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ABSTRACT

Posterior sampling in high-dimensional spaces using generative models holds
significant promise for various applications, including but not limited to inverse
problems and guided generation tasks. Despite many recent developments, gener-
ating diverse posterior samples remains a challenge, as existing methods require
restarting the entire generative process for each new sample, making the procedure
computationally expensive. In this work, we propose efficient posterior sampling
by simulating Langevin dynamics in the noise space of a pre-trained generative
model. By exploiting the mapping between the noise and data spaces which can be
provided by distilled flows or consistency models, our method enables seamless
exploration of the posterior without the need to re-run the full sampling chain,
drastically reducing computational overhead. Theoretically, we prove a guarantee
for the proposed noise-space Langevin dynamics to approximate the posterior,
assuming that the generative model sufficiently approximates the prior distribution.
Our framework is experimentally validated on image restoration tasks involving
noisy linear and nonlinear forward operators applied to LSUN-Bedroom (256 x
256) and ImageNet (64 x 64) datasets. The results demonstrate that our approach
generates high-fidelity samples with enhanced semantic diversity even under a lim-
ited number of function evaluations, offering superior efficiency and performance
compared to existing diffusion-based posterior sampling techniques.

1 INTRODUCTION

Generative models that approximate complex data priors have been leveraged for a range of guided
generation tasks in recent years (Dhariwal & Nichol, 2021; Chung et al., 2023). Early works focused
on conditional synthesis using Generative Adversarial Networks (GANs) (Goodfellow et al., 2014;
Mirza & Osindero, 2014; Brock et al., 2019; Karras et al., 2019; 2020). However, diffusion models
have recently surpassed GANs as the state of the art in generative modeling (Ho et al., 2020; Song et al.,
2021a), demonstrating superior performance in guided generation tasks (Dhariwal & Nichol, 2021;
Choi et al., 2021; Ho & Salimans, 2021). Posterior sampling, as a guided generation framework, has
garnered significant interest (Kawar et al., 2021; 2022; Chung et al., 2023), particularly for providing
candidate solutions to noisy inverse problems.

Solving noisy inverse problems involves reconstructing an unknown signal x from noisy measure-
ments y, where the forward model is characterized by the measurement likelihood p(y |x). The
objective is to sample from the posterior distribution p(x | y) ∝ p(y |x)p(x). Such posteriors are of-
ten intractable in practical applications due to the complexity of the prior distribution p(x). However,
learned generative models that approximate complex data priors can enable approximate sampling
from the posterior p(x | y). Early approaches for solving inverse problems using diffusion models to
approximate p(x | y) relied on problem-specific architectures (Saharia et al., 2022b; Li et al., 2022;
Lugmayr et al., 2022) and required training dedicated generative models for each task (Saharia et al.,
2022a; Shi et al., 2022). In contrast, methods that utilize pre-trained diffusion models as priors for
posterior sampling offer greater flexibility and are training-free (Kawar et al., 2021; 2022; Chung
et al., 2022a;b; Wang et al., 2023), with recent extensions targeting nonlinear inverse problems (Chung
et al., 2023; Song et al., 2023a;b; He et al., 2024).

In the context of inverse problems, existing methods can be broadly categorized based on whether
they yield a point estimate or multiple estimates. Existing approaches for posterior sampling focus

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (Left) : A schematic representation of posterior sampling via Langevin dynamics in our
proposed framework. The sampling process begins with an initial sample x(0)1 from the noise space
and maps to data space as x(0)0 using a deterministic mapper Φ and progressively updates the noise
space input to obtain diverse posterior samples. (Right): Posterior samples generated by our method
and DPS-DM. Our approach exhibits higher perceptual diversity, capturing variations in high-level
features such as lighting, window style, and wall patterns. Uncertain semantic features are highlighted
by red boxes, while persistent properties are shown by green boxes.

primarily on providing point estimate solutions (Chung et al., 2023; He et al., 2024; Song et al.,
2023a;b), lacking the ability to generate a diverse set of posterior samples efficiently. For instance, a
prominent method, Diffusion Posterior Sampling (DPS) (Chung et al., 2023), predominantly produces
point estimates for both linear and non-linear inverse problems. DPS leverages the prior p(x) from
a diffusion model and employs multiple denoising steps to transform isotropic Gaussian noise into
a desired image, guided by the observations y. Generating posterior samples using this method
requires re-running the entire sampling process using unique instantiations of Gaussian noise, which
is computationally prohibitive and inefficient. Therefore, an algorithm that efficiently accumulates
samples from the posterior is desirable.

Figure 2: Reconstruction time comparison be-
tween DPS-DM and our method for varying num-
bers of posterior samples. DPS-DM scales poorly
with the number of samples, while our method
maintains a nearly constant time, demonstrating
significantly lower computational cost. The corre-
sponding Number of Function Evaluations (NFEs)
(including NFEs for the warmup stage, refer to
Section 5) values per image are annotated.

In this work, we propose an efficient framework
for posterior sampling by modeling it as an ex-
ploration process in the noise space of a pre-
trained generative model. Specifically, we lever-
age measurements from the inverse problem to
guide the initialization of the noise space, ensur-
ing a more targeted exploration. For sampling,
we employ Langevin dynamics directly within
the noise space, taking advantage of the one-
to-one mapping between noise and data spaces
provided by models such as consistency mod-
els (Song et al., 2023c). This deterministic map-
ping eliminates the need for approximating the
measurement likelihood, and we establish a the-
oretical bound on the approximation error for
posterior sampling.

Sampling in the noise space allows for a progres-
sive accumulation of posterior samples, enabling
efficient exploration and resulting in a diverse
set of reconstructions, as demonstrated in Fig-
ure 1. Furthermore, Figure 2 illustrates the comparison of reconstruction times between our approach
and DPS when generating different numbers of posterior samples per image. While the reconstruction
time for DPS increases rapidly with the number of samples, our method incurs only a negligible
increase, highlighting its computational efficiency. The key contributions of this work are summarized
as follows:

• We present a posterior sampling method defined by Langevin dynamics in the noise space
of a pre-trained generative model, enabling efficient accumulation of samples.

• We provide a theoretical guarantee on the posterior sampling approximation error, which is
bounded by the approximation error of the prior by the pre-trained generative model.
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• Our efficient accumulation of posterior samples facilitates exploration of the posterior,
yielding high-fidelity and diverse samples. In experiments, we achieve comparable fidelity
to diffusion model posterior sampling methods with superior sample diversity.

Notation. We use∝ to stand for the expression of a probability density up to a normalizing constant
to enforce integral one, e.g. p(x) ∝ F (x) means that p(x) = F (x)/Z where Z =

∫
F (x)dx. For a

mapping T : Rd → Rd and a distribution P , T#P stands for the push-forwarded distribution, that is
T#P (A) = P (T−1A) for any measurable set A. When both P and T#P has density, dP = pdx,
we also use T#p to denote the density of T#P .

2 BACKGROUND

Diffusion models. Sampling from diffusion models (DMs) is accomplished via simulation of the
reverse process corresponding to the forward-time, noising stochastic differential equation (SDE)
dxt = µ(xt, t)dt+ β(t)dWt (Song et al., 2021b), where Wt is the standard Brownian motion in Rd
and t ∈ [0, 1]. Initialized with data from a data-generating distribution pdata, diffusion is typically
parameterized such that the terminal distribution of the forward-time SDE is a tractable Gaussian
distribution γ. This SDE shares marginal densities pt with the probability flow- (PF-)ODE:

dxt =

[
µ(xt, t)−

1

2
β(t)2∇ log pt(xt)

]
dt. (1)

Score-based generative models are a class of DM which approximate ∇ log pt(xt) with a neural
network score model. Given such a model, (1) can be solved in reverse time using numerical ODE
integration techniques (Song et al., 2021a; Karras et al., 2022).
Deterministic diffusion solvers. In contrast to stochastic DM samplers based on Markov chains (Ho
et al., 2020) and SDEs (Song et al., 2021b), deterministic DM solvers primarily focus on simulating
the PF-ODE (1). Song et al. (2021a) presented DDIM, an implicit modeling technique yielding a
deterministic mapping between noise and data samples. Subsequent works considered alternate,
higher-order solvers for the PF-ODE (Karras et al., 2022), yielding high-quality samples in fewer
function evaluations.
Flow models. Continuous normalizing flows (CNFs) represent another class of ODE-based genera-
tive models, using neural networks to approximate the dynamics of a continuous mapping between
noise and data (Chen et al., 2018). Recent extensions focus on learning more direct trajectories (Liu
et al., 2023b) and simulation-free training (Lipman et al., 2023). As with deterministic diffusion
solvers corresponding to the PF-ODE, sampling via these methods requires numerical simulation of
an ODE whose dynamics are defined by the neural network model.
Consistency models. Efficient ODE simulation is of particular interest for efficient sampling from
DMs (Song et al., 2021a; Karras et al., 2022) and CNFs (Lipman et al., 2023). However, fast
numerical ODE solvers still require tens of steps to produce high-fidelity samples (Lu et al., 2022;
Dockhorn et al., 2022). As a result, score model distillation techniques have arisen to yield fast,
effective samplers from the PF-ODE. Consistency models (CMs) are a prominent class of distilled
DMs that enable single- and few-step sampling (Song et al., 2023c). CMs learn a mapping fθ
(parameterized by θ) between a point xt along the PF-ODE trajectory to the initial state:

x0 = fθ(xt, t) for t ∈ [0, 1], (2)

where x0 is a sample from pdata. Therefore, single-step sampling can be achieved by sampling
x1 ∼ γ and evaluating the CM at x1. Multi-step sampling can be achieved by alternating denoising
(via evaluation of the CM) and partial noising, trading off efficiency for fidelity.

3 METHODOLOGY

Assume that a pre-trained generative model is given, which provides a one-to-one mapping Φ from
the noise space to the data space. The data x0 and noise x1 both belong to Rd, and x0 = Φ(x1). The
observation is y, and the goal is to sample the data x0 from the posterior distribution p(x0|y). We
derive the posterior sampling of the data vector x0 via that of the noise vector x1, making use of the
mapping Φ.

3
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Likelihood and posterior. We consider a general observation model where the conditional law
p(y|x0) is known and differentiable. Define the negative log conditional likelihood as Ly(x0) :=
− log p(y|x0), which is differentiable with respect to x0 for fixed y. A typical case is the inverse
problem setting: the forward model is

y = A(x0) + n, (3)
where A : Rd → Rd is the (possibly nonlinear) measurement operator, and n is the additive noise.
For fixed y, we aim to sample x0 from p(x0|y) = p(y|x0)p(x0)/p(y) ∝ p(y|x0)p(x0), where p(x0)
is the true prior distribution of all data x0, which we now denote as pdata. We also call p(x0|y) the
true posterior of x0, donated as

p0,y(x0) := p(x0|y) ∝ p(y|x0)pdata(x0). (4)

Posterior approximated via generative model. The true data prior pdata is nonlinear and com-
plicated. Let pmodel denote the prior distribution approximated by a pre-trained generative model
x0 = Φ(x1), where x1 ∼ γ. A distribution from which samples are easily generated, such as the
standard multi-variate Gaussian, is typically chosen for γ; we choose γ = N (0, I). In other words,

pdata ≈ pmodel = Φ#γ. (5)
Replacing pdata with pmodel in (4) gives the model posterior of x0, denoted p̃0,y , which approximates
the true posterior:

p0,y(x0) ≈ p̃0,y(x0) ∝ p(y|x0)Φ#γ(x0). (6)
Because x0 = Φ(x1), we have that p̃0,y = Φ#p̃1,y, where, by a change of variable from (6),

p̃1,y(x1) ∝ p(y|Φ(x1))γ(x1). (7)
The distribution p̃1,y(x1) approximates the posterior distribution p(x1|y) in the noise space. When
pdata = Φ#γ, we have p0,y = p̃0,y and p(·|y) = p̃1,y. When the generative model prior is inexact,
the error in approximating the posterior can be bounded by that in approximating the data prior, see
more in Section 4.

Posterior sampling by Langevin dynamics. It is direct to sample the approximated posterior (7)
in the noise space using Langevin dynamics. Specifically, since we have γ(x1) ∝ exp(−∥x1∥2/2)
and log p(y|Φ(x1)) = −Ly(Φ(x1)), the following SDE of x1 will have p̃1,y as its equilibrium
distribution (proved in Lemma A.1):

dx1 = −(x1 +∇x1
Ly(Φ(x1)))dt+

√
2dWt. (8)

The sampling in the noise space gives the sampling in the data space by the one-to-one mapping of
the generative model, namely x0 = Φ(x1).
Example 3.1 (Inverse problem with Gaussian noise). For (3) with white noise, i.e., n ∼ N (0, σ2I),
we have that, with a constant c depending on (σ, d),

Ly(x0) = − log p(y|x0) =
1

2σ2
∥y −A(x0)∥22 + c.

The noise-space SDE (8) can be written as

dx1 = −
(
x1 +∇x1

∥y −A(x0)∥22
2σ2

)
dt+

√
2dWt.

Given Ly(x0), standard techniques can be used to sample (overdamped) Langevin dynamics (8).
Evaluation of the gradient ∇x1Ly(x0) is the major computational cost, requiring differentiation
through the model Φ. One technique to improve sampling efficiency is to employ a warm-start of
the SDE integration by letting the minimization-only dynamics (using∇x1Ly(x0)) to converge to a
minimum first, especially when the posterior concentrates around a particular point. We postpone the
algorithmic details to Section 5.

4 THEORY

In this section, we derive the theoretical guarantee of the model posterior p̃0,y in (6) to the true
posterior p0,y in (4), and also extend to the computed posterior p̃S0,y by discrete-time SDE integration.
The analysis reveals a conditional number which indicates the intrinsic difficulty of the posterior
sampling problem. All proofs are in Appendix A.
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4.1 TOTAL VARIATION (TV) GUARANTEE AND CONDITION NUMBER

Consider the approximation (5), that is, the pre-trained model generates a data prior distribution Φ#γ
that approximates the true data prior pdata. We quantify the approximation in TV distance, namely

TV(pdata,Φ#γ) ≤ ε. (9)

Generation guarantee in terms of TV bound has been derived in several flow-based generative model
works, such as Chen et al. (2023); Li et al. (2024); Huang et al. (2024) on the PF-ODE of a trained
score-based diffusion model (Song et al., 2021b), and Cheng et al. (2024) on the JKO-type flow
model (Xu et al., 2023). The following theorem proved in Appendix A shows that the TV distance
between the model and true posteriors can be bounded proportional to that between the priors.
Theorem 4.1 (TV guarantee). Assuming (9), then TV(p0,y, p̃0,y) ≤ 2κyε, where

κy :=
supx0

p(y|x0)∫
p(y|x)pdata(x)dx

. (10)

Remark 4.1 (κy as a condition number). The constant factor κy is determined by the true data prior
pdata and the conditional likelihood p(y|x0) of the observation, and is independent of the flow model
and the posterior sampling method. Thus κy quantifies an intrinsic “difficulty” of the posterior
sampling, which can be viewed as a condition number of the problem.

Example 4.1 (Well-conditioned problem). Suppose p(y|x0) ≤ c1 for any x0, and on a domain Ωy of
the data space,

Pdata(Ωy) ≥ α > 0, and p(y|x0) ≥ c0 > 0, ∀x0 ∈ Ωy,

then we have
∫
p(y|x)pdata(x)dx ≥

∫
Ωy
p(y|x)pdata(x)dx ≥ αc0, and then

κy ≤
1

α

c1
c0
.

This shows that if the observation y can be induced from some cohort of x0 and this cohort is
well-sampled by the data prior pdata (the concentration of pdata on this cohort is lower bounded by
α), plus that the most likely x0 is not too peaked compared to the likelihood of any other x0 within
this cohort (the ratio is upper bounded by c1/c0), then the posterior sampling is well-conditioned.

Example 4.2 (Ill-conditioned problem). Suppose p(y|x0) is peaked at one data value x′0 and almost
zero at other places, and this x′0 lies on the tail of the data prior density pdata. This means that the
integral

∫
p(y|x0)pdata(x0)dx0 has all the contribution on a nearby neighborhood of x′0 on which

pdata is small, resulting in a small value on the denominator of (10). Meanwhile, the value of
p(y|x′0) is large. In this case, κy will take a large value, indicating an intrinsic difficulty of the
problem. Intuitively, the desired data value x′0 for this observation y is barely represented within the
(unconditional) data distribution pdata, while the generative model can only learn from pdata. Since
the pre-trained unconditional generative model does not have enough knowledge of such x′0, it is hard
for the conditional generative model (based on the unconditional model) to find such a data value.

4.2 TV GUARANTEE OF THE SAMPLED POSTERIOR

Theorem 4.1 captures the approximation error of p̃0,y to the true posterior, where p̃0,y is the distri-
bution of data x0 when the noise x1 in noise space achieves the equilibrium p̃1,y of the SDE (8).
In practice, we use a numerical solver to sample the SDE in discrete time. The convergence of
discrete-time SDE samplers to its equilibrium distribution has been established under various settings
in the literature. Here, we assume that the discrete-time algorithm to sample the Langevin dynamics
of x1 outputs x1 ∼ p̃S1,y, which may differ from but is close to the equilibrium p̃1,y. Specifically,
suppose TV(p̃1,y, p̃

S
1,y) is bounded by some εS .

Lemma 4.2 (Sampling error). If TV(p̃1,y, p̃
S
1,y) ≤ εS , then TV(p̃0,y, p̃

S
0,y) ≤ εS .

The lemma is by Data Processing Inequality, and together with Theorem 4.1 it directly leads to the
following corollary on the TV guarantee of the sampled posterior.
Corollary 4.3 (TV of sampled posterior). Assuming (9) and TV(p̃1,y, p̃

S
1,y) ≤ εS , then

TV(p0,y, p̃
S
0,y) ≤ 2κyε+ εS .

5
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5 ALGORITHM

Numerical integration of the Langevin dynamics. To numerically integrate the noise-space SDE
(8), one can use standard SDE solvers. We adopt the Euler-Maruyama (EM) scheme. Let τ > 0 be
the time step, and denote the discrete sequence of x1 as zi, i = 0, 1, · · · . The EM scheme gives, with
ξi ∼ N (0, I),

zi+1 = (1− τ)zi − τgi +
√
2τξi, gi := ∇x1

Ly(x0)|x1=zi . (11)

See Algorithm 1 for an outline of our approach using EM. However, any general numerical scheme
for solving SDEs can be applied; see Table A.4 in Appendix C for a comparison between our method
using EM discretization and exponential integrator (EI) (Hochbruck & Ostermann, 2010). An initial
value of z0 in the noise space is also required. We adopt a warm-start procedure to initialize sampling;
additional details are provided below.

Algorithm 1 Posterior Sampling in Noise Space
Require: Forward model A, measurement y, loss

function Ly, pre-trained noise-to-data map Φ,
number of steps N , step size τ , and initial x01
for i = 0, . . . , N do

xi0 ← Φ(xi1)
gi ← ∇xi

1
Ly(x

i
0)

ξi ∼ N (0, I)

xi+1
1 ← xi1 − τ(xi1 + gi) +

√
2τξi

end for
return x10, x20, . . . , xN0

Computation of ∇x1Ly(x0). The computa-
tion of the loss gradient depends on the type
of generative model representing the mapping
Φ. For instance, if Φ is computed by solving
an ODE driven by a normalizing flow, then its
gradient can be computed using the adjoint sen-
sitivity method (Chen et al., 2018). If Φ is a DM
or CM sampling scheme, one can backpropagate
through the nested function calls to the genera-
tive model. Since we use one- or few-step CM
sampling to represent Φ in the experiments, we
take the latter approach to compute∇x1Ly(x0).
Choice of initial value and warm-start. A natural choice for the initial noise space value z0
can be a generic sample z0 ∼ γ (the noise space prior). However, while this will correspond to a
high-likelihood sample according to the data prior (given a well-trained generative model), it may
be far from the data posterior. As such, one may warm-start the sampler by optimizing Ly(x0)
with respect to x1 using standard optimization techniques such as gradient descent or Adam. In all
experiments, we warm start sampling using K steps of Adam optimization, initializing EM sampling
with z0 being the optimization output. See Appendix B.1 for further detail.
Computational requirements. The main computational burden is with respect to the computation
of the loss gradient ∇x1Ly(x0), which requires differentiating through the mapping Φ. This can
be alleviated by choosing a Φ which consists of a small number of function evaluations (NFEs).
Additional computational burden is due to burn-in/warm start to yield z0, the initial value of EM
simulation. Therefore, the total NFEs to simulate N steps of EM (i.e., to yield N samples) is
η · (K +N), where η is the NFEs required to evaluate Φ. However, this burden is amortized over EM
sampling, as progressive EM simulation yields increasingly fewer overall NFEs per sample, which
asymptotically approaches η (the NFEs required to compute Φ). Therefore, we represent Φ using
CM sampling, which can be accomplished for η = 1 or 2. While multi-step (η > 1) CM sampling
is typically stochastic (Song et al., 2023c), we fix the noise in each step to result in a deterministic
mapping. See Appendix B.1 for details.
Role of EM step size τ . The step size of EM, τ , controls the time scales over which the Langevin
dynamics are simulated with respect to the number of EM steps. Larger τ results in more rapid
exploration of the posterior, potentially leading to more diverse samples over shorter timescales.
However, τ must also be kept small enough to ensure the stability of EM sampling. Therefore, this
hyper-parameter provides a degree of control over the diversity of samples provided by the proposed
algorithm. Choosing large τ while maintaining stability can yield diverse samples, potentially
revealing particularly uncertain semantic features within the posterior.

6 EXPERIMENTS

Baselines. We categorize the baselines into two groups. (1) DM-based methods: Diffusion Posterior
Sampling (DPS) (Chung et al., 2023), Loss-Guided Diffusion (LGD) (Song et al., 2023b), and
Manifold-Preserving Guided Diffusion (MPGD) (He et al., 2024). These methods employ stronger
priors compared to our approach, making them inherently stronger baselines and rendering the
comparison across different backbones unfair.
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Table 1: Quantitative comparison of linear image restoration tasks on LSUN-Bedroom (256 x 256)
(top table) and ImageNet (64 x 64) (bottom table).

Method 8x Super-resolution Gaussian Deblur 10% Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 20.4∗ 0.538∗ 0.470∗ 67.7∗ 22.1 0.589 0.407 65.3 22.4 0.634 0.417 67.7
MPGD-DM 19.2 0.338 0.689 288 23.6∗ 0.579 0.438 85.0 15.4 0.176 0.667 221
LGD-DM 20.1 0.529 0.483 69.3 22.2 0.590∗ 0.371∗ 60.1∗ 24.7∗ 0.742∗ 0.289∗ 47.3∗

DPS-CM 10.7 0.077 0.758 307 11.2 0.092 0.735 279 19.9 0.454 0.517 128
LGD-CM 10.5 0.072 0.764 316 11.1 0.092 0.737 283 19.9 0.475 0.514 134
CMEdit N/A N/A 18.0 0.523 0.548 167
Ours(1-step) 20.4 0.535 0.418 71.1 22.4 0.598 0.368 70.6 23.8 0.682 0.358 72.9
Ours(2-step) 20.5 0.534 0.433 72.2 21.3 0.554 0.421 69.2 22.2 0.611 0.419 75.6

Method 4x Super-resolution Gaussian Deblur 20% Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 21.0∗ 0.531 0.310∗ 110∗ 19.2 0.429 0.348∗ 117∗ 22.3∗ 0.664∗ 0.220∗ 89.2∗

LGD-DM 21.0∗ 0.536∗ 0.311 114 19.6∗ 0.432∗ 0.352 117∗ 22.1 0.652 0.228 96.2
DPS-CM 12.8 0.168 0.602 267 9.89 0.093 0.650 334 18.9 0.470 0.371 167
LGD-CM 12.8 0.164 0.607 269 10.1 0.097 0.668 363 18.7 0.451 0.380 173
Ours(1-step) 16.9 0.418 0.388 129 18.2 0.413 0.381 134 20.3 0.600 0.304 124
Ours(2-step) 18.1 0.412 0.410 151 17.2 0.347 0.435 150 18.6 0.458 0.439 161
Bold denotes the best CM method, underline denotes the second best CM method, and ∗ denotes the best DM method.

Figure 3: Image reconstructions for the linear and nonlinear tasks on LSUN-Bedroom (256 x 256).
To ensure a fairer comparison, we adopt a second set of baselines: (2) CM-based methods, where
each DM-based method is adapted to use a consistency model (CM) backbone. Additionally, we
include CMEdit, the modified CM sampler from Song et al. (2023c), for linear tasks. All DM baselines
use the same EDM model from Song et al. (2023c), and all CM baselines use the corresponding
LPIPS-distilled CM. Details and hyper-parameters for each baseline are outlined in Appendix B.2.

Datasets. We include experiments on LSUN-Bedroom (256 x 256) (Yu et al., 2024) and ImageNet
(64 x 64) (Deng et al., 2009), using 100 validation images for each dataset. All experiments are
conducted using the pre-trained CMs from Song et al. (2023c), which were distilled using the LPIPS
objective from pre-trained EDM models (Karras et al., 2022). See Appendix B.1 for additional details
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Figure 4: Image reconstructions for the linear tasks on ImageNet (64 x 64).

regarding our method and hyper-parameters. We consider the following linear forward operators for
inverse problem tasks: (i) for random mask inpainting, some percentage of the pixels are masked
uniformly at random; (ii) for super-resolution, adaptive average pooling is applied; and (iii) for
Gaussian deblurring, we use a kernel of 61× 61 pixels with standard deviation 3.0. We also consider
nonlinear tasks: (i) nonlinear deblurring using a neural network forward model (Tran et al., 2021); (ii)
for phase retrieval, the magnitude of the Fourier coefficients is computed; and (iii) for high dynamic
range (HDR) reconstruction, pixel values are multiplied by 2 and again truncated to [-1,1]. All
experiments apply Gaussian noise with standard deviation σ = 0.1 in the measurement space (except
for phase retrieval experiments, which use σ = 0.05). See Appendix B.3 for detailed descriptions of
the forward operators. Additional experimental results can be found in Appendices C and D.

Metrics. To assess reconstruction fidelity, we compare samples from each method using the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Metric (SSIM), Learned Perceptual Image
Patch Similarity (LPIPS), and Fréchet Inception Distance (FID). To assess the diversity of samples,
we consider the following metrics: (i) Diversity Score (DS), which is the ratio between the inter-
and intra-cluster distances using 6 nearest neighbors clusters of ResNet-50 features, and (ii) Average
CLIP Cosine Similarity (CS), which is the average cosine similarity between CLIP embeddings all
sample pairs for a given image.

6.1 IMAGE RESTORATION RESULTS

Linear inverse problems. We quantitatively compare the performance of the proposed approach to
the baselines for point-estimate image restoration under linear forward models, where 10 samples
are provided by each method for 100 images in the validation datasets. LSUN-Bedroom (256 x 256)
results are reported in the top section of Table 1 and our approach is compared to the highest-fidelity
baselines on ImageNet (64 x 64) in the bottom section of Table 1. Visual comparisons of point
estimates are also visualized in the top three rows of Figure 3 (for LSUN) and in Figure 4 (for
ImageNet). Compared with CM baselines, the proposed approach exhibits superior performance in
producing high-fidelity candidate solutions to linear inverse problems. This corresponds to improved
visual quality, as other CM approaches produce artifacts and poor reconstructions of the ground truth.
The proposed method is also competitive against DM baselines, yielding samples of comparable
quality both qualitatively and quantitatively.
Nonlinear inverse problems. Quantitative comparisons for nonlinear tasks on 100 images from
LSUN-Bedroom are displayed in Table 2, where metrics are again computed using 10 samples
per image from each method. The proposed method is highly competitive against CM-backbone
baselines in all tasks. Moreover, the performance is comparable to that of the DM-backbone baselines.
Example reconstructions for each method are visualized in the bottom three rows of Figure 3. Other
CM-based methods and MPGD-DM seemingly fail to remove the degradation and noise applied
by the forward process, while the proposed method yields samples of visual quality comparable
to that of DM baselines. Reconstructions generated using the proposed approach lack the artifacts
of CM-backbone baselines while also capturing the fine details present in DM reconstructions. In
particular, in the highly degraded and ill-posed phase retrieval task, our method yields samples that
are markedly consistent with the ground truth, as PSNR and SSIM values are comparable to those of
DM baselines.
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Table 2: Quantitative comparison of nonlinear image restoration tasks on LSUN-Bedroom (256 x
256).

Method Nonlinear Deblur Phase Retrieval HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 21.6 0.586 0.413 75.7∗ 10.7 0.302 0.697∗ 90.1 21.7∗ 0.659∗ 0.396∗ 69.6∗

MPGD-DM 17.0 0.194 0.683 259 9.96 0.271 0.728 118 20.5 0.586 0.408 73.2
LGD-DM 22.3∗ 0.632∗ 0.408∗ 106 10.8∗ 0.351∗ 0.709 82.0∗ 12.4 0.459 0.560 172
DPS-CM 17.7 0.303 0.574 137 10.1 0.197 0.726 195 13.5 0.405 0.597 173
MPGD-CM 13.1 0.100 0.762 306 9.39 0.111 0.786 312 11.7 0.296 0.638 223
LGD-CM 21.3 0.519 0.482 163 9.36 0.113 0.767 186 11.2 0.397 0.621 245
Ours(1-step) 20.3 0.566 0.440 76.7 10.3 0.315 0.709 82.9 19.6 0.599 0.436 88.0
Ours(2-step) 18.7 0.501 0.492 73.3 10.2 0.309 0.708 81.4 16.6 0.481 0.532 101
Bold denotes the best CM method, underline denotes the second best CM method, and ∗ denotes the best DM method.

Figure 5: Posterior samples for the inpainitng (10%) (top three rows) and nonlinear deblur (bottom
three rows) tasks on LSUN-Bedroom (256 x 256). Green boxes highlight low-uncertainty features
and red boxes highlight highly uncertain features.

6.2 DIVERSITY OF POSTERIOR SAMPLES

To assess the capacity of the proposed approach to generate diverse samples from the posterior, we
conduct additional experiments comparing our method to the strongest baselines: DPS and LGD with
a DM backbone. For each of the six (linear and nonlinear) tasks, we generate 25 samples for 100
images from the validation partition of LSUN-Bedroom (256 x 256) via each method. A quantitative
comparison of the diversity of the samples from each method is shown in Table 3. Generally, the
proposed approach provides competitive to superior performance in diversity metrics compared to
DM baselines. Furthermore, visualizing a subset of the posterior samples in the inpainting (top
three rows) and nonlinear deblurring (bottom three rows) tasks in Figure 5, one can observe that
samples from our method have more clear visual diversity. High-level features of the scene, such as
overall lighting or shading, are more variable across our posterior samples. Moreover, our method
can identify certain and uncertain semantic features in the candidate reconstructions, as particular
features such as windows and lamps have dramatic qualitative variation across the posterior samples
from our approach.
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Table 3: Quantitative comparison of diversity metrics on linear and non-linear image restoration tasks
on LSUN-Bedroom (256 x 256).

Method SR(8x) Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓
DPS-DM 2.14 0.843 2.10 0.938 2.33 0.876 2.22 0.924 2.42 0.809 2.25 0.873
LGD-DM 2.35 0.881 2.19 0.925 2.28 0.872 2.11 0.923 2.36 0.815 3.14 0.914
Ours(1-step) 3.01 0.879 3.26 0.997 3.15 0.869 2.80 0.912 3.08 0.914 3.09 0.927
Ours(2-step) 2.67 0.919 2.62 0.866 2.48 0.864 2.69 0.885 2.89 0.862 3.23 0.904
Bold denotes the best method, underline denotes the second best method.

7 RELATED WORKS
Posterior sampling with generative models. Diffusion-based inverse problem solvers consist of
task-specific frameworks (Saharia et al., 2022b; Li et al., 2022; Lugmayr et al., 2022), optimized
approaches (Saharia et al., 2022a; Shi et al., 2022; Liu et al., 2023a), and training-free techniques
leveraging pre-trained diffusion priors (Kawar et al., 2021; 2022; Chung et al., 2022a;b; Wang et al.,
2023; Chung et al., 2023; Song et al., 2023a;b; He et al., 2024; Dou & Song, 2024). Early training-free
methods for solving inverse problems utilize measurement-space projection (Song et al., 2021a; Choi
et al., 2021), while others addressed noisy problems via consistency in the spectral domain (Kawar
et al., 2021; 2022; Wang et al., 2023) or using manifold constraints (Chung et al., 2022b; He et al.,
2024). Recent works consider general noisy and nonlinear inverse problems using an approximation
of the measurement likelihood in each generation step (Chung et al., 2023; Song et al., 2023a;b).
An emerging area of interest focuses on developing diffusion posterior sampling techniques with
provable guarantees (Xu & Chi, 2024; Bruna & Han, 2024). For instance, Xu & Chi (2024) develop
an alternating measurement projection/guided diffusion approach for which they provide asymptotic
convergence guarantees, while Bruna & Han (2024) utilize tilted transport in linear inverse problems
which provably samples the posterior under certain conditions. Diffusion-base posterior sampling
works can also be adapted to flow-based models, e.g., Pokle et al. (2023) adapt ΠGDM (Song et al.,
2023a) to CNFs. These existing works modify the sampling trajectory of generative priors, requiring
repeated simulation of the entire sampling process to produce multiple posterior samples, hindering
scalability to many samples. The proposed sampling in the noise space of one- or few-step mappings
enables the efficient generation of many posterior samples.
Guided generation via noise space iteration. For generative models that provide deterministic
mappings between a latent noise space and data, such as GANs (Goodfellow et al., 2014), flows (Chen
et al., 2018), and CMs (Song et al., 2023c), optimization of noise can guide generation towards
conditional information (Bojanowski et al., 2018; Galatolo. et al., 2021; Patashnik et al., 2021; Asim
et al., 2020; Whang et al., 2021; Ben-Hamu et al., 2024). In the GAN literature, this is primarily
addressed using text-to-image guided synthesis (Galatolo. et al., 2021; Patashnik et al., 2021) or
task-specific objectives (Bojanowski et al., 2018). This type of approach has also been used to solve
inverse problems using flow-based models (Asim et al., 2020; Whang et al., 2021); for instance,
D-Flow (Ben-Hamu et al., 2024) optimizes with respect to the noise input to CNFs. Our method
also iterates in the noise space, simulating Langevin dynamics for posterior sampling instead of
optimizing to yield a point estimate. Computing gradients through CNFs is expensive (Chen et al.,
2018), requiring at least tens of function evaluation per ODE solution (Lu et al., 2022; Dockhorn
et al., 2022). The use of CMs in our approach facilitates computation of the gradient in as few as
one call to the neural network, enabling the progressive accumulation of posterior samples during
Langevin dynamics simulation.

8 DISCUSSION

We have outlined a novel approach for posterior sampling via Langevin dynamics in the noise space
of a generative model. Using a CM mapping from noise to data, our posterior sampling provides
solutions to general noisy image inverse problems, demonstrating superior reconstruction fidelity
to other CM methods and competitiveness with diffusion baselines. A primary limitation of our
approach is the low visual quality in some posterior samples. Fidelity drawbacks can be attributed to
a relatively poor approximation of the prior by CMs. Future work will focus on improving fidelity
of diverse samples, perhaps by using more accurate prior models and adaptive simulation of the
SDE. Regardless, our method produces highly diverse samples, representing meaningful semantic
uncertainty of data features within the posterior.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, complete details regarding the implementation of our method are provided
in Section 5 and Appendix B.1, including both an algorithmic representation (Algorithm 1) and
pseudo-code for a single iteration at the end of Appendix B.1. Hyper-parameters for each experiment
are outlined in Tables A.1, A.2, and A.3. Proofs of the theoretical claims made in Sections 3 and 4
can be found in Appendix A.

REFERENCES

Muhammad Asim, Max Daniels, Oscar Leong, Ali Ahmed, and Paul Hand. Invertible generative
models for inverse problems: mitigating representation error and dataset bias. In ICML, 2020.

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, and Yaron Lipman. D-flow:
Differentiating through flows for controlled generation. In ICML, 2024.

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the latent space
of generative networks. In ICML, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

Joan Bruna and Jiequn Han. Posterior sampling with denoising oracles via tilted transport. Available
online : https://arxiv.org/abs/2407.00745, 2024.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In NeurIPS, 2018.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions: A
non-asymptotic analysis for ddim-type samplers. In ICML, 2023.

Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models
via proximal gradient descent in Wasserstein space. IEEE Transactions on Information Theory,
2024.

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR:
Conditioning method for denoising diffusion probabilistic models. In ICCV, 2021.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In CVPR, 2022a.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Improving diffusion models for inverse problems
using manifold constraints. In NeurIPS, 2022b.

Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
Diffusion posterior sampling for general noisy inverse problems. In ICLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
NeurIPS, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE: Higher-order denoising diffusion solvers.
In NeurIPS, 2022.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In ICLR, 2024.

Federico Galatolo., Mario Cimino., and Gigliola Vaglini. Generating images from caption and
vice versa via clip-guided generative latent space search. In International Conference on Image
Processing and Vision Engineering, 2021.

11

https://arxiv.org/abs/2407.00745


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. NeurIPS, 2014.

Monson Hayes. The reconstruction of a multidimensional sequence from the phase or magnitude
of its fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 30(2):
140–154, 1982.

Linchao He, Hongyu Yan, Mengting Luo, , Hongjie Wu, Kunming Luo, Wang Wang, Wenchao Du,
Hu Chen, Hongyu Yang, Yi Zhang, and Jiancheng Lv. Fast and stable diffusion inverse solver with
history gradient update. Available online : https://arxiv.org/pdf/2307.12070, 2023.

Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
preserving guided diffusion. In ICLR, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:209–286,
2010.

Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of probability
flow ode for score-based generative models. Available online : https://arxiv.org/abs/
2404.09730, 2024.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In CVPR, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In NeurIPS, 2022.

Bahjat Kawar, Gregory Vaksman, and Michael Elad. SNIPS: Solving noisy inverse problems
stochastically. In NeurIPS, 2021.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. In NeurIPS, 2022.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards faster non-asymptotic convergence for
diffusion-based generative models. In ICLR, 2024.

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen.
SRDiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing, 479:
47–59, 2022.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In ICLR, 2023.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I2SB: Image-to-Image Schrödinger bridge. In ICML, 2023a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In ICLR, 2023b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. NeurIPS, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In CVPR, 2022.

12

https://arxiv.org/pdf/2307.12070
https://arxiv.org/abs/2404.09730
https://arxiv.org/abs/2404.09730


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. Available online :
https://arxiv.org/abs/1411.1784, 2014.

Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. StyleCLIP:
text-driven manipulation of stylegan imagery. In ICCV, 2021.

Ashwini Pokle, Matthew J Muckley, Ricky TQ Chen, and Brian Karrer. Training-free linear image
inversion via flows. Transactions on Machine Learning Research, 2023.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet,
and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH, 2022a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4713–4726, 2022b.

Yuyang Shi, Valentin De Bortoli, George Deligiannidis, and Arnaud Doucet. Conditional simulation
using diffusion schrödinger bridges. In UAI, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In ICLR, 2023a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In ICML, 2023b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In ICML, 2023c.

Phong Tran, Anh Tuan Tran, Quynh Phung, and Minh Hoai. Explore image deblurring via encoded
blur kernel space. In CVPR, 2021.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. ICLR, 2023.

Jay Whang, Qi Lei, and Alex Dimakis. Solving inverse problems with a flow-based noise model. In
ICML, 2021.

Chen Xu, Xiuyuan Cheng, and Yao Xie. Normalizing flow neural networks by JKO scheme. In
NeurIPS, 2023.

Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior sampling for plug-and-
play image reconstruction. In NeurIPS, 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: Construction of
a large-scale image dataset using deep learning with humans in the loop. Available online :
https://arxiv.org/abs/1506.03365, 2024.

A PROOFS

Lemma A.1. The equilibrium distribution of SDE (8) is p̃1,y .

Proof of Lemma A.1. Under generic condition, the Langevin dynamics

dXt = −∇U(Xt)dt+
√
2dWt

have the equilibrium ρ∞ ∝ e−U . For p̃1,y in (7) to be the equilibrium, it suffices to verify that

∇ log p̃1,y = −(x1 +∇x1
Ly(Φ(x1))).

This follows by that log γ(x1) = −∥x1∥2/2 + c and log p(y|Φ(x1)) = −Ly(Φ(x1)).
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Proof of Theorem 4.1. By (4) and (6), we have

p0,y(x0) =
1

Zy
p(y|x0)pdata(x0), p̃0,y(x0) =

1

Z̃y
p(y|x0)Φ#γ(x0),

where

Zy :=

∫
p(y|x0)pdata(x0)dx0, Z̃y :=

∫
p(y|x0)Φ#γ(x0)dx0.

Then, we have

2TV(p0,y, p̃0,y) =

∫
|p0,y(x0)− p̃0,y(x0)|dx0

≤
∫

1

Zy
p(y|x0) |pdata(x0)− Φ#γ(x0)| dx0 +

∣∣∣∣∣ Z̃y − ZyZy

∣∣∣∣∣ . (A.1)

By definition of κy in (10), we have 1
Zy
p(y|x0) ≤ κy , ∀x0, and thus∫

1

Zy
p(y|x0) |pdata(x0)− Φ#γ(x0)| dx0 ≤ κy

∫
|pdata(x0)− Φ#γ(x0)| dx0.

Meanwhile, Z̃y − Zy =
∫
p(y|x0)(Φ#γ(x0)− pdata(x0))dx0, and then

|Z̃y − Zy|
Zy

≤
∫

1

Zy
p(y|x0)|Φ#γ(x0)− pdata(x0)|dx0

≤
∫
κy|Φ#γ(x0)− pdata(x0)|dx0.

Putting back to (A.1), we have

2TV(p0,y, p̃0,y) ≤ 2κy

∫
|pdata(x0)− Φ#γ(x0)| dx0 = 4κy TV(pdata,Φ#γ),

which proves the theorem under (9).

Proof of Lemma 4.2. By that p̃0,y = Φ#p̃1,y , p̃S0,y = Φ#p̃
S
1,y , and Data Processing Inequality.

Proof of Corollary 4.3. By Theorem 4.1, Lemma 4.2, and triangle inequality since TV is half of the
L1 norm between two densities.

B EXPERIMENTAL DETAILS

B.1 DETAILS OF THE PROPOSED APPROACH

Consistency model generative process. To represent the map Φ from noise space to data space,
we utilize the pre-trained CMs of Song et al. (2023c) with a 1- or 2-step sampler. For the 2-step
sampler, we use standard multistep consistency sampling (Algorithm 1, Song et al. (2023c)), i.e.,

x0 = fθ

(
fθ(xT , T ) +

√
t2 − ϵ2z, t

)
,

where fθ is the pre-trained CM, xT ← x1, T = 80, ϵ = 2× 10−3 is a small noise offset , and t is an
intermediate "time step" along the PF-ODE trajectory (the "halfway" point). In Song et al. (2023c), z
is sampled from the standard Gaussian for each call to Φ. In this work, we sample z once and fix it
for all future calls to Φ, which we observe to empirically improve performance.
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Warm-start initialization and sampling. The posterior sampling process begins with a warm-start
initialization consisting of K steps of Adam optimization with learning rate, β1, and β2 for each
experiment outlined in Tables A.1, A.2, and A.3. This is followed by N steps of Langevin dynamics
simulation (via EM discretization in the main-text experiments) using step size τ . The NFEs per
sample can be computed as η(K +N)/N , where η is the number of steps used for CM generation.
All experiments are implemented in PyTorch and are run on a system with NVIDIA A100 GPUs.

See below for a pseudo-code implementation of one iteration of our sampling procedure:

1 x1_i = x1_i.requires_grad_()
2 x0_i = denoise(x1_i)
3

4 L = 1 / (2*sigma**2) * torch.norm(y - A(x0_i)) ** 2
5 g_i = torch.autograd.grad(outputs=L, inputs=x1_i)[0]
6

7 x1_i = x1_i - tau * (x1_i + g) + numpy.sqrt(2.*tau) * torch.randn_like(
x1_i)

8 x1_i = x1_i.detach_()

Table A.1: Hyper-parameters for linear and nonlinear image restoration tasks on LSUN-Bedroom
(256 x 256).
Method 8x Super-resolution Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DPS-DM ζ = 25, N = 100 ζ = 7, N = 100 ζ = 25, N = 100 ζ = 15, N = 100 ζ = 10, N = 100 ζ = 5, N = 100
MPGD-DM ζ = 25, N = 100 ζ = 15, N = 100 ζ = 25, N = 100 ζ = 7, N = 100 ζ = 1, N = 100 ζ = 5, N = 100
LGD-DM ζ = 25,M = 1, N = 100 ζ = 25,M = 10, N = 100 ζ = 7,M = 25, N = 100 ζ = 9,M = 10, N = 100 ζ = 1,M = 10, N = 100 ζ = 30,M = 10, N = 100
DPS-CM ζ = 25, N = 100 ζ = 7, N = 100 ζ = 25, N = 100 ζ = 8, N = 100 ζ = 9, N = 100 ζ = 4, N = 100
MPGD-CM N/A N/A N/A ζ = 15, N = 100 ζ = 3, N = 100 ζ = 30, N = 100
LGD-CM ζ = 25,M = 1, N = 100 ζ = 7,M = 1, N = 100 ζ = 5,M = 1, N = 100 ζ = 15,M = 10, N = 100 ζ = 0.5,M = 10, N = 100 ζ = 15,M = 10, N = 100

Ours(1-step)
Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 200, lr = 1× 10−3 K = 800, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 5× 10−6 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−6

Ours(2-step)
Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 500, lr = 5× 10−3 Adam: K = 500, lr = 1× 10−3 Adam: K = 500, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−7 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 5× 10−6 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−6

Table A.2: Hyper-parameters for linear image restoration tasks on ImageNet (64 x 64).
Method 4x Super-resolution Gaussian Deblur 20% Inpainting

DPS-DM ζ = 20, N = 100 ζ = 15, N = 100 ζ = 30, N = 100
LGD-DM ζ = 3,M = 10, N = 100 ζ = 1,M = 10, N = 100 ζ = 5,M = 10, N = 100
DPS-CM ζ = 30, N = 100 ζ = 30, N = 100 ζ = 25, N = 100
LGD-CM ζ = 3,M = 10, N = 100 ζ = 7,M = 10, N = 100 ζ = 6,M = 10, N = 100

Ours(1-step)
Adam: K = 800, lr = 1× 10−2 Adam: K = 800, lr = 1× 10−2 K = 800, lr = 1× 10−2

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 5× 10−4 EM: N = 10, τ = 3× 10−5 EM: N = 10, τ = 1× 10−4

Ours(2-step)
Adam: K = 500, lr = 5× 10−2 Adam: K = 500, lr = 5× 10−2 Adam: K = 500, lr = 5× 10−2

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−4 EM: N = 10, τ = 3× 10−5 EM: N = 10, τ = 1× 10−4

Table A.3: Hyper-parameters for linear and nonlinear diversity experiments on LSUN-Bedroom (256
x 256).
Method 8x Super-resolution Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DPS-DM ζ = 7, N = 100 ζ = 7, N = 100 ζ = 7, N = 100 ζ = 5, N = 100 ζ = 5, N = 100 ζ = 1, N = 100
LGD-DM ζ = 15,M = 1, N = 100 ζ = 5,M = 1, N = 100 ζ = 15,M = 1, N = 100 ζ = 4,M = 10, N = 100 ζ = 0.5,M = 10, N = 100 ζ = 10,M = 10, N = 100

Ours(1-step)
Adam: K = 400, lr = 5× 10−3 Adam: K = 600, lr = 5× 10−3 K = 600, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 200, lr = 1× 10−3 K = 800, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 4× 10−4 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−4 EM: N = 25, τ = 7.5× 10−6 EM: N = 25, τ = 3× 10−6 EM: N = 25, τ = 3× 10−6

Ours(2-step)
Adam: K = 600, lr = 5× 10−3 Adam: K = 600, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 500, lr = 5× 10−3 Adam: K = 500, lr = 1× 10−3 Adam: K = 500, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 4× 10−4 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−4 EM: N = 25, τ = 7.5× 10−6 EM: N = 25, τ = 3× 10−6 EM: N = 25, τ = 3× 10−6

B.2 DETAILS OF THE BASELINES

The baseline methods conduct t = 1, . . . , N Euler steps for sampling. All methods require a
denoiser to provide x0 ≈ x̂0(xt) at each sampling step t, which is achieved using either a pre-trained
EDM (Karras et al., 2022) or CM (Song et al., 2023c), both obtained from Song et al. (2023c) for
each dataset.

Diffusion Posterior Sampling (DPS). DPS (Chung et al., 2023) utilizes the denoiser corresponding
to a pre-trained DM to approximate the measurement likelihood gradient at each step of DM sampling.
At each state xt along the diffusion sampling trajectory, a score-base diffusion model can provide a
predicted x̂0(xt), which can be used to compute ∇xt

p(y|x̂0) via differentiation through the score-
based model. In DPS, each step of diffusion sampling is adjusted by this gradient with weight ζ, i.e.,
xt−1 ← xt−1 − ζ∇xtp(y|x̂0).
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Manifold Preserving Guided Diffusion (MPGD). MPGD (He et al., 2023) computes the gradient
of the measurement likelihood in the denoised space rather than with respect to xt at each step,
taking a gradient step in x̂0 before updating the diffusion iterate. That is, MPGD conducts the update
x̂0 ← x̂0(xt) − ζ∇x̂0

p(y|x̂0(xt)), which can then be use to yield xt−1 at each step. MPGD also
provides an optional manifold projection step which utilizes pre-trained autoencoders to ensure x̂0
remains on the data manifold. For a fair comparison, we only consider MPGD without manifold
projection in this work.

Loss Guided Diffusion (LGD). LGD (Song et al., 2023b) aims to improve the approximation
of p(y|x0) at each step along the sampling trajectory via a Monte Carlo approach. Viewing
p(y|x̂0) in DPS as a delta distribution approximation of p(y|x0) about x̂0, LGD instead com-
putes the log-mean-exponential of p(y|x̂(m)

0 ) for m = 1, . . . ,M perturbed copies of x̂0. That
is, p(x̂0|xt) ∼ N (x̂0(xt), r

2
t I), where rt = βt/

√
1 + β2

t . The weighted (by ζ) Monte Carlo

gradient∇xt
log

(
1
M

∑M
m=1 exp

(
p
(
y|x̂(m)

0

)))
is then used to adjust xt−1, as in DPS.

B.3 DEGRADATIONS AND FORWARD OPERATORS

In all experiments, pixel values are scaled from [-1, 1] (as in Song et al. (2023c)) before application of
forward operators. The details of the measurement likelihoods corresponding to each forward operator
are outlined below. All methods use σ = 0.1, except for phase retrieval, which uses σ = 0.05.

Super-resolution. The super-resolution task is defined by the following measurement likelihood:

y ∼ N (y|AvgPoolf (x), σ
2I),

where AvgPool represents 2D average pooling by a factor f .

Gaussian deblur. Gaussian blur is defined by a block Hankel matrix Cψ representing convolution
of x with kernel ψ:

y ∼ N (y|Cψx, σ2I).

We consider a 61 x 61 Gaussian kernel with standard deviation of 3.0, as in Chung et al. (2023).

Inpainting. The measurement likelihood corresponding to p% inpainting is a function of a mask P
with (1-p)% uniformly random 0 values:

y ∼ N (y|Px, σ2I).

Nonlinear deblur. Following Chung et al. (2023), the forward nonlinear blur operator is a pre-
trained neural network Fϕ to approximate the integration of non-blurry images over a short time
frame given a single sharp image (Tran et al., 2021). Therefore, the measurement likelihood is as
follows:

y ∼ N (y|Fϕ(x), σ2I).

Phase retrieval. The forward operator of the phase retrieval task takes the absolute value of the
2D Discrete Fourier Transform F applied to x: |Fx|. However, since this task is known to be
highly ill-posed (Hayes, 1982; Chung et al., 2023), an oversampling matrix P is also applied (with
oversampling ratio 1 in this work):

y ∼ N (y||FPx|, σ2I).

High dynamic range reconstruction. In the HDR forward model, pixel values are scaled by a
factor of 2 before truncation back to the range [-1, 1]. Therefore, the measurement likelihood is as
follows:

y ∼ N (y|clip(2x,−1, 1), σ2I),

where clip(·,−1, 1) truncates all input values to the range [-1, 1].
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C ADDITIONAL EXPERIMENTS

Numerical SDE solver comparison. Alternative numerical methods to EM (11) can be applied
to discretize the Langevin dynamics SDE, such as the exponential integrator (EI) (Hochbruck &
Ostermann, 2010). The EI scheme discretizes the nonlinear drift term gi = ∇x1

Ly(x0)|x1=zi
and

integrates the continuous-time dynamics arising from the linear term:

zi+1 = e−τzi − (1− e−τ )gi +
√
1− e−2τξi,

where ξi ∼ N (0, I). In Table A.4, quantitative comparison between our method using EM versus
EI is shown on generating 10 samples for 100 images from the LSUN-Bedroom validation dataset,
where the forward operator is nonlinear blurring. The same hyper-parameters are used for both
methods, which are outlined in Table A.1. In this case, there is a marginal improvement in most
metrics when using the EI scheme.

Table A.4: Comparison between our method with EM and EI integration on the nonlinear deblur task
on LSUN-Bedroom (256 x 256).

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Ours-EM(1-step) 20.3 0.566 0.440 76.7
Ours-EM(2-step) 18.7 0.501 0.492 73.3
Ours-EI(1-step) 20.5 0.569 0.437 76.3
Ours-EI(2-step) 18.7 0.504 0.491 74.2

D ADDITIONAL QUALITATIVE RESULTS

Visualizations of additional reconstructions from our method corresponding to the linear and nonlinear
experiments from Section 6.1 can be found in Figures A.1, A.2, A.3, A.4, and A.5. Additionally,
diverse sets of samples from our one-step / two-step CM method corresponding to the experiments of
Section 6.2 are visualized in Figures A.6, A.7, A.8, A.9, A.10, and A.11. Finally, diverse samples
via the linear tasks on ImageNet (64 x 64) are shown in Figures A.12, A.13, and A.14. In these
experiments, we use the one-step CM sampler with the same hyper-parameters as in Table A.2, but
with τ = 4×10−4 for inpainting, τ = 9×10−4 for super-resolution, and τ = 5×10−5 for Gaussian
deblur.
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Figure A.1: Additional image reconstructions for inpainting (left) and 8x super-resolution (right) on
LSUN-Bedroom (256 x 256).
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Figure A.2: Additional image reconstructions for Gaussian Deblurring on LSUN-Bedroom (256 x
256) (left) and ImageNet (64 x 64) (right).
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Figure A.3: Additional image reconstructions for inpainting (left) and 4x super-resolution (right) on
ImageNet (64 x 64).
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Figure A.4: Additional image reconstructions for nonlinear deblur (left) and HDR reconstruction
(right) on LSUN-Bedroom (256 x 256).
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Figure A.5: Additional image reconstructions for phase retrieval on LSUN-Bedroom (256 x 256).
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Figure A.6: Additional sets of samples for Inpainting (10%) on LSUN-Bedroom (256 x 256).
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Figure A.7: Additional sets of samples for SR (8x) on LSUN-Bedroom (256 x 256).
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Figure A.8: Additional sets of samples for SR (8x) on LSUN-Bedroom (256 x 256) for 2-step method.
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Figure A.9: Additional sets of samples for nonlinear deblur on LSUN-Bedroom (256 x 256).
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Figure A.10: Additional sets of samples for HDR reconstruction on LSUN-Bedroom (256 x 256).
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Figure A.11: Additional sets of samples for phase retrieval on LSUN-Bedroom (256 x 256).
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Figure A.12: Sets of samples for 20% inpainting on ImageNet (64 x 64).
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Figure A.13: Sets of samples for 4x super-resolution on ImageNet (64 x 64).
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Figure A.14: Sets of samples for Gaussian deblurring on ImageNet (64 x 64).
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