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ABSTRACT

Test-Time Adaptation (TTA) is a critical paradigm for tackling distribution shifts
during inference, especially in visual recognition tasks. However, while acoustic
models face similar challenges due to distribution shifts in test-time speech, TTA
techniques specifically designed for acoustic modeling in the context of open-
world data shifts remain scarce. This gap is further exacerbated when considering
the unique characteristics of acoustic foundation models: 1) they are primarily
built on transformer architectures with layer normalization and 2) they deal with
test-time speech data of varying lengths in a non-stationary manner. These aspects
make the direct application of vision-focused TTA methods, which are mostly
reliant on batch normalization and assume independent samples, infeasible. In
this paper, we delve into TTA for pre-trained acoustic models facing open-world
data shifts. We find that noisy, high-entropy speech frames, often non-silent,
carry key semantic content. Traditional TTA methods might inadvertently filter
out this information using potentially flawed heuristics. In response, we intro-
duce a learning-based adaptation enriched by confidence enhancement. Noting
that speech signals’ short-term consistency, we also apply consistency regulariza-
tion during test-time optimization. Our experiments on synthetic and real-world
datasets affirm our method’s superiority over existing baselines.

1 INTRODUCTION

Deep neural networks (DNNs) have exhibited remarkable performance in scenarios where the train-
ing and testing sets adhere to the independent and identically distributed (i.i.d) assumption. How-
ever, real-world applications frequently involve domain shifts between the training to testing sets,
such as visual variations due to evolving weather conditions in vision tasks (Hendrycks & Diet-
terich, 2019; Koh et al., 2021) and variations in timbre due to changing speakers in speech-related
tasks (Liao, 2013). Unfortunately, DNNs are susceptible to performance degradation under such
domain shifts, underscoring the importance of adapting DNN-based models to enhance their robust-
ness in the face of open-world distribution shifts.

Test-Time Adaptation (TTA) emerges as a critical paradigm for addressing distribution shifts at in-
ference time, which involves two lines of research, Test-Time Training (Sun et al., 2020) (TTT) and
fully TTA (Wang et al., 2020). TTT necessitates more backward passes and source data to alter
training with additional self-supervised objectives while fully TTA enables online updates of neural
networks on test data in a source-free way, thus requiring a lower computational cost compared to
TTT. Recent investigations (Niu et al., 2023; Zhou et al., 2023) have delved into TTA under the con-
text of open-world data shifts, a more practical consideration for real-world applications. Notwith-
standing TTA’s success in tackling various forms of corruption in vision recognition tasks (Zhang
et al., 2022; Boudiaf et al., 2022), the development of TTA techniques tailored for acoustic modeling
in the context of open-world data shifts remains scarce.

In the light of human auditory system’s inherent adaptability to real-world speech, it exhibits re-
silience in the face of diverse forms of speech corruption. However, while recent pre-trained acoustic
foundation models, such as Wav2vec2 (Baevski et al., 2020), with task-specific fine-tuning achieve
excellent performances in tasks such as Automatic Speech Recognition (ASR), they exhibit notable
performance degradation when confronted with open-world speech during test-time, as depicted in
Figure 1. Consequently, there exists an emergent demand to adapt these acoustic foundation models
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Figure 1: Robustness analysis of Wav2vec2 Base and Large on open-world corruptions including
1) Noise: additive noises on LibriSpeech test-other set, 2) Accent: accents of L2 learners on L2-
Arctic subset 3) Singing: sung speech on DSing test set. In-Domain indicates the performance on
LibriSpeech test-other set without additive noises. WER is short for Word Error Rate.

to open-world shifts when deployed in the real world. However, these models pose unique chal-
lenges due to their characteristics: 1) they are primarily built upon transformer architectures with
layer normalization and 2) they deal with test-time speech data of varying lengths in a non-stationary
manner. These distinctive features make it impractical to directly apply existing vision-focused TTA
methods. These TTA techniques heavily rely on batch normalization, which acoustic foundation
models lack. Additionally, they assume sample independence, an assumption that does not hold in
the context of speech data.

In this work, we investigate the TTA of pre-trained foundation models facing open-world data shifts.
Specifically, we focus on fully TTA to avoid altering the training of acoustic foundation models.
Our goal is to leverage publicly available pre-trained acoustic models and adapt them to open-
world data shifts. We initially follow the heuristic-based TTAs from prior works, such as Niu
et al. (2023) designed for image classifications, to pinpoint a substantial proportion of noisy frames
within non-silent speech segments before adaptation. Although Niu et al. (2023) characterized
these high-entropy noisy frames as unreliable and potentially harmful for model adaptation, we ob-
served that merely discarding these noisy non-silent frames adversely affected model performance.
This is because these frames contain vital semantic information crucial for accurate recognition.
Consequently, rather than excluding these frames, we introduce a learning-driven method, termed
Confidence Enhanced Adaptation (CEA), designed to ‘denoising’ the intermediate representation of
these noisy frames.

Additionally, we emphasize that frames within a short speech segment are temporally coherent,
largely due to the consistent nature of phonemic content within such windows. This contrasts with
image samples in a batch, which are frequently treated as independent entities. We conduct a wide
range of experiments on both synthetic and real-world datasets, systematically assessing the model’s
robustness against Gaussian noises, environmental sounds, accents of second language (L2) learn-
ers, and singing (a.k.a sung speech). The experimental results substantiate the superiority of our
proposed method over existing baselines.

In summary, our contributions are summarized as follows:

• We conduct an analysis of the robustness of acoustic foundation models under open-world
speech data shifts, revealing that noisy speech frames with high entropy are frequently
non-silent and bear critical semantic content.

• We introduce a learning-based adaptation approach enriched by confidence enhancement
to boost the reliability of noisy frames and apply short-term consistency regularization for
acoustic foundation models at test-time adaptation.

• We perform a wide range of experiments on both synthetic and real-world datasets, includ-
ing novel experiments on real-world music datasets for the first time, thus contributing to
the TTA community. Empirical results substantiate the superior performance of our method
over existing baselines.
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2 RELATED WORK

Test-time Adaptation. Test-time adaption plays an essential role in addressing distribution shifts
encountered in test samples for a given pre-trained source model. Existing TTA methods can be
categorized into two primary approaches: test-time training (TTT) (Sun et al., 2020) and fully
TTA (Wang et al., 2020). TTT methods commonly incorporate additional self-supervised objec-
tives during the model training phase (Liu et al., 2021; Bartler et al., 2022). In contrast, fully
TTA exclusively updates models during the test phase using unsupervised objectives. Notably, fully
TTA methods in the domain of computer vision have relied on Batch Normalization layers (Ioffe &
Szegedy, 2015; Lim et al., 2023; Niu et al., 2022) while recent works (Niu et al., 2023) have begun
to explore the potential of transformer-based models such as Vision Transformer (ViT) (Dosovitskiy
et al., 2020), which employs layer normalization (Ba et al., 2016). Furthermore, there has been a
growing interest in configuring TTA methods to suit real-world deployment scenarios that involve
dynamic changes in environmental conditions (Wang et al., 2022). While vision-centric TTA ap-
proaches (Wang et al., 2022; Gong et al., 2022) exhibit an ability to address non-i.i.d data streams
in fluctuating environments, they continue to operate under the assumption of sample independence
within the same batch, rendering them less applicable to speech data. Despite the plethora of TTA
methods, real-world data shifts encompassing both covariate and label shifts pose challenges to
real-world deployment (Koh et al., 2021; Niu et al., 2023; Zhou et al., 2023). Consequently, further
investigation is needed to address these challenges, and this paper focuses on tackling them.

Robustness in Speech. The realm of robust speech processing has a rich historical backdrop (Abdel-
Hamid et al., 2012; Li et al., 2014; Kim & Stern, 2016). Prior studies have explored the acoustic
shifts with a focus on distinct aspects, such as speaker adaptation (Liao, 2013), and accent adap-
tation (Yang et al., 2023b), often treating these facets in isolation. Consequently, these approaches
encounter challenges when confronted with the broader context of open-world data shifts. Another
research line focuses on the development of adaptation approaches for acoustic or speech models
by reprogramming input data (Yang et al., 2021; 2023a;b) in a parameter-efficient manner, or de-
signing wave prompts (Gao et al., 2022). A notable distinction between these works and TTA is
their reliance on labeled target data pairs for supervised learning, as opposed to unsupervised TTA.
Furthermore, despite the recent success of the large pre-trained acoustic model, the development of
TTA methods for such acoustic foundation models remains scarce. Recent work (Lin et al., 2022;
Kim et al., 2023) provides a pilot study on TTA for ASR and demonstrates the effectiveness of exist-
ing entropy minimization in the new setting. Our work focuses on designing generic TTA methods
for pre-trained acoustic foundation models under open-world speech data shifts.

3 PRELIMINARY

We center our focus on the fully Test-Time Adaptation framework, characterized by episodic model
adaptation, where the model is reset after processing each utterance. We denote the pre-trained
acoustic foundation model as fΘ(y|x). We investigate the core parts shared by most acoustic foun-
dation models such as Wav2vec2 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), WavLM (Chen
et al., 2022) and Whisper (Radford et al., 2023), which can be typically decomposed into two con-
stituent components: a feature extractor gϕ(z|x), parameterized by ϕ, and a transformer encoder
hθ(y|z), parameterized by θ. This decomposition is expressed as:

fΘ(y|x) = hθ(gϕ(x)) (1)

where Θ = {θ, ϕ} represents the collective set of model parameters. The feature extractor gϕ
takes as input waveform audio or log-mel spectrogram. The transformer encoder hθ serves as an
audio encoder and outputs acoustic representations. Considering a test-time speech sequence x1:n

of variable length n, typically with arbitrary domain shifts, the primary objective entails adapting
the pre-trained acoustic model fΘ to enhance its performance for x1:n.

4 METHOD

In this section, we first analyze the common source of open-world shifts in the speech domain,
and then provide our findings and methods for addressing open-world shifts. The overview of our
method is presented in Figure 2.
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Figure 2: The overall framework of the proposed method. The figure takes a Connectionist Temporal
Classification (CTC) based acoustic foundation model as an example. This framework involves two
steps. The confidence enhanced adaptation is first performed to boost the reliability of noisy frames.
The temporal consistency regularization is employed across the entire input sequence and jointly
optimized with entropy minimization.

4.1 OPEN-WORLD SHIFTS IN THE SPEECH DOMAIN

Open-world distribution shifts encountered within the speech domain may originate from several
sources, including:

Speaker Changes. Timbre variations in speech stemming from changes in the speaker’s identity.

Environmental Noises. Perturbations introduced by ambient noises in the recording environments.

Pronunciation Changes. Alteration in pronunciation characteristics such as accent or singing.

Text-domain Changes. Shifts in the linguistic content or context of the speech data.

It is noteworthy that speaker changes, environmental noises, and pronunciation changes are typically
categorized as covariate shift, as they pertain to variations in the input data distribution. In contrast,
text-domain changes are categorized as label shift, as they involve alterations in the output distri-
bution. Furthermore, it is important to acknowledge that real-world speech data often exhibit shifts
stemming from multiple sources simultaneously, rendering the task of adaptation to open-world
shifts complex and challenging.

4.2 CONFIDENCE ENHANCED ADAPTATION

To gain insights into the behavior of pre-trained acoustic models at the frame-level prediction in the
presence of open-world distribution shifts, our initial analysis centers on the entropy distribution of
speech data subjected to such shifts. We conducted experiments using both the LibriSpeech test-
other dataset, which was deliberately corrupted by additive Gaussian noises, and the DSing test set.
These experiments were performed with the Wav2vec2 Base model. We subsequently evaluated the
percentages of high-entropy and low-entropy frames for both non-silent and silent speech segments.
The classification of frames as silent or non-silent was determined based on pseudo labels derived
from model predictions.

As illustrated in Figure 3, our findings reveal that, prior to any adaptation (Step=0), within the non-
silent frames category, there exists a prevalence of high-entropy frames compared to low-entropy
ones for Base models. Conversely, the opposite trend is observed within the silent frames category.
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Figure 3: Distribution of Entropy in Acoustic Models: the entropy distributions are computed for
Wav2vec2 Base models on the LibriSpeech noise-corrupted test-other and DSing test datasets across
adaptation steps. We employ a threshold of 0.4 ∗ lnC, as recommended in Niu et al. (2022), where
C represents the number of task classes. Frames with entropy values exceeding this threshold are
highlighted in red, indicating high-entropy (h) frames, while low-entropy (l) frames are marked in
blue. We use • to denote non-silent (non-sil) frames and △ for silent (sil) frames. The training
steps range from 0 to 9, and the results presented in each subfigure are based on the average of 100
random samples.

It is worth noting that existing literature provides heuristic insights suggesting that high-entropy
samples may be unreliable and could potentially have a detrimental impact on model adaptation.
However, it is crucial to recognize that these noisy frames contain essential content information
that is critical for downstream tasks such as speech recognition. While prior research suggests that
filtering out such unreliable samples may aid in stabilizing adaptation and improving performance,
this approach proves infeasible in our specific case.

In response, we have proposed a learning-based adaptation approach aimed at enhancing the con-
fidence of uncertain predictions, particularly for noisy frames. Denoting ŷci = fΘ(c|x1:n) as the
predicted probability of class c for i-th frame, we quantify uncertainty through entropy, defined as:

E(xi) = −
∑
c

ŷci log ŷ
c
i (2)

Traditional heuristic-based Test-Time Adaptation (TTA) often relies on manually set thresholds for
filtering our data samples of high entropy. In contrast, our approach utilizes pseudo labels ŷi as-
signed to each frame xi and applies entropy minimization exclusively to non-silent frames, without
the need of setting such thresholds. Specifically, we minimize a weighted entropy function, ex-
pressed as follows:

min
Θ′={ϕ,θLN}

n∑
i=1

S(xi)E(xi), (3)

where θLN denotes the affine parameters associated with layer normalization in the transformer
encoder h, and S(xi) represents frame-level weights, defined as:

S(xi) =
1

1 + exp(−E(xi))
Iŷi̸=c0(xi), (4)

where c0 signifies the index corresponding to silent frames, and I is an indicator function. Such de-
sign empowers the model to assign greater importance to frames where it exhibits lower confidence.
The increased weight encourages the model to focus more on these uncertain frames during adap-
tation, potentially leading to heightened model confidence on such frames. We term this approach
“confidence-enhanced adaptation”. Notice that this adaptation process entails an update of the fea-
ture extractor gϕ. This empowers models with the capability to adapt to open-world shifts, even
in the presence of substantial covariate shifts. As evidenced in Figure 3, the count of high-entropy
frames diminishes while low-entropy frame counts increase with each adaptation step, underscoring
the effectiveness of confidence-enhanced adaptation.
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4.3 SHORT-TERM CONSISTENCY OF SPEECH SIGNALS

In the domain of speech signal processing, a salient characteristic is the short-term stability, where
successive speech frames often convey the same phoneme or speech unit. This intrinsic temporal
correlation is a defining attribute of speech data. Nevertheless, conventional Test-Time Adapta-
tion (TTA) methods largely overlook this inherent temporal correlation within individual speech
sequences.

To address this limitation, we propose a feature-wise short-term consistency regularization tech-
nique. We perform this regularization step after the confidence-enhanced adaptation process. This
sequencing is deliberate as introducing temporal regularization over representations of noisy frames
can potentially confuse models and yield undesirable optimization outcomes. Concretely, the reg-
ularization is jointly optimized alongside entropy minimization, as represented by the following
equation:

min
ΘLN

n∑
i=1

E(xi) + α

n−k+1∑
i=1

||z′k+i−1 − z′i||2Iŷi ̸=c0(xi), (5)

where α denotes the weight assigned to the regularization loss, and ΘLN represents the affine pa-
rameters associated with layer normalization across the entire acoustic model. Here, zi signifies the
feature representation of i-th frame obtained from the fine-tuned feature extractor, and z′i represents
the modified feature representation achieved through a parameter-free self-attention operation. The
parameter k denotes the size of the window considered as the neighborhood of frame xi. This reg-
ularization technique effectively captures the inherent temporal consistency found in speech data
by compelling the representation of xi to closely resemble that of its neighboring frames within a
predefined window.

5 EXPERIMENTS

In this section, we undertake an evaluation of the robustness of acoustic foundation models against
various forms of open-world corruption. We discuss the robustness against synthetic noises includ-
ing Gaussian noises and real-world environmental sounds in Section 5.2, real-world data shifts in-
cluding L2 accents and singing voice (sung speech) in Section 5.3, and decoding strategy pertaining
to language models in Section 5.4.

5.1 EXPERIMENTAL SETUP

Datasets. Our experiments involve the utilization of four distinct datasets: two synthetic and two
real-world datasets. The first synthetic dataset, named LS-C, represents the LibriSpeech (Panayotov
et al., 2015) test-other set Corrupted by additive Gaussian noises. We introduce five levels of severity
to simulate various degrees of corruption as per Hendrycks & Dietterich (2019) for evaluating the
trend of model robustness. Higher levels indicate more severe corruption although heavily corrupted
speech data may not be common cases in the real world. Subsequently, the second synthetic dataset,
named LS-P, is the LibriSpeech test-other set Perturbed by real-world environmental sounds. This
dataset encompasses eight diverse types of environmental sound, including Air Conditioner, Babble,
Munching, Shutting Door, Vacuum Cleaner, Airport Announcements, Copy Machine, and Typing.
These environmental sounds are from the MS-SNSD noise test set (Reddy et al., 2019). Each type
is added to the original audio with five distinctive signal-to-noise ratios (SNRs) representing five
levels of severity. Our study further extends to two real-world datasets with open-world data shifts.
The L2-Arctic (Zhao et al., 2018) dataset comprises speech data from second language (L2) learners
originating from six countries with different first languages (L1): Arabic, Mandarin, Hindi, Korean,
Spanish, and Vietnamese. Furthermore, we broaden our investigation to encompass music datasets,
DSing (Dabike & Barker, 2019) and Hansen (Hansen & Fraunhofer, 2012), featuring singing voice
(sung speech). More details of dataset statistics can be found in Appendix A.1 and details of imple-
mentation can be found in Appendix A.2.

Baselines. To assess the adaptation performance of our proposed method, we consider the following
TTA baselines. Tent (Wang et al., 2020) adapt transformation layers with the objective of entropy
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minimization. Despite it being initially proposed for batch normalization, we refer to updating the
affine parameters of layer normalization as Tent in our work. In addition, we involve the baseline
TeCo (Yi et al., 2023), originally proposed for video classification with temporal coherence regular-
ization, due to its applicability to sequential data. Our comparison also includes the SAR (Niu et al.,
2023), specifically designed to address data shifts in the dynamic wild world. Furthermore, we also
introduce comparisons with SUTA (Lin et al., 2022) using entropy minimization and minimum class
confusion, and SGEM (Kim et al., 2023) using sequential-level generalized entropy minimization
in conjunction with beam search employing language models.

5.2 ROBUSTNESS TO SYNTHETIC NOISE

5.2.1 GAUSSIAN NOISES

In the initial phase of our experiments, we focus on synthetic data and assess the robustness in the
presence of various levels of Gaussian noise injected into the test speech audio. The outcomes are
reported in Table 1. It is observed that our proposed method consistently outperforms existing base-
line approaches across five levels of noise. Notably, our approach achieves a relative improvement of
32.0% on average in terms of WER, when compared to using the source model without adaptation.

Furthermore, it is imperative to note that SAR, designed for addressing data shifts in dynamic real-
world scenarios, demonstrates comparatively less improvement compared with the Tent method.
This observation underscores the limitations of filtering noisy frames for speech recognition. In-
stead, the learning-based adaptation adopted in our method shows superiority. Moreover, we dis-
cover that TeCo provides marginal improvement compared to Tent, indicating that coherence regu-
larization is limited in the context of noisy frames. In contrast, our confidence-enhanced adaptation
yields further benefits for temporal consistency regularization.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Average

Source 13.9 24.4 39.5 54.5 75.7 41.6
Tent 11.6 19.7 32.2 46.3 69.2 35.8
SAR 12.7 21.5 35.0 49.2 72.0 38.1
TeCo 13.6 19.7 32.2 46.3 69.3 35.8
SUTA 10.9 16.7 24.6 34.7 56.5 28.7
Ours 10.7 16.2 24.0 34.1 56.5 28.3

Table 1: WER (%) results on LS-C over five severity levels of Gaussian noises using Wav2vec2
Base with greedy decoding. The best results are bold.

5.2.2 ENVIRONMENTAL SOUNDS

We further evaluate the robustness on LS-P, which introduces eight common environmental sounds
in the test audio at five levels of severity. The results of adding Air Conditioner sound and Typing
sound are reported in Table 2 and Table 3 respectively (Full experimental results can be found
in Appendix A.3). It is noticeable that our method can yield over 30% relative improvements in
low-SNR scenarios. Notably, for the case with 5 dB SNR in Table 2, our method demonstrates
a substantial 41.7% relative improvement, suggesting its efficacy in mitigating the impact of real-
world environmental sound corruption.

5.3 ROBUSTNESS TO REAL-WORLD DATA SHIFTS

5.3.1 L2 ACCENTS

Data shifts resulting from accent variations are a common occurrence in real-world scenarios, arising
from differences in dialects or non-native speech patterns. Another pertinent instance of such shifts
is encountered in children’s speech, which is also a common pronunciation change and one type
of accent in the real world. In order to assess the robustness to such pronunciation variations, we
undertake the test-time adaptation to accents exhibited by L2 learners using the L2-Arctic dataset.
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10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 2: WER (%) results on Air Conditioner
sound over five severity levels using Wav2vec2
Base with greedy decoding. SNRs (dB) are
listed in the first row. The best results are bold.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 3: WER (%) results on Typing sound
over five severity levels using Wav2vec2 Base
with greedy decoding. SNRs (dB) are listed in
the first row. The best results are bold.

To comprehensively evaluate the performance, we evaluate all speakers for each L1 and present the
speaker-level results for each L1 in Appendix A.4. The experimental findings consistently under-
score the superiority of our proposed method across different L1 categories.

5.3.2 SINGING VOICE

In this session, We discuss the robustness of speech models to singing voice for the first time.
Singing, also referred to as sung speech, is characterized by a distinctive pronunciation pattern.
Notably, it encompasses various frequency fluctuations, including the apparent pitch variations along
with the melody. This constitutes a tremendous covariate shift, rendering the adaptation from speech
to singing more challenging than that from speech to speech. Moreover, the existence of professional
singing techniques further compounds the challenges associated with adaptation. For instance, the
elongation of word pronunciation, a common occurrence in singing, is a departure from typical
speech patterns.

To evaluate the adaptation performance under shifts from singing voice, we conduct experiments on
three music datasets, utilizing both Wav2vec2 Base and Wav2vec2 Large models. The outcomes
are presented in Table 4. The results indicate that our proposed method consistently attains the best
performances for both Base and Large models. In addition, the Wav2vec2 Large model exhibits
superior robustness than the Base model. Nevertheless, it still experiences a noticeable performance
degradation when compared with adaptation in noise and accent robustness evaluations, suggesting
the limited ability of acoustic foundation models under huge real-world data shifts.

Method DSing-dev DSing-test Hansen Average
Base Large Base Large Base Large Base Large

Greedy Search

Source 61.8 40.6 60.1 38.8 64.3 43.7 62.1 41.0
Tent 55.7 34.8 56.1 33.2 60.2 39.1 57.3 35.7
SAR 58.8 40.6 57.2 38.2 62.7 42.7 59.6 40.5
TeCo 56.2 35.0 55.6 33.1 60.0 39.1 57.3 35.7
SUTA 53.9 34.9 51.3 33.6 58.0 39.3 54.4 35.9
Ours 53.5 34.0 50.1 31.2 58.0 37.9 53.9 34.4

Beam Search

Source+LM 58.6 41.1 55.3 37.6 60.1 43.5 58.0 40.7
SGEM 54.4 34.4 50.8 33.0 57.8 38.6 54.3 35.3

Ours+LM 53.2 33.3 50.0 30.3 57.7 37.5 53.6 33.7

Table 4: WER (%) results on DSing-dev, DSing-test, and Hansen with greedy search and beam
search. Base and Large denote Wav2vec2 Base and Wav2vec2 Large respectively. The best results
are bold.
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Method DSing-dev Dsing-test

Ours 53.5 50.1
w/o STCR 54.4 51.0
w/o CEA 55.7 54.5

Table 5: Ablation study of core components
proposed in our work. WER (%) results are
reported.

Strategy DSing-dev Dsing-test

Non-Silent 53.5 50.1
Silent 54.9 51.7
All 54.9 50.6

Table 6: Ablation study of strategies for
frame selection. WER (%) results are re-
ported.

5.4 DECODING STRATEGIES

We discuss the decoding strategies employed in experiments in this session. In our preceding experi-
ments, we mainly utilize greedy decoding, which does not explicitly tackle the text-domain changes.
In the subsequent analysis, we compare our proposed method with SGEM, which leverages beam
search for decoding. The results are presented in Table 4. Notably, our findings reveal that even
in the absence of explicit adaptation for the language model, our approach still consistently outper-
forms SGEM. We also observe that the results achieved by our method using greedy search can,
on average, surpass those of SGEM. We conjecture that our proposed short-term consistency regu-
larization addresses the label shift implicitly by fostering label coherency among neighbor frames.
Moreover, it is discovered that the enhancements facilitated by adaptation are more pronounced com-
pared to the ones achieved through beam search, indicating the significance of test-time adaptation
for acoustic foundation models.

6 ABLATION STUDY

Effects of Components. We conduct the ablation study on DSing-dev and DSing-test using
Wav2vec2 Base with greedy search to dissect the individual impact of two core components pro-
posed in our methods. The results presented in Table 5 illustrate that the removal of short-term
consistency regularization (STCR) leads to a relatively modest decline in performance, in contrast
to the more substantial deterioration observed upon the removal of confidence enhanced adaptation
(CEA). This observation underscores the significance of our proposed CEA. Furthermore, the intro-
duction of STCR yields additional performance gains when employed in conjunction with CEA.

Comparison with strategies for frame selection. We proceed to analyze strategies utilized for
the selection of speech frames optimized within the CEA framework. We investigate three pseudo-
label-based strategies, namely a) selection of non-silent frames (as used in our method), b) selection
of silent frames, and c) selection of all frames. The results are detailed in Table 6. The empiri-
cal findings reveal that the optimization of silent frames or all frames within CEA yields inferior
performance compared to the optimization of non-silent frames. Moreover, it is observed that the
degradation is not so substantial, as optimizing silent or all frames may also contribute to enhancing
the reliability of noisy frames.

7 CONCLUSIONS

In this paper, we study the fully Test-Time Adaptation of pre-trained acoustic foundation models to
address open-world data shifts. By investigating the role of noisy frames with high entropy within
non-silent speech segments, we introduce a novel Confidence Enhanced Adaptation method to en-
hance the reliability of noisy frames via denoising their intermediate representations rather than
discarding them. Moreover, our emphasis on short-term consistency of speech signals leads us to
apply consistency regularization, yielding further improvement in WER performance for speech
data. Extensive experiments on synthetic and real-world datasets demonstrated the effectiveness of
our approach over existing baselines under the open-world data shifts. However, it remains chal-
lenging to adapt language models to address text-domain shifts due to the unavailability of target
domain texts in the TTA setting. Consequently, we consider incorporating large language foundation
models into the recognition decoding process as a promising direction in future work for tackling
open-world text-domain shifts.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, and Gerald Penn. Applying convolu-
tional neural networks concepts to hybrid nn-hmm model for speech recognition. In 2012 IEEE
international conference on Acoustics, speech and signal processing (ICASSP), pp. 4277–4280.
IEEE, 2012.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in neural information
processing systems, 33:12449–12460, 2020.

Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, and Bin Yang. Mt3: Meta test-
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A APPENDIX

A.1 DATASET DETAILS

We show the statistics of datasets used in our work in Table 7 where # Utt. indicates the total
number of utterances. We build our synthetic datasets on LibriSpeech test-other set. For LS-C,
we add the Gaussian noises when preparing the data loader and use the amplitudes {0.005, 0.01,
0.015, 0.02, 0.03} as level 1-5 severity. For LS-P, we use the AirConditioner 6, Typing 2, Babble 4,
Munching 3, ShuttingDoor 6, VacuumCleaner 1, AirportAnnouncements 2, CopyMachine 2 wave
files from MS-SNSD 1 as the environmental sounds and synthesize audios with signal-to-noise ratios
{10, 5, 0, -5, -10} seperately. For L2-Arctic, we use the default splits of 24 non-native speakers with
a balanced gender and L1 distribution. For music datasets, we use the default DSing dev and test
sets and the full Hansen set (no split).

Type Datasets # Utt. Total Duration

Noise LS-C 2939× 5 5.1× 5 h
LS-P 2939× 8× 5 5.1× 8× 5 h

Accent L2-Arctic 26867 27.1 h

Music
DSing-dev 482 41 min
DSing-test 480 48 min

Hansen 634 34 min

Table 7: Statistics of evaluation datasets.

A.2 IMPLEMENTATION DETAILS

In our experimental evaluations, we mainly employ the acoustic foundation model, Wav2vec2.
Specifically, we utilize its Connectionist Temporal Classification (CTC) variants with different
model sizes, Wav2vec2 Base and Wav2vec2 Large. We involve the usage of publicly available
Wav2vev2 Base 2 and Wav2vec2 Large 3 models fine-tuned on speech recognition tasks. We
mainly conduct experiments on these two models despite the applicability of our method to other
transformer-based architectures of acoustic foundation models. To make a fair comparison with
methods employing beam search, we utilize the same 4-gram language model 4 as SGEM. Since
our test-time setting requires no access to the target text, we use the language model trained on the
speech dataset despite the text-domain shift. All speech inputs are sampled or resampled at 16Khz.

We use Pytorch and Huggingface Transformers in our implementation. All experiments are run on a
single NVIDIA A5000 GPU (24G). We evaluate the performance of all baselines after adaptation for
ten steps. We use the AdamW optimizer as default for all experiments. The weight α of consistency
regularization is set to be 0.3. We consider the learning rate in {2e-4, 5e-4, 8e-4} for tuning affine
parameters of layer normalization and consider the learning rate in {2e-5, 5e-5} for tuning feature
extractor.

A.3 FULL RESULTS FOR LS-P

We present the full WER results for eight environmental sounds of five severity levels in Table 8 -
15. The first row denotes signal-to-noise ratios.

A.4 FULL RESULTS FOR L2-ARCTIC

We present the full speaker-level WER results for each L1 in Table 16 - 21. The first row denotes
the speaker ID. The details of the speaker ID can be found in the L2-Arctic 5

1https://github.com/microsoft/MS-SNSD
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
4https://huggingface.co/patrickvonplaten/wav2vec2-base-100h-with-lm
5https://psi.engr.tamu.edu/l2-arctic-corpus/
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A.5 RESULTS ON OTHER ACOUSTIC FOUNDATION MODELS

Size Level 1 Level 2 Level 3 Level 4 Level 5 Avg

Wav2vec2

Source Base 13.9 24.4 39.5 54.5 75.7 41.6
Large 5.0 8.1 14.6 24.9 46.9 19.9

Ours Base 10.7 16.2 24.0 34.1 56.5 28.3
Large 4.3 6.1 9.7 15.1 31.1 13.3

WERR (%) Base 23.0 33.6 39.2 37.4 25.4 31.7
Large 14.0 24.7 33.6 39.4 33.7 29.1

Hubert

Source Base 26.1 32.7 40.6 49.0 63.4 42.4
Large 5.0 6.4 8.9 12.8 24.3 11.5

Ours Base 19.3 23.7 28.9 35.0 47.5 30.9
Large 4.3 5.2 6.9 9.1 16.1 8.3

WERR (%) Base 26.1 27.5 28.8 28.6 25.1 27.2
Large 14.0 18.8 22.5 28.9 33.7 23.6

WavLM

Source Base 24.1 35.9 48.2 59.8 76.7 48.9
Large 14.4 17.5 21.5 26.1 36.1 23.1

Ours Base 15.1 19.8 25.9 32.8 47.6 28.2
Large 10.7 12.4 14.5 17.1 23.9 15.7

WERR (%) Base 37.3 44.8 46.3 45.2 37.9 42.3
Large 25.7 29.1 32.6 34.5 33.8 31.1

Table 8: WER (%) results on LS-C over five severity levels of Gaussian noises using both base and
large models of Wav2vec2, Hubert, WavLM with greedy decoding. WERR stands for word error
rate reduction.

Wav2vec2 Hubert WavLM

Base Large Base Large Base Large

Source 60.1 38.8 71.5 43.9 76.1 66.2
Ours 50.1 31.2 62.4 32.4 59.6 51.1

WERR (%) 16.6 19.6 12.7 26.2 21.7 22.8

Table 9: WER (%) results on DSing-test using both base and large models of Wav2vec2, Hubert,
WavLM with greedy decoding. WERR stands for word error rate reduction.

In an extension of the main experiments, we delved into the adaptation performance across diverse
acoustic foundation models. Specifically, our additional experiments utilize various models includ-
ing, Hubert-Base 6, Hubert-Large 7, WavLM-Base 8, and WavLM-Large 9 from Huggingface. These
experiments are conducted to assess the adaptation performance in relation to different model sizes,
and training data sources. The outcomes on the LS-C and DSing-test datasets are reported in Table 8

6https://huggingface.co/danieleV9H/hubert-base-libri-clean-ft100h
7https://huggingface.co/facebook/hubert-large-ls960-ft
8https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-base-plus
9https://huggingface.co/patrickvonplaten/wavlm-libri-clean-100h-large
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and Table 9 respectively. We employ the word error rate reduction (WERR) to measure the relative
improvement brought by our adaptation method. We summarize the findings as follows:

Model Sizes. A comparative analysis is conducted between the base and large versions of each
model. The findings reveal that large models consistently surpass base models. Furthermore, our
proposed approach uniformly improves both base and large models. A notable observation is that
our method elicits a greater average improvement in base models compared to large models within
the LS-C dataset. This trend is particularly pronounced under lower noise levels ranging from 1
to 3. In contrast, within the DSing-test set, the enhancement for large models is more significant
than for base models. The phenomenon may be attributed to the fact that large models already ex-
hibit commendable performance under minor corruptions, even without adaptation, thus providing
limited scope for further improvement. However, in scenarios involving significant shifts, the ex-
pansive parameterization of large models facilitates more effective adaptation, whereas base models
face challenges.

Training Data Sources. A comparative evaluation of models trained with different datasets, in-
cluding Wav2vec2-Large trained with 960h LibriSpeech set, Hubert-Large trained with 960h Lib-
riSpeech set, and WavLM-Large trained with 100h LibriSpeech clean set, indicates that the larger-
size data set establish a stronger foundation for test-time adaptation. A similar inference can be
drawn when comparing Wav2vec2-Base trained with 960h LibriSpeech set, Hubert-Base trained
with 100h LibriSpeech clean set, and WavLM-Base trained with 100h LibriSpeech clean set.

In summary, our proposed unsupervised TTA method demonstrates a considerable benefit across
diverse acoustic foundation models, reflecting substantial improvements for different model sizes
and training data sources.
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10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 10: Air Conditioner.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 11: Typing.

10 5 0 -5 -10

Source 50.4 62.8 74.6 83.8 90.1
Tent 44.8 57.6 71.1 82.7 90.5
SAR 47.3 57.8 72.1 82.5 89.6
TeCo 44.8 57.6 71.1 82.7 90.5
SUTA 39.7 51.9 64.4 76.4 85.2
Ours 39.3 51.5 64.1 76.3 85.3

Table 12: Munching.

10 5 0 -5 -10

Source 19.2 23.6 29.7 37.0 45.0
Tent 16.4 20.5 26.0 33.0 41.5
SAR 17.7 22.0 27.7 35.0 42.7
TeCo 16.3 20.5 26.0 32.9 41.5
SUTA 14.9 18.5 23.6 29.9 37.7
Ours 14.8 18.3 23.4 29.7 37.4

Table 13: Shutting Door.

10 5 0 -5 -10

Source 57.8 76.6 91.5 98.2 99.9
Tent 49.7 69.2 87.2 97.0 99.6
SAR 52.6 72.7 88.5 96.9 99.8
TeCo 49.7 69.2 87.2 96.9 99.6
SUTA 39.8 56.7 76.6 93.2 98.6
Ours 39.3 56.0 76.0 93.0 98.6

Table 14: Vacuum Cleaner.

10 5 0 -5 -10

Source 40.9 54.3 66.3 75.8 83.4
Tent 36.1 49.3 62.8 73.7 82.4
SAR 38.2 51.0 64.0 74.3 82.2
TeCo 36.1 49.2 62.8 73.7 82.3
SUTA 31.2 43.8 58.3 70.4 79.3
Ours 31.2 43.7 58.1 70.5 79.7

Table 15: Airpoint Announcements.

10 5 0 -5 -10

Source 49.8 63.5 76.6 86.9 93.5
Tent 44.4 58.9 74.2 86.3 93.7
SAR 46.6 60.7 74.8 86.2 93.2
TeCo 44.4 58.8 74.2 86.2 93.7
SUTA 39.3 52.7 67.4 80.8 89.7
Ours 38.9 52.3 67.3 81.0 89.8

Table 16: Copy Machine.

10 5 0 -5 -10

Source 66.6 81.6 94.7 104.3 111.2
Tent 62.0 77.8 92.0 102.2 109.4
SAR 62.8 77.7 90.5 102.1 106.9
TeCo 61.9 77.8 91.9 102.2 109.4
SUTA 55.5 73.0 88.6 101.1 109.2
Ours 55.5 73.0 89.1 102.0 110.3

Table 17: Babble.
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ABA SKA YBAA ZHAA

Source 21.0 32.5 16.7 17.3
Tent 18.4 28.4 14.5 14.4
SAR 19.4 30.3 15.7 15.3
TeCo 18.4 28.4 14.5 14.4
SUTA 17.8 27.2 13.7 14.0
Ours 17.7 26.8 13.5 13.9

Table 18: Arabic.

BWC LXC NCC TXHC

Source 28.5 33.5 26.9 21.1
Tent 24.1 29.2 22.8 18.1
SAR 26.3 30.9 25.0 19.5
TeCo 24.1 29.3 22.9 18.0
SUTA 23.3 27.6 21.5 17.4
Ours 23.0 27.7 21.3 17.3

Table 19: Mandarin.

ASI RRBI SVBI TNI

Source 14.3 15.7 19.8 18.6
Tent 11.7 12.9 15.7 15.6
SAR 12.7 14.0 17.6 16.7
TeCo 11.7 13.0 15.8 15.6
SUTA 11.3 12.5 14.3 14.9
Ours 11.3 12.2 14.3 14.8

Table 20: Hindi.

HJK HKK YDCK YKWK

Source 11.8 23.3 17.2 17.0
Tent 9.7 20.8 15.0 14.5
SAR 10.9 21.7 15.8 15.5
TeCo 9.8 20.8 15.0 14.5
SUTA 9.5 19.8 14.2 13.8
Ours 9.5 19.7 13.9 13.7

Table 21: Korean.

EBVS ERMS MBMPS NJS

Source 35.7 24.2 14.1 14.6
Tent 31.7 20.0 12.7 12.4
SAR 33.5 21.7 13.4 13.2
TeCo 31.7 20.0 12.7 12.4
SUTA 29.7 18.7 12.3 12.1
Ours 29.5 18.5 12.3 12.1

Table 22: Spanish.

HQTV PNV THV TLV

Source 41.6 18.5 38.1 41.1
Tent 38.0 16.4 34.4 38.1
SAR 40.3 17.6 36.2 39.4
TeCo 38.0 16.4 34.4 38.0
SUTA 36.5 15.5 33.2 36.8
Ours 36.3 15.5 32.9 36.8

Table 23: Vietnamese.
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