models in drug discovery, specifically for 773

compounds that could potentially inhibit BACE1. 774

HIV. The HIV dataset consists of molecular struc- 775

tures and their activity against the Human Immun- 776

odeficiency Virus (HIV). It is used for training ma- 777

chine learning models to predict anti-HIV activity, 778

aiding in the discovery of potential HIV inhibitors 779

for therapeutic applications. 780

MUV. The MUV dataset is a collection of molec- 781

ular structures designed for multi-task learning in 782

the context of drug discovery. It includes molecular 783

activity data across multiple targets, which enables 784

the development of models that can predict the 785

activity of a compound against a range of targets 786

simultaneously. 787

Tox21. The Tox21 dataset contains molecular 788

structures along with data on their toxicity across 789

various biological assays. It is used to develop 790

predictive models for toxicity screening, aiming 791

to identify potentially harmful compounds early in 792

the drug development process. 793

ToxCast. The ToxCast dataset provides molecular 794

structures and their toxicity data, but it includes a 795

larger set of assays and focuses on environmental 796

chemicals and their potential effects. It is a valuable 797

resource for predicting the toxicological properties 798

of chemicals in a wide range of contexts. 799

BBBP. The BBBP (Blood-Brain Barrier Perme- 800

ability) dataset includes molecular structures and 801

their ability to cross the blood-brain barrier. It is 802
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used to develop models for predicting the perme-803

ability of compounds, which is critical for iden-804

tifying drug candidates with potential efficacy in805

treating central nervous system diseases.806

CYP450. The CYP450 dataset comprises molecu-807

lar structures and their inhibitory activities against808

various human cytochrome P450 enzymes, which809

are crucial in drug metabolism. This dataset is810

utilized to develop predictive models for identify-811

ing potential drug-drug interactions and assessing812

metabolic pathways.813

Instructions. We adopted the instructions as Gim-814

let (Zhao et al., 2023). 1815

B Details of Ablation Study816

B.1 Ablation on Retrieval Method817

Here, we show the setting and results analysis of818

different molecular retrieval methods.819

We use the Substructure Fingerprint as the820

molecular retrieval representation. The Substruc-821

ture Fingerprint (Stahl and Mauser, 2005) encodes822

the presence or absence of specific substructural823

features, such as functional groups or aromatic824

rings, within a molecule. It is a binary bit vec-825

tor, where each bit represents the occurrence of a826

particular substructure. Substructure fingerprints827

rely on predefined structural patterns and are lim-828

ited by the substructure library. In contrast, Morgan829

fingerprints encode local atomic environments and830

are more flexible.831

The results of Substructure Fingerprint-based ex-832

periments are shown in Table 3. Experiment results833

reveal that similar to the Morgan Fingerprint, the834

1-shot approach consistently underperforms com-835

pared to the 2-shot method, and the 2-shot approach836

lags behind the 4-shot method. Notably, while the837

Substructure Fingerprint-based experiment’s per-838

formance is not as good as the Morgan Fingerprint,839

they still yield competitive results.840

C Details of Error Analysis841

Error Analysis is provided on the results of four842

experimental settings: Struct-CoT on Llama3-8b-843

Instruct, Sim-CoT on Llama3-8b-Instruct, Sim-844

CoT on Qwen2.5-7b-Instruct, and Sim-CoT on845

GPT-4o.846

1The datasets and instructions are available at
https://huggingface.co/datasets/haitengzhao/molecule_property
_instruction

For each experimental setting, we sampled a 847

subset of results for error analysis. Errors in each 848

answer have been manually reviewed and classified, 849

and the final statistics are shown in Figure 4. 850

We categorize reasoning failures into four pri- 851

mary types: 852

Retrieval Relevance Error: When the retrieved 853

molecules are structurally or functionally dissimilar 854

to the target compound, it can impair the model’s 855

ability to make accurate property predictions. This 856

mismatch often disrupts the reasoning process, 857

leading to incorrect conclusions. 858

Lack of Knowledge: The model may fail to recall 859

or apply fundamental chemical principles, such as 860

trends in electronegativity. 861

Reasoning Error: Errors in multi-step reasoning 862

processes, such as casual inference error. 863

Perceptual Error: The model makes cognitive 864

errors, such as missing critical information and 865

misinterpreting the intent or semantics of the task. 866

D More Cases 867

D.1 Case Study on Different Generalist LLMs 868

Here, we provide the case study of different gener- 869

alist LLMs. The generalist LLMs are all tested us- 870

ing the Sim-CoT Strategy on the Test-Mini dataset. 871

Case Study of Llama3-8b-Instruct. As shown 872

in Figure 5, in this case, under the influence of 873

the Sim-CoT strategy, the model first evaluates the 874

similarity of each molecule and makes an initial 875

judgment, as shown by the “similar” and “less sim- 876

ilar” evaluations in the case study. Then, it uses the 877

similarity scores to make property predictions for 878

the input molecule. 879

Case Study of Qwen2.5-7b-Instruct. As shown 880

in Figure 6, in this case, the model influenced by the 881

Sim-CoT strategy, first analyzes the input molecule. 882

It then performs a secondary evaluation based on 883

the structure and scores of the retrieved molecules, 884

ultimately leading to a comprehensive decision by 885

the model. 886

Case Study of GPT-4o. As shown in Figure 7, 887

in this case, under the influence of the Sim-CoT 888

strategy, the model first analyzes the Molecular 889

Weight, Log P, and Hydrogen Bond Donors and 890

Acceptors from the instruction. It then combines 891

these insights with the similarity scores provided 892

to make a final decision. 893
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Table 3: Experimental Result on the Substructure Fingerprint.

Model Shot Method BACE
(152)

HIV
(4113)

MUV
(25342)

Tox21
(25342)

ToxCast
(137215)

BBBP
(204)

CYP450
(5669)

1-shot SimCoT 0.6221 0.5759 0.4893 0.5736 0.5630 0.5469 0.6278
2-shot SimCoT 0.6449 0.5969 0.5194 0.6185 0.6198 0.5324 0.6862Llama3-8b
4-shot SimCoT 0.7164 0.6433 0.5499 0.6375 0.6562 0.5405 0.7045

Figure 5: Case Study: Using Llama3-8b-Instruct and Sim-CoT Template

First, let's analyze the input molecule: COc1ccccc1C1=NOC(Cn2c(=O)c3c(ncn3C)n(C)c2=O)C1

Next, I'll compare it to the given examples and their scores:

1. [Molecule 1]: COc1ccc(-c2nc3c(c(=O)n(C)c(=O)n3C)n2CC2CC(c3ccccc3)=NO2)cc1OC
* Score: 0.6609 (similar)
2. [Molecule 2]: CC(=O)CCCCn1c(=O)c2c(ncn2C)n(C)c1=O
* Score: 0.5591 (less similar)
3. [Molecule 3]: COc1ccc(C2=NOC(Cn3c(=O)cc(C)c4ccccc43)C2)cc1
* Score: 0.5524 (less similar)
4. [Molecule 4]: Cn1c(=O)n(CCc2ccccc2)c(=O)c2c1ncn2Cc1ccccc1
* Score: 0.5263 (less similar)

Based on the scores, the input molecule is most similar to Molecule 1 (0.6609), which is labeled as "No" (not an inhibitor of  PKA). Since similar structures tend to have similar properties, 
I'll assume that the input molecule is also likely to be "No" (not an inhibitor of PKA).

Case : Using Llama3-8b-Instruct and Sim-CoT Template
Few-shot Instruction:
[Instruction]: Protein kinase A (PKA) is an ubiquitous serine/threonine protein kinase and belongs to the AGC kinase family. It has several functions in the cell, including regulation 
of immune response, transcription, cell cycle and apoptosis. PKA is a cAMP dependent enzyme that exists in its native inactive form as a 4 subunit enzyme with two regulatory and 
two catalytic subunits. Binding of cAMP to the regulatory subunit leads to the disassembly of the complex and release of now active catalytic subunits. Is this molecule inhibitor of 
PKA?

[Input]:COc1ccccc1C1=NOC(Cn2c(=O)c3c(ncn3C)n(C)c2=O)C1

Here are some examples and the structural similarity scores to the input molecule.
Example 1:
[Molecule 1]: COc1ccc(-c2nc3c(c(=O)n(C)c(=O)n3C)n2CC2CC(c3ccccc3)=NO2)cc1OC
[Score 1]: 0.6609
[Label 1]: No
Example 2:
[Molecule 2]: CC(=O)CCCCn1c(=O)c2c(ncn2C)n(C)c1=O
[Score 2]: 0.5591
[Label 2]: No

Example 3:
[Molecule 3]: COc1ccc(C2=NOC(Cn3c(=O)cc(C)c4ccccc43)C2)cc1
[Score 3]: 0.5524
[Label 3]: No
Example 4:
[Molecule 4]: Cn1c(=O)n(CCc2ccccc2)c(=O)c2c1ncn2Cc1ccccc1
[Score 4]: 0.5263
[Label 4]: No

Model Output:

Figure 6: Case Study: Using Qwen2.5-7b and Sim-CoT Template.

Step 1: Analyze the input molecule's structure.
The input molecule has a complex structure with a nitrogen-containing heterocycle, a carbonyl group, and a phosphate group. It also contains a cyclohexane ring and a phenyl ring.

Step 2: Compare the input molecule with the provided examples.
- Example 1 has a score of 0.7559 and is labeled as "No".
- Example 2 has a score of 0.7213 and is labeled as "No".
- Example 3 has a score of 0.6140 and is labeled as "No".
- Example 4 has a score of 0.6076 and is labeled as "No".

Step 3: Assess structural similarity.
The input molecule shares some common features with the examples, such as the presence of a nitrogen-containing heterocycle and a phosphate group, but it also has unique structural 
elements that are not present in the examples, such as the specific arrangement of rings and functional groups.

Step 4: Consider the context of estrogen receptor alpha (ER-alpha) agonists.
ER-alpha agonists typically have a specific binding affinity for the receptor and can activate the nuclear transactivation pathway. The examples provided are all labeled as "No", indicating they 
do not act as ER-alpha agonists.

Step 5: Make a prediction based on structural similarity and known examples.
Given the low structural similarity scores and the consistent labeling of the examples as "No", it is unlikely that the input molecule acts as an ER-alpha agonist.

Case: Using Qwen2.5-7b-Instruct and Sim-CoT Template
Few-shot Instruction:
[Instruction]: Estrogen receptor alpha (ER aplha) is Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene 
expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic 
estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent 
signaling. Is this molecule agonists of the estrogen receptor alpha (ER-alpha) signaling pathway?

[Input]:NC(=O)c1ccc[n+]([C@@H]2O[C@H](COP(=O)([O-])OP(=O)(O)OC[C@H]3O[C@@H](n4cnc5c(N)ncnc54)[C@H](O)[C@@H]3O)[C@@H](O)[C@H]2O)c1

Here are some examples and the structural similarity scores to the input molecule.
Example 1:
[Molecule 1]: Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)OP(=O)(O)OP(=O)(O)O)
[C@@H](O)[C@H]1O
[Score 1]: 0.7559
[Label 1]: No

Example 2:
[Molecule 2]: Nc1ncnc2c1ncn2[C@@H]1O[C@H](COP(=O)(O)O)[C@@H](O)[C@H]1O
[Score 2]: 0.7213
[Label 2]: No

Example 3:
[Molecule 3]: Nc1ncnc2c1ncn2[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O
[Score 3]: 0.6140
[Label 3]: No

Example 4:
[Molecule 4]: CC(C)(COP(=O)([O-])OP(=O)([O-
])OC[C@H]1O[C@@H](n2cnc3c(N)ncnc32)[C@H](O)[C@@H]1OP(=O)([O-])O)
C(O)C(=O)NCCC(=O)NCCS
[Score 4]: 0.6076
[Label 4]: No

Model Output:

D.2 Case Study on Different Strategy894

Here, we show the case study of different CoT-895

based strategies. Different are all tested using the896

Llama3-8b-Instruct. 897

Figure 5 shows the case of Sim-CoT. Since this 898

case was mentioned earlier, it will not repeated 899
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Figure 7: Case Study: Using GPT-4o and Sim-CoT Template.

To determine whether the input molecule can passively diffuse across the brain blood barrier, we need to analyze the structural properties of the molecule and compare it with the 
examples provided.

1. **Molecular Weight**: 
   - The input molecule is a complex structure with multiple repeating units. It likely has a high molecular weight due to its size and the number of atoms present.
2. **LogP (Partition Coefficient)**:
   - LogP values between 2 and 4 are ideal for brain blood barrier diffusion. However, estimating LogP directly from SMILES without computational tools or empirical data is challenging. 
The input molecule's large and complex structure may suggest a higher LogP, but this needs more precise calculation.
3. **Hydrogen Bond Donors and Acceptors**:
   - The input molecule contains multiple amide linkages (NC(=O)), which contribute to hydrogen bond donor and acceptor counts. Given the number of these functional groups, the 
molecule likely exceeds the limit of five hydrogen bond donors or acceptors.
4. **Structural Similarity Analysis**:
   - The structural similarity scores with example molecules are:
     - Score 1: 0.3273
     - Score 2: 0.3214
     - Score 3: 0.3030
     - Score 4: 0.2903
   - All these example molecules have been labeled "Yes" for brain blood barrier permeability. The input molecule has a similarity score higher than the lowest example score (0.2903) and 
comparable to others.
5. **Conclusion**:
   - While the structural similarity suggests potential for brain blood barrier permeability, the molecular weight and the number of hydrogen bond donors/acceptors likely exceed the ideal 
criteria, which can negatively impact permeability.

Given these considerations, despite the structural similarity scores, the input molecule's properties, particularly its size and potential hydrogen bonding, point towards it not being able 
to passively diffuse across the brain blood barrier.

Case: Using GPT-4o and Sim-CoT Template
Few-shot Instruction:

[Instruction]: In general, molecules that passively diffuse across the brain blood barrier have the molecular weight less than 500, with a LogP of 2-4, and no more than five 
hydrogen bond donors or acceptors. Can this molecule pass brain blood barrier?

[Input]:CC(C)[C@@H]1NC(=O)[C@H](C)OC(=O)C(NC(=O)[C@H](OC(=O)[C@@H](NC(=O)[C@H](C)OC(=O)[C@H](NC(=O)[C@H](OC(=O)[C@@H](NC(=O)[C@H](C)OC(=O)[C@H](NC(=
O)[C@H](OC1=O)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Example 1:
[Molecule 1]: C(N1C(C(C)OC1=O)=O)C=C
[Score 1]: 0.3273
[Label 1]: Yes
Example 2:
[Molecule 2]: C1=CC=CC=C1C2C(NC(=O)CO2)C
[Score 2]: 0.3214
[Label 2]: Yes

Example 3:
[Molecule 3]: C2=C(C(C1C(=CC(O1)=O)OC)O)C(=CC=C2)Cl
[Score 3]: 0.3030
[Label 3]: Yes
Example 4:
[Molecule 4]: C(N1C(C(CC(C)C)NC1=S)=O)C=C
[Score 4]: 0.2903
[Label 4]: Yes

Model Output:

here.900

Case Study of Struct-CoT. As shown in Figure 8,901

in this case, using the Struct-CoT strategy, Llama3-902

8b-Instruct first summarizes the structural infor-903

mation of each molecule. It then compares the904

structure of the input molecule with those of the re-905

trieved molecules and performs an analytical com-906

parison. Finally, it makes a decision regarding the907

molecular property based on this comparison.908

Case Study of Struct&Sim-CoT. As shown in909

Figure 9, in this case, using the Struct&Sim-CoT910

strategy, Llama3-8b-Instruct not only summarizes911

the structural information of each molecule but also912

evaluates and incorporates the similarity scores.913

The model then combines both the structural in-914

formation and similarity scores to make the final915

decision regarding the molecular property.916

E Details of Prompts917

In this section, we provide the details of the main918

experiment prompts.919

To evaluate the performance of the General LLM920

and MolRAG, we prompt the LLM to infer the921

property from the given molecular SMILES string.922

Prompts for Direct Answering. We asked the923

General LLM to answer the question directly, with924

the prompt described in Table 4.925

Prompts for n-shot Struct-CoT. We asked Mol- 926

RAG to answer the question, with the prompt de- 927

scribed in Table 5. 928

Prompts for n-shot Sim-CoT. We asked Mol- 929

RAG to answer the question, with the prompt de- 930

scribed in Table 6. 931

Prompts for n-shot Struct&Sim-CoT. We 932

asked MolRAG to answer the question, with the 933

prompt described in Table 7. 934
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Figure 8: Case Study: Using Llama3-8b-Instruct and Struct-CoT Template.

After analyzing the instruction and the examples, I've identified the key to solving this problem: the structure of the molecule and its functional groups.

Here's a summary of the properties of each molecule in the examples:

* Molecule 1: No 3D structure, no sulfone group, no aromatic ring
* Molecule 2: Sulfone group, aromatic ring, but no 3D structure
* Molecule 3: Sulfone group, aromatic ring, 3D structure, but no nitrogen-containing ring
* Molecule 4: No sulfone group, aromatic ring, no 3D structure

Now, let's analyze the question input molecule:
O=S(=O)(O)c1cc2nc3c4cccc(S(=O)(=O)O)c4c(Nc4ccccc4)cc3[n+](-c3ccccc3)c2cc1Nc1ccccc1

This molecule has:

* A sulfone group (S(=O)(=O)O)
* An aromatic ring (c1cc2...)
* A 3D structure (with a nitrogen-containing ring)
* A sulfone group interacting with the nitrogen-containing ring

Comparing the question input molecule to the examples, I notice that it has a sulfone group, an aromatic ring, and a 3D structure, which are similar to Molecule 3. However, the question 
input molecule has a nitrogen-containing ring, which is not present in Molecule 3.

Based on these similarities and differences, I conclude that the question input molecule is likely to be effective in this assay.

Case : Using Llama3-8b-Instruct and Struct-CoT Template
Few-shot Instruction:
[Instruction]: The human immunodeficiency viruses (HIV) are a type of retrovirus, which induce acquired immune deficiency syndrome (AIDs). Now there are six main classes of 
antiretroviral drugs to treating AIDs patients approved by FDA, which are the nucleoside reverse transcriptase inhibitors (NRTIs), the non-nucleoside reverse transcriptase inhibitors 
(NNRTIs), the protease inhibitors, the integrase inhibitor, the fusion inhibitor, and the chemokine receptor CCR5 antagonist.  Due to the missing 3’hydroxyl group, NRTIs prevent the 
formation of a 3’-5’-phosphodiester bond in growing DNA chains. The hydroxyl group of the inhibitor interacts with the carboxyl group of the protease active site residues, Asp 25 
and Asp 25′, by hydrogen bonds. The inhibitor-contacting residues of HIV protease are relatively conserved, including Gly 27, Asp 29, Asp 30, and Gly 48. Is this molecule effective 
to this assay?

[Input]: O=S(=O)(O)c1cc2nc3c4cccc(S(=O)(=O)O)c4c(Nc4ccccc4)cc3[n+](-c3ccccc3)c2cc1Nc1ccccc1

Here are some examples.
Example 1:
[Molecule 1]: Cc1cc(Nc2ccc(S(=O)(=O)O)cc2)c2ccccc2n1
[Label 1]: No
Example 2:
[Molecule 2]: Cc1cc(Nc2ccc(S(=O)(=O)O)c3cc(S(=O)(=O)O)cc(S(=O)(=O)O)c23)c2ccccc2n1.[NaH]
[Label 2]: No

Example 3:
[Molecule 3]: O=S(=O)(O)c1cc(Nc2ccnc3ccccc23)c2c(S(=O)(=O)O)cc(S(=O)(=O)O)cc2c1.[NaH]
[Label 3]: No
Example 4:
[Molecule 4]: O=S(=O)(O)c1ccc(Nc2ccnc3ccccc23)cc1
[Label 4]: No

Model Output:

Table 4: Prompts for Direct-Answering Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>
Input: <SMILES>
Given the input molecule, please answer the question.

Your output must end with a sentence in the format of:
Question Answer:" ".
The value in Question Answer must be EXACTLY one single word <YES> or <NO>.

Table 5: Prompts for Struct-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

(0-SHOT SHOULD NOT INCLUDE) Here are some examples. Examples: <Examples>.

Given the input molecule, please answer the question STEP BY STEP. Note:

1. Please use your experience knowledge to analyze the instruction, and find out the key to solve the problem.

2. Please summarize the properties of each molecule in the examples and our question input, The answer to the question may
be related to the properties of each molecule, such as: functional group, longest carbon, chain length, aromatic ring, ring
compounds, and chirality.
3. Please analyze the similarities and differences between the example molecules and the question input molecule.

Finally, summarize the answer.

Your output must end with a sentence in the format of:

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.
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Figure 9: Case Study: Using Llama3-8b-Instruct and Struct&Sim-CoT Template.

To solve this problem, I'll analyze the input molecule and the examples provided, focusing on the structural similarities and differences. I'll also consider the properties of each molecule, 
such as functional groups, ring compounds, and chirality.

The input molecule is: CC(=O)N1c2ccccc2Sc2c1ccc1ccccc21

First, I'll summarize the properties of each example molecule:
Example 1:
* Has a similar structure to the input molecule, with a sulfonamide group (SC2c2ccccc21) and a carbonyl group (CC(=O)N1c2ccccc2).
* Has fluorine atoms (C(F)(F)F) which may affect its properties.
* Score: 0.6575, Label: No

Example 2:
* Has a different structure, with a carbonyl group (C(=O)CC(c2ccccc2)) and a sulfonamide group (Sc2ccccc21).
* Score: 0.5634, Label: No

Example 3:
* Has a different structure, with a carbonyl group (C(=O)c2cc3ccccc3cc21) and no sulfonamide group.
* Score: 0.5397, Label: No

Example 4:
* Has a different structure, with a hydroxyl group (O) and a bromine atom (Br), but no sulfonamide group.
* Score: 0.5312, Label: No

Now, let's analyze the input molecule:
* It has a sulfonamide group (Sc2c1ccc1ccccc21) and a carbonyl group (CC(=O)N1c2ccccc2).
* It has no fluorine atoms, unlike Example 1.
* It has a relatively simple structure with a single aromatic ring and a sulfonamide group.

Based on the analysis, I conclude that the input molecule is less similar to the examples that were labeled as "No" (Examples  1-4). However, it's still important to consider the properties 
of the molecule itself.

The sulfonamide group in the input molecule is a common motif in many antiretroviral drugs, including NRTIs. The carbonyl group is also a common feature in many drugs. However, the 
presence of a sulfonamide group without a 3'hydroxyl group (which is essential for NRTIs) and the absence of other functional groups typical of NRTIs (e.g., hydroxymethyl groups) 
suggest that the input molecule may not be an effective NRTI.

Therefore, based on the analysis, I predict that the input molecule is: “No”

Case : Using Llama3-8b-Instruct and Struct&Sim-CoT Template
Few-shot Instruction:
Instruction]: The human immunodeficiency viruses (HIV) are a type of retrovirus, which induce acquired immune deficiency syndrome (AIDs). Now there are six main classes of 
antiretroviral drugs to treating AIDs patients approved by FDA, which are the nucleoside reverse transcriptase inhibitors (NRTIs), the non-nucleoside reverse transcriptase inhibitors 
(NNRTIs), the protease inhibitors, the integrase inhibitor, the fusion inhibitor, and the chemokine receptor CCR5 antagonist.  Due to the missing 3’hydroxyl group, NRTIs prevent the 
formation of a 3’-5’-phosphodiester bond in growing DNA chains. The hydroxyl group of the inhibitor interacts with the carboxyl group of the protease active site residues, Asp 25 
and Asp 25′, by hydrogen bonds. The inhibitor-contacting residues of HIV protease are relatively conserved, including Gly 27, Asp 29, Asp 30, and Gly 48. Is this molecule effective 
to this assay?

[Input]: CC(=O)N1c2ccccc2Sc2c1ccc1ccccc21

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Example 1:
[Molecule 1]: CC(=O)N1c2ccccc2Sc2cc(C(O)(C(F)(F)F)C(F)(F)F)ccc21
[Score 1]: 0.6575
[ [Label 1]: No
Example 2:
[Molecule 2]: CC(=O)N1C(=O)CC(c2ccccc2)Sc2ccccc21
[Score 2]: 0.5634
[Label 2]: No

Example 3:
[Molecule 3]: CC(=O)N1C(=O)c2cc3ccccc3cc21
[Score 3]: 0.5397
[Label 3]: No
Example 4:
[Molecule 4]: CC(=O)Oc1ccc2ccccc2c1Br
[Score 4]: 0.5312
[Label 4]: No

Model Output:

Table 6: Prompts for Sim-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.

Examples: <Examples>.

Based on the above examples and their structure similarity scores with the input molecule, given the input molecule, please
answer the question STEP BY STEP. Note:
1. The more similar the molecule, the more similar the properties are, and can be considered as a positive example.

Finally, summarize the answer.

Your output should give an explanation and must end with a sentence in the format of:

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.
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Table 7: Prompts for Struct&Sim-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.

Given the input molecule, please answer the question STEP BY STEP. Note:

1. Please use your experience knowledge to analyze the instruction, and find out the key to solve the problem.

2. The more similar the molecule, the more similar the properties are, and can be considered as a positive example.

3. Please summarize the properties of each molecule in the examples and our question input, the answer to the question may
be related to the properties of each molecule, such as: functional group, longest carbon, chain length, aromatic ring, ring
compounds, and chirality.
Your output should give an explanation and must end with a sentence in the format of:

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.
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